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Abstract. In this paper the 2-modular decomposition matrices of the symmetric groups

S15, S16, and S17 are determined by application of methods from computational rep-
resentation theory, in particular condensation techniques, and by using the computer

algebra systems GAP, MOC, and the MeatAxe.

1. Introduction and statement of results

Currently, the modular representation theory of the symmetric groups is a very active field of
research, and it is certainly worth while to have as many explicit results at hand as possible.
The staring point of the present work was a paper by D. Benson [1], where all but one of
the 2-modular Brauer characters of the symmetric group S15 have been determined. We are
now able to fill this gap and to go beyond that, our results are stated at the end of this
section. They are also available via GAP [3] or the Internet extension [16] of the ModularAtlas
[7]. We remark that there is work in progress concerning decomposition matrices in odd
characteristics and for even larger symmetric groups; in due course these results will also be
made available in these places.
We interdependently apply a few of the methods which in recent years have been devel-
oped for the explicit computation of decomposition numbers and to solve other problems in
computational representation theory. These encompass character theoretic computations,
algorithms for which are implemented in the computer algebra systems MOC [5], see Section
2.1, and GAP, and which are complemented by a few particular techniques for the symmetric
groups, see Section 2.2, as well as explicit construction and analysis of modules using the
MeatAxe [13, 14], and applying a condensation technique, see Section 2.3. Due to space
limitations it is not possible to give complete proofs for all the results presented here. Hence
we are content with giving proofs only for Tables 5 and 1, see Sections 3 and 4, respectively,
which show the methods at work.
As a general reference for the representation theory of the symmetric groups, see [6]. In
particular, the irreducible ordinary characters of the symmetric group Sn are parametrized
by the partitions of n, and the irreducible p-modular Brauer characters, p a rational prime,
are parametrized by the p-regular partitions of n. Each of the groups S15, S16, and S17

has three 2-blocks, whose decomposition matrices are given in Tables 1–3, Tables 4–6, and
Tables 7–9, respectively. We only print the rows of the decomposition matrices belonging to
the irreducible ordinary characters being parametrized by 2-regular partitions, see Sections
2.1–2.2.
The decomposition matrices for S15, which we restate here for convenience, have already
been determined in [1] — except the underlined entries in Table 1. It has been shown in [1]
that either ϕ[7,4,3,1] has degree 76830, which corresponds to the decomposition matrix as is
printed in Table 1, or ϕ[7,4,3,1] has degree 76828, which means that the underlined entries in
Table 1 are equal to ‘7’ instead. In Section 4 we will show that the former case is the correct
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Table 1. S15 mod 2, principal block, defect 11

degree partition ϕj , j = 1, . . . , 15

1 [15] 1 . . . . . . . . . . . . . .
90 [13, 2] . 1 . . . . . . . . . . . . .

715 [12, 2, 1] 1 1 1 . . . . . . . . . . . .
910 [11, 4] . . . 1 . . . . . . . . . . .

2835 [11, 3, 1] 1 . 1 1 1 . . . . . . . . . .
7007 [10, 4, 1] 1 . 1 1 1 1 . . . . . . . . .
2002 [9, 6] . 1 . . . . 1 . . . . . . . .

11375 [9, 5, 1] 1 1 1 . . 1 1 1 . . . . . . .
22113 [9, 4, 2] 3 2 1 . 1 1 1 1 1 . . . . . .
11583 [8, 6, 1] 1 1 . . . 1 1 1 . 1 . . . . .
35035 [8, 4, 3] 3 2 1 . . 1 1 1 1 1 1 . . . .
25025 [7, 6, 2] 1 1 . . . 1 1 1 1 1 . 1 . . .
45045 [7, 5, 3] 3 1 1 . 1 1 1 1 1 1 1 1 1 . .

