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Wenn es die Verwirklichung von Urtrdumen ist, fliegen zu kénnen und mit den Fi-
schen zu reisen, sich unter den Leibern von Bergriesen durchzubohren, mit gottlichen
Geschwindigkeiten Botschaften zu senden, das Unsichtbare und Ferne zu sehen und
sprechen zu héren, Tote sprechen zu hoéren, sich in wundertitigen Genesungsschlaf
versenken zu lassen, mit lebenden Augen erblicken zu konnen, wie man zwanzig Jahre
nach seinem Tode aussehen wird, in flimmernden Ndchten tausend Dinge tiber und
unter dieser Welt zu wissen, die friher niemand gewuft hat, wenn Licht, Warme,
Kraft, Genuf$, Bequemlichkeit Urtrdume der Menschheit sind, — dann ist die heutige
Forschung nicht nur Wissenschaft, sondern ein Zauber, eine Zeremonie von héchster
Herzens- und Hirnkraft, vor der Gott eine Falte seines Mantels nach der anderen
offnet, eine Religion, deren Dogmatik von der harten, mutigen, beweglichen, messer-
kiihlen und -scharfen Denklehre der Mathematik durchdrungen und getragen wird.

Allerdings, es ist nicht zu leugnen, daf alle diese Urtrdume nach Meinung der Nicht-
mathematiker mit einemmal in einer ganz anderen Weise verwirklicht waren, als
man sich das urspringlich vorgestellt hatte. Miinchhausens Posthorn war schéner
als die fabriksmdf$ige Stimmkonserve, der Siebenmeilenstiefel schoner als ein Kraftwa-
gen, Laurins Reich schoner als ein Eisenbahntunnel, die Zauberwurzel schoner als ein
Bildtelegramm, vom Herz seiner Mutter zu essen und die Végel zu verstehen schéoner
als eine tierpsychologische Studie dber die Ausdrucksbewegungen der Vogelstimme.
Man hat Wirklichkeit gewonnen und Traum verloren. [--]

Man braucht wirklich nicht viel dariber zu reden, es ist den meisten Menschen heute
ohnehin klar, dafi die Mathematik wie ein Ddmon in alle Anwendungen unseres Leben
gefahren ist. Vielleicht glauben nicht alle diese Menschen an die Geschichte vom
Teufel, dem man seine Seele verkaufen kann; aber alle Leute, die von der Seele etwas
verstehen miissen, weil sie als Geistliche, Historiker oder Kiinstler gute FEinkiinfte
daraus beziehen, bezeugen es, daf$ sie von der Mathematik ruiniert worden sei und dafl
die Mathematik die Quelle eines bosen Verstandes bilde, der den Menschen zwar zum
Herrn der Erde, aber zum Sklaven der Maschine mache. [--]

In Unkenntnis dieser Gefahren lebten eigentlich nur die Mathematiker selbst und ihre
Schiiler, die Naturforscher, die von alledem so wenig in ihrer Seele verspirten wie
Rennfahrer, die fleiffig darauf los treten und nichts in der Welt bemerken wie das
Hinterrad thres Vordermanns. [60, pp.39-40]

0 Introduction

(0.1) Graphs which are related to finite groups are of interest in both algebraic
graph theory and group theory. From the group theoretical point of view,
graphs on which a given group acts might yield new insights into the structure
of the group; a few of the sporadic simple groups have even been discovered
as automorphism groups of certain graphs, see [11, Ch.16.3]. From the point
of view of algebraic graph theory, the automorphism group of a graph reflects
the internal symmetry of the graph. In the present work, we shed some light
on two aspects of this interplay between graphs and groups, namely so-called
distance-transitive graphs and more generally distance-regular graphs, and so-
called Ramanujan graphs; we give the appropriate definitions in Section 7.

Distance-transitivity is a rather strong graph theoretical condition, and in fact



intimately relates the graph and its automorphism group. In particular, a
distance-transitive graph can be realized as an orbital graph arising from the
permutation action of its automorphism group on the vertex set of the graph,
where additionally this permutation action turns out to be multiplicity-free.
In particular the sporadic simple groups have been used in the construction
of certain distance-transitive graphs. In recent years much progress has been
made in the attempt to classify the distance-transitive and the distance-regular
graphs, see [8]; but for the time being these classification problems are still
open. Related to these graph theoretical classification problems is the group
theoretical problem of classifying the multiplicity-free permutation actions of
finite groups. Much work has been done on this classification problem as well,
see the comments in [34], but currently this also is still open.

Ramanujan graphs are characterised by a certain property of their spectrum.
Different constructions of series of Ramanujan graphs are known, and in all of
them groups play a certain role, see [44, Ch.1,Ch.4.5]. One of these constructions
realizes Ramanujan graphs as orbital graphs arising from a multiplicity-free
permutation action of a certain finite general linear group, see [76, Ch.IL.19].
It seems natural to consider the multiplicity-free permutation actions of other
groups as well, in particular those of the sporadic simple groups, and to look for
Ramanujan graphs amongst the arising orbital graphs. For the smaller sporadic
simple groups such considerations have been made in the thesis [32], which the
author has had the opportunity to co-supervise.

It seemed worth-while to compile a database containing as many as possible
explicit results concerning the orbital graphs arising from permutation actions
of the sporadic simple groups. As far as a multiplicity-free permutation action
is concerned, the spectra of the arising orbital graphs are completely deter-
mined by, and indeed straightforwardly derived from, the character table of the
endomorphism ring of the underlying permutation module. Thus the kind of
information to be stored in a database is the character tables of these endo-
morphism rings. The database [7] is available electronically in GAP-readable
format, in

http://www.math.rwth-aachen.de/ Juergen.Mueller /mferctbl /mferctbl.html.

The multiplicity-free permutation actions of the sporadic simple groups, their
automorphism groups, their Schur covering groups and their bicyclic exten-
sions have been classified in [6, 43, 5]. The work of systematically computing
the character tables of the corresponding endomorphism rings, and related in-
formation, has been begun in [68]. In the thesis [32] these and other earlier
results, scattered in the literature, have been collected and the remaining cases
of multiplicity-free permutation actions of the sporadic simple groups and their
automorphism groups on up to 107 points have been dealt with. We have now
been able to compute the character tables for all but one (currently) of the
cases of multiplicity-free permutation actions of the sporadic simple groups,
their automorphism groups and their Schur covering groups on more than 107



points; these are listed in Section (11.1), see Table 7. An examination of the
multiplicity-free permutation actions of the bicyclic extensions of the sporadic
simple groups currently is under way.

The techniques used to compute the character tables of the endomorphism rings
have been derived from methods of computational representation theory, so-
called condensation techniques, which in the first place have been developed to
determine decomposition numbers, in particular for the sporadic simple groups
and related groups. It has turned out that suitable modifications of these meth-
ods can be used as computational workhorses for the present tasks. In partic-
ular, we have developed new efficient techniques to deal computationally with
transitive group actions on large sets, and thus to enumerate long orbits or at
least substantial parts thereof.

(0.2) The overall outline of the present work is as follows.

Part I deals with the more theoretical aspects. We take a slightly more general
point of view as would be necessary to consider only permutation actions, inas-
much as we consider monomial representations of finite groups. In Section 1 we
introduce the first main actor, the endomorphism ring of a transitive monomial
representation of a finite group. We state the basic theorem revealing its struc-
ture, Schur’s Theorem, and we introduce the notions necessary to describe its
structural properties, in particular its regular representation. In Section 2 the
representation theory of the endomorphism ring is related to the representation
theory of the underlying group, the relevant notion being the Fitting correspon-
dence. In Section 3 we introduce the second main actor, the character table of
an endomorphism ring. We discuss its structural properties as well as its rela-
tion to the character table of the underlying group. In Section 4 we introduce
another structure an endomorphism ring of a permutation module is endowed
with, the Hadamard product. It is related to the tensor product structure on
the characters of the underlying group. The material in Sections 1-4 is inspired
by different expositions existing in the literature, where usually only the case of
permutation representations is treated. But it seems worth-while to treat the
slightly more general case of monomial representations in detail; in particular,
we make use of the description of the general situation later on.

In Section 5 we consider the case where we have two transitive monomial rep-
resentations such that there is an epimorphism from one of these to the other.
This causes relations between the character values of the two corresponding en-
domorphism rings. The exposition is inspired by observations the author has
made while compiling the above-mentioned database, where cases of two per-
mutation actions being related as above indeed occur. In turn the theoretical
description of this situation helps to compute a few of the character tables in
the database. In Section 6 we take a more general point of view by considering
arbitrary condensation functors. Condensation techniques, which are explicit
computational applications of so-called condensation functors, have proven to
be efficient workhorses for different tasks of computational representation theory,



including the tasks we are faced with in the present work. It seems worth-while
to know as much as possible about the general properties of condensation func-
tors, formulated in terms of suitable module categories. In Section 7 we show
how the information collected in the database indeed can be used to describe
properties of the corresponding orbital graphs. We introduce the necessary no-
tions from algebraic graph theory, such as the notions of distance-transitive and
distance-regular graphs as well as Ramanujan graphs, and we indicate how the
relevant properties can be checked using the database. In particular, we provide
complete lists of imprimitive distance-transitive orbital graphs as well as non-
distance-transitive but distance-regular orbital graphs arising from multiplicity-
free permutation actions of the sporadic simple groups, their automorphism
groups and their Schur covering groups, up to the above-mentioned exception.
While the case of primitive distance-transitive orbital graphs for these groups
has been dealt with in [34], the imprimitive case has been open so far, up to the
knowledge of the author. Finally, we comment on Ramanujan orbital graphs.

Part II is concerned with the computational techniques which have been used
to actually compute the character table of an endomorphism ring, where we re-
strict ourselves to the commutative case. In Section 8 we describe a technique,
related to the Dixon-Schneider technique for the group algebra case, to com-
pute the character table of an endomorphism ring if enough information on its
regular representation is known. Furthermore, we introduce the notion of table
automorphisms, and indicate how this is related to the problem of determining
the Fitting correspondence for an explicitly given example. In Section 9 we con-
sider practical aspects of condensation techniques. In particular we place the
regular representation of an endomorphism ring into this context. We address
the problem, arising in many practical applications of condensation methods,
that we usually are not able to compute the full algebra acting on a condensed
module, and present new ideas to circumvent this. In Section 10 we describe the
ideas which have led to a new efficient technique to enumerate long orbits and
discuss a few of the technical details. In particular, under certain circumstances
this technique not only allows to enumerate an orbit, but also uses Schreier-Sims
techniques to collect group theoretic information, for example on the point sta-
bilizer. An implementation of this method has been used to deal with two of
the largest examples in the database.

Part III gives the details of the computations necessary to compile the above-
mentioned database, and gives two other applications of the techniques de-
scribed in the present work. In Section 11 we present more details on the design
of the database. In particular, we give references to earlier work used, and
indicate the list of cases we are concerned with subsequently. Furthermore,
we discuss the necessary computations to determine the Fitting correspondence
explicitly, where we have to take care of the fact that there might be several
multiplicity-free permutation actions for a fixed group to be considered at the
same time. To determine the Fitting correspondence for one of these cases, the
results on Krein parameters turn out to be helpful. In Sections 12-17 we case-
by-case discuss the multiplicity-free permutation actions which are not covered



by earlier results. In particular, in Section 17 we deal conclusively with the
permutation action of the sporadic simple Baby Monster group B on the cosets
of a maximal subgroup isomorphic to the sporadic simple Fischer group Fiss.
For this action not even the lengths of the suborbits have been known before.
Besides the character table of the corresponding endomorphism ring, we are able
to find faithful permutation representations of the two-point stabilizers, which
determines the isomorphism types of these subgroups. Furthermore, we deal
with the exceptional case mentioned above, which is the permutation action of
the double cover 2.B of the Baby Monster on the cosets of a subgroup isomor-
phic to the Fischer group Fis3. This is a covering of the permutation action of
the Baby Monster group B on the cosets of the Fischer group F'ios considered
above. Here we are able to determine the suborbit lengths and the isomorphism
types of the two-point stabilizers, but the character table of the corresponding
endomorphism ring (as yet) remains unknown.

Finally, we give two other applications of the techniques described earlier. In
Section 18 we present an application of the new technique to enumerate long or-
bits to solve a problem concerning the so-called Thompson-Smith lattice, whose
lattice automorphism group is a split central extension 2 x Th of the sporadic
simple Thompson group Th. This problem is related to the still open prob-
lem to determine the minimum of the Thompson-Smith lattice. In Section 19
we present, by way of an example, a new idea to interpret condensation re-
sults, which works for the case where the condensed module is precisely the
regular representation of the condensation algebra. The example dealt with
is the problem of determining the 3-modular decomposition numbers for the
sporadic simple Harada-Norton group HN; we present partial results for the
non-principal block of defect 2.

(0.3) We assume the reader to be familiar with the ordinary and modular rep-
resentation theory of finite groups, as general references see [3, 14, 15, 16, 18, 39],
and occasionally with other prerequisites as well, which are mentioned on lo-
cation. The standard methods from computational representation theory, in
particular MeatAxe techniques, are also assumed to be known. We use the
MeatAxe implementation [69], which is referred to as the MeatAxe. Further-
more, the standard methods from computational group theory, in particular the
techniques dealing with permutation groups, are assumed to be known. We also
use the computer algebra system GAP [22]; we assume the reader to be familiar
with the techniques to access the information in its libraries, such as character
tables or tables of marks, and to actually apply the algorithms implemented
there, in particular those dealing with permutation groups, to explicitly given
examples.

As parts of the exhibition are technical in nature, we have tried to fix the
notation as early as possible and to keep it fixed throughout the whole of the
present work. Most of the pieces are introduced in Sections 1 and 3 as well
as 5. In later sections we have tried to give suitable backward references to
enhance legibility. For groups we use the notation introduced in [13], indicating



the normal subgroup structure. For groups dealt with in [13] we also use the
notation used there to refer to conjugacy classes or irreducible characters. For
an extension of a group G by an outer automorphism of order 2, we denote
the extensions of a G-invariant irreducible character x by x*, where for groups
dealt with in [13] the character x* refers to the character actually printed there.
We use the notation Irr.(-) for the set of irreducible characters of an algebra,
where the subscript indicates the ground field.

(0.4) The author gratefully acknowledges enthusiastic and helpful discussions
with Robert Wilson, Max Neunhoffer, Gerhard Hiss and Thomas Breuer on the
topics of the present work. Furthermore, the present work could not have been
written without the possibility to make very heavy use of the computing facilities
at Lehrstuhl D fiir Mathematik, which quite a few of the other users indeed have
suffered from.

Finally, the author thanks Gerhard Hiss, Gunter Malle and Cheryl Praeger for
their willingness to act as referees for the present work, and for making valu-
able comments and suggestions, which have been incorporated into the current
version.

I Endomorphism rings and character tables

1 Endomorphisms of monomial representations

We begin by fixing the basic notation and definitions which will be in force
throughout the whole of the present work. The exposition of Section 1 is inspired
by [39, Ch.II.12].

(1.1) Let G be afinite group, and H < G be a subgroup of index n := [G: H].
Let Z:={1,...,r}, where r € N is the number of H-H-double cosets in G, and
let {g; € G;i € T} be a set of representatives of the H-H-double cosets in G.
Hence we have G = [[,.; Hg;H. Without loss of generality let g; := 1.
ForieZlet H;:= H%NH < H, and {h;; € H;j € {1,...,k;}} be a set of
representatives of the right cosets of H; in H, where k; := [H: H;]. Hence Hg; H
decomposes into right H-cosets as Hg; H = ]_[fl:l Hg;h;; € G. Without loss of
generality let h;; = 1p.

Hence we have G = [[,c7 H;C:l Hgih;j. Let Q := H|G be the set of right
cosets of H in G, let w;; := Hg;hij;, for i € 7 and j € {1,...,k;}, and for short
wi 1= wj1 = w19i, as well as Q; 1= {wy; € Q5 € {1,...,k;}}. Then Q =[];. Qs
is the partition of Q into H-orbits, where H; := Stabpy(w;) and k; = |©;]. In
particular we have Q; = {w1} and k; = 1.

Let mq: G — Sq denote the group homomorphism from G to the symmetric
group Sq on 2 defined by the transitive right action of G on €.



(1.2) Definition. Let i€ Z.

a) The number r is called the rank of H in G.

b) The number k; is called the i-th index parameter of H in G. The set ); is
called the i-th suborbit of G. The suborbit €2; is called the trivial suborbit.

¢) The G-orbit O; := (w1,w;) - G C Q x Q of (w1,w;) € Q x Q is called the i-th
orbital of G.

d) The orbital O; = {(W,w) € Q x Q;(w,w’) € O;} is called the orbital
paired to O;, thus defining an involution *:Z — Z. If ¢ = ¢*, then O; is called
self-paired.

Hence © x Q = [[,.7 O; is the partition of  x Q into G-orbits, and we have
|Oi] =n-k; and O; N (Q1 x Q) = Qq x Q;, as well as k;» = k; and wlgi_l € Q.

(1.3) Let O be an integral domain. Let A be a representation of ©H, such
that the underlying © H-module is O-free of degree 1. The © H-module endowed
with the ©H-action given by A is denoted by ©,. Let A\ be the induced
representation of ©G obtained from A. Its underlying ©G-module is given as
O\ ®en OG = P, @521 O, ®gihi; = 0,9, where ©,Q is the free ©-module
with ©-basis 2, the subscript still indicating the underlying © H-action, and
where the isomorphism is given by 1 ® g;h;; — w;;. Hence we may identify
O\ ®eg OG and 0,12 using this ©G-isomorphism. The action of G on 0, is
described as follows.

(1.4) Definition. Let g € G. For i € 7 and j € {1,...,k;} let g;h;j - g =
h - girhisjr, where wyjr = w;; - mq(g) and h € H. Let

Awi; (9) = A(h) € A(H) C ©.
Thus we have A% (g):w — A\, (9) - (w - Ta(g)), for w € Q.

(1.5)  We introduce the first main actor of the present work. Let
Eg = Endeg(@,\ ®eon OG)

be the ©G-endomorphism ring of the induced ©G-module ©) ®gy OG, where
E} also acts from the right. Hence ©) ®¢y OG is endowed with a (OG ®e E)-
right module structure.

By the Frobenius-Nakayama relations and Mackey’s Theorem, see [3, Ch.3.3],
we have as ©-modules

—
=
—

1%

Eg Hom@H()\, (/\G)H)
@iez Homew (A, (/\%i)H)

@ieI HOHI@Hi (>‘H1 ) A% )7

i

—
N
—

1%

—
w
=

1

where the representation A% of ©@HY is defined as A9 (h) := A(g;hg; '), for
h € H9%. As X is of degree 1, we have Home g, (Ar,, AY; ) # {0} if and only if
g, = /\f}}i, in which case we have Homeg g, (A Hm/\%;,-) ~ Q.



(1.6) Definition. Let Z) := {i € Z; \g, = \}; }.

-1, we have
HnNHY%

N 2
1" € I whenever i € 7). For the case A\ = 1, the trivial representation of ©H,
we have 7, = 7.

