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Abstract. The starting point of this note is a remarkable partition identity,
concerning the parts of the partitions of a fixed natural number and the multi-

plicities with which these parts occur. This identity is related to the ordinary

representation theory of the symmetric group. Our main result is a general-
ization of this identity, being related to the modular representation theory of

the symmetric group.

Introduction. The starting point of this note is the remarkable partition identity
stated below as Theorem 1. This identity seems to be well-known to combinatori-
alists, but it is also related to the ordinary representation theory of the symmetric
group. We include a proof of Theorem 1 revealing this relationship. Our main re-
sult is a generalization of this identity, which is stated below as Theorem 2. While
the original identity is related to the ordinary representation theory, its generaliza-
tion is related to the modular representation theory of the symmetric group. The
proof builds on the idea already used in our proof of Theorem 1. The assertion of
Theorem 2 gives rise to some numbers called eσ, whose significance, in particular
in relation to the modular representation theory of the symmetric group, in most
cases is not clear, except for e[1n], which are related to the Cartan determinants
of the symmetric group, and for which we give a closed combinatorial formula in
Theorem 3. Finally, in Theorem 4, we give a similar formula for certain sums of
eσ’s, which are related to alternating groups. Let us first fix the necessary

Notation. For n ∈ N0 let Pn denote the set of partitions of n and let pn := |Pn|
be its cardinality. For a partition λ ∈ Pn let [λ1, λ2, . . . , λl] be the list of its parts,
where λ1 ≥ λ2 ≥ . . . ≥ λl > 0 and

∑l
i=1 λi = n. Let lλ = l be its length, and let

λi := 0 for all l < i ∈ N. Alternatively, we write λ ∈ Pn as [1a1 , 2a2 , . . . , nan ], where
aj(λ) = aj := |{1 ≤ i ≤ lλ;λi = j}|. The set Pn can be ordered lexicographically
by letting λ >lex µ if and only if for some j ≥ 1 we have λj > µj , while λi = µi for
all 1 ≤ i < j. Furthermore, let P+

n := {λ ∈ Pn;n − lλ even} and P−n := Pn \ P+
n

denote the sets of even and odd partitions, respectively, and let p±n := |P±n | be their
cardinalities.

For n ∈ N let Sn be the symmetric group on n letters. For λ ∈ Pn let χλ ∈ Irr(Sn)
denote the corresponding irreducible ordinary character of Sn, see [7, Thm.2.1.11].
For µ ∈ Pn let χλ(µ) := χλ(gµ), where gµ ∈ Sn has cycle type µ. Let Xn =
[χλ(µ);λ, µ ∈ Pn] ∈ Zpn×pn be the ordinary character table of Sn, where its rows
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are ordered reversed lexicographically, i.e. the trivial character 1Sn = χ[n] is the
first one, whereas its columns are ordered lexicographically, i.e. the first column
corresponds to cycle type [1n].

For µ ∈ Pn let |CSn(µ)| := |CSn(gµ)|. For λ ∈ Pn let Sλ = Sλ1 × . . . × Sλl(λ)

denote a corresponding Young subgroup. Let 1Sλ be its trivial character, and
let ξλ = 1SnSλ ∈ ZIrr(Sn) denote the corresponding permutation character. Let
Ξn = {ξλ;λ ∈ Pn} and let Yn = [ξλ(µ);λ, µ ∈ Pn] ∈ Zpn×pn be the correspond-
ing character table, where again rows are ordered reversed lexicographically and
columns lexicographically.

Theorem 1. For a partition λ ∈ Pn let Aλ :=
∏lλ
i=1 λi denote the product of its

parts, and Bλ :=
∏n
j=1 aj(λ)! denote the product of the factorials of its exponents.

Then we have ∏
λ∈Pn

Aλ =
∏
λ∈Pn

Bλ.