135135 [7, 4, 3, 1] 5 3 1 2 1 1 2 1 2 1 1 1 1 1 .
175175 [6, 4, 3, 2] 5 3 1 3 1 . 1 . 1 1 1 1 1 1 1

Table 2. S15 mod 2, non-principal block of defect 10

degree partition ϕj , j = 16, . . . , 26

14 [14, 1] 1 . . . . . . . . . .
350 [12, 3] 1 1 . . . . . . . . .

1638 [10, 5] 1 1 1 . . . . . . . .
9100 [10, 3, 2] 2 1 1 1 . . . . . . .

42042 [9, 3, 2, 1] 5 2 2 1 1 . . . . . .
1430 [8, 7] 1 . 1 . . 1 . . . . .

32032 [8, 5, 2] . . . . . . 1 . . . .
91000 [8, 4, 2, 1] 4 2 2 . 1 1 1 1 . . .

108108 [7, 5, 2, 1] 2 1 2 . 1 2 1 1 1 . .
30030 [6, 5, 4] 1 . 1 1 . 1 . . . 1 .

128700 [6, 5, 3, 1] 6 3 2 1 1 2 . 1 1 1 1

Table 3. S15 mod 2, non-principal block of defect 0

degree partition ϕ27

292864 [5, 4, 3, 2, 1] 1

one. We remark that we have independently cross-checked all the computational results in
[1]. In particular ϕ[7,6,2] indeed has degree 4096 = 212, which does not divide the group
order |S15|.

2. Methods

2.1. Character theory. Let G be a finite group and p a rational prime. Let Cf(G), Cf0p(G),
and Cfp′(G) be the the C-vector spaces of all class functions on G, of all class functions
vanishing on the p-singular classes, and of all class functions on the p-regular classes of G,
respectively. Then the ordinary character theoretic scalar product induces a duality between
the set ZIBrp(G) ⊆ Cfp′(G) of generalized Brauer characters of G and the set ZIPrp(G) ⊆
Cf0p(G) of generalized projective characters of G, a pair of mutually dual bases being the
sets IBrp(G) and IPrp(G) of irreducible Brauer characters and projective indecomposable
characters, respectively. A Z-basis BS ⊆ N0IBrp(G) of ZIBrp(G) is called a basic set of
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Table 4. S16 mod 2, principal block, defect 15
degree partition ϕj , j = 1, . . . , 22

1 [16] 1 . . . . . . . . . . . . . . . . . . . . .
15 [15, 1] 1 1 . . . . . . . . . . . . . . . . . . . .

104 [14, 2] . 1 1 . . . . . . . . . . . . . . . . . . .
440 [13, 3] . 1 1 1 . . . . . . . . . . . . . . . . . .

1260 [12, 4] . 1 . 1 1 . . . . . . . . . . . . . . . . .
3900 [12, 3, 1] 2 1 1 1 1 1 . . . . . . . . . . . . . . . .
2548 [11, 5] . 1 . 1 1 . 1 . . . . . . . . . . . . . . .

13860 [11, 3, 2] 2 2 . 1 1 1 1 1 . . . . . . . . . . . . . .
3640 [10, 6] . 1 1 1 . . 1 . 1 . . . . . . . . . . . . .

20020 [10, 5, 1] 2 1 1 1 1 1 1 . 1 1 . . . . . . . . . . . .
38220 [10, 4, 2] 4 2 2 1 1 1 1 1 1 1 1 . . . . . . . . . . .
3432 [9, 7] . 1 1 . . . 1 . 1 . . 1 . . . . . . . . . .

65520 [9, 5, 2] 4 . 3 . . 1 . . 2 1 1 . 1 . . . . . . . . .
180180 [9, 4, 2, 1] 6 9 5 4 1 1 4 1 3 1 2 1 1 1 . . . . . . . .
18018 [8, 7, 1] 2 1 1 . . . 1 . 1 1 . 1 . . 1 . . . . . . .
68640 [8, 6, 2] 2 . 2 . . . . . 2 1 1 . 1 . 1 1 . . . . . .

