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Abstract. The determination of the modular character tables of the sporadic

O’Nan group, its automorphism group and its covering group is completed

by the calculation of the 7-modular decomposition numbers. The results are
obtained with the assistance of the systems GAP, MOC, and MeatAxe, and by

applying new condensation methods.

1. Introduction and results

In this paper we describe the computation of the 7-modular decomposition num-
bers for the sporadic simple O’Nan group ON , its automorphism group ON.2 and
its triple covering group 3.ON . Our results complete the determination of the
Brauer character tables for these groups (see [4, 7]; the 3-modular table for ON.2
is not published yet). The proof involves far too many details to be presented
in this paper. We have tried, however, to give enough information to enable the
reconstruction of the proofs for the principal blocks in a suitable computational en-
vironment. We do not comment on the proof for the non-principal blocks of 3.ON .
At any rate, the results for these blocks are considerably easier to obtain than those
for the principal block. The results for ON and 3.ON have been obtained by the
first author in her Diploma thesis [2], to which we refer the interested reader for
more details.

To find the decomposition numbers, we had to apply both character theoretic
and module theoretic methods. In particular we made use of GAP [17], MOC
[3, 11], the MeatAxe [13, 14], and Condensation [10, 16]. Of particular power is
a new condensation method which allows to condense tensor products of modules
[12, 18]. The ordinary character tables we have used were taken from the GAP
library. The numbering of the characters used there coincides with the one in the
Atlas [1]. We denote, as usual, characters by their degrees, distinguishing characters
of equal degree by subscripts. It is a great pleasure for us to acknowledge the help
of T. Breuer, who on our request computed the ordinary character tables of some
maximal subgroups of 3.ON .

From now on, blocks and decomposition matrices are understood with respect
to the prime 7. The group 3.ON has eight blocks of defect zero and three blocks
B1, B2, B3 of defect 3. The blocks of defect zero consist of the characters

58 6531, 85 064, 116 963, 143 374, 175 6161, 175 6162, 58 6532, 58 6533,
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Table 1. Decomposition numbers of the principal block B1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 . . . . . . . . . . . . . . . . . .
10 944 . 1 1 . . . . . . . . . . . . . . . .
13 3761 . . . 1 1 . . . . . . . . . . . . . .
13 3762 . . . . . 1 1 . . . . . . . . . . . .
25 9161 . . . 1 . . . 1 1 . . . . . . . . . .
25 9162 . . . . . 1 . 1 1 . . . . . . . . . .
26 752 1 1 1 . . . . . . 1 . . . . . . . . .
32 3951 1 1 1 . . . . . . . 1 1 . . . . . . .
32 3952 1 1 1 . . . . . . . . . 1 1 . . . . .
37 696 . . . . 1 . 1 . . . . . . . 1 . . . .
52 668 . 2 2 . 1 . 1 . . . 1 . 1 . . . . . .
58 3111 . 1 . . . . . 2 1 . . . . . . 1 . . .
58 3112 1 . . . . . . . . . . 1 . . . . 1 . .
58 3113 1 . . . . . . . . . . . . 1 . . . 1 .
64 7901 . . . . . . . 1 1 . . . . . . . . 1 .
64 7902 . . . . . . . 1 1 . . . . . . . 1 . .

169 2901 1 1 . . 1 . 1 . 1 . . 1 . 1 1 . 1 1 .
169 2902 . 1 1 . . . . . . 1 1 . 1 . . . . . 1
175 7701 . 2 . . . . . . . 1 . . . . . 1 . . 1
207 3601 . 1 . . . . . 1 1 . . . . . 1 1 . . 1
207 3602 1 2 1 . 1 . 1 . . . 1 1 1 1 1 . . . 1
207 3603 . 1 . 1 1 1 1 1 2 . . 1 . 1 1 . 1 1 .
234 0801 . 1 . 1 1 1 1 . 1 . 1 1 1 1 1 . . . 1
234 0802 . 1 . 1 1 1 1 . 1 . 1 1 1 1 1 . . . 1

of which the first six are characters of ON .

1.1. The principal block. The decomposition matrix for the principal block B1

is given in Table 1. Its columns correspond to the following irreducible Brauer
characters:

1, 1 618, 9 326, 12 1551, 1 2211, 12 1552,
1 2212, 406, 13 355, 15 807, 14 1691, 7 2811,

14 1692, 7 2812, 35 254, 42 526, 51 0291, 51 0292, 114 201.

The underlined characters in the first column of Table 1 constitute a basic set of
Brauer characters for B1, i. e. the restrictions to the 7-regular conjugacy classes of
these characters are a Z-basis for the group of generalized Brauer characters of B1.
Equivalently, the matrix consisting of the rows of Table 1 corresponding to these
characters is invertible over Z.