-1
We have 1 € Z,, and since Ay, = )\“}ji implies A% 1=

(1.7) By the explicit formulation of the ©-isomorphisms (1), (2) and (3) in
Section (1.5), we obtain an explicit basis of EQ as follows. Let i € Ty, and let
ol € Hom@Hi()\H“)\g}i) be defined by of: Oy — 0, ®g;:1 — 1® g;, where the
underlying © H;-module of )\i}'i is denoted by ©) ® g;. Indeed, for h € H; we
have o - A9 (h) = A(h) - af: 1 +— A(h) ® g;.

The O-isomorphism (3) is given by the exterior trace map, which yields o} €
Homeg (A, (A%l)H) given by af:1 — Z?":l )\(hi_jl) ® gihij, where using ©-
isomorphism (2) the underlying © H-module of ()\%i)H is @5;1 O\ ® g;hij <
O\ ®oy OG. Finally using O-isomorphism (1), which is the restriction map
a — ale,, this gives o € E} defined by

ki —
a}: 1@ gihiny (Ej:l Ahizh) ® gihij) “Girhir g
ki —
= Y0 A ) Awy, (girhar) - (wig - malgirhing),
for i’ € T and j' € {1,...,k;}, where the last equality uses the identification of

Section (1.3).

Let Ay := {a};i € T, }. In particular, as A, (girhi ;) = 1, we have o} = ide,q.
For the case A =1 let v; := o}, for i € Z, and A := A;.

Hence we have shown the following theorem, which for the case A = 1 first
appeared in [72], see also [39, Ch.I1.12], and which is the basic theorem of the
present work.

(1.8) Theorem. E} is a free module over © -idg,q = © of O-rank |Z,| and
A, is a ©-basis, the Schur basis, of Eg.

(1.9)  We collect a few facts on the Schur basis elements a € Ay, for i € Z,.

For o € Ende(0,9) let [a] = [a]g € ©™*™ be the representing matrix with
respect to the ©-basis Q of ©,Q. The matrix entries of [a] are denoted by
[0]ww € O, for w,w’ € Q.

For g € G we let diag[\,(g9);w € Q] denote the diagonal matrix with entries
(diag[Aw(9);w € ))wr wr = 0w wr - Aw (9), for W', w” € Q. Hence we obtain

(A9 (9)] = diag[\u(g); w € Q) - [ra(g)]-
Thus we have

A ()] = [ra(g)]” - diag[hu(9) Hw € Q] = A9 (g)]" - diag[Ao,(9) % w € Q.



(1.10) Proposition. Let i € ). Then [« z]ww’ =0 unless (w,w') € Oy, in
which case we have [0}, € A(H) € ©. For i’ € T and j' € {1,...,ky} we

have »
0, ifd #4
A _ ) )
(07 s oy "{ Mhil), if i =i,

If (&,0) = (w,w') - g for some g € G, then we have

Awr (g)
A (9) .

In particular, for the case A = 1 we have, for i € Z,

o] 1, if (w,w') € O,
Qilow =00, if (w,w') € 0.

[ai LZMD/ = [amuu’ .

Proof. By Section (1.7) it only remains to prove the statement involving
[aM sz Let diag[h,(g)] := diag[\.(g);w € Q] for short. Then we have

[0Mear = ([ma@]™" - [a] - [ra(@)] ™), .,
= @hagkw 9N [ad]- [N (g)] " - diag[A(9)]) ..
= (diag[\o(9)7Y] - [o] - diag[Ae, (g )])wwr
= [of]ow (f ;

We introduce a further structure on modules acted on monomially and their
endomorphism rings. For technical reasons we have to adjust the base ring
appropriately.

(1.11) Definition. Let K := Quot(©) be the field of fractions of © and
K’ C K be the subfield generated by A(H) over the prime field of K. As A(H)
consists of roots of unity, there is an involutory field automorphism —: K’ — K’
defined by A(h) — A(h)~! for h € H. Let K" := Fixyx/ (") C K'.

Let (-,-)o be the non-degenerate hermitian form on K2, with respect to the
field automorphism ~, defined by (-, -)q: K42 x K{Q — K’ (w,w’) — 84,0

Since for g € G we have wg = A, (g) - wma(g), the form (-, -)q is G-invariant.

(1.12) Definition. For i € Z) let i~ € {1,...,k;} and n; € H such that
9; 1 — 1, - g~ - hj=;—. Furthermore let

A(m:)

T Xhern)

€ \NH).
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(1.13) Proposition. For i € T, the adjoint map (a)* € Endg/ (K4Q) of
a? with respect to the form (-,-)q is given by (a})* = Cl -ax. Thus we have an

involutory K"-algebra antiautomorphism of E7, given by

1
: Epr — Epral = — - k.

. 3
?

Proof. For i€ Iy, as [a}] - [A\%(g)] = [\%(g)] - [a], we have

%

[ra(9)]” - diag[\,(9);w € Q] - [a}]T = [0}]7 - [ra(g)]” - diag[\.(g9);w € €.

3

Since [rq(g)]” - diagA\(9);w € Q] = [rq(g™')], we conclude that [a}]7 is a
scalar multiple of [a}]. Since (wi,w;) - g; " = (w1g; ' wi1) and A, (g; 1) = 1 we
have (o)
Aw; (9 1 1
A A Wi \Jq

a -1 = 105wy ,w; — = — = .

B R W IS WP BT
Because of [a], , —1 = A(hsi-) 7", we have ¢; - [T = [at]. i

(1.14) Corollary. Let i,j5 € Z).
a) For the case A = 1 we have ag = ay+ and thus [;]T = [ay+], for i € T =T,
b) Since a} = (a))# = ¢ - (a})f = £- - o, we have (- = (.

Gix
c) If i = i*, then we have (; - (a})® = a7, while if j # j*, then we have
G- (a; + ozﬁ‘*)ﬁ = a?‘* + a;. Hence o and ag\ + 04;‘* commute with their

respective adjoint maps, and thus o and a;‘ + 0&;\* are diagonalisable over an
algebraic closure of K'.

The following notions first appeared in [28]. Their intention is to exhibit a finer
structure of the suborbits 2; C €, for i € 7).

(1.15) Definition. a) For ¢,j,k € Z, a triple (w,w’,w"”) € Q x Q x Q such

that (w,w') € O;, (W, w") € O;, and (w,w”) € Oy is called triangle of type

(4,7,k). Let T C Q x Q x Q be the set of triangles of type (¢, j, k).

b) For 4, j, k € Ty, the A-weight of the triangle (w,w’,w”) € T;;j, is defined as
A, ") i= [0 - [0 - ([0 € A(H) C .

For ( € A(H) let

’];?kc = {(w, 0, w") € Tiji; Mw,w',w") = (}

be the set of triangles of type (i, j, k) and A-weight (.
c) For i,j,k € T and ¢ € A(H) let

Qj‘ﬂg = {w € Q; (w1, w,wy) € 7;;‘,5} C Q.

Let §:={s € {1,....ki};wis € Q5 } and plyg = || = [S] € No.
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(1.16) Remark. Asthe O; C Q x are invariant under diagonal G-action,
the sets Ty, for i, j, k € Z, are invariant under diagonal action of G on Q2 x {2 x )
as well. For ¢,7,k € Ty and (w,w’,w") € T as well as g € G we have

Mwg,w'g,0"g) = [uguwr - [0 gy - ([]wgwrg) ™"
1 Ay A A
= 0w [0+ ([0R)ur) ! - 528 Qurle) Aule)

= Mw,w',w").

Hence the sets ’Z;j‘,f for a fixed A-weight ¢ € A\(H) are unions of G-orbits as well.
These are, as O C Q x € is a single G-orbit, in natural bijection with the set

of Hy-orbits on Q;\j,g

As Q; = {wis;s € {1,...,k;}} is as an H-set isomorphic to the set H;|H of
right cosets of H; in H, it follows that Qi‘,flwk is as an Hj-set isomorphic to
Hses,(Hih“ N Hy,)|Hy, where S’ C S is chosen such that {h;;s € S’} is a set
of representatives of the union |J, o H; - his - Hy, of H;-Hg-double cosets in H.
Hence we have

ses

Pk = > [Hy: (Hy 0 H")].
seS’

(1.17) Proposition. For i,j,k € Ty let (w1,w;s,wr) € ’Z;;\,w for some s €

{1,...,k;}. Let g;hys -g,;l = hs - gj=hj=¢ for some t € {1,...,k;-} and h, € H.
Then we have
A(hj=t)

Awi, wis, Wi ) = Gj - Alhs) - A(his)

Proof. We have [a}]u, w, = 1 and [0}]w, w,. = AMhi'), as well as

A A
[aj]wis,Wk = [Oéj]wisg):lvwl ' hY

)‘wl (gk) _ [ A

: Ahy),
Yy (hs)

J ]wisg;17w1

since Aw, (k) =1 and A, -1(gk) = A(h;1). Using Proposition (1.13), we have

—1
k

[ ?]wisggl,wl = [a?*]wl,wisg;l (5. As [a?‘*]wl’wisggl = )\(hj_*lt), the assertion
follows. i

The regular representation of the endomorphism ring Eg\) plays a central role in
the present work. The aim of the following definition is to facilitate a description
of the regular representation.

(1.18) Definition.
a) For i,j € Iy, by Theorem (1.8), we have a - oz?-‘ =D kel pf‘jkag, for the

3
structure constants p;\jk € O. For the case A =1 let pyjp 1= plljk.
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b) For j € TI,, the representing matrix [ag\] 4, of the right regular action of

aj‘ on Eg, with respect to the Schur basis A, is given by the j-th structure

constants matrix

[0} 4y = P} i= [plysis k € Ta] € @I

with row index ¢ and column index k. For the case A =1 let P} := le.

(1.19) Remark. Leti,j, k€ Zy.

a) By considering the matrix entry [0 - }]w, w,, where [a] - )] still is the

representing matrix of the natural action of a - o’}

J
basis €2, we obtain
pzyk - Z C nglc
CEN(H)

pz]k— Z pq,]k

CEN(H)

on 0, with respect to the

Furthermore, we have

Using the involutory K”-algebra antiautomorphism #: E%, — Ex,, see Propo-
sition (1.13), we obtain
A _ GG o

Pjxixgx = Cr " Pijk-

b) For the special case j = 1 we have g; = 1 and hence (; = 1. Furthermore
S = 0 unless ¢ = k, in which case we have S C {1}, and for w;s = w1 = wy we

have A(hs) - )\((h t)) = 1. Thus pl 1 x = 0i1x0¢.1. Hence ) '\ & = Oik, as expected.

Analogously, for the special case i =1 we have pl,j,k =0,k

For the special case k = 1 we have g, = 1 and hence S = () unless j = ¢*, in
which case we have A(hs) - 204 — 1. Hence § = ) unless ¢ = ¢j, in which

A(his)
case we have S = {1,...,k;}. Hence we conclude p” L = 0+ - O¢.c,. - ki and
p?,j@ = i j + Giv + ki
c) We have
pije = {w € Q(wi,w) € 0;, (w,wi) € O}

= Hw e Q;(wr,w)
= HweQ; (wl,wglzl)

= Hwe Qi;wglzl
= QN (gl
= |(Qugy ") Ny

Because of this the p;ji € No are also called intersection numbers, and the
matrices P; are also called intersection matrices.
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For j and k fixed, the k-th column sum of P; is

D Pk =Y pigr = D190 (- g1)| = Q98] = k.

i€z €T i=1
d) Let K’ C K be an algebraic closure of K’, and let i, j € T, where i = i* and

j # j7*. By Corollary (1.14), the maps o} and a?‘ + a;‘* are diagonalisable over

K, hence have square-free minimum polynomials over K. As E7, acts faithfully
on K'(, the minimum polynomials of the regular action of a; and of a;\ ia;\ on

E% = B, @k K also are square-free. Hence the structure constants matrices
P> and Pj)‘ + Pj); are diagonalisable over K as well.

2 Fitting correspondence

The aim of Section 2 is to describe the connection of the representation theory
of the endomorphism ring Eg with the representation theory of the underlying
group G. The exposition of Section 2 is inspired by [15, Ch.1.11.D].

(2.1) Let © be an integral domain such that the order |H| € © of H is a unit
in ©. Let A be a representation of O H of degree 1 with underlying © H-module
©,. Let

1
exi=1 > A7) he®HCOG
Al
be the centrally primitive idempotent of © H belonging to .

We have an isomorphism of ©@G-modules
0 =0x:0,00 = e\OG:w;; — exgihij,
where 0,2 &£ 0, QRoy OG is the induced ©G-module obtained from ©), see
Section (1.3), and ¢ € Z and j € {1,...,k;}. The map
7 =Tx:Endec(ex0G) — (AOGer ) a — exa

is an isomorphism of ©-algebras, where (¢y©Ge))° denotes the opposed ring
with multiplication given by z oy := y - x, for z,y € €xOGe). The inverse of 7
is given by

1= 7';1: (eAOGey)° — Endog(exOG): exgex — (exh — exgerh),
for g, h € G.

(2.2) Proposition. We have an isomorphism of @-algebras

EY — (exOGex):a— ()1 := (67 -~ 0)7,

and for i € Ty we have ((a})?)T = k; - exgiex. In particular, {exgiex;i € Iy} is
a O-basis of (€yOGe))°, and we have eyg;jex = 0 for j & 7).
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Proof. Using Section (1.7) we get
ki
((@}))T = ex(@?)” = exgi - Z)\(hfjl) - hij
j=1

Since A% = Ap,, for h € H; we have A(h™") - exgsh = A(h™1) - ex - h9i - g; =
A7) - N9 (h) - €xgi = €xg:- Hence we obtain ((a})?)7 = % -€xgi€x. The last
assertion follows from the fact that for k£ € Z the support of €ygren € OG with
respect to the ©-basis G of OG is contained in the H-H-double coset Hgi H. 4

Proposition (2.2) exhibits £} as a non-unitary ©-subalgebra of (©G)°. From
this we deduce the following additional structure on EJ.

(2.3) Proposition.
a) Eg\) is a symmetric ©-algebra with respect to the symmetrising linear form

1
tEy — ©:a] — — -1,
e — o, = |H| 7,1
for 7 € Iy.
b) For i,j € Ty we have t(a} - ) = &;- ; - Ci}ilf"’

Proof. The group algebra ©G is a symmetric algebra with respect to the
symmetrising linear form tg: ©G — O: EQEG ¢g - g — c1. Hence the ©-algebra
eAxOGe) C OG also is a symmetric algebra, with respect to the restriction of tg
to €xOGey. For i € T, we have t(k; - exgiex) = ﬁ -0;1. Hence the assertion in
a) follows from Proposition (2.2), and the assertion in b) follows from Remark
(1.19). 4

(2.4) Definition. For i€ T, let

o= AL
Yok G

Then Ay := {&};i € T)} is called the dual Schur basis of EQ. For the case
A=1let & :=a}, forieZ, and A:= A;.

(2.5) Remark. For the moment we drop the assumption that |H| is a unit
in ©, and let €y :== >, .y AM(h7') - h € ©H C OG. Then we still have an
isomorphism of ©G-modules, 6x: 0y — €\OG:w;; — €xrg;hij, for i € T and
Jj € {1,...,k;}, analogous to Section (2.1). But in general the assertions of
Proposition (2.2) and Proposition (2.3) no longer hold, even if © is assumed to
be a field. For a treatment of this general situation see [10].
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(2.6) The non-unitary embedding of ©-algebras in Proposition (2.2) also
reveals the precise relationship between the representation theory of Eg and
the representation theory of G.

Let K = Quot(0) be a field of characteristic coprime to |H|, which is a splitting
field for Ey. For ¢ € Irrgx(Ey) let S, be the simple Ex-module affording
the character ¢ and d, = ¢(1) = dimg(S,) € N. Let e, € Ex be some
primitive idempotent such that e,Ey /rad(e,Ex) = S, as Ex-modules, and
let S := Homg (S,, K) be the (E%)°-module dual to the Ef-module S,. As
E3 is a symmetric K-algebra, we have Epe, 2 (e,Ex)* as (Ex)°-modules,
and thus Exe,/rad(Ege,) = S as (Ejy )°-modules.

Let P, := K)Q-e, = K\Q - Eﬁego < Ky\Q and m, = dimg(P,). As
K)Q = e,KG is a projective KG-module, P, is a projective indecomposable
KG-module. Let x, € Irrx(G) be the irreducible character of KG, being
afforded by the simple KG-module Sy, such that P,/rad(P,) = S, as KG-
modules.

Let P and P’ be projective indecomposable K G-summands of K2, occurring
in a fixed direct sum decomposition of K, into projective indecomposable
KG-modules, and let e, e’ € E}‘( be corresponding idempotents, such that P =
K\Q-eand PP = KQ-¢'. Then P = P’ as KG-modules if and only if
there is an isomorphism o € E?( such that Pa = P’ < K,Q. Hence we
have ¢ = o™ -e-a € Ep, and thus eEp /rad(eEy) = ¢'Ex /rad(e'Ey) as
Ej-modules. Conversely, if the latter assertion holds, then by [15, Exc.0.6.14]
there is an isomorphism a € Ey such that ¢/ = a™!-e-«a € Ey, and thus
Pa =P < K)\Q.

Let Trry (G) == {x, € Irrg(G);¢ € Trrg(Ex)}. Let ¢ € Iirg(Ey) and let
K C L be a field extension. As K is a splitting field for Ez, by [18, La.l.18.8]
we conclude that e,E% @k L is an indecomposable E}-module, where E} =
E @k L. Thus e, € Ep C E} is a primitive idempotent in E, and hence
P,®k L is an indecomposable LG-module. Thus S, is an absolutely irreducible
K G-module, and hence K is a splitting field for all simple K G-modules affording
a character in Irrj (G).

Hence we have shown the following Proposition.

(2.7) Proposition. Let K be as in Section (2.6).

a) The map ¢ — P, induces a bijection, the Fitting correspondence, between
Irr i (E%) and the set of isomorphism types of projective indecomposable sum-
mands of the KG-module K ). Hence it induces a bijection between Irr (E)
and Trry (G).

b) As KG-modules we have

K= H  |(Pr

pelrg (Ey) \ =1
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(2.8) If KG is semisimple, then we can even be a bit more specific.

Let K be of characteristic coprime to |G|, such that it is a splitting field for all
simple KG-modules affording a character in Trrj (G). For x € Irrg (G) let S,
be the simple KG-module affording the character x, and let ¢, € KG be the
centrally primitive idempotent corresponding to x. Hence we have Irrj (G) =
{x € Irrx (G); exey, # 0}, which is the set of the irreducible K-characters x of
G, such that S, is a constituent of A€, see also [15, Ch.1.11.D].