112112 [8, 5, 3] 4 . 3 . . 1 . . 2 1 2 . 1 . 1 1 1 . . . . .
318500 [8, 4, 3, 1] 6 7 5 3 2 1 3 . 3 1 3 2 1 1 1 1 1 1 . . . .
210210 [7, 6, 2, 1] 2 3 3 1 . . 3 . 3 1 2 2 1 1 1 2 . . 1 . . .
100100 [7, 5, 4] 4 1 1 . . 1 1 1 1 1 1 1 . . 1 1 1 . . 1 . .
416988 [7, 5, 3, 1] 6 8 4 4 2 1 4 1 3 1 3 3 1 1 1 2 1 1 1 1 1 .
500500 [6, 5, 3, 2] 8 12 6 6 4 1 4 1 2 . 2 3 . 1 1 2 1 1 1 1 2 1

Table 5. S16 mod 2, non-principal block of defect 8

degree partition ϕj , j = 23, . . . , 29

896 [13, 2, 1] 1 . . . . . .
10752 [11, 4, 1] . 1 . . . . .
24960 [9, 6, 1] 1 . 1 . . . .
69888 [9, 4, 3] 2 . 1 1 . . .
91520 [7, 6, 3] 1 . 1 1 1 . .

512512 [7, 4, 3, 2] . 1 . . . 1 .
1153152 [6, 4, 3, 2, 1] 3 2 1 1 1 1 1

Table 6. S16 mod 2, non-principal block of defect 4

degree partition ϕ30 ϕ31 ϕ32

71680 [10, 3, 2, 1] 1 . .
266240 [8, 5, 2, 1] . 1 .
292864 [6, 5, 4, 1] 1 . 1

Table 7. S17 mod 2, principal block, defect 15
degree partition ϕj , j = 1, . . . , 22

1 [17] 1 . . . . . . . . . . . . . . . . . . . . .
119 [15, 2] 1 1 . . . . . . . . . . . . . . . . . . . .

1105 [14, 2, 1] 1 1 1 . . . . . . . . . . . . . . . . . . .
1700 [13, 4] . 1 . 1 . . . . . . . . . . . . . . . . . .
5236 [13, 3, 1] 2 1 1 1 1 . . . . . . . . . . . . . . . . .

15912 [12, 4, 1] 2 1 . 1 1 1 . . . . . . . . . . . . . . . .
6188 [11, 6] . 1 . 1 . . 1 . . . . . . . . . . . . . . .

33320 [11, 5, 1] 2 1 . 1 1 1 1 1 . . . . . . . . . . . . . .
62832 [11, 4, 2] 4 2 . 1 2 1 1 1 1 . . . . . . . . . . . . .
48620 [10, 6, 1] 2 1 1 1 1 . 1 1 . 1 . . . . . . . . . . . .

129948 [10, 4, 3] 4 2 2 1 1 . 1 1 1 1 1 . . . . . . . . . . .
4862 [9, 8] . 1 . . . . 1 . . . . 1 . . . . . . . . . .

46410 [9, 7, 1] 2 1 1 . . . 1 1 . 1 . 1 1 . . . . . . . . .
159120 [9, 6, 2] 4 . 1 . 1 . . 2 . 1 . . 1 1 . . . . . . . .
247520 [9, 5, 3] 6 . 2 . 2 . . 2 . 1 1 . 1 1 1 . . . . . . .
680680 [9, 4, 3, 1] 10 6 2 3 2 . 3 2 1 1 1 2 1 1 1 1 . . . . . .
272272 [8, 6, 3] 4 . 1 . 1 . . 2 . 1 1 . 2 1 1 . 1 . . . . .