1.2. The non-principal blocks. The two non-principal blocks of positive defect,
B2 and B3, are complex conjugate to each other. The decomposition matrix of
B2 is given in Table 2. The columns there correspond to the following irreducible
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Table 2. Decomposition matrix for block B2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3421 1 . . . . . . . . . . . . . . . . . .
3422 . 1 . . . . . . . . . . . . . . . . .
4951 . . 1 . . . . . . . . . . . . . . . .
4952 . . . 1 . . . . . . . . . . . . . . .

5 6431 . . . . 1 1 . . . . . . . . . . . . .
5 6432 . . . . . . 1 . . . . . . . . . . . .
5 6433 . . . . . . . 1 . . . . . . . . . . .

52 6682 . . . . . . . . 1 1 1 . . . . . . . .
52 6683 . . . . . . . . 1 1 1 . . . . . . . .
58 3114 . . . . 1 . 1 1 1 1 . 1 1 . . . . . .
63 612 1 1 1 1 1 . . . . . 1 . . 1 . . . . .

111 321 . . 1 1 2 1 . . . . . . . . 1 . . . .
116 622 1 1 1 1 1 1 1 1 . . . 1 1 . . 1 . . .
122 760 . . . . . . . . 1 1 . 1 . . . . 1 . .
169 2903 . . 1 1 1 . . . . . . . 1 . 1 . . 1 .
169 2904 . . 1 1 2 . . . . . . . . 1 . . 1 . 1
169 6321 . . . . . . . . 1 1 . . 1 . . . 1 . 1
169 6322 1 1 1 1 2 1 1 1 . . . 1 1 . . 1 . 1 .
175 7702 1 1 2 2 4 1 1 1 . . . . 2 1 . . . 1 1
207 3604 1 1 2 2 3 1 1 1 . . . 1 1 1 . 1 . 1 .
207 3605 1 1 1 1 1 . 1 1 1 . 1 1 1 1 . . 1 . .
207 3606 1 1 1 1 3 1 1 1 . 1 . 1 1 1 . . 1 . 1
253 4401 1 1 1 1 2 . 1 1 1 1 1 1 1 1 . . 1 . 1
253 4402 . . 1 1 2 1 . . . . . . 1 . 1 1 . 1 .

Brauer characters:
3421, 3422, 4951, 4952, 451, 5 5981,

5 6432, 5 6433, 26 5231, 9451, 25 2001, 8 8651,
10 6471, 36 6931, 104 6431, 78 5071, 86 4271, 52 9651, 45 0901.

Again the underlined characters form a basic set. We get the decomposition matrix
of B3 by replacing the ordinary characters in the decomposition matrix of B2 by
their complex conjugates.

1.3. The principal block of ON.2. The group ON.2 has twelve blocks of defect
zero. These consist of the extensions of the defect zero characters of ON . Only the
principal block is of positive defect. Its decomposition matrix is given in Table 3.
The columns there correspond to the following irreducible Brauer characters:

11, 12, 9 3261, 1 6181, 1 6182, 9 3262, 24 310,
2 442, 4061, 4062, 13 3551, 13 3552, 15 8071, 15 8072, 28 338,

14 562, 35 2541, 35 2542, 42 5261, 42 5262, 102 058, 114 2011, 114 2012.

As in the tables above, we have underlined the ordinary characters of a basic set.
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Table 3. Decomposition numbers of the principal block of ON.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

11 1 . . . . . . . . . . . . . . . . . . . . . .
12 . 1 . . . . . . . . . . . . . . . . . . . . .

10 9441 . . 1 1 . . . . . . . . . . . . . . . . . . .
10 9442 . . . . 1 1 . . . . . . . . . . . . . . . . .
26 7521 . . . . . . 1 1 . . . . . . . . . . . . . . .
51 832 . . . . . . 1 . 1 1 1 1 . . . . . . . . . . .
26 7522 . 1 1 . 1 . . . . . . . 1 . . . . . . . . . .
26 7523 1 . . 1 . 1 . . . . . . . 1 . . . . . . . . .
64 790 1 1 1 1 1 1 . . . . . . . . 1 1 . . . . . . .
37 6961 . . . . . . . 1 . . . . . . . . 1 . . . . . .
37 6962 . . . . . . . 1 . . . . . . . . . 1 . . . . .
52 6681 . . 1 1 1 1 . 1 . . . . . . 1 . . . . . . . .
52 6682 . . 1 1 1 1 . 1 . . . . . . 1 . . . . . . . .
58 3111 . . . 1 . . . . 1 1 1 . . . . . . . 1 . . . .
58 3112 . . . . 1 . . . 1 1 . 1 . . . . . . . 1 . . .