Proof. By the orthogonality relations, X trn · Xn is a diagonal matrix with entries
|CSn(µ)|, where µ ∈ Pn. We have |CSn(µ)| = Aµ · Bµ, see [7, La.1.2.15], and hence
|det(Xn)|2 =

∏
µ∈Pn Aµ · Bµ. By [7, Thm.2.2.10], we have ZΞ = ZIrr(Sn), and

hence |det(Xn)| = |det(Yn)|.
Let gµ ∈ Sλ ≤ Sn. Then we have λ ≥lex µ, since clearly λ1 ≥ µ1 holds, and
if we have λ1 = µ1, we proceed by induction. Hence Yn is a triangular matrix,
the non-vanishing entries being concentrated in the upper left hand corner, and
we have |det(Yn)| =

∏
λ∈Pn ξλ(λ). We have ξλ(λ) = ξλ(gλ), which is the number

of fixed points of gλ of its action on the right cosets Sλ/Sn of Sλ in Sn. Hence
ξλ(λ) = |{Sλh ∈ Sλ/Sn; gλ ∈ Shλ ∩ Sλ}|. For h ∈ Sn the subgroup Shλ ∩ Sλ again
is a Young subgroup, Sµ say, where µ ≤lex λ, and µ = λ if and only if Shλ = Sλ.
Hence from gλ ∈ Shλ ∩ Sλ having cycle type λ we conclude that h ∈ NSn(Sλ).
Thus ξλ(λ) = [NSn(Sλ) : Sλ]. The normalizer NSn(Sλ) permutes the Sλ-orbits of
equal length. Hence by [7, 4.1.25] we have |NSn(Sλ)| =

∏n
j=1(j!)aj(λ) ·aj(λ)!. Thus

[NSn(Sλ) : Sλ] = Bλ and |det(Yn)| =
∏
λ∈Pn Bλ. ]

Remark. A related proof of Theorem 1 is given in [9]. A related proof of the
equation |det(Xn)| =

∏
λ∈Pn Aλ is given in [5, Cor.6.5].

We now prepare the setting for our main result.

Notation and Definition. Let p be a fixed rational prime. For g ∈ Sn let
gp, gp′ ∈ Sn denote its p-part and its p′-part, respectively, i.e. gp has p-power order,
the order of gp′ is coprime to p, and gpgp′ = gp′gp holds. If g has cycle type λ, we
denote the cycle type of gp and gp′ by λp and λp′ , respectively. The partitions λp
and λp′ are called the p-part of λ and the p′-part of λ, respectively.

Let σ ∈ Pn such that σ = σp. Hence σ = [(p0)n0 , (p1)n1 , . . . , (pk)nk ], say, where∑k
i=0 nip

i = n. The set Pσ = {λ ∈ Pn;λp = σ} is called the p-section of partitions
corresponding to σ. Let pσ = |Pσ| denote its cardinality. The elements of Pσ are the
cycle types of the elements in the p-section of Sn determined by some gσ ∈ Sn, see
[4, Ch.IV.6,p.172]. In particular, P[1n] is the set of the cycle types of the p-regular
elements of Sn.
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Each λ ∈ Pσ is uniquely determined by the tuple (λ0, λ1, . . . , λk) of partitions,
where λj ∈ P[1nj ], such that λ = [λk1p

k, λk2p
k, . . . , λkl

λk
pk, λk−1

1 pk−1, . . . , λ0
lλ0
p0], up

to a reordering of the parts. Hence in particular we have pσ =
∏k
j=1 p[1nj ].

Each λ ∈ Pσ is also uniquely determined by the pair (λ0, λ′) of partitions, where
λ0 ∈ P[1n0 ] is as above, and λ′ ∈ Pn′ , for n = n0 +n′p, such that up to a reordering
of the parts λ = [λ0

1, . . . , λ
0
lλ0
, pλ′1, . . . , pλ

′
lλ′

]. This might become clearer by an

Example. For p = 2 let k = 2 and σ = σ2 = [14, 23, 42] ∈ P18. We have
P[12] = {[12]}, P[13] = {[13], [3]} and P[14] = {[14], [3, 1]}. Hence pσ = 4 and the
elements λ ∈ Pσ are as follows, where λ0 ∈ P[14], λ1 ∈ P[13], λ2 ∈ P[12] and λ′ ∈ P7.

λ (λ0, λ1, λ2) (λ0, λ′)

[42, 23, 14] ([14], [13], [12]) ([14], [22, 13])
[6, 42, 14] ([14], [3], [12]) ([14], [3, 22])
[42, 3, 23, 1] ([3, 1], [13], [12]) ([3, 1], [22, 13])
[6, 42, 3, 1] ([3, 1], [3], [12]) ([3, 1], [3, 22])

Theorem 2. Let σ ∈ Pn such that σ = σp. Then there exists eσ ∈ Z such that

peσ ·
∏
λ∈Pσ

Aλ =
∏
λ∈Pσ

Bλ.