1299480 [8, 4, 3, 2] 6 5 . 3 1 1 3 1 . . . 3 1 1 1 1 . 1 . . . .
243100 [7, 6, 4] 4 1 1 . 1 . 1 1 1 1 1 1 1 . 1 . 1 . 1 . . .
918918 [7, 6, 3, 1] 6 3 1 2 1 . 3 2 1 1 1 3 2 1 1 1 1 . 1 1 . .

1750320 [7, 5, 3, 2] 10 8 . 5 2 1 4 1 1 . . 4 2 1 2 1 . 1 1 1 1 .
3573570 [6, 5, 3, 2, 1] 28 13 6 7 5 3 5 3 2 2 2 5 6 1 5 1 2 1 2 1 2 1
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Table 8. S17 mod 2, non-principal block of defect 11

degree partition ϕj , j = 23, . . . , 37

16 [16, 1] 1 . . . . . . . . . . . . . .
544 [14, 3] . 1 . . . . . . . . . . . . .

3808 [12, 5] . . 1 . . . . . . . . . . . .
20400 [12, 3, 2] 1 . 1 1 . . . . . . . . . . .

116688 [11, 3, 2, 1] 1 . 2 1 1 . . . . . . . . . .
7072 [10, 7] . 1 . . . 1 . . . . . . . . .

123760 [10, 5, 2] 1 . 1 1 . . 1 . . . . . . . .
333200 [10, 4, 2, 1] 3 2 2 1 1 1 1 1 . . . . . . .
583440 [9, 5, 2, 1] 3 3 1 1 . 2 1 1 1 . . . . . .
116688 [8, 7, 2] 1 . . . . . 1 . . 1 . . . . .
618800 [8, 6, 2, 1] 1 2 . . . 2 1 1 1 1 1 . . . .
272272 [8, 5, 4] 1 . . 1 . . 1 . . 1 . 1 . . .

1113840 [8, 5, 3, 1] 3 3 2 1 . 2 1 2 1 1 1 1 1 . .
1050192 [7, 5, 4, 1] 3 1 2 1 1 1 1 1 . 1 1 1 1 1 .
1361360 [6, 5, 4, 2] 5 3 3 1 1 1 . 1 . 1 1 1 1 1 1

Table 9. S17 mod 2, non-principal block of defect 1

degree partition ϕ38

3620864 [7, 4, 3, 2, 1] 1

Brauer characters. Analogously, a Z-basis PS ⊆ N0IPrp(G) of ZIPrp(G) is called a basic
set of projective characters.
The general strategy implemented in the MOC system, see [5, 8], now is to find basic sets of
Brauer characters and of projective characters in the first place, e.g. by using the irreducible
ordinary characters of G and characters induced from subgroups. Then decomposing Brauer
characters and projective characters into the basic sets BS and PS, gives relations which
can be used to improve the current basic sets and to find new characters, e.g. by tensoring.
Ideally, after a series of steps we should obtain the basics sets BS∞ = IBrp(G) and PS∞ =
IPrp(G). In practice, however, one usually ends up with basic sets that do not entirely
consist of irreducible Brauer characters and projective indecomposable characters, but also
contain characters which are sums of a very few irreducible Brauer characters or projective
indecomposable characters, their possible decompositions being under control. This is where
module theoretic methods come into play, e.g. condensation techniques, see Section 2.3.
All the processes of finding suitable basic sets, producing rather large numbers of characters,
finding the relevant relations between them, and improving the basic sets, is done automati-
cally in MOC. It produces a protocol of the steps it has taken, from which a ‘classical’ proof
can be easily deduced. To give the reader an impression how this works in one of the easier
examples, in Section 3 we give the complete proof of the correctness of Table 5, which has
been produced automatically by MOC — except the typesetting, of course.