116 622 1 1 . . . . . . . . . . . . . 1 . . . . 1 . .
129 580 . . . . . . . . 1 1 1 1 . . . . . . . . 1 . .
169 2901 1 . . 1 . . . 1 . . 1 . . . . 1 . 1 . . 1 . .
169 2902 . 1 . . 1 . . 1 . . . 1 . . . 1 1 . . . 1 . .
169 2903 . . 1 . 1 . . . . . . . 1 . 1 . . . . . . 1 .
169 2904 . . . 1 . 1 . . . . . . . 1 1 . . . . . . . 1
175 7701 . . . 2 . . . . . . . . . 1 . . . . 1 . . . 1
175 7702 . . . . 2 . . . . . . . 1 . . . . . . 1 . 1 .
207 3601 . . . 1 . . . . 1 . 1 . . . . . . 1 1 . . . 1
207 3602 . . . . 1 . . . . 1 . 1 . . . . 1 . . 1 . 1 .
207 3603 . 1 1 1 1 . . 1 . . . . . . 1 1 1 . . . . 1 .
207 3604 1 . . 1 1 1 . 1 . . . . . . 1 1 . 1 . . . . 1
207 3605 . . . 1 . . 1 1 . 1 1 1 . . . 1 1 . . . 1 . .
207 3606 . . . . 1 . 1 1 1 . 1 1 . . . 1 . 1 . . 1 . .
234 0801 . . . . 1 . 1 1 . . . 1 . . 1 1 1 . . . . 1 .
234 0802 . . . 1 . . 1 1 . . 1 . . . 1 1 . 1 . . . . 1
234 0803 . . . . 1 . 1 1 . . . 1 . . 1 1 1 . . . . 1 .
234 0804 . . . 1 . . 1 1 . . 1 . . . 1 1 . 1 . . . . 1

2. Providing a few representations

In this section we describe the construction of a few representations, which will
be needed later. From now on let G denote the simple group ON , 3.G its triple
covering group, and G.2 and 3.G.2 the extensions of G and 3.G, respectively, by
the non-trivial outer automorphism.

2.1. Generators. We start our constructions by accessing the F7-representation of
3.G.2 of degree 90 from the data base [19], see also [15]. It is given in terms of two
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standard generators, X and Y say, where X is a 2B-element, Y is a 4A-element, and
their product XY is a 22A-element. The corresponding structure constant confirms
that (2B, 4A, 22A) is a rigid triple, see [20]. We let W := (XY )2Y and observe
that WXYW is an element of order 56, hence A := W 9(WXYW )28W−9 is a 2A-
element. We let B := Y and find that AB is of order 33. Structure constants show
that (2A, 4A, 33A) and (2A, 4A, 33B) both are rigid triples, hence we can choose A
and B as our pair of standard generators. Thereby we define the class 33A to be
the class AB belongs to. We let x := (XY )11, which also is a 2B-element. Hence
we can assume that all explicit representations of 3.G which occur in the sequel are
given in terms of A, B, and their conjugates Ax, Bx. Finally we let Z := (AB)22,
which is a non-trivial central element.

Restricted to 3.G, the F7-representation of degree 90 splits into a pair 451, 452 =
45∗1 of mutually contragradient representations. We define 451 to be the module
where the scalar action of Z is given by the chosen standard primitive third root of
unity, hence 451 belongs to block B2. It is a standard application of the MeatAxe
to obtain a few new representations from these by tensoring and symmetrising.
We find 451 ⊗ 452 = 1 + 406 + 1618, 45[1,1]

2 = 451 + 9451, 9452 = 945∗1, 45[2]
2 =

4951 +4952 +451, 4952 = 495∗x1 , 4953 = 495∗1, 4954 = 495x1 , where 406, 1618 belong
to the principal block B1, 4951,2, 9451 belong to B2 and 4953,4, 9452 belong to B3.
Here x denotes the action of the outer automorphism.

Furthermore, we use the following notation: If π is a partition of n ∈ N, then V π

denotes the symmetrisation of the module V with respect to the ordinary irreducible
representation χπ of the symmetric group Sn corresponding to π. Hence e. g. V [2]

and V [1,1] denote the symmetric and skew square of V , respectively. Note that the
Brauer character of V π can be computed from the Brauer character of V and the
character χπ.

2.2. Some Brauer characters. We are now going to compute some Brauer char-
acter values for the representations constructed above. First, we have to find ele-
ment representatives for a suitable subset of conjugacy classes. A consideration of
table automorphisms shows that we can choose representatives for the classes 11A,
16B, 19A, 20A, 31A as given in Table 4, where we have put C := (AB)4B and
D := ABC. The representatives for the other classes shown there are then given
by powermaps.