For x € Iri(G) let exe, = E?;l ey, be a decomposition of exe, = €y €
into pairwise orthogonal primitive idempotents e, ; € KG, with corresponding
multiplicities d,, € N. Then we have a direct sum decomposition as K G-modules

dx
eKG = @ exey KG = @ @ex’iKG ,

x€lrry (G) xelrry (@) \ =1

where e, ;KG = S, for i € {1,...,d,}. Hence in this case the Fitting corre-
spondence is a bijection Irr g (B ) — Trr (G): ¢ v X, and we have Sy, = Py
and m, = dimg (S, ) as well as d,, = d, = dimg(S,). Thus we have

@ EndKG(SXq,)d@ xdy ~ @ Kd“’ xdy,

pelrrk (Ey) pelrk (Ey)

1%

i

as K-algebras. In particular, E7 is a semisimple K-algebra having K as a split-
ting field, and we have |Z)| = dimg (Ey) = ZgoelrrK(E;() d2. Furthermore, for
each ¢ € Irrg (E7 ), the K-algebra isomorphism 7y, see Section (2.1), restricts
to an isomorphism, where x = X,

dy dy,

KX — (exey KGeyer)* = @D EP ex.; KGeyi: Eij — ey jfiiex.in

i=1 j=1
for some f;; € KG, fori,j € {1,...,d,}, and where E;; € K% >4+ is the matrix
unit given by [Eij]i’j’ = 0;,46;,, for i, 5 € {1, . 7dX}'

Hence as (KG ®x E%)-modules we have

K= P (S, ®xSy).

pelrg (Ey)

where the above summands are pairwise non-isomorphic absolutely irreducible
(KG ®k E7)-modules. We have Sy ®p S, = @?i1 Sy, as KG-modules and
Sy, Ok Sp = @;25 S, as Ef-modules.

(2.9) Remark. Let K be of characteristic coprime to |G| and a splitting
field of E-. Then E7- is commutative if and only if d, = 1, for all p € Irrg (E7),
which holds if and only if |TIrr i (E% )| = dimg (Ey%) = |Zx|. In this case, K\ is
called multiplicity-free.
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(2.10) We conclude Section 2 by introducing the setting for decomposition
theory, and we show how the decomposition maps of G and E* are related.

Let K be of characteristic 0 and a splitting field for all simple KG-modules
affording a character in Irrj (G). Hence K is a splitting field for E3 as well.
Without loss of generality we may assume that K is a cyclotomic field containing
Q(A(H)). Let R C K be a discrete valuation ring in K with maximal ideal p<tR
and finite residue class field F' := R/ of characteristic p > 0, where p is coprime
to |H|. Let : R — F denote the natural epimorphism.

By Theorem (1.8), E} is an R-order in Ep. As M(H) C R, let A := \-~ ¢
Irrp(H). As the characteristic of F' is coprime to |H|, we have Ay, = \j; if and
only if S\H = 5\?}1_7 for i € Z. Thus T = I3, and hence we have an R-algebra
epimorphism E3% — Eé:ai‘ — aix, for i € Z,. Without loss of generality we
may assume that F' is a splitting field for Eé, and hence F is a splitting field
for all simple F'G-modules affording a character in IrrS‘F(G) as well.

Hence we have a decomposition map Dg: G(KG) — G(FG), where G(+) denotes
the corresponding Grothendieck groups, see [14, Ch.XII.82-83]. The considera-
tions there generalise straightforwardly to the algebras Ey% and Eg‘p, hence we
also have a decomposition map Dg: G(EX) — G(E}). For x € Irrg(G) and
X € Irrp(G) let de’ € Ny denote the corresponding decomposition number with

respect to Dg, for ¢ € Tirg(E7) and ¢’ € IrrF(Eér) let dﬁp, € Ny denote the
corresponding decomposition number with respect to Dg.

(2.11) Proposition. Let ¢’ € Trrp(E7) and let ¥/ = x, € Irrp(G) be its
Fitting correspondent.

a) For ¢ € Trrge(E7) and its Fitting correspondent x = ., € It (G) we then
have dfx’ = df«:'-

b) If x € Trrg (G) \ Irrj (G), then dgx’ = 0.

Proof. By [5:)3, Thm.3.4.1], idempotents can be lifted from FG to RG, respec-

tively from E;\; to E}e Hence the assertions follow from Brauer reciprocity, see
[14, Thm.XII.83.9)]. f

3 Characters of endomorphism rings

In Section 3 we discuss characters of endomorphism rings over fields of character-
istic 0. The exposition of Section 3 is inspired by [27]. We begin by relating the
character values on Schur basis elements corresponding to paired orbitals, and
then use the symmetrising form to exhibit the centrally primitive idempotents
of the endomorphism ring.

Let K be a cyclotomic field containing Q(A(H)) and being a splitting field for
all simple K G-modules affording a character in Irr} (). Let : K — K denote
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the involutory field automorphism defined by ~: ¢ +— ¢! for all roots of unity
¢ € K, extending the field automorphism of Q(A(H)) defined in Section (1.11).

(3.1) Proposition. See also [39, Prop.I1.12.12].
For i € 7 and ¢ € Irrc(E7%) we have, where (; € K is as in Definition (1.12),

= = olad).

p(a)

Proof. As in Section (1.11) there is a G-invariant positive definite hermitian
form (-, -)o on K, thus the decomposition K & @WEIITK(E;\() (Sy, @k Sy)

as (KG ® E7)-modules, see Section (2.8), is an orthogonal direct sum. Thus
by Proposition (1.13) we have

1 1
A ADL) MY = ot Ay= . A
PaT) = (@) = o= - trp((ad)f) = g troled) = £ -plad),
where tr, denotes the K-valued trace function on Sy, ®f S,- i

(3.2) Proposition.
a) The centrally primitive idempotent €, € E7 corresponding to ¢ € Irrx (Ey)

is given as
H| L =52
(o= v Lo
LTSy S

where ¢, € K is the corresponding Schur element, see also [15, Ch.1.9.B].
b) For ¢ € Irrx (Ey) we have
16l _ 6]

Co = = =c,_,
v me  Xe(1) Xe

where ¢, € K is the Schur element belonging to x, € Irr?((G) for the sym-
metric K-algebra K G with symmetrising form ¢, see Proposition (2.3).

Proof. Using the symmetrising form ¢ we have

1 ) |H| 1
ewzc_ZQO(af‘)af‘:—Z QO(OZZ)\*)CY?

c ki - Gir
YTy YoieT, Gi

Hence the assertion in a) follows from Proposition (3.1) and Corollary (1.14).

For i € Iy, the trace of the action of @ on K,Q is given as trg, o(al) =

; _ |H] _ |Gldy
01,; - n. Hence using a) we have trg, o(e,) = = dy-n= 12

. Furthermore,
»

the idempotent €, € E7 acts as the identity on S . @k S, and annihilates
the other summands Sy , ®k Sy, for ¢ # ¢’ € Irrx (E). Hence we have

tric,a(ey) = dy - M. #

We address the question of semisimplicity of the endomorphism ring E;‘,ﬂ over a
field F of positive characteristic.
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(3.3) Remark. Let R — F and X be as in Section (2.10), where in par-
ticular the characteristic of F' is coprime to |H]|.

a) For ¢ € Irrg (Ey) let Dy: E — Endg(S,) denote the corresponding rep-
resentation. Then the Schur element c, € K is defined by the Frobenius-Schur
relations ) ;7. Dy(6) - M - Dy(a}) = cyp - tr(M) - idg,, for M € Endg(S,),
where tr is the K-valued trace function on Endg(S,). Hence we have ¢, € R,
and ¢, is well-defined.

b) As El):x is a symmetric algebra, ¢ € IrrF(Eg‘,) is afforded by a projective
simple Ef}—module if and only if ¢ occurs with multiplicity ds as a constituent

of the regular Eg‘,ﬂ—module Ef:i, while for the non-projective simple Elél—modules
this multiplicity is at least 2 - dg.

(3.4) Proposition. See also Tits’ Deformation Theorem [16, Thm.8.68.17],
[23, Thm.1.3.8] and [19].

We keep the notation of Section (2.10), where in particular the characteristic of
F is coprime to |H|. Then the decomposition map Dg induces a bijection

{p elirg(Ex)ic, Z0€ F} — {p € IrrF(Ef;); @ projective}.

In particular, EI:} is semisimple if and only if ¢, # 0 € F for all ¢ € Irrg (E).

Proof. If ¢ € Irrg(FEy) such that dﬁﬁ # 0, then ¢ occurs in the regular

Ef\p—module EIS; ~ E}; at least with multiplicity d,, - d&;. If ¢ is projective,
then by Remark (3.3) we conclude from d, > d; that d, = ds and df,ia =1.
Hence df@’ =0, for ¢ # @' € Irrp(Ep), and dg,¢ =0, for p # ¢ € It (Ey).
Furthermore we have ¢, = cg, and by the Gaschiitz-Ikeda Theorem, see [14,

Thm.IX.62.11], S; is a projective Ef;—module if and only if ¢z #0 € F.
Conversely, if ¢ € Irrx (E%) such that ¢, # 0 € F, then ¢, € R is a unit. Let

1
€pj = — > [Dp(@})]y; -} € B C By,
e 1€T

for j € {1,...,d,}. Then ¢, = Z]d‘; €,; € E3 is a decomposition of €, into
pairwise orthogonal primitive idempotents. Hence ecpEﬁeg, ~ Riexde a5 R-

algebras, thus EgaE;\zQp =~ pdexde a5 F-algebras. Hence 5’; is an irreducible
E-module, with corresponding Schur element c, #0€F. f

(3.5) Remark. Asc, = c,, for x € it (G), we conclude that Ep is
semisimple if and only if all K G-constituents of A& are of p-defect 0. Hence for
A = 1, where the trivial K G-character is an element of Irrj (G), the F-algebra
Ep is semisimple if and only if p does not divide the group order |G|. But
for A # 1 the F-algebra E2 might be semisimple even if p divides |G|, as the
following examples show.
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(3.6) Example.

a) Let F := Fy be the finite field of order 4, let G := S3 be the symmetric
group on 3 letters and H := Az be the alternating group on 3 letters, and let
1 # X € Irrp(As) be a non-trivial F-representation. Then A% is an irreducible
F-representation of S3 of degree 2, and we have AG = p as F'Ss-modules, where
p is the reflection K-representation of Sz, whose Schur element is ¢, = 3 € K.
b) Let G := SLy(F,) be the special linear group of degree 2 over F,, where ¢
is a prime power q > 4, and let H := U X T' < G be a split Borel subgroup
with torus T = Cy_1. We have |H| = ¢(¢ — 1) and |G| = ¢(q — 1)(¢ + 1).
Let F be a finite field of characteristic coprime to ¢(¢ — 1) containing primitive
(¢ — 1)-st roots of unity. Hence B has exactly ¢ — 1 different F-representations
A € Irrp (H) of degree 1, all of which are inflated from T'. If 1 # X2, then A® is
irreducible of degree ¢ + 1, and hence has Schur element 0 # ¢(¢ — 1) € F. If
A # 1, but 22 = 1, then A has two non-isomorphic constituents of degree %1,
whose Schur elements hence are 0 # 2¢(g — 1) € F.

We introduce the second main actor of the present work.

(3.7) Definition. The matrix
Dy = [plad);p € It (EY),i € Ty] € KMrBr)lxITal

with row index ¢ and column index i, is called the character table of E7. For
A=1let & := ;.

Explicit examples of character tables are shown in Examples (3.12) and (4.10) as
well as (5.17), and of course in Part ITI. In all the explicitly given tables we also
indicate the Fitting correspondence Irr g (Ey% ) — Ity (G), see Proposition (2.7).
We proceed to prove the most important structural feature of the character table
of an endomorphism ring, the orthogonality relations.

(3.8) Proposition. Orthogonality relations.
a) We have the first orthogonality relations

— d
®y - diaglk; ;i € Zy] - % =n- diag[m—“a;go € Iirg (Ey)].
©

b) If E7 is commutative, then we have the second orthogonality relations

@1 - diaglmy; ¢ € Irg (Ex)] - @y = n - diaglks; i € 7).

Proof. Because of ¢(ey) = 0, - dy, for ¢,¢" € Irrg(E%), by Proposition
Gld d o
(3.2) we have } ;.7 k% cp(ad) - (@) = b - IlH\‘-mi =0p. - %7 which in

terms of matrices is just the assertion in a).
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If E7 is commutative, then by Remark (2.9) we have d, = 1 for all ¢ €
It (B ) and |Irr g (E7 )| = 7, hence @) is a square matrix. Because of the first
orthogonality relations @, is invertible, and we have

— 1
&7 - diaglki;i € 7)) - ' = - -diag[my; ¢ € Irrg (B )].
From this the assertion in b) follows. i

(3.9) Remark. In particular by the first orthogonality relations we obtain

ka p(a?),

1€TN

mw

for ¢ € It (E). As dy, = ¢(a}) is known from @, the degree y,(1) = m, of
the Fitting correspondent y,, € it (G) of ¢ € Irrg (E7) can be read off from
®, as soon as the k;, for i € Ty, are known; see also Remark (3.21).

As a direct consequence of the orthogonality relations we obtain the following
notion, which for the case A = 1 first appeared in [20]. Part of the statements
in ¢) of Proposition (3.10) have been proved in [21], see also [80, Thm.V.30.1].

(3.10) Proposition.

a) For ¢ € IrrK(E)‘ ) and i € Ty, the character value (') € K is an algebraic
integer. If E is commutative, then det ), € K and det &) € K are algebraic
integers, and we have (det ‘I>,\)2 € Q(\(H)) and det ) - det @) € Q.

b) Let E% be commutative. Then the generalised Frame number

AB (T k- T mi)

i€y goeIrrK(Eg) ®

is a rational integer.

c) Let A = 1 and Fx be commutative. Then the Frame number N1 € Z is
divisible by n?. Furthermore, Ny € Z is a square in Z, if and only if either

i) |Z) - |{i € Z;i* =i} =0 mod 4 and det ® € Z, or

ii) |Z| — {i € Z;i* = i}| =2 mod 4 and det ® € iZ.

In particular, N is a square in Z, if all characters in Irrj, (G) are rational-valued.

Proof. Let R be the set of all discrete valuation rings in K, without any
restriction to the characteristic of the residue class field of R. As the repre-
sentation of E7 affording ¢ can be realized over all rings R € R, see Section
(2.10), we conclude that ¢(a;) € (\ger R, which by [15, Ch.1.4.C] is the ring
of algebraic integers in K.

If Ey is commutative, then from the second orthogonality relations, see Propo-
sition (3.8), we obtain by taking determinants

det®y-det®x-( [] o) =nBl (T ko).
gpeIrrK(E* ) i€l
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Thus det @ - det @, = N, € Q is an algebraic integer. By Proposition (3.1), we
have @) = ® - Q- diag[({l;i € Z,], where Q) € Z\TAXITAl §g the permutation

matrix describing the permutation of the columns of ®, induced by the pairing
|Zx 1= {i€Tysi" =i}
2

involution x:Z) — Z,. Hence we have det Q) = (—1) . Thus we
obtain 1
|Zy|—|{i€Zy;i*=i}|
Na=(-1) " 2 -(det@y)?- ] %
i€Zy >

Hence we have (det ®,)? € Q(A(H)). This proves the assertions in a) and b).

For A = 1, we have (det ®)? € Q. Hence det ® € R or det ® € iR. From this the
characterisation of N7 € Z being square in Z follows. As is shown in Remark
(3.21), we have k; = ¢1(«;) for i € Z, where 1 € Irri (E) denotes the Fitting
correspondent of the trivial K G-character. Hence using the first orthogonality
relations, see Proposition (3.8), we obtain ®-[1,...,1]7 =n-[1,0,...,0]7. Hence
det ® is divisible by n in the ring of algebraic integers in K. If all characters in
Irrj, (G) are rational-valued, by Remark (3.21) below, we have p(a;) € Q, for
¢ € Irg(Fk) and i € Z, hence det ® € Z, and by Proposition (3.1) we have
i* =i for all ¢ € Z. This proves the assertions in c). i

(3.11) Remark. In general, it is not true that Ny € Z is a square, if only
i* = 4 holds for all ¢ € Z, but no further assumption on det ® is made, as the

following example shows, thus disproving a conjecture in [20].

(3.12) Example. Let G :=J; and H := Ly(11) < G as well as A = 1. The
character table ® of the endomorphism ring F is contained in the database,
see Section (11.1), and is given as follows, where 15 := v/5 € R. According to
Definition (3.7), the rows and columns of ® are indexed by ¢ € Irrg (Ex) and
i €T =1{1,...,5}, respectively, and the entry of ® in row ¢ and column i is
the character value ¢(«;) € K, for the Schur basis element «; € A. Further-
more we indicate the Fitting correspondence Irr (Ex) — It (G): ¢ + X, see
Proposition (2.7).

o] xe [[1 2 3 4 5]
1| la |1 11 12 110 132
2 | 56a 1 77277”5 73237”5 5+27r5 37297‘5
31 56b 1 —7;—7’5 —3537’5 5—27r5 3+29r5
4| 76a || 1 4 -2 ) -8
5| T7a || 1 1 4 —10 4

As is shown in Remark (3.21), we have k; = ¢1(oy) for i € T = {1,...,5}.
Hence the index parameters are pairwise different, and thus we have i* = i
for all i € Z. But we have det® = —2-3-7-11-19% .75 € Q(r5) and hence
Ny = (det ®)2 =22.32.5.72.11%2 .19 € Z, which is not a square in Z.
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(3.13) Remark. Let E% be commutative. Let e € N and let ¢, € Q(A\(H))
be a primitive e-th root of unity such that Q(A(H)) = Q(¢.). Let (2. € Cis a
primitive 2e-th root of unity. It follows from the proof of Proposition (3.10) that
N, is a square in the ring of integers of Q({z.), which by [50, Cor.2.2] coincides
with Z[(s.]. But for the case A # 1, no characterisation for the generalised Frame
number Ny € Q(A(H)) to be a square in the ring of integers Z[A(H)] = Z[(.] of
Q(A(H)) is known to the author.

This question is related to the question whether [[;.7, ¢; € Q(A(H)) is a square
in Z[A(H)]. As by Corollary (1.14) we have {; = (;+, for i € T, we only have
to consider [[;c7 ;- i € Q(A(H)). Hence let i € Z) such that i = i*. By

Definition (1.12) we have ¢; = A?]gnz) Let h € H; and 1’ € H such that

Mi-Gi hi- =g, =n"gi-h-hy—=n"-gihg ' - gi hy-
Hence we have 1)’ - g;hg; ' = 1; and thus

A(n') _ A1) 1 A1)

A hi-) — Mgihg: D) - MR) - Ahi-) — A2 A(hy-)

Hence without loss of generality we may change the set of representatives of the
right cosets H;|H of H; in H. Let h,h’ € H. Then we have

(hgih")™" = B'=" - migihgi- - h™t = B lh ™t hgih' - W' hg-h T,

and thus /\(A,Efz_tlhz_h;)l) = /\E\;E"_)) = (;. Hence without loss of generality we

may as well change the set of representatives of the H-H-double cosets in G.

Thus we may choose g; € G such that for w; := wyg; € ) we have w;g; = wy,
Thus we have g? € H; and g;l =n;-9; = ¢g; -1, where n; € H; < H. Having
made these choices, we have reduced the question whether [[;.7 ¢; € Q(A(H))
is a square in Z[A(H)] to the question whether [[;c7, ,_; A(m:) € Q(A(H)) is a
square in Z[A(H)]. For this, again, no general statement is known to the author.

We discuss the relationship between the character table of a commutative en-
domorphism ring E7%, the set of its centrally primitive idempotents, and its
structure constants matrices.