2.2. Special techniques for the symmetric groups. For the symmetric group Sn, a
basic set of Brauer characters is given by the restrictions χ̂λ ∈ Cfp′(Sn) of the irreducible
ordinary characters χλ to the p-regular classes, where λ is a p-regular partition of n, see
[6, Corollary 7.1.16]. We remark that for an arbitrary finite group G it is an open problem
whether there is a basic set of Brauer characters consisting of restrictions of irreducible
ordinary characters to the p-regular classes.
A basic set of projective characters for Sn can be found as a subset of the set of r-induced
projective indecomposable characters of Sn−1, see [6, Section 6.3]. Again, we remark that,
to find a basic set of projective characters for an arbitrary finite group G, in general we need
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the induced projective indecomposable characters of all the conjugacy classes of maximal
subgroups of G.
Let Ŝn denote a Schur covering group of Sn, where for our purposes it does not matter
which isoclinism type we use. Ŝn is a central extension of Sn by a cyclic group of order 2.
Hence Cf2′(Ŝn) and Cf2′(Ŝn) coincide, we have IBr2(Ŝn) = IBr2(Sn), and the restrictions
ϑ̂ ∈ Cf2′(Sn) of the spin characters ϑ, i.e. the faithful irreducible ordinary characters of Ŝn,
to the 2-regular classes are Brauer characters of Sn. By [11], character formulae for the spin
characters are known; here we have used ordinary character tables for Ŝn which have been
kindly provided by G. Malle [9].
Furthermore, we have made use of the Jantzen-Schaper formula [15], see also [10]. This
formula is related to the Jantzen filtration of Specht modules and gives certain upper esti-
mates of decomposition numbers; for details see the references cited. We have used our own
implementation of the Jantzen-Schaper formula, written in GAP, to exclude some candidate
cases left over in the character theoretic computations.

2.3. Condensation. As many ‘interesting’ modules are too large to be constructed directly,
one tries to ‘condense’ these modules to smaller ones which still reflect enough of the original
structure but can be analysed explicitly. For more details on the range of applications of
condensation we refer to [2, 12]. The following functorial description of the theoretical
background is inspired by [4].
Let k be a field, A be a finite-dimensional k-algebra, 0 6= e ∈ A be an idempotent and
mod–A be the category of finitely generated unital right A-modules. Then the functor

Ce := ?⊗A Ae : mod–A −→ mod–eAe

is called the condensation functor with respect to e. This means, M ∈ mod–A is mapped
to the condensed module M ⊗A Ae ∈ mod–eAe, which can be identified with the subset
Me ⊆ M . Using this identification, a homomorphism α ∈ HomA(M,N) is mapped to
α|Me ∈ HomA(Me,Ne). As Ce ∼= HomA(eA, ?) as functors, Ce is an exact functor.
This is applied to the following situation: Let A := k[G] be the group algebra of a finite
group G. Let K ≤ G be a subgroup such that |K| 6= 0 ∈ k, the condensation subgroup,
giving rise to the condensation idempotent

e = eK :=
1
|K|
·
∑
g∈K

g ∈ k[G].

We have e · k[G] ∼= (1K)G ∈ mod–k[G], where (1K)G is the permutation representation of G
on the cosets of K. Hence for M ∈ mod–k[G], we have

Me ∼= Homk[G]((1K)G,M) ∼= Homk[K](1K ,MK) ∼= FixM (K)

as vector spaces, where FixM (K) ⊆ M denotes the subspace of elements of M being fixed
by K. Thus this technique is called fixed point condensation. As all M ∈ mod–k[K] are
semisimple, the dimension of the condensed module of M can be computed as the ordinary
character theoretic scalar product of the trivial K-character and the restriction to K of the
Brauer character of M .
If A is a subset of A, the subalgebra C := 〈eae; a ∈ A〉k−algebra of eAe is called the corre-
sponding condensation algebra. But even if A generates A as a k-algebra, C is not necessarily
equal to eAe. In practice we can only compute the action of a finite set of condensed ele-
ments eae, a ∈ A, on a condensed module. Hence we have to draw conclusions about the
structure of a condensed module from its analysis as a module for a suitable condensation
algebra.
There are several implementations of fixed point condensation available, suitable for different
types of modules. We will use the InducedCondense package [12] for fixed point condensation
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of modules induced from a subgroup H, provided the k[H]-module to be induced and the
action of G on the cosets of H are given.