For both blocks B1 and B2 the matrix of the values of the 19 ordinary characters
in its basic set on the 1A-class and the 18 classes of Table 4 turns out to be invertible.
Hence a Brauer character in one of these blocks is uniquely determined by its values
on these classes. Using the data on Conway polynomials and irrationalities given in
[6, Appendix 1], GAP and the MeatAxe, we compute the Brauer character values of
451, 406, 4951, 9451 on the classes of Table 4. Using the equations given in 2.1, we
find the Brauer character values for all the other irreducible representations known
so far.

2.3. Permutation representations. We will now construct two permutation rep-
resentations needed in the sequel. We start with the F4-representation of 3.G of
degree 153 accessible in the data base [19]. Guided by the construction of this
representation described in [7], it is easy to find a one-dimensional subspace of
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Table 4. Representatives for some conjugacy classes

Class Repr.

2A ((AB)2B)30

4A ((AB)2B)15

4B (D2CD3CDC)36

5A ((AB)2B)12

8A (D2CD3CDC)18

8B ((D2CD3CDC)18)x

10A ((AB)2B)6

11A (AB)3

16A (D2CD3CDC)9

Class Repr.

16B (D2CD3CDC)3

16C ((D2CD3CDC)9)x

16D ((D2CD3CDC)3)x

19A (AB)3B
19B ((AB)3B)2

19C ((AB)3B)4

20A ((AB)2B)3

20B ((AB)2B)−3

31A (D3C)−1

the underlying space whose orbit under the action of G is of length 122 760, giv-
ing a permutation representation of G on the cosets of a maximal subgroup iso-
morphic to L3(7) : 2. Considering the orbit of a non-trivial vector in this one-
dimensional subspace instead, we get a permutation representation of 3.G of de-
gree 368 280, i. e. again on the cosets of a subgroup isomorphic to L3(7) : 2.
Analogously, starting with the F9-representation of G.2 of degree 154 also given
in [19] we obtain a permutation representation of G on 245 520 points, i. e. on
the cosets of a subgroup isomorphic to L3(7). The corresponding permutation
characters are given by 122 760 = 1 + 10 944 + 26 752 + 32 3951 + 52 668 and
245 520 = 1 + 10 944 + 26 752 + 32 3951 + 37 696 + 52 668 + 85 064.

2.4. Condensation. Let F be a field, A a finite-dimensional F -algebra and e ∈ A
an idempotent, i. e. 0 6= e = e2. We then have an additive exact functor, the
condensation functor, from the category of finite-dimensional right A-modules to
the category of finite-dimensional right eAe-modules. It maps an A-module V to
the eAe-module V e and an A-homomorphism α ∈ HomA(V,W ) to the restriction
of α to V e. If S is a simple A-module then either Se = {0} or Se is a simple
eAe-module. We are interested in the special situation of fixed point condensation,
i. e. A := FH is the group algebra of a finite group H, K is a subgroup of H whose
order is invertible in F and e = eK := |K|−1

∑
k∈K k ∈ FK ⊆ FH. Since V e is

the set of vectors of V fixed by K, the dimension of the condensed module V e is
given by the scalar product of the trivial character of K with the Brauer character
of V restricted to K.

In the computational context we work in, we are given a set of generators
{h1, h2, . . .} for H, and an FH-module V of a special nature, i. e. in our cases
a permutation module or a tensor product. We then compute matrices for the
action of the elements {eh1e, eh2e, . . .} on V e, using the MeatAxe version written
by M. Ringe [14] and its tensor condensation package written by M. Wiegelmann
[18]. We then analyze the submodule structure of V e, considered as module for the
condensation subalgebra K of eFHe generated by {eh1e, eh2e, . . .}, which might be
properly contained in eFHe. As V e ⊆ V , for a K-submodule W of V e we can form
the smallest FH-submodule of V containing W ; this process is called uncondensing.
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Let B be a block of FH, containing exactly l simple modules {S1, . . . , Sl} up
to isomorphism. We now describe a method to check that Ske 6= {0} holds for
all the Sk. Let {V1, . . . , Vn} be a set of FH-modules and let {T1, . . . , Tm} be the
set of simple K-modules occuring up to isomorphism as constituents of the Vie’s.
Let M = (mij) ∈ Zn×m be defined by [Vie] =

∑m
j=1mij [Tj ], where the terms

in brackets denote the corresponding elements of the Grothendieck group of the
category of finite-dimensional K-modules.

Proposition. If M has rank l, then Ske 6= {0} for all simple B-modules Sk,
1 ≤ k ≤ l.