(3.14) Proposition. Let E be commutative, let
Exi={e, € Ex;p € g (Ex)}

be the set of centrally primitive idempotents of Ey-, and let [E\] 4, € KT IXIZA
be the matrix describing the centrally primitive idempotents in terms of the
Schur basis Ay, see Proposition (3.2).

a) Then &) is a K-basis of By and {e,Ex < Ex;¢ € It (Ep)} is the set of
all 1-dimensional E-submodules of E7. For j € 7, we have

[Ex]a, - P} = diaglp(a}); ¢ € Itk (Bx)] - [Ex] 4y
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where Pj’\ is the j-th structure constants matrix, see Definition (1.18).
b) We have [£)]4, = ;7 as well as

n - diaglm, "¢ € It (EX)] - [Ex]a, = @ - diag[k; ;i € ).

Proof. The regular E7-module E7 decomposes as Ep =2 @LPGIITK(E)\ ) e B,
where dimg (e, E%) = 1, for ¢ € Itk (B} ). We have e,-a} = p(a})-€,, for p €
Irr i (E3%). From that and the uniqueness of the centrally prlmltlve idempotents

the assertions in a) follow. The assertions in b) follow from Proposition (3.2)
and the second orthogonality relations, see Proposition (3.8). #

(3.15) Corollary. Let J CZ) and C := (a?‘;j € J) k—algebra < E3%. Then
we have C = E7 if and only if Ej = @Dicq1,.. 7,y Si as C-modules, where the
S; < E;‘( are pairwise non-isomorphic C-modules such that dimg (S;) = 1.

(3.16) Definition.

a) For i,j € Iy let &' - a} = Y1, pf‘jk - &y, for the dual structure constants

pl)‘Jk € Q(A\(H)), where Ay = {&};k € T, } is the dual Schur basis, see Definition
_ AU |

(2.4). For the case A =1 let p; 7 = Dok

b) For j € TI,, the representing matrix [a;‘] A, of the right regular action of

ozj‘ on E}O with respect to the dual Schur basis Ay, is given by the j-th dual
structure constants matriz

(04, = B = [,k € Ta] € QUA(H)) P IXIB,

with row index 7 and column index k. For the case A = 1 let }5]- = le.

(3.17) Proposition. Let i,5,1 € Z,.
a) For the structure constants matrix P} we have

2 = ¢ - diaglk;; j € Tn)] - (P’\)T diag[k; ;1 € 7).

b) For the dual structure constants pf_\f we have pf_\_[ = ,]:’ g” p) e

c) If E7 is commutative, then we have P)‘ (P)‘)
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Proof. Using Corollary (1.14), Remark (1.19), the symmetrising form ¢, see
Proposition (2.3), and Definition (2.4) we obtain

p;\i*l = Clcf:* m
= % . % -t(af‘a;\al)‘)
= My
This shows the assertion in a). Furthermore, we have
p%j = t(@g\a?af\) = IZ g -t(af‘* a?‘dl’\*) = ]IZ Z ~p;\*jl*.

This shows the assertion in b), while the assertion in c¢) follows from

. . A AR A
pg‘j[ = t(a;\ag\al)‘) = t(a;\al/\a;‘) =t(ajard;) = Diji- 4

(3.18) Proposition. Let E7 be commutative and j € Zy.

a) Let [E)] 4, € KT XITAl be the matrix describing the centrally primitive
idempotents of E% in terms of the dual Schur basis Ay. Then we have

[Ex] 4, - (P = diag[p(a}); ¢ € It (EBz)] - [E] 4,

and

1 .
[‘SA}A)\ = @ - diag[mg; ¢ € IrrK(Eﬁ)] - Py

b) We have P} = @1 - diag[p(a}); ¢ € Irrg (B )] - o7

Proof. The first assertion in a) follows from Proposition (3.14) and Proposi-
tion (3.17). By Proposition (3.2) and its proof we have

1 )
[Exa, =1 ~o(a});p € Irrge (B i € T,
@
with row index ¢ and column index i. Hence the second assertion in a) follows.
The assertion in b) follows from those in a). f

Finally, we discuss the relationship between the character table @, of E;\o see
Definition (3.7), and the ordinary character table of the underlying group G.
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(3.19) Definition. Let CI(G) denote the set of conjugacy classes of G and
let
Xy = [X(C): x € Ik (G), C € Cl(G)] € KM (@)1x|eua)]

denote the character table of Irrj (G), with row index x and column index C.
For C € CI(G) and i € T let

W(C) = dc(hg) - A(h™") € QA(H)),

heH

where dc: G — {0,1} is defined by dc(g) = 1 if and only if g € C. Note that
7 (C) does not depend on the particular choice of the representative of the
double coset Hg; H C G. Let

Ty = [1)(0):i € Ty, C € CU(G)] € QA(H))PrIxIel@)]

with row index i € Z) and column index C. The 7])-‘(0) for j € I, are dealt
with in Proposition (3.22).

For A = 1 let %(C) := v}(C) = |C N Hg;| € Z and T := Ty € Q"*ICUOI for
i €7 and C € CI(QG).

(3.20) Proposition. For the character table ® of E% we have

1
oy = ] - Xy -TT - diaglks; i € 7).

Proof. Let ¢ € Iirg(Ey) and y € Trri(G) be its Fitting correspondent, see
Proposition (2.7) and Section (2.8). For o € E and o = o as in Section (2.1),
let af, denote the image of a” € Endga(exKG) under the projection onto
the direct summand K% *% belonging to x. Hence we have p(a) = tr(ag).
Furthermore we have K% *% .7 = ¢ye, KGe ey C €, KGe,, = K™¢*™¢  where
my = x(1) and 7 = 7 is as in Section (2.1). Hence the Pierce decomposition of
ex K Ge, with respect to exe, shows that we have tr(ag) = x((ag)7). Since for

X # X' € Ity (G) we have x((af,)7) = 0, we conclude that ¢(a) = x((ag)7) =
x((a?)7). For i € T) we hence have

o)) = x(((0)7)7)
= ki x(exgi€x)
= 1 Lnwen MO AMR) T - x(hgilt')
= i Zh,h’eH A((W'h)~1) - x(W hys)
Ponen MY - x(hg;)
H| 'ZCGCZ(G) %"\(C)X(C)- i

=

> X

|
E

I
mfF

|
ka
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(3.21) Remark.
a) In particular, for A = 1 let ¢1 € Irri(Ek) be the Fitting correspondent of
the trivial K G-character. Then we have, for i € Z,
k;
p1(ei) = =] Z |CNHgi| =k; €N.
CcecCl(G)

Hence the index parameters k;, for ¢ € Z, can be read off from the character
table ® of Fx. Note that the values of 1 on A are positive integers, and that
by the orthogonality relations, see Proposition (3.8), ¢ is uniquely determined
by this condition.

b) Let for the moment E7 be commutative, and let
K' = QAH))[X(C); x € I (G), € & CUG)]

As d, = 1 for all ¢ € Irrg(Ey), by [18, La.IV.9.1] the Schur indices over
Q(A(H)) of all x € Irry(G) are equal to 1. Thus K’ is a splitting field for all
simple K G-modules affording a character in Irr (@), and hence for Ey as well.

c) Let without loss of generality K be a splitting field for KG, and let p €
Cal(K/Q(A(H))). As A = X, we conclude that Irr} (G) is Gal(K/Q(A(H)))-
invariant. As (T'y)? = Ty, the set Irrx (E%) also is Gal(K/Q(A(H)))-invariant
and we have X, = (xo)? € Ity (G), for ¢ € Trrg(E%). In particular, if
MH) C R, we have x5 = X5 € Iry (G).

(3.22) Proposition.
a) For j ¢ T\ we have 7}(C) = 0 for all C € CI(G).
b) For x & Irrj(G) we have doceci) YMC)x(C) = 0 for all i € T,.

Proof. Without loss of generality we assume that K is a splitting field for
KG. Let X = [x(C); x € Irrg (G), C € CU(G)] € KICUDIXICUE] denote the full
K-character table of G. Hence as in the proof of Proposition (3.20) we have
X(Exgrer) = ﬁ Ycecua) 1 (CX(C), for k € T.

By Proposition (2.2), we have exgjex = 0 € KG, for j ¢ Z,. Hence for all
X € Irrg (G) we have 3~y 7 (C)x(C) = 0. Thus X-[y}(C); C € CUG)|T =
0 € KICUGIX1  As X is invertible, the assertion in a) follows. For x ¢ Irrj (G)
we have exe,, = 0 € KG, hence x(exKGey) = 0. From that the assertion in b)
follows. f

(3.23) Proposition. See also Ree’s Formula [15, Thm.1.11.28].
We have
My

Cip € Iin(BR)] - @y - T - ding]|C| ™ C € CUG)).
(%2}

Xy = diag|
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Proof. For C € CI(G) let CF := > gec 9 € KG be the corresponding conju-
gacy class sum. Since Ot € Z(KG), we have \9(CT) € E. Thus we have
A(CT) = Yier, i - ) € Ey, for 4; € K. By the definition of the a7, see
Section (1.7), we have, for i € T, and fixed j € {1,...,k;},

Vi = Z dc(hgihij) - Au, (hgihiz) - AMhiz) = Z dc(hgs) - Mh) = (O).

heH heH

For ¢ € Trrg(E7) let x € Trry(G) be its Fitting correspondent, see Section
(2.8), and let tr,, denote the K-valued trace function on the KG ® ¢ Ef-module
Sy, ®k S,. For i € I, we then have try(a;) = my, - ¢(a;) and tr,(CT) =

dy - |C] - x(C). Thus x(C) = 7757+ ez, 1 (C) - @(e}). i

(3.24) Remark. Proposition (3.20) describes ®, in terms of Xy and T'y,
while Proposition (3.23) describes Xy in terms of I'y and ®,. We briefly discuss
the remaining case of describing I'y in terms of ®) and X).

Let Ei‘( be commutative. Then from Proposition (3.23) and the orthogonality
relations, see Proposition (3.8), we obtain

1 _
Ta=—" diag[k; ';i € T, - @1 - Xy - diag[|C|; C € CI(G)].

Hence we have
Yy = <[’7{\(C),C S CZ(G)},Z S I)\>K
= ([xe(O)-IC|;C e Cl(G)); ¢ € itk (Ex)) i
< gixleo)

By Proposition (3.20) and the second orthogonality relations, see Proposition
(3.8), we have

Dy (X - diaglmys o € In(EY)] - &) - TT = |G| - |H] - ding[k; ;i € o).

Hence {[y(C); C € CI(G)];i € Z)} is an orthogonal K-basis of Yy, with respect
to the hermitian form defined by the bracketed term. The latter hence is positive
definite on ). Furthermore, because of the orthogonality relations for Xy we
have

X[ - (XY - diagmg; o € (B )] - Xn) - ()" = |G - diaglmy; ¢ € Iir(Ex)],

where for short X} := X&) - diag[|C|; C € CI(G)]. From that we conclude that
{[x,(C) - |C|;C € CU@)]; ¢ € it (E)} also is an orthogonal K-basis of V.

4 Krein parameters

In Section 4 we restrict ourselves to the case A = 1, and discuss another algebraic
structure on Fy, which has a connection to the tensor product structure on
Ity (G). As general references see for example [8, Ch.2.3] and [2, Ch.IL3].
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Let K be a cyclotomic field being a splitting field for all simple K G-modules
affording a character in Irrj (G).

(4.1) Definition.
a) For A = [a;5;4,5 € {1,...,n}] € K™™ and B = [b;;4,j € {1,...,n}] €
K™™ both with row index i and column index j, let the Hadamard product be
defined by

AxB:= [aijbij;i,j S {1, e ,n}] e K",
b) As Ex — K™ ™ a; — [a;]q, for i € Z, is a faithful K-representation, Fx
becomes a commutative K-algebra, denoted by E7, by the Hadamard product
QG * Q1= (5,'73' - oy, for 1,7 € L.

(4.2) Remark.
a) Hence A is the set of centrally primitive idempotents of E7.
b) For X arbitrary and i,j € Zy C Z,2, by Proposition (1.10) we have

(o x [0}]e = i - [ To-

Hence there is a generalised Hadamard product : Ex x Ex — E;‘:.

(4.3)  We give an interpretation of the Hadamard product on Ex in terms of
the permutation module K.

Let A: Q — QxQ:w +— (w,w) be the diagonal map, and AQL := (2 xQ)\AQ C
Q x Q. Thus KQ @k KQ is endowed with the structure of a (KG ®k Fx) ®k
(KG ®k Er))-module, and it decomposes as K G-module as

KQog KQ= K(Qx Q)2 K(AQ) @ K(AQY) =2 KQ@ K(AQh).

Let : KQ — KQ®g KQ and m: KQ @ KQ — KQ be the KG-injection and
the KG-projection corresponding to the above direct sum decomposition.

(4.4) Proposition. Keeping the notation of Section (4.3), let o, o’ € Ek.
Then we have
t-(a®ad) -m=axd € Eg.

Proof. With respect to the K-bases 2 of K2 and Q2 ® Q of K(Q ® Q) we
have [l], (wow) = Oww Ouw wr and [T](wow) w = Owwdw . Furthermore
(W' @w') ; ; (W'®w'), , )
[0 ® ) (wrgw), (@ esr) = (0w e - []wr g Hence for w,& € Q we get
- (a®d) Twe
= Zw/,ww,@/,meg ([L]w7(w’®w”) Ja® a/](w’®w”),(&’®&”) : [ﬂ(@/@@ﬂ),&)
= [e®d]wew) @s0)

= [a]w@ ) [a/]w7&~ #

We introduce suitable structure constants of E and show their relationship to
the character values of Schur basis elements.
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(4.5) Definition. Let Fx be commutative. Let Irrx (Fx) = {¢;;i € I},
and for ¢ € 7 let ¢; € Ex be the centrally primitive idempotent corresponding
to @;. For i,j € T we have ¢; x¢; = >, 7 qijk - €k, for the Krein parameters
qijr € K of E.

(4.6) Proposition. Let Ex be commutative. Then for ¢, j, k € Z we have

m; - m; 1
Gije =~ > 75 pilon) - 5(0n) - i)
ler !

Proof. By Proposition (3.2), for i € 7 we have ¢; = 3,7 27— - ¢i(qj) - aj,
J
where m; := m,,,. Hence for 4, j € Z we obtain

m; - m; 1
€ % €j = ’Ln2 J Zk_?wl(al)wj(al)al
ez

Let £ := {¢; € Ek;i € I} be the K-basis of Ex consisting of the cen-
trally primitive idempotents, and let & = {&;i € Z} the corresponding dual
K-basis with respect to the symmetrising form ¢, see Proposition (2.3). By
Proposition (3.14) we have [£]4 = ®~ 7, hence we conclude [c‘:']A = &, where
O = [p;(a;);4,5 € Z) € K™*" denotes the character table of Ex. Hence for
i €T we have & =}, 7 ¢i(a;) - &;. Thus we obtain

Gijk = t(eixej) - )

mq-m;

n2 'ZIGI ZsGIé "Pi(al) '(Pj(al) '(pk?<a8) 't(alads)‘ ﬁ

(4.7) Remark. Let Ex becommutative and let ¢ be the Fitting correspon-
dent of the trivial K G-character. As by Remark (3.21) we have ¢1(a;) = ki,
for all 4 € Z, and m; = 1, by the first orthogonality relations, see Proposition
(3.8), we obtain

_my 1 _ m; no 1
Qujk = p'Zk_l'%(al)‘%(al)—%k'ﬁ o ik
leZ
for j, k € Z. Furthermore, for ¢,j € Z, we have
mi - m; 1 m;
Gij1 = an LY % (o) - pj(eu) = b5 ;- 71,

leT
where by Remark (3.21) we let i € Z such that ¢; = 7.

As was promised at the beginning of Section 4, we prove the relationship between
the Hadamard product on E and the tensor product structure on Irrk (G). An
application of Proposition (4.8) is given in Section (11.5).
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(4.8) Proposition. See also [73].
Let Ex be commutative and ¢, j, k € Z, such that g;;; 7 0. Then the character
Xor € Ity (G) is a constituent of the product ., X, € Zlrrg (G).

Proof. Fori € 7 let S; := .5, denote the simple KG-module affording the
character y;. Hence we have K} & @iez S;. Let ¢;: S; — KQ be the KG-
injections and m;: K2 — S; be the KG-projections corresponding to the above
direct sum decomposition. Hence we have m; - 1; = ¢; € Fg, for i € Z. By
assumption we have ¢ - (¢; * €;) = ¢;jk - €, 7 0. By Proposition (4.4) we have

e (eixe) = M-t (M) @ (mj-45))-m

= Tt (m@m) - (1 @),

where the natural tensor product maps m; ® m;: KQ @k KQ — S; ®k S; and
L ®1:S; O S; — KQ @k KQ are KG-homomorphisms with respect to the
diagonal K G-action. It follows that 0 # v - ¢ - (m; ® 7;): Sp — (S; @K S5;). As
Sk is a simple K G-module the assertion follows. f

(4.9) Remark. Using Remark (4.7), as x,, € Irri(G) is the trivial KG-
character, Proposition (4.8) for i, j, k € 7 implies the trivial statements that for
J = k the character x,, is a constituent of x,, - Xy, = X,,, and that for i=
the trivial character x,, is a constituent of x,, - X, = X¢; * Xe: -

If at least one of 4, j, k equals 1, by Remark (4.7), the converse of Proposition
(4.8) holds as well. But this is not true in general, as the following example
shows.

(4.10) Example. Let G := M;; and H := Ag < Ag.235 < G. The character
table of the endomorphism ring E, see Definition (3.7), is contained in the
database, see Section (11.1), and is given as follows, where we also indicate the
Fitting correspondence Irrg (Ef) — Irr (G), see Proposition (2.7).

ol xe[[1 2 3]
I] la][I 1 20
21001 1 -2
3[11a)1 -1

Let i = j = k = 3. Using GAP, see Section (8.1) and Table 6, by Proposition
(4.6) we get g333 = 0. But using the ordinary character table of G, also available
in GAP, we find that x.,, indeed is a constituent of the tensor product X, - X -

(4.11) Remark. We conclude Section 4 by discussing briefly a rationality
property of the Krein parameters.

Let Ex be commutative and 4, j,k € Z. It follows from Propositions (4.6) and
(3.1) that we have ¢; ;1 € R, and by [2, Thm.II.3.8] we even have the Krein
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condition ¢; j > 0. According to [2, p.70] it is an open question, when the
Krein parameter ¢; j» € R is rational. In [2, p.71] an example is given, where
the ¢; ;.1 € R are at most quadratic irrationalities.

The database, see Section (11.1), contains quite a few examples where some of
the Krein parameters are irrational, many of these are quadratic irrationalities.
But there also occur irrationalities of higher degree. Using GAP, see Section
(8.1) and Table 6, by Proposition (4.6) we find the following examples.

a) Let G := M13.2 and H := Mg.(A4 X 2) < Mg.(S4 x 2) < G. The character
table of the endomorphism ring Ex has entries from both the quadratic number
fields Q(v/3) and Q(+/5), and there are Krein parameters being irrationalities
of degree 4.

b) Let G := J; and H := 23.7.3 < G. The character table of the endomorphism
ring Fx has entries both from the quadratic number field Q(v/5) and from the
cubic number field contained in the 19-th cyclotomic field, and there are both
Krein parameters being irrationalities of degree 3 and of degree 6, respectively.