Proof. Let Xσ denote the submatrix of Xn consisting of the columns corresponding
to Pσ, i.e. belonging to the p-section determined by gσ. Let CSn(σ) := CSn(gσ)
and let {gi; 1 ≤ i ≤ p′σ} be a set of representatives of the p-regular conjugacy
classes of CSn(σ). By [4, Ch.IV.6,p.173] the set {gσgi; 1 ≤ i ≤ p′σ} is a set of
representatives of the conjugacy classes of Sn belonging to the p-section determined
by gσ, hence in particular we have p′σ = pσ. As CSn(gσgi) ≤ CSn(σ) we have
|CCSn (σ)(gi)| = |CSn(gσgi)| = |CSn(µ)|, where gσgi has cycle type µ ∈ Pσ, say.

By [7, 4.1.19] we have CSn(σ) ∼=
∏k
j=0 Cpj oSnj , where Cpj denotes the cyclic group

of order pj . Hence the irreducible p-modular Brauer characters IBrp(CSn(σ)) are
rational valued, and each field of characteristic p is a splitting field for CSn(σ).
Let Zσ ∈ Zpσ×pσ and Wσ ∈ Zpσ×pσ denote the p-modular Brauer character table
and the corresponding table of indecomposable projective characters of CSn(σ),
respectively. By the orthogonality relations we have Zσ ·M−1

σ · Wtr
σ = Epσ , where

Mσ is a diagonal matrix with entries |CSn(µ)|, where µ ∈ Pσ. Hence we conclude
|det(Zσ)| · |det(Wσ)| =

∏
µ∈Pσ Aµ · Bµ. Furthermore, by [4, Thm.IV.3.11] we have

|det(Wσ)| = |det(Zσ)| ·
∏
µ∈Pσ |CSn(µ)|p = |det(Zσ)| ·

∏
µ∈Pσ (Aµ ·Bµ)p, where the

subscript denotes the maximal power of p dividing these rational integers. Hence
we obtain det(Zσ)2 =

∏
µ∈Pσ (Aµ · Bµ)p′ , where the subscript denotes the maximal

divisor coprime to p.

Let the set Ξσ = {ξλ;λ ∈ Pσ} of permutation characters have the corresponding
partial character table Yσ = [ξλ(µ);λ, µ ∈ Pσ] ∈ Zpσ×pσ . As in the proof of The-
orem 1 we have |det(Yσ)| =

∏
µ∈Pσ Bµ 6= 0. As the irreducible p-modular Brauer

characters IBrp(CSn(σ)) are rational valued, we have a generalized decomposition
map ZIrr(Sn) → ZIBrp(CSn(σ)), see [4, Ch.IV.6,p.172]. Hence we conclude that
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Yσ = Dσ · Zσ, for some Dσ ∈ Zpσ×pσ . Hence det(Zσ) divides det(Yσ). Because of
[4, Thm.IV.3.11], we have det(Zσ)p = 1, hence det(Zσ) even divides det(Yσ)p′ .

Thus det(Zσ) divides
∏
µ∈Pσ (Bµ)p′ , and because of det(Zσ)2 =

∏
µ∈Pσ (Aµ · Bµ)p′

we conclude that
∏
µ∈Pσ (Aµ)p′ divides det(Zσ). Taking the product over all p-

sections we find that
∏
µ∈Pn(Aµ)p′ divides

∏
σ∈Pnσ=σp

det(Zσ), which in turn di-
vides

∏
µ∈Pn(Bµ)p′ . By Theorem 1 we have

∏
µ∈Pn(Aµ)p′ =

∏
µ∈Pn(Bµ)p′ , from

which we finally conclude that
∏
µ∈Pσ (Aµ)p′ = |det(Zσ)| =

∏
µ∈Pσ (Bµ)p′ holds. ]

Remark. The above proof reveals some representation theoretic relevance of the
numbers Aλ and Bλ, if we consider CSn(σ) ∼=

∏k
j=0 Cpj o Snj a bit more closely.

Let Dσ :=
∏k
j=0 C

nj
pj E CSn(σ) be the product of the base groups, and let Cσ ∈

Z
pσ×pσ and Cσ ∈ Zpσ×pσ denote the Cartan matrices of CSn(σ) and CSn(σ)/Dσ

∼=∏k
j=0 Snj , respectively. Then we have

det(Cσ) = |det(Wσ)|/|det(Zσ)| =
∏
λ∈Pσ

(Aλ · Bλ)p,

as det(Cσ) is positive by [4, Cor.I.17.9]. In particular, for σ = [1n] we have
CSn([1n]) = Sn and C[1n] is the Cartan matrix of Sn. As (Aλ)p = 1 for λ ∈ P[1n],
we obtain an expression for the Cartan determinant of Sn in terms of e[1n] as

det(C[1n]) =
∏

λ∈P[1n]

(Bλ)p = pe[1n] .