3. Proving the correctness of table 5

We first fix a basic set BS of Brauer characters, see Section 2.1, as follows:

χ̂[13,2,1], χ̂[11,4,1], Ind(ϕ[9,6]), Ind(ϕ[9,4,2]),

Ind(ϕ[7,6,2]), Ind(ϕ[7,4,3,1]), Ind(ϕ[6,4,3,2]),
where the χ̂’s denote the restrictions of the irreducible ordinary characters of S16 to the
2-regular classes, the ϕ’s denote the irreducible Brauer characters of S15 according to Tables
1–3, and ‘Ind’ denotes induction from S15 to S16 and restriction to the present block.
We then find a basic set PS := {Ψ1, . . . ,Ψ7} of projective characters as follows:

Ind(Φ[13,2])/3, Ind(Φ[11,4])/3, Ind(Φ[8,6,1])/2, Ind(Φ[8,4,3])/3,

Ind(Φ[7,6,2])/3, Ind(Φ[6,4,3,2])/4, Ind(Φ[5,4,3,2,1]),
where the Φ·’s denote the projective indecomposable characters of S15, and ‘·/d’ means that
we have divided all the values of the induced character by d, because all of its scalar products
with the characters in BS had been divisible by d.
The matrix of scalar products between the characters in BS and PS, the columns being
indexed by Ψ1, . . . ,Ψ7, is given as follows:

1 . . . . . .
. 1 . . . . .
. . 1 . . . .
. . . 1 . . .
. . . . 1 . .
4 2 1 2 1 1 .
. . . . . . 1


Hence Ψ6 is a projective indecomposable character. Next, we find that Ind(Φ[12,2,1]),
Ind(Φ[11,3,1]), and Ind(Φ[10,4,1]) decompose into PS as follows: 1 2 . . . −8 .

. 2 . 2 . −8 .

. 1 2 . . −4 .

 · PS
From this we conclude that

Ψ′1 := Ψ1 − 4 ·Ψ6, Ψ′2 := Ψ2 − 2 ·Ψ6,
Ψ′3 := Ψ3 −Ψ6, Ψ′4 := Ψ4 − 2 ·Ψ6

are projective characters, and hence are projective indecomposable ones. Leaving Ψ5, Ψ6,
and Ψ7 unchanged, we obtain a new basic set PS′ := {Ψ′1, . . . ,Ψ′7}, whose decomposition
into the irreducible ordinary characters in the present block is as follows:

degree partition Ψ′j , j = 1, . . . , 7
896 [13, 2, 1] 1 . . . . . .

10752 [11, 4, 1] . 1 . . . . .
24960 [9, 6, 1] 1 . 1 . . . .
69888 [9, 4, 3] 2 . 1 1 . . .
91520 [7, 6, 3] 1 . 1 1 1 . .

512512 [7, 4, 3, 2] . 1 . . 1 1 .
1153152 [6, 4, 3, 2, 1] 3 2 1 1 2 1 1

The last remaining question now is whether Ψ′5 is a projective indecomposable character or
whether Ψ′5 − Ψ′6 is. But the Jantzen-Schaper formula, see Section 2.2, shows that ϕ[7,6,3]
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Table 10. Dimensions of the condensed modules of BS

ϕj degree dim.

1 1 1
2 90 2
3 910 6
4 1912 4
5 624 4
6 1300 4
7 4172 8
8 4576 8
9 832 .

10 9346 6
11 4096 .
12 13390 2
13 4704 .
14 76830 38
15 59136 12

ϕj degree dim.