5 Coverings

In Section 5 we examine the situation where we have given transitive G-sets )
and €’ such that there exists an epimorphism Q' — Q of G-sets. In particular,
we discuss how the character tables of the endomorphism ring corresponding to
Q and of the endomorphism ring corresponding to €’ are related, provided a
disjointness condition on the K G-constituents of A¢ and of (A" — \)¢ holds,
see Section (5.3).

(5.1) We begin by fixing some more notation, which will be in force for the
remaining parts of the present work. Let H' < H < G be another subgroup.

As in Section (1.1) let Z7 := {1,...,r'}, where ' € N is the number of H'-H'-
double cosets in G, and let {g, € G;i € '} be a set of representatives of the
H'-H'-double cosets in G, where ¢} := 1g. Fori € 7' let H! := (H')%NH' < H',
and {h;; € H';j € {1,...,k{}} be a set of representatives of the right cosets of
H] in H', where k; = [H': H]] and h}; := 1gs. Let Q' := H’|G be the set of
right cosets of H' in G, and n' := [G: H']. Let wj; := H'gjhi;, fori € 7" and j €
{1,...,ki}, and for short w} := wj;, as well as Q) := {w; € V55 € {1,...,kj}}.

(5.2) Let © and A be as in Section (1.3), and let X' := Ag/. We describe the
relationship between A and \C.

Let Zy = {i € T'; )\}{; = )\;f[;,} As in Section (1.5) and Section (1.7) we have

—
[
—

Homeo(NY,A\%) = Homegn (N, (\%) )
(2) ,
=~ @,cnicim Homen (N, Mo )™)
(3)

1%

/ g9
EBgeH\G|H' Hom@(HmH')(/\HgmHu )‘HgﬂH/)v
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where the sums run over a set of representatives of the H-H’-double cosets
in G. Again we have Homeggonu)(Ngonprs Aonn) 7 {0} if and only if
Nyonmr = Myonm» in which case we have Home (gonm)(Nyong > Afponm) = ©.
Furthermore, the ©-isomorphism (1) still is given by a — o' := ale,,.

(5.3) We fix an appropriate setting to be able to describe the relationship
between the character tables of Ex and E}é In particular the disjointness
condition formulated below will be in force throughout Section 5. We encounter
several examples for this situation in Part III. After some preparation, the
precise relationship between the character values on the Schur basis elements of
E and E;‘(/ , respectively, is given in Corollary (5.13).

Let K, R and F be as in Section (2.10), where in particular the characteristic
of F is coprime to |H|. Let K be a splitting field for all simple K G-modules
affording a character in Irrj (G). We have NG = A& + (VH — \)C. thus K is
a splitting field for all simple K G-modules affording a character in Irr}\<(G) as
well. We furthermore assume that A¢ and (A" — \)¢ have no K G-constituents
in common. In particular this holds if E;‘{, is commutative, since then d, = 1
for all p € Irr(EY ).

We remark that for the case A = 1, and hence also A’ = 1, the condition
of 1% and (1, — 14)¢ having no KG-constituents in common is related to

the notion of generalised normal subgroups introduced in [75, Ch.L5], see [75,
Thm.I11.19.15].

Hence Irryy (G) C Irr}\(/(G) is the set of constituents of A% and Irr}\(/(G) \Irr (G)
is the set of constituents of (\# — \)¢. Thus as K G-modules we have

K)\/Q/%K)\QEB Z K)\/QIEX7
x€lrry (G)\Irrx (G)

where €, € KG is the centrally primitive idempotent belonging to x € Irr g (G).
Let ayy € E?; denote the corresponding K G-projection onto K,{). Hence we
have E;‘( = Oz)\/)\E;‘(/CV)\/)\ and Ej\é = Oé)\/)\Ej\(/Oz)\/)\ D (]. — OQ/)\)E;‘(I(l — Ol)\/)\) as
K-algebras. Thus in this sense we can consider Ey is a subset of E;\(/, and
Irri (E) as a subset of Irrg (B ).

(5.4) Proposition. Let A and )’ be as in Section (5.3), where in particular
MG and (MH — \)¥ have no K G-constituents in common.
a) Hompg(NE,AY) has an R-basis Ay, := {a}*;i € Z,}, defined using the
R-isomorphism (1) in Section (5.2) by

()Y = () € Hompy (A, (A) g) < Hompp (N, (A%) g0,
where Ay = {a};i € Z)\} is the Schur basis of E3.
b) Using the natural embedding Hompg(N“,A\Y) — Hompgg(VE, A\Y) of R-
modules, the set Ay also is a K-basis of Homgg (NG, \).
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¢) Hompe (N, A9) has an F-basis Ass = {aixlj‘;i € Iy}, defined by
(o) = (a}) € Homprr (X, (A%) 1) < Homppze (N, (A%) 1),
where A5 = {af‘;i € Z,} is the Schur basis of Eix
Proof. By Section (2.10), we have 75 = 7. Furthermore, we have
dimg Homgg(N9, A9 = tkgHompg (VE, \¢) = dimp Hompg(X’G, AE)

and dimg E;} = rkREl’\% = dimp Ez;}“ As A9 and (V' — \)¢ have no KG-
constituents in common, we have Homgg (V% A\9) = Homgg(A\9, \¢) = Ex.

f

(5.5) Corollary. For i € 7, we have Hg;H = Hg;H' C G, and thus H'
acts transitively on §2;. In particular, we have [H': (H' N HY%)| = k;, = [H: H;].

(5.6) Definition.
a) For i/ € T/ and j/ € {1,...,kl} let i € T and j € {1,...,k;} as well as
hy ;€ H be defined by g; hi/; = hi; - gihiy € G. For j' = 1 let for short

h}, € H be defined by g}, = hl} - g;hi; € G, and let
= ARL) - Alhiy) € A(H).

Furthermore, as ¢« € 7 depends on i’ € Z’ but not on j’ € {1,...,k.}, this defines
a surjective map agy: g:Z' — I.

b) The map of G-sets ' — Q: wg,j, — w;j, fori’ € 7 and j' € {1,..., ki'}, where
i=ag g@’)€eTandje{l,...,k}, by Corollary (5.5) induces surjective maps
Q, — Q,;, for i € T and 7’ € aﬁ}vH(i). The suborbit €; is said to split into
the suborbits {,;i" € QE}H(Z)} If |a;{}H(z)| = 1, then ©; is said to be a
non-split suborbit.

(5.7) Remark.
a) For i € T we have >, -1 ki, =[H:H'] - ;.
H', H

b) By Proposition (5.4), for 1 € 7 we obtain o} * € Hompg (N, AF) as

O‘i\ )\: R)\/Q/ — RAQ:wé/j, = /\( ;I/j/) * Wij,
for i/ € 7/ and j' € {1,...,k}}, where i = ag/ y(i') € T and j € {1,...,ki},
and hj;;, € H is as in Definition (5.6). Furthermore, an analogous statement

holds for oz{T/S‘ € Hompg (N9, A9).
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(5.8) Lemma.
a) For i € 7 we have

Hg;H = 11 11 H -z-gi-y-H|,

_1 1xg; ’
weH |H|(HNH% ) \YEHNH9)H|H

where x and y run through sets of representatives of the double cosets indicated.
b) For i € T, we have

ye(HNH'9:)|H;|(H'OH9)

where y runs through a set of representatives of the double cosets indicated.

Proof. The group H°® x H acts transitively on Hg;H by (h,h):x — hzxh,
for h,h € H and x € Hg;H, where H° denotes the opposed group. Hence
Stabgroxrr(gi) = {(hgi_l,hfl) € Hx H;h € H;}. As the H'-H'-double cosets
contained in Hg; H are exactly the H'® x H'-orbits under this action, we have to
find representatives (z,y) € H X H of the Stabpo « i (g;)-(H'® x H')-double cosets
in H° x H, hence representatives of the orbits of Stabgox g (g;)° x (H'® x H')
on H° x H with respect to the action ((a,b),(c,d)): (h,h) — (cha,bhd), for
(a,b) € Stabgoyr(g;), as well as ¢,d € H' and h,h € H.

Without loss of generality we let the first component z € H run through a fixed
set of representatives of the H'-(H N Hgi_l)—double cosets in H. For the action
of (HNHY ') x H® on H we get

Stab, (z) = {(h®,h"Y) € (HNH% Yx H';h € (HNH% )* "nH'}.

—1
HNHY% )xH'®

Hence, for fixed z € H, the second component y € H is to be chosen from a set
of representatives of the orbits of

{((a,b), (¢,d)) € Stabgox g (g:)° x (H® x H');(a,c) € Stab( (z)}

HAHY )xH'"

on {z} x H. This proves the assertion in a).

Since we have i* € Ty, it follows from by Corollary (5.5) that we have
(H:H') = [(HNH% ' ):(H' nH% ).

Hence we have H'- (HﬂHgfl) = H. Furthermore, because of [H;: (H' N HY)| =
[H: H'], we have a bijection

(H 0 H'9)|H,|(H' 1 H%)
(HmH’gi) .y.(H’mHgi)

(H N H'9)|H|H':
(HNH'9) -y H'.

—
—

Thus the assertion in b) follows from a). f
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(5.9) Remark. Let i € Z,. Hence there is a bijection between the set
{Q,;d € a;ﬁ)H(i)} and the set of of representatives y of the double cosets indi-

cated in Lemma (5.8). Using this bijection we may write the index parameters
K., for i’ € ag (i), also as ki -

Because of H' N H'9%Y < H' N H9% < H' we have

/

k—y =[(H'nH%):(H' nH'"%)] € N.
Because of H' N H'9%Y = (H' N HY%) N (H N H'9)Y, the quotients k,;‘jvy are the
lengths of the orbits of the subgroup H' N HY < H; with respect to the action
of H; on the set of right cosets (HNH'9)|H;. As HNH'% and H' N HY are not

necessarily conjugate in H;, we might in particular have —-* > 1 for all double
coset representatives y.

If y runs through the set of representatives of the double cosets indicated in
Lemma (5.8), then y~! - 91'—1 runs through a set of representatives of the H'-

H'-double cosets of G contained in Hg; 'H = Hg-H. As H' N HY "9 <
H' N H% ', we conclude that (k3" € agr g (")} = {ki;i' € ag 4 (i)}, with

K, .
multiplicities. As k; = k;», the same holds for { ;5" € QH})H(Z*)}.

The following Proposition gives a description of the cardinality |o¢;ﬁ7 (@) NIy,
for ¢ € Z, in terms of irreducible characters of H.

(5.10) Proposition. Let E be commutative. Then for i € Z we have

|a;{}’H(i) NZIyv|= Z <XH”X‘(;}1.>H1-»
xelrry (H)

where (-, )y, denotes the hermitian product on Irrg (H;).

Proof. Let for short (-, -) denote the hermitian product on ordinary characters,
where the group in question always will be clear from the context. As g; 1=
NiGi= hi=i—, where n;, h;+;— € H, see Definition (1.12), for y € Irrj (H) we have
-1
9i

HmHgfl’ 1> = <X%;‘7XH1*>

(xm:» X3, = (x X

HNH%

Hence it is enough to show that the right hand side of the asserted equa-
tion equals |aI_{}H(z*) NZyv|. Asd, = 1 for all ¢ € Irrgx(E%), we have

0= <XG7>ZG> = ZieﬂXwa(%i), for x # x € Irr?{(H)’ hence <XH1'7)~<%£> =0
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for all i € Z. As all x € Irr) (H) occur in M with multiplicity 1, we have
ZXeIrri‘;(H) <XH1‘7X%;1->
= ((WT)u,, Vi)
= ZteH’\H|Hi<( ;tI/thi)Hiv ()‘/H)%J
= ZteH’\HIHiO‘/IthmH,;’(()‘/gi)Hgi)H’th7¢>
19;s )H’thi>

It
EtEH’\H|Hi > seHi |H9i|(H'*NH;) </\H/tﬁHi’ (/\H’-‘?ismH’tﬂHi

It 19is
ZteH’\H|H,- ZsEH’gi |H9i|(H'*NH;) <>‘H’9isﬁH”ﬂHi ’ AH’gismH'me)

—
—

rtg;ts ,
/ - : 1A _
EteH |H|H; Zse(ngi 1ﬁH)|H\H’< HAH 19 AH 1S>a
where the sums run over sets of representatives of the double cosets indicated,
. —1
and where equation (1) because of t € H and s% € H follows from

< 1t )\/9is > _ < 1t ( 19isg; " gi>
H'9:NH'*NH;> "H'9*NH'tNH; H'9SNH NHID A\ pgisg7 L prter Y g

o <)\/tgi_1 /gisgi_1 >
- H/gisg;lmH/tgfl ’ H/gisgflmH/tgi’l
rtg; t-gisTl ety
/\H/mH’tS’lgfl ’)\H'mH’“’lgi_l>
If s and t run through sets of representatives of the double cosets indicated on
the right hand side of equation (1), then by Lemma (5.8) the elements ¢ - g; 's

run through a set of representatives of the H'-H’-double cosets in G contained
in Hg; 'H. f

(5.11) Corollary. For s,t € H as on the right hand side of equation (1) in
the proof of Proposition (5.10), we have H’* 9 N H' < H;. Hence because of
Mg = X we conclude

/tgfls i
L2 o N erte) 2 s Afy) 2 0.

Thus for i € Ty we obtain oy (i) € Ty

(5.12) Proposition. For i € Ty and ¢’ € a;ﬁ)H(i) C Iy, see Corollary
(5.11), using the identification from Section (5.3), we have

/ /

’ k*/'C-/
Qxx - Q) -y = %'O@v
(]

where ¢/, is as in Definition (5.6), and

1 1 /
A E A
a; = [ : /] . —/ c QG

.y —1 . i’
% EO[H,’H(’L)
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Proof. By Section (5.3) we have Ej = oo\/)\E;\(/aN,\ C E;\(/ Because of
((axa)? )T = €y and exey = ex = eyey, the K-algebra isomorphism in
Proposition (2.2) translates the non-unitary embedding oz,\/,\E;‘goo\/A - EIA; of
K-algebras into the embedding ey KGe) C ey KGey . Hence

ex- (exgiexn)-ex =ex-higihij - ex = (s - (exgi€r)-

Let H C H' x H' be chosen such that H'g, H = {h'g,,h"" € G; (I, h") € H}.
Hence we have

ki -exgien = S pmen N (WR) 1) R
= S gien MR ) W gihig
Rewriting k; - €xg;€x analogously, the assertion follows. i

(5.13) Corollary. Let i€ 7).
a) For p € Irrg (Ey) C Iirg (B ) and 4’ € a;ﬁ,H(i) we have
ki - i A

pla)) = o elad).

b) For ¢ € Irrg (B ) we have

3 1 (0} = [H:H'] - o(a), if o € Irg(EY) C Irrg (EY),
) = 0, if e lrg(EY)\ I (E).

i’Ea;I}’H(i)

In particular, if Q; is a non-split suborbit and thus O‘;{},H(i) = {4}, then for
¢ € Trrg (By) \ Trrge (B ) we have @(a) = 0.

(5.14) Example.

a) Let G := Jy and H := 2'': Myy as well as H' := 2 My3, where A = 1 and
N = 1. Hence we have r = 7 and ' = 11 as well as Zy = Z and Zy, = Z’. The
character tables of the endomorphism rings Ex and E;(H " are given in Sections
(16.1) and (16.2), see Table 21 and Table 22, respectively. The splitting of the
suborbits (); is given as follows, where i’ € ays y(i)~! and i € Z.

ks

i

k.
1,23
8,16
24
24
4,20
24
1,23

~ oo e w = e
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b) Let G := HN.2 and H := S} as well as H' := S, where A\ =1 and X = 1.
Hence we have r = 10 and v’ = 17. The character table of the endomorphism
ring E;(H' is given in Section (13.1), see Table 13. The splitting of the Q;
is given as follows, where i’ € ay/ g(i)~! and i € Z. Note that, even since
(18, 18,y ; = 2, the suborbit Q5 of 2 splits into three suborbits of .

ki

~

O © 00O U WwN -
—
[\

[a—y

1,11

We conclude Section 5 by discussing three particular cases of the above general
situation, which are of importance later on.

(5.15) Remark. Let [H:H'] =2 and X = 1. Hence we have Irrk (H) =
{1,17}, where 1~ € Irrx (H) denotes the inflation of the non-trivial irreducible
character of H/H' to H. Hence both elements of Irr} (H) can be chosen as \ as
above. By Remark (5.7) and Remark (5.9), for i € Z, we distinguish two cases.
a) We have aI_{}’H(i) = {¢'}, thus k}, = 2 k;. Hence we have Hg;H = H'g;H’
and [(H' N HY): (H' N H'9%)] = 2. By Proposition (5.10) we have 15 # (17)%,,
hence i & Z;-. Thus, by Corollary (5.13), still using the identification from
Section (5.3), for ¢ € IrrK(Ell(H') we have

L 2 o), if g € lrg (BRY),
p(a") = . 1y
0, if g€ irg(E ).

b) We have oy (i) = {¢',i"}, thus ki, = kl, = k;. Hence we have Hg;H =
H'g;H' U H'g;yH', where {g;,g;y} is a set of representatives of the double
cosets indicated in Lemma (5.8). We have H' N H'9% = H' N H'9%Y = H' N HY.
By Proposition (5.10) we have 15 = (17)%,, hence i € Z;-. Without loss of
generality let ¢}, := g; and g}, = giy. Asy € H;\ (H N H'9), by Definition
(5.6), applied to A = 17, we obtain ¢/, = 1 and (/, = A(y) = —1. Thus, by
Corollary (5.13), for ¢ € IrrK(Ell(H') we have

<p(a1H’): ‘P(%lz‘,"’) = 90(0%1?), ifgoGIrrK(E}{’),
Z —p(ali) = p(a}f), i ¢ € Trg (ERF).

An example for this situation is given in Section (17.1).
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(5.16) Remark. Let G’ < G such that [G:G'] = 2. Let H £ G’ and
H' := G' N H, hence we have [H: H'] = 2, and we may identify H'|G" with
Q:= H|G via H'g — Hg, for g € G'. Hence without loss of generality we may
in particular choose the double coset representatives ¢g; € G' < G, for i € .

Let N = 1. As in Remark (5.15) we have Irrk(H) = {1,17}, where now
17 € Irrg (H) is extendible to 1~ € Irrx (@), where 1~ € Irri (G) is the inflation
of the non-trivial irreducible character of G/G’ to G. Hence the condition that
14 and (17)% have no K G-constituents in common is equivalent to x # x-1~ €
It (G) and x - 17 & Iirke (G), for x € Irre ().

G’ G
a) Let E;H' = Endge (KQ) and as usual Ex = E;(H = Endgg(KQ). From
Clifford theory and the condition on the KG-constituents of 1§ we conclude

G/
that dimg (EIH') = dimg (Fx ) holds. Hence the H’-orbits and the H-orbits on
G
Q) coincide, and thus for the corresponding Schur K-bases {a H.jeZ}and A=

{a;;1 € I} of EKg and Eg, respectively, we have alG = o; € Endg (KQ), for
i1 €Z. Hence F Kg/ and Fg are isomorphic K-algebras, and the sets Irrg (E gl/)
and Irrg (Fk) can be identified via ¢’ +— ¢: (a; — ¢ (aicl ), for i € Z. Thus
Elg,’ and Fx have the same character table.