Proof. By definition, M factors as M = XY , where the rows of X ∈ Zn×l record
the multiplicities of the Sk’s in the Vi’s, and the rows of Y ∈ Zl×m give the decom-
position of the Ske’s into the Tj ’s. If M has rank l, then Y has rank l, and hence
Ske 6= {0} for all 1 ≤ k ≤ l. ]

Note that M possibly has rank l, only if X also has. Hence to apply this criterion
it is necessary that {[V1], . . . , [Vn]} generates a sublattice of finite index in the
Grothendieck group of the category of finite-dimensional B-modules.

2.5. Applying Condensation. We are now going to find generators for a suitable
condensation subgroup K < 3.G. We choose a subgroup K ∼= 11 : 10. Note that
the fusion of the conjugacy classes of K into those of 3.G is uniquely determined
by a consideration of element orders. Using this fusion, the scalar product of
the restriction of a character of 3.G to K with the trivial character of K can be
computed using GAP.

As the envisaged subgroup K is contained in a maximal subgroup of 3.G iso-
morphic to J1, we first find generators for such a maximal subgroup, which is the
centralizer in 3.G of a 2B-element. Let C1 := (AB)2B(AB)3B, C2 := (AB)5B,
A1 := B−1AB, A2 := C1AC

−1
1 , A3 := C2AC

−1
2 , B1 := (A1A

x
1)6(A2A

x
2)14, B3 :=

B1(A3A
x
3)14, B2 := (B1B3)2B3(B1B3)3B3B1B

2
3 . It can be checked, e. g. us-

ing the permutation representations constructed above, that 〈B1, B2〉 in fact is
a subgroup of 3.G isomorphic to J1. Now let Y1 := (B1B2)3, Y2 := (B1B2)2B2,
Z1 := Y2Y1Y

−1
2 .It turns out that Y1 and Z1 are of order 2, while Y1Z1 is of or-

der 11. Hence we have to find an element of order 5 centralizing Y1 and nor-
malizing Y1Z1. We have CJ1(Y1) ∼= C2 × A5, it turns out to be generated by
X1 := (Y1B

2
2Y1B

−2
2 )3(Y1B

4
2Y1B

−4
2 )5 and X2 := (Y1B

2
2Y1B

−2
2 )3(Y1B

−2
2 Y1B

2
2)3. It is

easy to find a suitable element of order 5 in this subgroup. We let Y3 := (X1X2)4X2,
Y4 := X1X2Y

2
3 (X1X2)−1, Z2 := Y1Y4. Then Y4 is an element of order 5 having the

properties we have looked for, Z2 is of order 10, and K := 〈Z1, Z2〉 is a subgroup
of 3.G isomorphic to 11 : 10.

We are now able to condense the permutation representations constructed in Sec-
tion 2.3 and a few tensor products of the matrix representations constructed in Sec-
tion 2.1 with respect to K. Let F := F7, e := eK and K := 〈eAe, eBe, eAxe, eBxe〉.
The K-constituents of the condensed representations are given in Table 5, where
the columns correspond to the irreducible K-modules occurring in the condensed
modules. The condensed permutation representation of degree 368 280 turns out to
have a socle constituent of dimension 3. Uncondensing this submodule, we obtain
representations 3421 of 3.G, belonging to block B2, and 3422 = 342∗x1 , 3423 = 342∗1,
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Table 5. Some condensed modules

1 5 101 102 15 671 672 90 1061 1062 121

P122 760 2 . 1 1 5 1 5 . . .
P245 520 3 . 4 5 1 5 . . .

3421 ⊗ 3424 . 2 . . 1 . . . . . 1
4951 ⊗ 4954 . 2 . . 4 . . 1 . . 1
4951 ⊗ 4953 3 . . . 2 2 2 . . .
4952 ⊗ 4954 3 . . . 2 2 2 . . .
406⊗ 406 3 1 1 1 6 2 2 2 2 2 1

1291 1292 150 317 392 4701 4702 1 035 533 767 1 304

P122 760 2 1 1 . . . . . . . .
P245 520 3 1 1 . . . . . 1 .

3421 ⊗ 3424 . . . . 1 . . . 1 . .
4951 ⊗ 4954 . . 1 . 2 . . 1 . . .
4951 ⊗ 4953 1 . . . 1 . . . . 1
4952 ⊗ 4954 1 . . . . 1 . . . 1
406⊗ 406 . . . . 1 . . . . . .

3424 = 342x1 . The K-constituents of the condensed tensor product 3421 ⊗ 3424 are
also shown in Table 5.