If λ ∈ Pσ is given by (λ0, λ1, . . . , λk), we have Aλ =
∏k
j=0(pj·lλj · Aλj ) and Bλ =∏k

j=0 Bλj . Thus in general we get

det(Cσ) =
∏
λ∈Pσ

(Bλ)p,

since the left hand side equals det(C[1n0 ]⊗· · ·⊗C[1nk ]) =
∏k
j=0 det(C[1nj ])

pσ/p[1
nj ] =∏k

j=0

∏
λj∈P[1

nj ]
(Bλj )

pσ/p[1
nj ]

p , which equals the right hand side. Furthermore, if

gi ∈ CSn(σ) such that gσgi has cycle type λ ∈ Pσ, then we have |CDσ (gi)| =∏k
j=0 p

j·lλj = (Aλ)p, hence
pσ∏
i=1

|CDσ (gi)| =
∏
λ∈Pσ

(Aλ)p.

Thus altogether we obtain det(Cσ) = det(Cσ) ·
∏pσ
i=1 |CDσ (gi)|, which of course is a

special case of the Alperin-Collins-Sibley Theorem, see [2] or [8, Thm.III.8.1].

However, the significance of the integers eσ for arbitrary σ = σp is unclear. Anyway,
the first few small cases for p = 2 are given in Table 1. In general, we have∏

λ∈Pσ

Bλ
Aλ

=
∏

λ0∈P[1n0 ]

· · ·
∏

λk∈P[1nk ]

 k∏
j=0

p−j·lλj · Bλ
j

Aλj


and thus

eσ =
k∑
j=0

 pσ
p[1nj ]

·

e[1nj ] − j ·
∑

λj∈P[1
nj ]

lλj


 .
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Table 1. Small cases for p = 2 and 1 ≤ n ≤ 8.

σ = σ2 eσ

[1] 0

[12] 1
[2] −1

[13] 1
[2, 1] −1

[14] 3
[2, 12] 0
[22] −1
[4] −2

[15] 4
[2, 13] −1
[22, 1] −1
[4, 1] −2

σ = σ2 eσ

[16] 6
[2, 14] 1
[22, 12] 0
[23] −3
[4, 12] −1
[4, 2] −3

[17] 9
[2, 15] 1
[22, 13] −1
[23, 1] −3
[4, 13] −3
[4, 2, 1] −3

σ = σ2 eσ

[18] 13
[2, 16] 2
[22, 14] 1
[23, 12] −1
[24] −3
[4, 14] −1
[4, 2, 12] −2
[4, 22] −3
[42] −3
[8] −3

Corollary. There exists e+
n ∈ Z such that

2e
+
n ·

∏
λ∈P+

n

Aλ =
∏
λ∈P+

n

Bλ.

Proof. As λ ∈ Pn is an even partition if and only if its 2-part is, P+
n is a union of

2-sections. Hence the assertion follows from Theorem 2 for p = 2, and we have

e+
n =

∑
σ=σ2∈P+

n

eσ.

]

In the rest of this note we determine closed combinatorial formulas for e[1n] in
Theorem 3, and e+

n in Theorem 4. The main tool are so-called generating functions,
see e.g. [1, Ch.V]. The necessary prerequisites are stated next. To make this note
sufficiently self-contained, we include proofs for the non-obvious facts on generating
functions needed here, which probably are well-known to combinatorialists.

Remarks on generating functions. If N0 → Q : n 7→ αn is an arbitrary func-
tion, then its ordinary generating function is α(X) :=

∑
k≥0 ∈ αkX

k ∈ Q[[X]],
where Q[[X]] is the ring of formal power series in the indeterminate X over Q. In
particular, Q[[X]] is a complete discrete valuation ring in its quotient field Q((X)),
with maximal ideal X ·Q[[X]]. In particular, α(X) ∈ Q[[X]] is invertible if and only
if α0 6= 0. Note that by this formalism the elements of Q[X]] are not functions in
the analytical sense, which saves us from convergence considerations. But usually
we will consider infinite sums or products, hence in these cases we have to ensure
that the coefficients of the resulting function are determined by a finite number of
these summands or factors.
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For k ∈ N we have 1
1−Xk =