Furthermore, by Proposition (3.2), we have Sl = &, where 1% and & are
G/
the centrally primitive idempotents of E1H " and Ex, respectively. Thus for the
G/
Fitting correspondents of a pair of characters Irr K(E )3 ¢ p € g (Ek)

being identified as above we have xo = (x4 )ar € Irr}f' (@).

b) Assume that, for ¢ € Z, we have |aH,’H(z)| = 1. Then, by Remark (5.15), we
have Hg; H = H'g;H' C G’, a contradiction. Hence we have a,}},H(i) ={i,i"},
and k!, = kl, = k;. Let z € H\ H'. Since H'g;zH' C G\ G’ and H'g;H' U
H'g;zH' C Hg;H, we have equality here. Hence without loss of generality let
gl = gi and g, == g;2.
G
Let e := €, € KH' C KG' C KG. Then for E}(H' = E}(H' we have (E}(H')Q =
eKGe as K-algebras. The latter has {eg;e;i € T} U {eg;z¢;i € I} as a K-basis,
see Proposition (2.2). For ¢,j € 7 we have eg;e - egje € KG' and eg;ze - €gjze €
KG' as well as eg;e - egjze € K(G\ G') and eg;ze - egje € K(G\ G’). Hence we
have
eKGe=eKG'e D eK(G\ G )e
as K-vector spaces and eKGe is a Z/2Z-graded K-algebra, also called a K-
G/
superalgebra. Furthermore, we have e KG'e =2 (E;(H ")° as K-algebras.

Let (k; - egie) - (k; - €gj€) = ZleIp;'il - (k; - egie), where the pgjl € K, fori,j,l €T,

G
denote the structure constants of E;H ', see Definition (1.18). As 22 € H', we
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. . 1
obtain the structure constants matrices of E " as

J y2 PJ’. ’

1yr P . 2rx2r Tgr _
P‘/ = eK and Pj” =
: J

P :| c K2r><2r

’
. . . 1€
where PJ'» € K" is the corresponding structure constants matrix of E .

Using the above form of the structure constants matrices of E;(H ", we conclude
G/

that Ell(H' also is commutative, and for a pair of characters Irr K(E;(H DEXA=

¢ € It (Fk) being identified as above we obtain ¢y, ¢_ € IrrK(Ell(H') such

that, for i € Z,

prlor) =  pilar) = P = o),
o(ar) = —p (aw) = J@7) = o),

where {a;;i € T} U {ayr;i € I} is the Schur K-basis of EIl(H’.

By Remark (5.15), the set {¢4;¢ € Irrg (Ex)} is in Fitting correspondence to
Itk (G), while {¢_; ¢ € Irrg(Fx )} corresponds to Irr;(H(G) =17 -Tirk (G). As
H'g; CG" and H'g;z C G\ G, for i € Z, we conclude from Proposition (3.20)
that, for x € Irrj (G), we have X+ - 17 = Y,

(5.17) Example. Let G := J5.2 and H :=U3(3).2, as well as G’ := J, and
H' := Us(3). The character table of the endomorphism ring Ex, see Definition

(3.7), which equals the character table of E;(g', and the character table of E;(H/
are both contained in the database, see Section (11.1). They are given as follows,
where for all three cases the Fitting correspondence, see Proposition (2.7), is
indicated as well.

‘ ¥ | Xe! X H L2 3 |
1] la| 1lat |1 36 63
2| 36a | 36at || 1 6 -7
3(63a|63aT||1 —4 3

‘ © | X(p || 1/ 1// 2/ 2// 3/ 3// ‘
1| la™ || 1 1 36 36 63 63
2| la= | 1 -1 36 —-36 63 —63
3136a" | 1 1 6 6 -7 =7
4136~ || 1 -1 6 —6 -7 7
51 63a™ || 1 1 -4 -4 3 3
663" || 1 -1 —4 4 3 =3
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(5.18) Remark. Let H' < H such that [H: H'] = 3, and M = 1. Hence we
have Trrf (H) = {1, A3, )\gl}, where A3, € Irric (H) denotes the inflation of one
of the non-trivial irreducible characters of H/H' to H. Hence all the elements
of Irrj (H) can be chosen as A as above, and we have Ty, = Ayt ForieZ we
have ((As)m,, (As)% )m, = 1 if and only if (A3 ")a,, (A5")% )m, = 1. Hence by
Proposition (5.10) we distinguish two cases.

a) We have al}}7H(i) = {i'}, thus k, = 3 - k,. Hence we have i ¢ Z,,. Thus,
by Corollary (5.13), still using the identification from Section (5.3), for ¢ €
Irrg (E;(H/) we have

1H/) 3'<)0(a}H)7 lf(pEII'I'K(E}(H)7
S 0, ifpdIrg(EL).

b) We have al_{}’H(i) = {i,i",7""}, thus k, = k}, = kj,, = k;. Hence we
have i € Zy,, and Hg;H = H'g;H' U H'g;yH' U H'g;y' H', where {g;, g:y, 9:y'}
is a set of representatives of the double cosets indicated in Lemma (5.8). As
H' N HY% < H; and HN H'9 < H;, we may choose 3/ = y~!. Without loss
of generality let g/, := g; as well as ¢i, := g;y and gl = gy™'. Asy €
H; \ (HNH'%), by Definition (5.6), applied to Az, we obtain ¢}, = 1, as well as
¢l = XA3(y) = Gz and v = A3(y™1) = £, where (3 € K is a primitive third

= oo

root of unity. Thus, by Corollary (5.13), for ¢ € Irrg (E}(H') we have

plag’) = plagh') = @laf®),  if g € Trrge(ER),

1/ 14/ .
@(a;}f’) = Cis~ga(ai,ff ) = Goeloh') = o(a®), if e IrrK(E?g),
1 —1

;\3’ ), ifepe IrrK(E}\(z‘ ).

I
5
L

1 ’ 1 !
Grplag) = & - plagh)

Let : K — K denote the involutory field automorphism as in Section 3. As

the set Irr}f' (@) is invariant under —, by Remark (3.21) we conclude that @ €
-1

IrrK(Ej‘(3 ) if and only if ¢ € Trrg(E7?). Hence to determine the character

table of E}(H’ it is sufficient to know, for which ¢ € Z we have |O‘I_{},H(i)‘ > 1,

and to determine the character tables of E}f and Ei‘g"

An example for this situation is given in Section (12.2).

6 Condensation functors

In Section 6 we occupy a much more general point of view, which encompasses
the cases of the endomorphism rings E?‘( as special cases. It turns out that
this is the right setting to formulate and understand some of the most powerful
techniques of computational representation theory. We begin in a fairly general
setting, thereby correcting an impreciseness in [57].
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Let © be a principal ideal domain. Let A be a ©-algebra, which is a finitely
generated O-free ©-module. Let mod-A be the abelian category of finitely
generated right A-modules. For the necessary notions from category theory see
[1, Ch.IL.1] and [36, Ch.I].

(6.1) Definition.
a) Let V be a finitely generated O-free ©-module, and let U < V be a ©-
submodule. Then the ©-pure ©-submodule

UV .= ﬂ{X;X <V is a ©-pure ©-submodule,U < X} <V

is called the pure closure of U in V. For the notion of ©-purity see [39, Ch.1.17].
b) Let modg-A be the full additive subcategory of mod-A consisting of its
O-free objects. In particular, if © is a field we have modg-A = mod-A.

(6.2) Proposition. Let V,WW € mode-A and a € Hom 4 (V, W).
a) Then a kernel ker o and a cokernel cok o exist in modg-A.
b) The natural map, induced by «,

coim « := cok (ker @) — ker(cok o) =: im v

from the coimage of a to the image of v is an isomorphism if and only if Va < W
is a ©-pure submodule. In particular, if © is not a field then modg-A fails to
be an exact category.

Proof. The set theoretic kernel ker @ € mod-A of o again is a ©-free module,
and hence, together with its natural embedding into V/, it is a categorical kernel
of @ in modg-A.

As (Va)" < W is a ©-pure submodule, we have W/(Va)" € mode-A. Let
B:W — W/(Va)V denote the natural epimorphism. Let X € mode-A and
v € Hom4 (W, X), such that ay = 0. Then for w € (Va)W there is § € © such
that Ow € Va, hence we have fw - v = 0, and since X is a O-free module we
conclude wy = 0. Hence v factors through 3, and cok o := W/(Va)W together
with § is a categorical cokernel of o in modg-A. This shows the assertions in

a).
As keraw < V is a ©-pure submodule, we have cok (kera) = V/kera. As

(Va)V < W is a ©-pure submodule, we have ker(cok a) 2 (V). From that
the assertion in b) follows. f

(6.3) Definition. Let V,W,U € mode-A as well as a« € Hom 4 (V, W) and

B € Hom4(W,U). The sequence V LW LA U is called ezact, if ima = ker 8 in
the category mode-A.

We introduce the objects of interest in Section 6, condensation functors and
functors related to them, and discuss a few of their properties. The intention is
to show their usefulness as a tool to analyse a given module category in practice.
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(6.4) Definition. See also [25, Ch.6.2].
Let e € A be an idempotent.
a) The additive exact functor

C.:mod-A — mod-cAe: V — Ve,

mapping a € Homy (V, W) to its restriction oy, € Homga.(Ve, We) to Ve, is
called the condensation functor or Schur functor with respect to e. For V €
mod-A the eAe-module Ve € mod-eAe is called the condensed module of V.
b) The uncondensation functor with respect to e is the additive functor

U., :=7 ®ecse eA: mod-eAe — mod-A.

For W € mod-eAe, the A-module W ®.4. eA € mod-A is called the uncon-
densed module of W.

(6.5) Remark. C, is equivalent to the tensor functor ? ® 4 Ae:mod-A —
mod-eAe, using the equivalence o.: C. —7 ® 4 Ae of functors from mod-A to
mod-eAe given by 0,(V): Ve — V @4 Ae:ve — v ® e.

Furthermore, there is an equivalence 7.: Homa(eA,?) —? ®4 Ae of functors
from mod-A to mod-eAe, given by 7.(V):Homy(eA,V) — Ve:a — eq, with
inverse given by 7, 1(V): Ve — Homa(eA,V):v +— (ea — v - a).

C, o U, is equivalent to the identity functor on mod-eAe using the equivalence
given by V ®ca.eAd-e — Viv®ea- e — veae, for V € mod-eAe.

(6.6) Proposition.
a) C, induces an additive functor from modeg-A to modg-eAe.

b) Let V,W,U € mode-A and let V% W 2. U be an exact sequence in

modg-A, see Definition (6.3). Then Ve alve We Blwe Ue is an exact sequence

in modg-eAe.

Proof. If V € mod-A is a O-free module, then Ve € mod-eAe also is a O-free
module. This shows the assertion in a).

Both (Va)" - e < (Va)" and (Va)V < W are ©-pure submodules. Hence
(Va)V - e < W is a ©-pure submodule, thus this holds for (Va)V -e < We as
well. Hence we have (Va-e)V¢ < (Va)" -e. Furthermore, for w € (Va)V -e =
(Va)V N We there is 6 € © such that fw € VanWe = Va - e. Hence we also
have (Va)V - e < (Va - e)¢, and thus equality holds. Using the exactness of
C. as a functor from mod-A to mod-eAe, the assertion in b) follows. i

The most important case, as far as computational applications are concerned,
is where the base ring O is a field.
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(6.7) Proposition. See also [57, La.3.2].

Let © be a field.

a) Let S € mod-A be a simple A-module. Then we have Se # {0}, if and only
if S'is a constituent of eA/rad(eA) € mod-A. If Se # {0}, then Se € mod-eAe
is a simple eAe-module.

b) Let S, 5" € mod-A be simple A-modules, such that Se # {0}. Then we have
S = 5" in mod-A if and only if Se = S’¢ in mod-eAe.

c) Let T € mod-eAe be a simple eAe-module. Then there is a simple A-module
S € mod-A such that T = Se as eAe-modules.

Proof. By Remark (6.5) we have Se = Homa(eA, S) = Homy (eA/rad(eA), S)
as ©-vector spaces. From this the first assertion in a) follows. Let 0 # v € Se.
Since S is a simple A-module, we have v - eAe = vA-e = Se. From this the
second assertion in a) follows.

Let Se & S’e in mod-eAe. Choose a decomposition of e € A as a sum of pairwise
orthogonal primitive idempotents in A. We have Homy4(eA, S) = Se # {0} as
O-vector spaces, if and only if there is a summand eg € eAe C A such that egA
is a projective indecomposable module with egA/rad(esA) = S in mod-A.
Applying the condensation functor Ce.: mod-eAe — mod-esAeg, we obtain
Ses = S’es in mod-egAeg. Hence we have {0} # S’es = Homy(esA, S’) as
©-vector spaces, thus S’ 2 S in mod-A. This proves the assertion in b).

By Remark (6.5) we have C, o U.(T) =2 T # {0} in mod-eAe, hence U, (T) #
{0}. Thus there is a simple A-module S € mod-A such that Hom (U, (T'), S) #
{0}. By the Adjointness Theorem [15, Thm.0.2.19] we have as ©-vector spaces

Homu (T ®cac €A, S) 2 Homeao (T, Homy (€A, S)) = Homea (T, Se) # {0}.

Thus we conclude that {0} # Se € mod-eAe is a simple eAe-module, hence
Se =2 T in mod-eAe. f

Given an idempotent e € A, this leads to some further structural features of the
category of A-modules. Their usefulness becomes clearer below.

(6.8) Definition. Let O be a field and let e € A be an idempotent.

a) Let X, € mod-A be a set of representatives of the isomorphism types of
simple A-modules S € mod-A such that Se # {0}. In particular, ¥; is a set of
representatives of the isomorphism types of all simple A-modules.

b) Let mod.-A be the full subcategory of mod-A consisting of all A-modules
all of whose constituents are isomorphic to an element of .. The natural
embedding induces the fully faithful exact functor I.: mod.-A — mod-A. Let

C’eE = (C,0l,:mod.-A — mod-eAe.

c) For V € mod-A let P(V) 2 V denote its projective cover, and let Q(V) :=
kerp € mod-A be the Heller module of V. Let modgq .-A be the full sub-
category of mod-A consisting of all A-modules V such that both V/rad(V) €
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mod.-A and Q(V)/rad(2(V)) € mod.-A. The natural embedding induces the
fully faithful exact functor Ig .: modg .-A — mod-A. Let

C? = C, 0 Ig.:modg .-A — mod-eAe.

(6.9) Remark. Let © be a field and let e € A be an idempotent.

a) By Proposition (6.7), the set {Se; S € ¥.} C mod-eAe is a set of represen-
tatives of the isomorphism types of all simple eAe-modules.

b) If ¥, = ¥4, then the projective A-module eA € mod-A is a progenerator
of mod-A. Hence in this case, by [15, Thm.0.3.54], C. induces an equivalence
between mod-A and mod-eAe. Thus C, is fully faithful and essentially surjec-
tive.

We discuss properties of the condensation functor C, in the general case, where
we do not assume that C. induces an equivalence. Proposition (6.10) shows that
C? is a suitable functor to examine the submodule structure of A-modules.
Proposition (6.11) and Example (6.14) show that CZ is fully faithful, but in
general is not essentially surjective. Proposition (6.15) then shows how this
failure to be an equivalence can be remedied by using the functor C<.

(6.10) Proposition. Let © be a field, e € A be an idempotent and let
V € mod.-A. Then C¥ induces a lattice isomorphism between the submodule
lattices of V and CZ (V).

Proof. Clearly C preserves inclusion of submodules and commutes with
forming sums and intersections of submodules. Hence CF induces a lattice
homomorphism from the submodule lattice of V' to the submodule lattice of
CZ(V). Since V € mod,.-A this homomorphism is injective. It remains to
prove that it is also surjective.

Let a: W — Ve be an injective homomorphism of eAe-modules. Applying C, to
Homy (U.(W), V) and using the equivalences of Remark (6.9) yields a ©-linear
map

Homu (W Qcac €A, V) — Homeae(W,Homy(eA,V)):
B (we(arm @06 -a)).

(Cou.owy,v: {

This coincides with the adjointness ©-homomorphism given by [15, Thm.0.2.19],
and hence is a ©-isomorphism. Let g := (CE)EJ(W) v(a) € Homy (U (W), V).
Then we have U, (W)3 <V and C.(U.(W)S) = (Ce o Uo(W))ax = Wa. i

(6.11) Proposition. Let © be a field and let e € A be an idempotent. Then
the functor C: mod.-A — mod-eAe is fully faithful.
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Proof. If ¥, = ¥, then we have C> = C,, and by Remark (6.9) the functor
C. is an equivalence of categories, in particular C, is fully faithful. Hence we
may assume X, # X;. Let ¢/ € A be an idempotent orthogonal to e, such that
Se’ # {0} if and only if S € mod-A is a simple A-module isomorphic to an
element of 31\ X, and let f := e+¢’ € A. Hence ¥ = X, and thus the functor
Cf:mod-A — mod-fAf is an equivalence of categories, in particular Cj is
fully faithful. Note that, since there might be a simple A-module S € mod-A
isomorphic to an element of ¥, such that S(1 — e) # {0}, in general we cannot
simply let f =1 € A.

We have the Pierce decomposition fAf = eAe ® ede’ e’ Ae ® e’ Ae’ of fAf as
a ©-vector space. Hence, for V € mod-eAe and v € V as well as a € A, let
v-eae' =v-eae =v-e'ae:= 0. It is straightforward to check that this defines
an fAf-module structure on V. Thus we obtain a functor I/: mod-ede —
mod-fAf. As, for V;IW € mod-eAe, we have Homyar(IZ(V), IJ(W)) =
Hom, 4. (V, W), the functor I7 is fully faithful. By the choice of ¢’ € A we fur-
thermore conclude Ig oCco0l, = Cyol, as functors from mod.-A to mod-fAf.
As both I, and I/, as well as C}, are fully faithful, the assertion follows. f

(6.12) Corollary. Let O be a field and let e € A be an idempotent.

a) For V € mod.-A we then have End4 (V) = Endea.(Ve).

b) In particular, if S € mod.-A is a simple A-module, then S is absolutely
simple if and only if Se € mod-eAe is.

(6.13) Remark. Let © be a field and let e € A be an idempotent.

a) Let V € mod.-A and let C C eAe be a O-subalgebra. Then we have
Endeae(Ve) € Ende(Ve), and by Corollary (6.12) we have equality if and only
if dimg Ende(Ve) = dimg End 4 (V)

b) The functor C*: mod.-A — mod-eAe is not necessarily essentially surjec-
tive, hence not necessarily an equivalence of categories, as the following example
shows.

(6.14) Example. Let © be a field of characteristic 2, let G := Ajs be the
alternating group on 5 letters, and A := ©G, where we assume O to be a splitting
field for A. The 2-modular Brauer characters of G can be found in [37]. Let
H < G be a cyclic subgroup of order 5, let A = 1 be the trivial representation
of ©H and € = ¢; € OH C A, where the notation is as in Section (2.1).

As €A = 19 as A-modules, we have Hom(eA,S;) # {0}, where S; denotes
the trivial A-module. Furthermore, €A is a projective A-module, and since
dime (P(S1)) = 12, where P(S1) denotes the projective cover of Sy, we conclude
€A = P(S1) as A-modules, hence € € A is a primitive idempotent, and thus
Homy (€A, S) = {0} for all simple A-modules S % S;. Hence we have ¥, = {51}
and Sye is the only simple eAe-module, up to isomorphism.