3. Remarks on the proof for the principal block

3.1. Subgroup Fusions. We are going to induce Brauer characters and projective
characters from the first, third, fifth and sixth maximal subgroup of G. We have
M1
∼= L3(7) : 2, M3

∼= J1, M5
∼= (32 : 4×A6)·2 and M6

∼= 34 : 21+4
− D10, see [1]. The

ordinary character tables of these subgroups are available through GAP. Since we
have already chosen element representatives for the conjugacy classes of G given in
Table 4, we have to adjust the fusions of the conjugacy classes of these subgroups
into those of G accordingly. A consideration of table automorphisms shows that
we can choose the subgroup fusions of M5 and M6, whose orders are not divisible
by 7, as are given in GAP. For M1 and M3 we have to take their 7-modular Brauer
character tables into account. As M1 and M3 are also subgroups of 3.G, we can
restrict 451 from 3.G to M1 and M3. From the known Brauer character values,
see 2.2, we find that 451|M1 decomposes into 8 + 37, while 451|M3 is irreducible.
This immediately determines the fusion from M3 to G. The analogous analysis for
M1 leads to two possible cases, which correspond to the fact that there are two
conjugacy classes of subgroups isomorphic to L3(7) : 2 in G.

3.2. A basic set of projective characters for the principal block. Table 6
describes a set of projective characters, understood to be projected to the principal
block B1. We have used the symbol ↑i to denote the induction of characters from a
maximal subgroup Mi, i ∈ {1, 3, 5, 6}. The character χ22 = 3432 of M1 is of 7-defect
zero. For M5 and M6, whose orders are not divisible by 7, we have χ10(1) = 1,
χ17(1) = 2, and χ1(1) = χ2(1) = 1, χ5(1) = 5, χ11(1) = χ12(1) = 4, respectively.
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Table 6. The basic set PS of projective characters

Char. Origin

Φ1 χ2 ↑6
Φ2 406⊗ 58 6531

Φ3 406⊗ 85 064
Φ4 451 ⊗ 58 6533

Φ5 452 ⊗ 58 6532

Φ6
1
2χ12 ↑6

Φ7 χ22 ↑1
Φ8 χ17 ↑5
Φ9 3424 ⊗ 58 6532

Φ10 3423 ⊗ 58 6532

Char. Origin

Φ11 1 618⊗ 58 6531

Φ12
1
2χ11 ↑6

Φ13 1 618⊗ 85 064
Φ14 9451 ⊗ 58 6533

Φ15
1
6 (9452 ⊗ 58 6532 + Φ̃)

Φ16 χ10 ↑5
Φ17 4953 ⊗ 58 6532

Φ18 χ5 ↑6
Φ19 χ1 ↑6

The projections to B1 of χ11 ↑6 and χ12 ↑6 both are twice ordinary characters,
hence Φ6 and Φ12 are projective characters. Let Φ̃ := 5Φ4 + 5Φ5 + 4Φ6 + 2Φ7 +
5Φ8 + 4Φ11 + Φ14. Then the projection to B1 of 9452 ⊗ 58 6532 + Φ̃ is six times an
ordinary character, and thus Φ15 is a projective character as well.

The matrix of scalar products between PS := {Φ1, . . . ,Φ19} and the characters
in the basic set BS of ordinary characters given by the underlined characters in
Table 1 turns out to be invertible over Z. Hence PS is a basic set of projective
characters.

3.3. A collection of projective characters. Let P be the set of projective char-
acters obtained by inducing the projective indecomposable characters of the Mi,
i ∈ {1, 3, 5, 6}, to G, by tensoring the 7-defect zero characters with the ordinary
characters of 3.G and with the irreducible Brauer characters 451, 452, 406, 9451,
9452, 1 618, and by taking symmetric and skew squares of the defect zero characters.

The set P and the basic set PS of projective characters constructed in 3.2 are now
used to find possible decompositions of the characters in BS into irreducible Brauer
characters. This will successively lead to better basic sets of Brauer characters and
finally to the set of irreducible Brauer characters. For a detailed discussion of the
concepts and methods involved the reader is referred to [3, Chapter 3] or [11].

Let BA := {α1, . . . , αl} denote the basis of the space of generalized Brauer
characters dual to PS, with respect to the pairing between the spaces of generalized
Brauer characters and of generalized projective characters given by the usual scalar
product. The αi are called the Brauer atoms with respect to PS, since every
Brauer character φ can be written as φ =

∑l
i=1 niαi, where ni ∈ Z, ni ≥ 0.

Every irreducible constituent φ′ of φ is of the form φ′ =
∑l
i=1 n

′
iαi, where n′i ∈ Z,

0 ≤ n′i ≤ ni. We may exclude φ′ as a possible constituent by finding a projective
character Φ ∈ P having a negative scalar product with φ′. If we are able to exclude
all possible candidate constituents this way, we will conclude that φ is irreducible.