∑
l≥0X

kl ∈ Q[[X]]. From that we immediately deduce
the following: The generating function for the number dn := |{m ∈ N;m | n}| of
divisors of n ∈ N is given as d(X) :=

∑
k≥1

Xk

1−Xk ∈ Q[[X]]. The generating function
for the number pn of partitions of n ∈ N0 is given as p(X) :=

∏
k≥1

1
1−Xk ∈ Q[[X]],

see also [1, Ex.V.2.6]. The generating function for the number p[1n] of partitions
of n ∈ N0 into parts which are not divisible by the rational prime p is given as
p1(X) :=

∏
k≥1,p 6 |k

1
1−Xk ∈ Q[[X]]. The generating function for the number pn,sd

of self-conjugate partitions of n ∈ N0, which by [1, Thm.III.1.20] equals the number
of partitions of n into pairwise distinct odd parts, is by [1, Ex.V.2.8] given as
psd(X) :=

∏
k≥1,2 6 |k(1 +Xk) ∈ Q[[X]].

Lemma. a) For n ∈ N0 let σn,l :=
∑
λ∈Pn lλ be the sum of the lengths of the

partitions of n. Then the generating function for σn,l is given as

σl(X) :=

∑
k≥1

Xk

1−Xk

 ·
∏
k≥1

1
1−Xk

 ∈ Q[[X]].

In particular, we have σl(X) = d(X) · p(X).

b) For n ∈ N0 let pn,even := |{λ ∈ Pn; lλ even}| be the number of partitions of n of
even length. Then the generating function for pn,even is given as

peven(X) :=
1
2

∏
k≥1

1
1−Xk

+
∏
k≥1

1
1 +Xk

 ∈ Q[[X]].

c) For n ∈ N0 let σn,even :=
∑
λ∈Pn,lλeven lλ be the sum of the lengths of the

partitions of n having even length. Then the generating function for σn,even is
given as

σeven(X) =
1
2

∑
k≥1

Xk

1−Xk
·
∏
k≥1

1
1−Xk

−
∑
k≥1

Xk

1 +Xk
·
∏
k≥1

1
1 +Xk

 ∈ Q[[X]].

Proof. a) For n, l ∈ N0 let pn,l := |{λ ∈ Pn; lλ = l}|. Its two-variable generat-
ing function is

∑
n≥0,l≥0 pn,lX

nY l =
∏
k≥1

1
1−XkY ∈ Q[[X,Y ]]. Hence, using the

formal partial derivative ∂
∂Y : Q[[X,Y ]]→ Q[[X,Y ]], we obtain

∑
n≥0,l≥0

l · pn,lXnY l = Y · ∂
∂Y

 ∑
n≥0,l≥0

pn,lX
nY l

 = Y · ∂
∂Y

∏
k≥1

1
1−XkY

 .

Using the Leibniz rule, we get

∂

∂Y

∏
k≥1

1
1−XkY

 =

∑
k≥1

Xk

1−XkY

 ·
∏
k≥1

1
1−XkY

 .

As σl(X) =
∑
n≥0(

∑
l≥0 l · pn,l)Xn, the assertion is obtained by substituting

Q[[X,Y ]]→ Q[[X]] : X 7→ X,Y 7→ 1.

b) We have
∑
n≥0,l≥0 pn,2lX

nY 2l = 1
2

∑
n≥0,l≥0 pn,lX

n(Y l + (−Y )l), which equals
1
2 (
∏
k≥1

1
1−XkY +

∏
k≥1

1
1+XkY

). As pn,even =
∑
l≥0 pn,2l, the assertion follows

again from substituting Y 7→ 1.
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c) Applying the same technique as in the proof of a) to
∑
n≥0,l≥0 2l · pn,2lXnY 2l

and using the proof of b) yields the assertion. ]

Theorem 3. The generating function e1(X) ∈ Q[[X]] for e[1n] is given as

e1(X) = p1(X) · d(Xp),

i.e. for n ∈ N0 we have e[1n] =
∑bnp c
n′=1 p[1n−pn′ ] · dn′ .

Proof. We use the above description of λ ∈ Pn by a pair (λ0, λ′) of partitions
λ0 ∈ P[1n0 ] and λ′ ∈ Pn′ , where n = n0 + pn′. By Theorem 1 we have

1 =
∏
λ∈Pn

Bλ
Aλ

=
bnp c∏
n′=0

 ∏
λ′∈Pn′ ,λ0∈P[1n0 ],n=n0+pn′

p−lλ′ · Bλ
′

Aλ′
· Bλ

0

Aλ0

 .