As €A is a non-simple, projective indecomposable module for the symmetric
algebra A, its endomorphism ring End 4 (eA) = (eA¢€)° as ©-algebras, see Section
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(2.1), is a local ©-algebra containing non-zero nilpotent elements. Hence eAe
is not semisimple and in particular we have Ext!,_(Sie, Si€) # {0}. As G is a
perfect group, we have ExtY(S;,S51) = {0}. Hence all modules in mod.-A are
semisimple. Thus C is not essentially surjective.

(6.15) Proposition. See also [1, Prop.I1.2.5].
Let © be a field and e € A be an idempotent. Then the functor Cf:: modg -4 —
mod-eAe is an equivalence of categories.

Proof. Let V € mod-eAe and S € ;. By the Adjointness Theorem [15,
Thm.0.2.19] we have Hom4 (U (V), S) = Hom,a.(V,Homa(eA, S)) as O-vector
spaces. As Homy(eA,S) = {0} if S & X, we have U.(V)/rad(U.(V)) €
mod.-A. By [3, Cor.2.5.4] we have Hom 4 (Q(U(V)), S) = Exty(V ®cac ¢4, S)
as O-vector spaces. If P € mod-eAe is a projective eAe-module, and hence a
direct summand of a free eAe-module, then P ®. 4. eA € mod-A is a projective
A-module. Thus by the Eckmann-Shapiro Lemma [3, Cor.2.8.4] we conclude
Exty (V ®cac €A, S) = Extl 4, (V,Hom4(eA, S)) as ©-vector spaces. Hence we
also have Q(U.(V))/rad(Q(U.(V))) € mod.-A.

Thus U, restricts to a functor U.: mod-eAe — modgq .-A. By Remark (6.5)
CS o U, is equivalent to the identity functor on mod-eAe. Conversely, for
V € modgq -A we have U.oCe (V) = Homa(eA, V) ®End , (ea)e €A € modg -A.
Hence it is sufficient to show that the natural evaluation map

v:Homa(eA, V) ®gnd, (cay €A — Via®ea — (ea)a
is an isomorphism of A-modules.

Assume that v is not surjective. Then there is § € ¥, and 0 # § € Homyu (V) 5)
such that imv < ker 8 < V. As (3 is surjective, eA € mod-A is a projective A-
module, and Homy4 (eA, S) # {0}, there is o € Homa(eA, V') such that a3 # 0.
Hence ima £ ker 8 < V, which is a contradiction. Hence v is surjective, and
we thus have an exact sequence

{0} — kerv — Homa(eA, V) ®gnd, (ca)e €A LV - {0}

of A-modules. Since C, o U, is equivalent to the identity functor on mod-eAe,

applying C,. yields the exact sequence {0} — (kerv)e — Ve 4 ve - {0} of
eAe-modules. Hence we conclude (ker v)e = {0}.

As v is surjective, the projective cover P(V) L,V yields the existence of uw e
Hom 4 (P(V), Homa(eA, V) ®gnd, (ca)e €A) such that uv = p. As (Q(V)u)v =
(ker p)uv = {0}, there is K € Hom4 (Q(V), ker v) such that Q(V)u = Q(V)k <
kerv. From(kerv)e = {0} and Q(V)/rad(©(V)) € mod.-A we conclude that
Q(V)p = {0}. Hence there is v € Hom(V,Hom(eA, V) ®End ,(ea)e ¢A) such
that pv = p. Thus we have pvr = p. As p is surjective, we conclude vv = idy .
Hence kerv is a direct summand of Homa(eA, V) ®gnd ,(ea)e €A € modg -A,
and hence kerv/rad(kerv) € mod.-A. As (kerv)e = {0} we conclude kerv =
{0}, and thus v is injective as well. i
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(6.16) Remark. LetV € mod-Aande € Abe anidempotent. The natural
evaluation map v: Homy(eA, V) ®c4. €A — V used in the proof of Proposition
(6.15) is the preimage of idgom, (ca,v) under the adjointness ©-isomorphism,
see [15, Thm.0.2.19],

Hom 4 (Homa(eA, V) ®cae €A, V) =2 Homeg.(Homa(eA, V), Homa(eA, V)).

This leads to the definition of relative uncondensation functors, which are of
practical importance, see Section (6.22).

(6.17) Definition. Let V € mod-A and e € A be an idempotent. Let
a:W — Ve be an injective homomorphism of eAe-modules. Then we have a
homomorphism of A-modules

(a®id) - v: W Qcae GA@V(s@eAeeALV,

where v: Hom 4 (e A, V)®cac€A — V is the natural evaluation map as in Remark
(6.16). The A-module im ((a¢ ®id) - v) < V is called the uncondensed module of
W relative to o and V.

(6.18)  We consider the question how condensation functors relate to modular
reduction.

Let K be an algebraic number field, and let R C K be a discrete valuation
ring in K with maximal ideal p < R and finite residue class field F' := R/p of
characteristic p > 0. Let : R — F' denote the natural epimorphism.

Let A be an R-algebra, which is a finitely generated R-free R-module, let A :=
ARr K and Ap := AQgrF, and let : A — Ap denote the natural epimorphism.
Let e € A C Ak be an idempotent. We have the Pierce decomposition of R-
modules A =ede® (1 —e)Ade®eA(l—e) @ (1 —e)A(1 —e). As A is an R-free
R-module, this also holds for eAe < A, and we have ede @r K = eAke as
K-algebras and ede @ F' = ¢Apé as F-algebras.

V%W 2 Uis an exact sequence in modg-A, see Definition (6.3), then it

follows from the proof of Proposition (6.2) that the induced sequence of eAge-

modules V®gr K asid WerK @} U ®prK is an exact sequence in mod-eAxe.

Note that this does not necessarily hold for the induced sequence of €Apé-
modules V ®p F' agid W ®grF peid U®pgr F in mod-éAré.

As in the group algebra case, see [14, Ch.XII.82-83], which straightforwardly
generalises to the general case considered here, we define decomposition maps
D:G(Ak) — G(Ar) and D.:G(eAge) — G(éAré), where G(-) denotes the
corresponding Grothendieck groups, as follows. Let S € mod-Af is a simple
Ag-module, and let S € modg-A, such that S g K = S as Ax-modules.
Let T € mod-Ar be a simple Ag-module. Then the decomposition number
ds € Ny is defined as the multiplicity of the constituent 7" in an Apr-module
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composition series of S:=S®F € mod-Ap. The decomposition numbers
dg r € Ng for simple modules S € mod-eAxe and T' € mod-éApeé are defined
analogously.

(6.19) Proposition. Let A be as in Section (6.18) and let e € A C Ay be
an idempotent.

a) The additive functors Homy(eA,?) @ g K and Homa, (eAk,? ®g K) from
modg-A to mod-ecAke are equivalent.

b) The additive functors Hom(eA,?) ® g F and Homy, (€Ar,? @ F) from
modg-A to mod-éAré are equivalent.

Proof. As A is an R-free R-module, this also holds for eA < A. For V €
modp-A, hence Homy(eA,V) < Homp(eA,V) also is an R-free R-module.
From that the assertions follow. i

(6.20) Proposition. Let A be as in Section (6.18) and let e € A C Ak be
an idempotent. Let S € mod-Ag be a simple Ax-module and T € mod-Ap
be a simple Ap-module, such that {0} # T¢ € mod-éAré. Then we have

_ e
dS,T = dSe,Té'

In particular, if Se = {0} then we have dgp = 0.

Proof. Let S € modR—A such that S ®p K = S as Ag-modules. By Propo-
sition (6.19), for Se € modg-eAe we hence have Se ®p K = Se as eAxe-
modules. Thus the decomposition number d§, r; € No is the multiplicity of

the constituent 7€ in an éAré-module composition series of Se € mod-éAre.
By Proposition (6.19) we have Se = §¢ as éApé-modules. As Cs: mod-Ap —
mod-éAré is an exact functor, by Proposition (6.7) we conclude that the multi-

plicity of the constituent T¢ in an éAré-module composition series of Sé equals
the multiplicity of the constituent 7" in an Ap-module composition series of

S € mod-Ap, where the latter by definition is the decomposition number
dS,T € Np. i

(6.21) Remark. The statements of Proposition (2.11) are a special case of
those of Proposition (6.20).

To see this let K, R and F, as well as A be as in Section (2.10), where in
particular the characteristic of F' is coprime to |H|, and let A := RG. Then we
have €y € RG, and e\ KGey = (Ex)° as K-algebras, as well as ey RGey, = (E}’\%)o
as R-algebras, and e5 FGe5 = (E)° as F-algebras, see Proposition (2.2). For
X € Irrx (G) let Sy € mod-KG denote the simple KG-module affording x, see
Section (2.8). Then S, - ex = Homga(exKG, Sy) # {0} as K-vectors spaces, if
and only if y € Irr (G).
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Let x, € Irr}\((G) denote the Fitting correspondent of ¢ € Irrx(E%), see
Proposition (2.7). Hence we have S, = eAKG - e, < exKG as KG-modules,
where e, € Ep is an idempotent as in Section (2.6). Thus we have Sy Ex =
e xKGe, - ex = exe, - 2KGey as exKGey-modules, where exe, € exKGey is
an idempotent. By Proposition (2.2) the latter €y K Gey-module can be iden-
tified with the (Ey)°-module e,(Ex)° = Exe,. Let S, € mod-Ejy denote
the simple E%-module affording ¢, and let S} := Homg (S, K) be the (E%)°-
module dual to the E;\(—module Sy. As EI)‘( is a symmetric K-algebra, we have
Eye, = (e B )* = S as (Ey )°-modules.

Similarly, for ¢ € IrrF(Eé) we have P, = 5 F'G - e, as F'G-modules, and hence
analogously the €5 FGes-module P, - €5 can be identified with the (E7)°-module
Epe, = (e, Ep)*. Let x, € It (G) denote the Fitting correspondent of ¢ and
let Sy, := P,/rad(P,) € mod-FG be the simple FFG-module affording x,. As
P, is an F'G-direct summand of e3 F'G, we have {0} # Hompg(e;FG,Sy,) =

Sy, * €; € mod-e; FGes. As E;‘, is a symmetric F-algebra, the latter e; F'Ge;-
module can be identified with the (E7)°-module S, = (e Ep)* /rad((ep, Ep)*).

We have a decomposition map Dgo: G((Ex)°) — G((E;;)o), where the corre-
sponding decomposition numbers are denoted by d_‘?o € Npg. Let S € mod—E;\(

be a simple Ex-module and let T € mod—EiL be a simple Eg‘,ﬂ—module. Thus

S* € mod-(E)° and T* € mod—(Eg‘,)o are simple modules and we have
dgf,T* = dg,T

(6.22)  We conclude Section 6 with a few general remarks on computational
applications of condensation functors; for more specific applications see Section
9.

Relative uncondensation functors, see Definition (6.17), have been used heavily
as a constructive tool; for example to construct irreducible representations of the
larger sporadic simple groups over finite fields using the MeatAxe, see [59, 78].
Condensation functors inducing equivalences between mod-A and mod-eAe,
where A is a group algebra over a finite field have been studied in [46].

The other extreme, where ¢ € A is a primitive idempotent, has been used in
[47] to give an algorithm to compute submodule lattices. An implementation for
algebras over finite fields is available in the MeatAxe, of which we make heavy
use in the analysis of the examples dealt with in Part III. Other applications
of condensation functors with respect to primitive idempotents are the com-
putation of socle series [49] and the computation of endomorphism rings [74]
of modules. Implementations for algebras over finite fields are available in the
MeatAxe as well, these are also used in Part III.
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7 Orbital graphs

In Section 7 we give an application using the information collected in the
database, see Section (11.1). We begin by fixing the notation and giving the
necessary definitions. We assume the reader familiar with the basic notions of
graph theory, as a general reference see [4, 24].

(7.1) Definition.

a) A (simple non-directed) graph & is a tuple (U, €, 1), where U = {v1,...,v,}
is a finite set of vertices and € = {ey,..., e} is a finite set of edges, as well as
1: € — {{v,w};v,w € V,v # w} is an injective incidence map. If v(e) = {v,w},
for e € €, then the edge e € & and the vertices v,w € U are called incident.
If for v,w € U there is an e € € such that ¢(e) = {v,w}, then the vertices
v,w € Y are called adjacent, denoted by v ~g w. A pair (v,e) € U x & such
that v € ¢(e) is called a flag of &.

The number of vertices adjacent to a vertex v € U is called the valency of v. If
all vertices of ® have the same valency, then & is called reqular. If the vertex set
0 can be partitioned into U = Uy U By such that |¢(e) NY;| =1 for i € {1,2}
and for all e € €, then & is called bipartite.

b) A path of length din &, for d € Ny, is a sequence {vo, . ..,vq} C U of vertices
such that v;_; ~g v;, fori € {1,...,d}. The distance d(v,w) = dg (v, w) € NgU
{0} of v,w € Y in B is the minimum length of a path such that vy = v and vg =
w, if such a path exists, and d(v,w) = dg (v, w) = 0o otherwise. The diameter
d(®) € Ng U {oo} of & is the maximum distance d(v,w) of vertices v,w € .
If d(&) < oo, then & is called connected. The largest connected subgraph of &
having v € U as one of its vertices is called the connected component of v.

For d € Ny and v € U let the distance sets B4(v) :== {w € V;d(v,w) =d} CU
and G<4(v) := {w € V;d(v,w) < d} CY. For d € Ny the d-th distance graph
B, of B is defined by having vertex set U, and vertices v, w € U being adjacent
if w e By(v).

c) A connected graph & is called distance-transitive, if the group Aut(®) of
graph automorphisms of & acts transitively on the the distance sets &4(v), for
allve Yandde {0,...,d(8)}.

A regular connected graph & of valency k € N is called distance-regular, if

i) for all d € {1,...,d(®)} as well as v € U and u € BG4(v) the cardinality
{w € &4_1(v);w ~g u}| is independent of the particular choice of v € U and
u € B,4(v), and

ii) for all d € {0,...,d(®) — 1} as well as v € ¥ and u € B4(v) the cardinality
H{w € &441(v);w ~g u}| is independent of the particular choice of v € U and
u e Qﬁd(v).

If both of these conditions are fulfilled, then for v € U we let kg, := |G4(v)| € N
denote the valency of B4, for d € {0,...,d(®)}; and for u € &4(v) we let

cqg:={w e By_1(v);w ~g u}| € Ny for d € {1,...,d(8)},



53

as well as
b == {w € B441(v);w ~¢ u}| € Ng for d € {0,...,d(®) —1}.

Hence we have by = k and ¢; = 1. The sequence [k, b1, ..., bge); 1, ¢2, . ., C(e)]
of non-negative integers is called the intersection array of &.

A distance-regular graph & is called primitive, if all the distance graphs &g,
for d € {0,...,d(®)}, are connected, otherwise it is called imprimitive. A
distance-regular graph & is called antipodal if d(®) > 2 and if the relation
{(v,w) € T x V;d(v,w) € {0,d(&)}} is an equivalence relation on V.

(7.2) Remark.

a) A distance-transitive graph & is distance-regular, and the group Aut(®) acts
flag-transitively, hence in particular edge-transitively and vertex-transitively.
b) Let & be a distance-regular graph. If & is bipartite then the distance graph
&, is not connected. If & is antipodal then the distance graph &) is not
connected. If & is imprimitive of valency k > 3 then by [8, Thm.4.2.1] it is
bipartite or antipodal or both.

c) Let & be a distance-regular graph of diameter d(®) > 3. Then by 8,
Prop.5.1.1] the sequence [kg,,. - -, k@d(qj)] of positive integers is unimodal, hence
there are ¢,j € {1,...,d} such that ¢ < j and

1=k@0<k@1 <...</€@i:...:k@j >...>/€@d(®).

Furthermore, if for some d, e € {0,...,d(®)} such that d < e and d + e < d(&)
we have kg, = ke, , then we also have ke,,, = ks._,-

(7.3) Definition. Let & be a graph.
a) The symmetric matrix Ag = [a;;;4,j € {1,...,n}] € Z"*" defined by

Jp— L if {viavj} Gim(L)a
Y=\ 0, if {vi,v;} ¢1im(v),

is called the adjacency matrixz of &. As the matrix Ag is diagonalisable over R,
let p1 > ... > ps for some s € N denote the pairwise different eigenvalues of Ag.
The set of eigenvalues {p1,...,ps} C R of Ag, together with their multiplicities,
is called the spectrum of &.

b) If & is a regular graph of valency k € N, then the number

pe = max{|p;] e R;i € {1,...,s},|pi| <k} €eR

is called the graph spectral radius of . A connected regular graph & of valency
k € N is called a Ramanugjan graph if ps < 2 -k — 1.
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(7.4) Remark.

a) If & is a regular graph of valency k € N, then by [4, Prop.1.3.1] we have
lpil < k, for all & € {1,...,s}, where p; = k, whose multiplicity equals the
number of connected components of &. Furthermore, if & is connected, then
by [24, Thm.8.8.2] & is a bipartite graph if and only if ps = —k. In this case,
—p € R is an eigenvalue of Ag whenever p € R is.

b) The notion of Ramanujan graphs is related to the notion of expander graphs.
For a discussion of these notions, in particular how groups come into play in some
of the constructions, and further references, see for example [44, Ch.1,Ch.4.5]
and [76, Ch.II.19].

The following definition introduces the graphs we deal with in the sequel, orbital
graphs. We show how some of the properties of orbital graphs can be deduced
from the data collected in the database, see Section (11.1). We keep the notation
of Section (1.1), where in all of Section 7 we assume A = 1 and K to be as in
Section 3.

(7.5) Definition. Let 1 # i € Z, let a;; € A be the corresponding Schur
basis element of Ez, and let [a;] € Z™*™ be the representing matrix of its action
on Z£, with respect to the basis €2, see Proposition (1.10).

a) If ¢ = i* corresponds to a self-paired orbital, then the graph O, with vertex
set Q, defined by the adjacency matrix [o;] € Z™*", is called the i-th orbital
graph of .

b) If i # i* corresponds to a not self-paired orbital, then the graph 9, with
vertex set €, defined by the adjacency matrix [a;] + [ci] = [ay] + [ou]T € Z™<7,
see Corollary (1.14), is called the i-th orbital graph of Q. It coincides with the
i*-th orbital graph O;- of Q.

Let 9 denote the connected component of ; containing the vertex wy € 2.

(7.6) Remark.

a) Let 1 # 4 € Z. As G acts transitively on the i-th orbital O; C QxQ, the group
G acts as a vertex-transitive and edge-transitive group of graph automorphisms
on ;. If i = ¢* then G acts as a flag-transitive group of graph automorphisms
on 9;, while if ¢ # ¢* then G does not act flag-transitively. The connected
components of 9; are all isomorphic to O as graphs and permuted transitively
by G.

b) As the vertices adjacent to wy in O; are (9;)1(w1) = §;, the orbital graph
; is a regular graph of valency k;. As H acts transitively on the suborbits
Q. CQ, for k € Z, the distance sets (9;)a(w1) € OV and (D;)<a(w1) € OY, for
d € Np, are unions of suborbits.

c) For a subset J C 7\ {1}, such that for i € J we also have i* € J, the graph
O with vertex set €2, defined by the adjacency matrix . ,[a;] € Z™*™,
is called the generalised orbital graph of Q0 with respect to J. In particular,
for 7 = 7\ {1}, the generalised orbital graph Oz\q} is the complete graph
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with vertex set 2. Note that the group G does not act edge-transitively on a
generalised orbital graph which is not an orbital graph.