Using the results of condensation or the analysis of submodule lattices we get
further conditions on such possible constituents φ′ of φ. We might know, for exam-
ple, dimF (V ′e) for a module V ′ with Brauer character φ′. On the other hand, we
know the ‘condensed degrees’ di of the Brauer atoms αi, i. e. the scalar products of
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the restrictions of the αi to K with the trivial character of K. We then necessarily
have

∑l
i=1 n

′
idi = dimF (V ′e).

3.4. The permutation representation P of degree 122 760. Using the MeatAxe
and the methods described in [10], which are also implemented in [14], we compute
the K-submodule lattice of the condensed module Pe corresponding to P . It turns
out that Pe is of F -dimension 1152 and has exactly 1512 submodules. Since 122 760
is not divisible by 7, the FG-module P has a uniquely determined direct summand
isomorphic to the trivial module. Let P ′ denote the corresponding quotient module
of P . Hence the K-module P ′e is a quotient module of Pe and easily found using
the MeatAxe.
P ′e turns out to have exactly 390 submodules, and its socle S is irreducible of

dimension 90. By a Theorem of Zassenhaus, see e. g. [9, Theorem I.17.3], the FG-
module P ′ has submodules whose Brauer characters are the ordinary constituents
10 944, 26 752 and 52 668 of the corresponding permutation character, see 2.3. These
FG-modules condense to modules of dimensions 105, 256 and 488, respectively. It
turns out that P ′e has unique K-submodules of each of the dimensions 256 and
488, hence these are eFGe-submodules. Their intersection equals the socle S,
hence S is an irreducible eFGe-submodule of P ′e. We further observe that P ′e
has exactly eight K-submodules of dimension 105 all containing S as a maximal
K-submodule. By the Zassenhaus Theorem, at least one of them is an eFGe-
submodule. It follows that the ordinary character 10 944 has modular constituents
which condense to characters of degrees 90 and 15, respectively. Note that we do
not know at this stage whether no simple B1-module condenses to {0}. Hence we
cannot immediately conclude that 10 944 has exactly two modular constituents.

With the method described in 3.3 we now look for possible constituents of 10 944
having condensed degree 15. It turns out that this search has a unique solution,
the irreducible Brauer character 1 618 already known. Moreover, the irreducibility
test also described in 3.3 shows that 9 326 := 10 944−1 618 is an irreducible Brauer
character. By a further analysis of P ′e, using similar techniques, we obtain the
irreducible Brauer characters 7 2811, 14 1691 and 15 807. These are described by the
following decompositions of three of the ordinary constituents of the permutation
character of P : 10 944 = 1 618 + 9 326, 26 752 = 1 + 1 618 + 9 326 + 15 807 and
32 3951 = 1 + 1 618 + 9 326 + 7 2811 + 14 1691.

Furthermore, we obtain 7 2812 = 7 281x1 , 14 1692 = 14 169x1 , 14 1901 := 45[1,1,1]
2

and 14 1902 := 14 190∗1. We now replace the basic set BS of Brauer characters by the
following one, denoted by BS ′; Brauer characters already known to be irreducible
are underlined.

1, 406, 7 2811, 9 326, 13 3761, 14 1691, 14 1901,
25 9161, 58 3111, 58 3113, 1 618, 7 2812, 15 807,
13 3762, 14 1692, 14 1902, 37 696 , 58 3112, 175 770.

3.5. Decomposing the characters 3422 ⊗ 452, 45[2,1]
1 , 406[1,1], 25 9162 and 64 7901

into BS ′ and applying the methods described in [3] to the resulting relations, we
obtain the irreducible Brauer characters 1 2211, 1 2212, 12 1551, 12 1552 and 13 355,
and Brauer characters 51 0291 and 51 0292 not yet known to be irreducible. For
example, we have

3422 ⊗ 452 + 1 + 406 + 2 · 1 618 + 9 236 = 14 1901 + 14 1691.
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Table 7. Condensed dimensions for BS ′′

BS ′′ d

1 1 1
406 5 5

1 2211 10 101

1 2212 10 102

1 618 15 15
7 2811 67 671

7 2812 67 672

9 326 90 90
12 1551 106 1061

12 1552 106 1062

BS ′′ d

13 355 121 121
14 1691 129 1291

14 1692 129 1292

15 807 150 150
37 696 337 101 + 102 + 317

51 0291 470 4701

51 0292 470 4702

58 3111 538 2 · 5 + 15 + 121 + 392
175 770 1607 2 · 15 + 150 + 392 + 1035

Thus 1 2211 = 14 1901 − 1 − 406 − 2 · 1 618 − 9 326 is a Brauer character. Its
irreducibility is proved with the criterion described in 3.3. We obtain the following
new basic set BS ′′ of Brauer characters.

1, 406, 1 2211, 7 2811, 9 326, 12 1551, 14 1691,
15 807, 51 0291, 58 3111, 1 618, 1 2212, 7 2812,
13 355, 12 1552, 14 1692, 37 696, 51 0292, 175 770.