16 14 .
17 336 4
18 1288 4
19 128 .
20 7448 16
21 32032 44
22 21152 .
23 31276 40
24 24260 12
25 17344 .
26 23296 .
27 292864 152

is not a 2-modular constituent of χ̂[7,4,3,2]. Hence Ψ′5 − Ψ′6 is a projective indecomposable
character, and we obtain the decomposition matrix shown in Table 5.

4. Proving the correctness of Table 1

We only have to show the correctness of the entries underlined in Table 1. Let BS :=
{ϕ1, . . . , ϕ15, ϕ16, . . . , ϕ26, ϕ27} be the basic set of Brauer characters underlying the matrix
shown in Table 1. Hence ϕ14 has degree 76830, and either it is an irreducible Brauer
character or ϕ14 − 2 · ϕ1 is.
Let k := F2. As a condensation subgroup we choose

K := 〈{(5, 10, 15), (1, 4, 7, 10, 13)(2, 5, 8, 11, 14)(3, 6, 9, 12, 15)}〉 < G := S15,

and let e = eK denote the corresponding condensation idempotent. K is isomorphic to the
natural wreath product 3 o 5 ∼= 35 : 5 and has order 1215. The distribution of the elements
of K into the conjugacy classes of G is found using their permutation cycle types. From
this we compute the permutation character (1K)G on the 2-regular classes, and its scalar
products with the characters in BS. This gives the dimensions of the condensed modules of
k[G]-modules whose Brauer characters are in BS, see Table 10. In particular, ϕ14 condenses
to a module of dimension 38; and if ϕ14 − 2 ·ϕ1 were a Brauer character, it would condense
to a module of dimension 36.
We are now going to induced-condense a suitable k[H]-module, where H denotes the Young
subgroup H := S7×S8. The action of G on the cosets of H is equivalent to the action of G
on the subsets of cardinality 7 of {1, . . . , 15}. The Brauer character tables of S7 and S8 can
be accessed from [7] or from GAP. Let 1a denote the trivial k[S7]-module, and 40a denote
the irreducible k[S8]-module ϕ[4,3,1], which has degree 40. We obtain explicit matrices for
40a starting from the 2-modular reduction of the natural permutation representation of S8

by a series of standard applications of the MeatAxe, such as tensoring and chopping. The
Brauer character (ϕ[17]⊗ϕ[4,3,1])G of the induced module V := (1a⊗40a)G decomposes into
BS as follows:

(ϕ[17] ⊗ ϕ[4,3,1])G = [2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 6, 2, 2, 0, 2, 0, 0, 3, 2, 0, 0, 0] · BS
In particular, V has ϕ14 and hence ϕ[7,4,3,1] as constituents, and by Table 10 it condenses
to a module of dimension 248.
The condensed module V e of V is then computed using the InducedCondense package, i.e.
we fix a vector space basis of V e and, for a few group elements we compute the action of
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ege ∈ ek[G]e with respect to this basis. We choose a 15-cycle g1 ∈ G \ K, and a 7-cycle
g2 ∈ S7 < G, and let C′ denote the subalgebra of ek[G]e generated by {eg1e, eg2e}. Using the
MeatAxe, we find the dimensions and multiplicities of the constituents of V e as a C′-module.
But while {g1, g2} already is a generating set for G, these results show that C′ is too small
a subalgebra to serve our purposes. By additionally condensing a few random products of
g1 and g2, we finally end up with a condensation algebra C, such that the MeatAxe finds the
following constituents of V e as a C-module:

1a2, 4a2, 4b2, 4c, 6a2, 12a2, 16a2, 38a, 40a3,

where as usual the constituents are denoted by their dimension and multiplicities are given
as exponents.
Using the decomposition of (ϕ[17]⊗ϕ[4,3,1])G into BS and the data from Table 10, we conclude
that ϕ14 condenses to an irreducible C-module of dimension 38, which hence is the restriction
of an irreducible ek[G]e-module of the same dimension. Hence ϕ14 is an irreducible Brauer
character, and we are done.
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