The bracketed term equals ∏
λ′∈Pn′

p−lλ′

p[1n0 ]

·

 ∏
λ′∈Pn′

Bλ′
Aλ′

p[1n0 ]

·

 ∏
λ0∈P[1n0 ]

Bλ0

Aλ0

pn′

,

where, by Theorems 1 and 2, the second factor equals 1 and the third factor equals
pe[1n0 ]·pn′ . This yields

1 =
bnp c∏
n′=0

pe[1n0 ]·pn′ ·

 ∏
λ′∈Pn′

p−lλ′ ·p[1n0 ]

 .

Taking logarithms we hence have
bnp c∑
n′=0

pn′ · e[1n−pn′ ] =
bnp c∑
n′=0

p[1n−pn′ ] ·
∑

λ′∈Pn′

lλ′

 .

Thus by the convolution multiplication on Q[[X]], the last formula translates into
e1(X) · p(Xp) = p1(X) · σl(Xp). By the Lemma this gives e1(X) = p1(X) · d(Xp),
which by the convolution multiplication yields the second assertion. ]

Theorem 4. The generating function e+(X) ∈ Q[[X]] for e+
n is given as

e+(X) = psd(X) · d(X2),

i.e. for n ∈ N0 we have e+
n =

∑bn2 c
n′=1 pn−2n′,sd · dn′ .

Proof. As in the proof of Theorem 3, we use the description of λ ∈ Pn by a pair
(λ0, λ′) of partitions λ0 ∈ P[1n0 ] and λ′ ∈ Pn′ , where this time p = 2 and hence
n = n0 + 2n′. We have λ ∈ P+

n if and only if lλ′ is even. Hence we get

2e
+
n =

bn2 c∏
n′=0

 ∏
λ′∈Pn′ ,lλ′ even,λ0∈P[1n0 ],n=n0+2n′

2−lλ′ · Bλ
′

Aλ′
· Bλ

0

Aλ0

 ,

where the bracketed term equals ∏
λ′∈Pn′ ,lλ′ even

2−lλ′

p[1n0 ]

·

 ∏
λ′∈Pn′ ,lλ′ even

Bλ′
Aλ′

p[1n0 ]

·

 ∏
λ0∈P[1n0 ]

Bλ0

Aλ0

pn′,even

.
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As lλ′ is even, we have λ′ ∈ P+
n′ if and only if n′ is even. Hence by Theorem 1 we

have ∏
λ′∈Pn′ ,lλ′ even

Bλ′
Aλ′

= 2(−1)n
′
·e+n .

Taking logarithms we thus obtain

e+
n =

bn2 c∑
n′=0

e[1n−2n′ ] · pn′,even +

(−1)n
′
· e+
n′ −

∑
λ′∈Pn′ ,lλ′ even

lλ′

 · p[1n−2n′ ]

 .

We have e+(−X2) =
∑
k≥0(−1)ke+

kX
2k. From that, we translate the last formula

into a recursion formula for the generating function e+(X) as

e+(X) = e1(X) · peven(X2) +
(
e+(−X2)− σeven(X2)

)
· p1(X).

We let g(X) := e+(X)/psd(X). Note that indeed psd(X) ∈ Q[[X]] is invertible.
Using the explicit expressions for the generating functions involved, the above re-
cursion formula becomes g(X) = g(−X2) +

∑
k≥1

X2k

1−X4k .

Thus g(X) has a non-vanishing coefficient at Xk only if k ≡ 0 mod 2, and hence
g(−X2) has a non-vanishing coefficient at Xk only if k ≡ 0 mod 4. Furthermore,∑
k≥1

X2k

1−X4k has a non-vanishing coefficient at Xk only if k ≡ 2 mod 4. Thus the

coefficients of g(X) at Xk for k ≡ 2 mod 4 are equal to those of
∑
k≥1

X2k

1−X4k . By
induction this determines the coefficients of g(X) at Xk for k ≡ 0 mod 4. Hence
the above recursion formula for g(X) admits a unique solution. Finally, it is easily
verified that the recursion formula is fulfilled by d(X2). ]

Remark. The formula in Theorem 3 has also been proved independently in [3,
Thm.3.3]. G. James [6] has let me know that he also has a proof of the formula in
Theorem 4.
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