3.6. We have 3421⊗3424 = 58 3111+58 6531 as ordinary characters, where 58 6531

is of defect zero and condenses to a character of degree 533. Furthermore, using
the relation given by the decomposition of 406[2] into BS ′′ it can be shown that
the irreducible Brauer character 13 355 is a constituent of 58 3111. The Brauer
characters 58 3111 − 13 355 and 13 355 condense to characters of degrees 417 and
121, respectively. It now follows from Table 5 that the Brauer character 58 3111

has the K-constituents 2 · 5 + 15 + 121 + 392.
Using similar arguments and Table 5 we can show that the FG-modules for

the characters in BS ′′ condense to K-modules having constituents as given in the
third column of Table 7. The second column of that table gives the corresponding
condensed dimensions. The Proposition in 2.4 now implies that Ske 6= {0} for all
simple B1-modules Sk. This in turn proves that the Brauer characters 51 0291 and
51 0292 are irreducible.

3.7. Finally, the evaluation of 207 3601, written in the basic set BS ′′, gives the
irreducible Brauer character 35 254. The relation given by 5 5981⊗452 and an anal-
ysis of the submodule lattice of the condensed module corresponding to 3421⊗3424

gives the irreducible Brauer character 42 526. And the relation given by 8 8652⊗451

yields the irreducible Brauer character 114 201. Note that 5 5981 and 8 8652 are ir-
reducible Brauer characters belonging to block B2; their construction only uses the
Brauer character 406 in the principal block.

4. Remarks on the proof for G.2

4.1. Imitating the steps described in Sections 2.1, 2.2, we use the MeatAxe to
construct irreducible matrix representations of degrees 406 and 1 618 for G.2, and
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Table 8. A few scalar products

Φ 4061 1 6181

37 6961 −2/49 13/343
37 6962 19/49 62/343

169 2901 −18/49 −135/343
169 2902 −18/49 −184/343
207 3601 −33/49 29/343
207 3602 16/49 −216/343
207 3603 16/49 29/343

Φ 4061 1 6181

207 3604 16/49 127/343
207 3605 16/49 372/343
207 3606 16/49 127/343
234 0801 −14/49 −7/343
234 0802 0 −105/343
234 0803 −14/49 −7/343
234 0804 0 −105/343

compute the extensions 4061,2 and 1 6181,2 of the Brauer characters 406 and 1 618
to G.2. Here the characters with index ‘1’ are meant to be positive on class 2B.

4.2. The irreducible Brauer characters of G which are not invariant under the
action of the outer automorphism are 1 2211, 7 2811, 12 1551, 14 1691, 51 0291 and
their conjugates. They induce to irreducible Brauer characters of G.2. Then the
same is true for the corresponding projective indecomposable characters. This gives
us five of the 23 columns of the decomposition matrix. The remaining nine irre-
ducible Brauer characters of the principal block of G are invariant, hence extendible
to G.2. The corresponding projective indecomposable characters induce to the sum
of two projective indecomposable characters.

To find these summands we check all possible splittings of such an induced pro-
jective character into a sum of two characters satisfying the following properties:
The two summands vanish on 7-singular classes, they are obtained from each other
by multiplying with the non-trivial extension of the trivial character of G and
each summand has a non-negative integral scalar product with the Brauer char-
acters 4061,2, 1 6181,2, 4061 ⊗ 1 6182 and 406[1,1]

1 . For example, let Φ denote the
projective character of G.2 induced from the projective indecomposable character
corresponding to 35 254. Table 8 gives the scalar products of the ordinary con-
stituents restricted to the 7-regular classes of Φ with the Brauer characters 4061

and 1 6181. It is easily deduced form these scalar products that Φ decomposes into
the two characters given in columns 17 and 18 of Table 3.

This gives us the decompositions of seven of these induced characters into their
projective indecomposable summands, namely those corresponding to the Brauer
characters 1, 406, 9 326, 15 807, 35 254, 42 526 and 114 201, hence another 14 of the
columns of the decomposition matrix.

4.3. To obtain the splitting of the induced projective character corresponding to
13 355, we use the projective indecomposable characters constructed so far and the
tensor product 4061 ⊗ 58 6531, which is a projective character since the 58 6531 is
a defect zero character. By far the hardest part finally is to obtain the splitting of
the induced projective character corresponding to 1 618. This amounts to finding
the multiplicities of 1 6181 in the extensions of the invariant ordinary characters
of G. To do this we have to use the MeatAxe again to analyze the tensor products
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4061⊗4061, again using condensation with respect to the subgroup K, and 1 6181⊗
1 6181, this time using another condensation subgroup isomorphic to L2(11).
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