(7.7) Proposition. Let k € 7 and d € N.

a) Let 1 # i € T such that i = i*. Then the matrix entry [(P;)%]; » € No equals
the number of paths of length d in 9; connecting w; and wr € Q. Letting
Ki<—1:=10 as well as

Ki<a:={k € Z;[(P;)°]1,r > 0 for some s € {0,...,d}} C T,
and KC; 4 := Ki <q \ Ki<(a—1) € Z, we have (9;)a(w1) = erIC,; , %, and hence
d(9Y) = min{d € N;K; 4 = 0} — 1.

In particular O; is connected if and only if K; <400y = Z.

b) Let j € Z such that j # j*. Then the matrix entry [(P; + Pj+)%1x € No
equals the number of paths of length d in ©; connecting w; and wy, € Q. Letting
IC;-‘_’<_1 = () as well as

i<a =1k € T;[(P; + Pj)*]1x > 0 for some s € {0,...,d}} CZ,

and K ;== K;,Sd\lcj,g(dfl) C Z, we have (9;)q(w1) = HkGK}d Qy, and hence

d(99) = min{d € No; K} , = 0} — 1.

In particular ©; is connected if and only if ]C;,gd(og) =7

Proof. By Definition (1.18) we have of = ay-af =3, 7 [(P) 1,5 o € Ex.
By [4, La..2.5] the matrix entry [(@;)¥., w, € No, for k € Z, is the number
of paths of length d connecting w; and wy. By Remark (7.6) the distance set
(9Di)<d(w1) is a union of suborbits. From this the assertions in a) follow. The
assertions in b) are proved analogously. f

(7.8) Proposition. Let 1 # i € Z such that ¢ = *, and such that the
orbital graph O; = 99 is connected.

a) Then O; is distance-regular if and only if

i) for all d € {1,...,d(9D;)} and k € K, 4, see Proposition (7.7), the number
Zlelci,d_l [Pilik € Ny is independent of the particular choice of k € K; 4, and
ii) for all d € {0,...,d(D;) — 1} and k € K; 4 the number ZleKi,d+1 [P]ix € Ng
is independent of the particular choice of k € K; 4.

If both of these conditions are fulfilled, then the entries of the intersection array
are given as

ca= Y [Plu€Noforde{l,...,d(0;)}andkeK;q,
leRi,a—1
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as well as

ba= Y [Plu€Noforde{0,...,d©O;)~1}and k € Kia,

LER a+1

while for d € {0,...,d(9D;)} the valency of the distance graph (9;)q is given as

k(Di)d = Z ki,

1EK,q

where the k; = |, for [ € Z, are the index parameters of €.

b) The group G acts distance-transitively on the graph O, if and only if we
have |IC; 4| =1 for all d € {0, ...,d(D;)}.

c) If O; is distance-regular, then it is primitive if and only if for all d €
{1,...,d(9D;)} the eigenvalue } ;. ki € Z of the matrix } o [o] € Z"*"
has multiplicity 1.

d) If ©; is distance-regular, then it is bipartite if and only if — ZleK“ ki €Z
is an eigenvalue of the matrix >, [oy] € Z"*".

e) If O, is distance-regular, then it is antipodal if and only if d(9;) > 2 and for
all [,s € ICi,d(D,;) and k € I\ (Iciyd(gi) U ICi’O) = I\ (K:i,d(Di) U {1}) we have
Disk = 0.

As in Proposition (7.7), similar statements hold for j € Z such that j # j* and
such that O; = D? is connected.

Proof. By Definitions (7.5) and (1.18) we have
[Pilik = prik = privr = [{w € Qyw ~o, wi}|.

Thus the assertion in a) follows from Definition (7.1) and the definition of the
sets KC;q in Proposition (7.7). The assertion in b) is clear. By definition of
the sets Kjq the matrix } . [au] € Z"*" is the adjacency matrix of the
distance graph (9;)q. Hence the assertions in ¢) and d) follow from Remark

7.4). Finally, let A := _ o] € Z™*™. Then the relation
( Ys selC; d(9;)

{(w,w) eUx Gw=uw"orw € (D)o}

is an equivalence relation if and only if A? € Z"*" is a Z-linear combination of

[aq] = [idza] € Z"*™ and A. Hence the assertion in e) follows from Definition
(1.18) and the non-negativity of the structure constants. The statements for
j # j* are proved analogously. i

(7.9) Proposition. See also [8, Prop.4.1.11].

Let 1 # i € T such that G acts distance-transitively on the orbital graph 9.
a) We have j = j* for all j € 7.

b) The endomorphism ring E is as a K-algebra generated by the Schur basis
element «o; € Fk. In particular, Fx is a commutative ring.
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Proof. By distance-transitivity we have i = i* € Z. By Propositions (7.7)
and (7.8) we have |K;q| = 1 for all d € {0,...,d(D;)} and K; <40,y = Z,
hence all suborbits are self-paired. Furthermore, we have d(9;) = r — 1, and
from the proof of Proposition (7.7) we conclude that the minimum polynomial
of the structure constants matrix P; has degree at least r. Hence we have

dimg ((P;) -algebra) = 7 = dimg (Er). i

(7.10) Let 1 # i € Z such that ¢ = i*. Then the spectrum of the graph O;
is the set of eigenvalues in R of [o;] € Z™*™, together with their multiplicities.
Analogously, if j € T such that j # j*, then the spectrum of the graph O; is the
set of eigenvalues in R of [a;] + [a;+] € Z™*™, together with their multiplicities.

As the regular K-representation of F is a faithful representation, the eigen-
values of [oy;], for 1 # ¢ € 7 such that ¢ = i*, are precisely the eigenvalues in
R of the matrix P; € Z™*" representing the action of a; on the regular module
Ek, see Definition (1.18), where by Remark (1.19) the matrix P; is diagonal-
isable over R. Analogously, the eigenvalues of [a;] + [a«], for j € T such that
J # j*, are precisely the eigenvalues in R of (P; + Pj-) € Z"*", where again
by Remark (1.19) the matrix (P; + Pj-) is diagonalisable over R. Furthermore,
the eigenvalues of >, [a] € Z™*" and Zle,c;d[al} € 7" for d € Ny and

i,j7 € T as above, see Proposition (7.8), are precisely the eigenvalues in R of
dex, , P € 27 and Zlelé*d P, € Z"*", respectively, where by Proposition
2 7,

(1.13) the sets K; q and K7 ; are invariant under *:Z — 7, hence by Remark
(1.19) the latter matrices are diagonalisable over R.

To determine the eigenvalues of P; € Z"*" and their multiplicities as eigenvalues
of [a;] € Z™*™, for 1 # ¢ € T such that i = i*, we proceed as follows. By first
decomposing the regular K-representation of Fx as a direct sum of siple Eg-
modules S, for ¢ € Irrx (Fk ), and subsequently diagonalising the action of «a;
on the simple Fi-summands, each eigenvalue of «; is attached to one or more
of the ¢ € TIrrg(FEk), see Section (2.8). Hence we are reduced to finding the
eigenvalues of the action of o; on the simple Ex-modules S, for ¢ € Irrg (Ek).
If Ex is commutative, then the eigenvalues of the action of o; on S, are precisely
the entries of the character table of Fx in the column corresponding to i € Z.
The multiplicity of an eigenvalue of [«;] € Z"*"™ is the sum of the degrees of the
Fitting correspondents of the ¢ € Irri (Ef) attached to it. By Remark (3.9)
these degrees can also be determined from the character table of EFx.

The sums [a;] + [o-] and D7) [ou] as well as Zlelc*.d[al]> for d € Ny and

i,] € T as above, are dealt with analogously, using the sums of the columns
corresponding to {j,j*} and K; 4 as well as IC;T’ 4> Tespectively.

We conclude Section 7 by presenting two classification results using the data
collected in the database, being concerned with distance-regular orbital graphs,
and Ramanujan orbital graphs, respectively.
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(7.11) Using the data contained in the database, see Section (11.1), it is
straightforward to implement the technique described in Propositions (7.7) and
(7.8) and Section (7.10) into GAP. Hence for the sporadic simple groups, their
automorphism groups and their Schur covering groups we obtain a classification
of their distance-regular orbital graphs afforded by a multiplicity-free permuta-
tion action, up to the single exception G = 2.B and H = F'is3 not yet dealt with;
as soon as the data for the bicyclic extensions of the sporadic simple groups is
available, these cases can be dealt with as well, see Section (11.1).

By Proposition (7.9) this covers all distance-transitive graphs having one of the
above-mentioned groups as a group of automorphisms. The primitive distance-
transitive graphs amongst them have been classified in [34], hence we do not list
them here. The imprimitive cases are given in Table 1. Below we rule out the
existence of a distance-transitive orbital graph for the exceptional case G = 2.B
and H = Flias not dealt with in Section (11.1), hence the latter list indeed is
complete.

Let us assume to the contrary that one of the orbital graphs, O; say, afforded
by the permutation action of G = 2.B on the right cosets of H = Fliog is
distance-transitive. As this permutation action has rank r = 34, see Section
(17.11), by Proposition (7.8) we conclude that O; has diameter d(O0;) = 33 and
that the sequence of index parameters can be reordered to yield the sequence
(K(0:)05 - -+ K(0,)55] Of the valencies of the corresponding distance graphs (O;)q,
for d € {0,...,33}. Using Remark (5.15), the index parameters can be derived
from the splitting of suborbits as given in Table 27, see also Section (17.11). By
Proposition (7.2) we conclude that k(o,), = k(0,),; = 1 and furthermore that
k©,)y = k(0:)ss_q for d € {0,...,16}, a contradiction to the sequence of index
parameters derived from Table 27. Hence none of the orbital graphs afforded
by this permutation action are distance-transitive.

For the distance-regular orbital graphs, afforded by a multiplicity-free per-
mutation action where the group under consideration does not act distance-
transitively, we restrict ourselves to the edge-transitive cases, which are shown
in Table 2. For the non-edge-transitive cases we would have to consider all the
generalised orbital graphs, see Remark (7.6). This would be doable, but the
author does not expect interesting results.

In Tables 1 and 2, we indicate the rank r € N of the permutation action under
consideration, the orbital ¢ € 7 leading to the corresponding distance-regular
orbital graph, its valency k € N, the cardinality n € N of its vertex set, its
diameter d € N, its intersection array, and whether it is primitive p, bipartite b,
or antipodal a, see Definition (7.1).

Using the data given in Tables 1 and 2, it is possible to identify the corresponding
graphs. The imprimitive distance-transitive orbital graphs of diameter 5 of HS.2
and Mayz.2 are described in [8, Ch.6.11]. The non-distance-transitive orbital
graphs of diameter 8 of 3.Mas and of diameter 4 of 3.Fij, are described in [8,
Ch.6.12]. The non-distance-transitive orbital graph of diameter 4 of 3.Suz is a 3-
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fold antipodal cover, see [8, Ch.4.2.A], of the primitive distance-transitive Suzuki
graph of diameter 2. The orbital graph of diameter 4 of .J5 is the Ja-graph, see |8,
Thm.13.6.1], whose full graph automorphism group is isomorphic to J2.2 and
acts distance-transitively. The orbital graphs of diameter 3 of Msyy and Mo
are, by [8, Thm.6.1.1], the Johnson graphs J(12,3) and J(24, 3), see [8, Ch.9.1],
whose full graph automorphism groups act distance-transitively. The imprim-
itive distance-regular graphs of diameter 3 are described in [8, Ch.14,pp.431—
432]. Finally, the distance-regular graphs of diameter 2 are precisely the strongly
reqular graphs, see [8, Ch.A.1], as a general reference see [9, 33].

(7.12) Using the data contained in the database, see Section (11.1), the tech-
nique described in Section (7.10) and GAP, it is straightforward to obtain a
classification of the Ramanujan orbital graphs for the sporadic simple groups,
their automorphism groups and their Schur covering groups, coming from a
multiplicity-free permutation action, up to the single exception G = 2.B and
H = Fis3 not yet dealt with; as soon as the data for the bicyclic extensions of
the sporadic simple groups is available, these cases can be dealt with as well,
see Section (11.1).

By the discussion of Ramanujan graphs in [44], a Ramanujan graph tends to be
the more interesting the smaller its valency is, compared to the cardinality of
its vertex set. Accordingly, a subset of the Ramanujan connected orbital graphs
of the above-mentioned groups and permutation actions is shown in Table 3;
complete results for the generalised orbital graphs such that n < 107 have been
compiled in [32]. In Table 3 we indicate the rank r € N of the permutation action
under consideration, the orbital ¢ € Z leading to the corresponding Ramanujan
orbital graph, its valency k € N, the cardinality n € N of its vertex set, and its
diameter d € N.

II Computational techniques

8 Intersection numbers and character tables

In Section 8 we discuss computational techniques useful to deal with structure
constants matrices, character tables of endomorphism rings, and the Fitting
correspondence. We keep the notation of Sections 1 and 3. In particular let @)
be the character table of the endomorphism ring E%, see Definition (3.7) and
Section (1.5), where K is as in Section 3.

Throughout Section 8 we assume Ey to be commutative.

(8.1) If @, is known, then the structure constants matrices Pj’\7 for j € 7y,
see Definitions (1.6) and (1.18), can be determined using Proposition (3.18). As
this is particularly nice and straightforward to implement in GAP, we show the
relevant GAP code in Table 4.
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Table 1: Imprimitive distance-transitive orbital graphs.

q errirr‘erl e |ve |e1 || €€ Ty | gty
D [0 mqq 0g) |z lez |0z | g€ fg9y > 9% | Ty
D [cz‘1't‘ce] |2 |¥e |ce || ¢|¢ Uy | 2N
D lcc‘tit'zel | |ve |2t | g]¢ Uy | SYNE
q :Nﬁomi ‘octel €| ¥ | 1T || ¥ | ¥ | ®)ET > (B)ET | Tl
q [0g v ‘Tiog6v08] | € ese | 0s || V| @ (9| ¢SH
q [9ZT ‘06 ‘T:9¢ ‘Gz 0zT] | €| 2se | 92T || ¥ | € z(Q)En | TSH
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Table 2: Non-distance-transitive distance-regular orbital graphs.

d [F16°0g] | ¢ | 99 0% vole T | YW
d [c1i11'0e) | 2 | 1 &4 V| c e (n)er | zely
d [0z ‘Tize qq] | ¢ | #¥1 GG vole (11)eT | e
d [0z ‘1'ze‘cq] | ¢ | ¥F1 qq ¢ | 7| "w>0neT |
d [0z ‘Tize eq] | ¢ | ¥91 g 9 |g|neT>0g11| 'y
d l0€Tige99] | ¢ | F¥1 99 vo|T c(ID)%T | e
d [0£‘T6e99] | T | ¥FT 99 vo|T c(I1)%7 | &
d [0€°T:ge99] | & | #¥T 99 ¢ |g| " vA 0DeT | T
d (06T ge99] | ¢ | #¥1 99 ¢ |g (ter | o
d [e‘Ti0z 0¢] | T | T€C 0¢ v o|c 86T | TN
d [e‘Ti0z 0¢] | T | 1€C 0¢ v o|C ST |
d [7'1°61°07] | ¢ | 1€¢ 1) vole 86T | TN
d [P 16107 | ¢ | 1€ 0¥ vole “ge |
d 7122 9¢] | ¢ | 08¢ 9¢ vo|C Ve T
d [F1°L2°9¢] | ¢ | 08¢ 9¢ V| c Al or
d [09°T59°6eT] | T | 08¢ GeT Vo A S oer
d [09°TF9°GeT] | Z | 08¢ ce1 vy i er
d [F0S‘TicTe‘C6L] |2 | 8821 | 26L | ¥ |¥ Ty | e
d l9€ ‘TfoLeT1°6L8T] | @ | 92L19 | 6Ll | ¥ |2 | ¢ x£9:()fo | Ty
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d 6° Y ‘T:L°91°Lg] | € | 0TG LT ¢ |€ ST | TN
d (69 T61°07'€9] | €| ¥G0c | €9 ¢ |¢ wemeET | v
q Gﬁ 06T 9¢‘seT ‘92T] | € | 2se 9Z1 9 19 v | T
q [9€92T ‘OFETT ‘119621 ‘GE92T ‘9€92T) | € | 09182 | 98921 || 9 | 9 (8)*0 | &g
d 7 TTz'8's¢01) | ¥ | c1¢ 01 9 |¢ V410 e
D OTF ‘ST ‘CE T TP ‘CIEOTH] | ¥ | 9FES | 91F || 2 |9 (¥)ep | zng-¢
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D LOFPF2 T T T T T T P 9'9L | 8] 066 L er | g (@)1 :¢0 | ®ne
Leare worjoestoul | p | u |y IEHE H | 9 |




62

Table 3: Ramanujan orbital graphs of valency k < /n.

G [H il r][ n] k|d]
Mi,.213%.2.5, 21 9 440] 416
M22 23:L3(2) 2 5 330 7|4
Myo.2 | 23: L3(2) x 2 21 5 330 | 714
Moy.2 | 23: L3(2) < 23: L3(2) x 2 3110 660 | 7|5
Ja o4 Ay 2| 6 31510 | 4
Jp.2 |2ttt gy 21 5 315 | 10 | 4
Mo |32.2.9 2| 5 220 |12 | 3
My |32.2.5, 2| 5 220 | 12 | 3
J2.2 | (As x Dyg).2 2| 81 1008|125
Myy.2 | Az 2| 6 352 |15 | 4
Ja Ay x As 2| 7 840 | 15 | 4
Jo.2 A4 X Ay < (A4 X A5)2 3|14 1680 | 15 | 5
HS.2 | 5172 [2°] 2|15 || 22176 | 50 | 3
M24 26Z(L3(2)X53) 3 5 3795 | 56 | 3
Moy | 20:(L3(2) x 3) < 25:(L3(2) x S3) | 3| 8| 7590 |56 |3
Moy 26, (Lg(?) X 3) < 26. (L3(2) X S3) 4 8 7590 | 56 | 3

Table 4: GAP code: Finding the Pj)‘ from ®,.

# thl: @, f0r<Eﬁ»commutative,
# a matrix with entries in the cyclotomic field K
# mats: the P? for j €7y, a list of matrices over K
IntersectionMatsFromCharTable:=function(tbl)
local mats, trtbl, itrtbl, j, diag;
mats:=[];
trtbl:=TransposedMat (tbl) ;
itrtbl:=trtbl” (-1);
for j in [1..Length(tbl)] do
diag:=DiagonalMat (List ([1..Length(tbl)],i->tb1[i][j1));
mats[j]:=trtbl*diag*itrtbl;
od;
return mats;
end;
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Table 5: GAP code: Finding the m, from ®.

# tbl: P for Eix commutative,
# a matrix with entries in the cyclotomic field K,
# @1 is the first character in @
# degs: the my, for pe€ Irrx(Ek), a list of positive integers
CharDegrees:=function(tbl)
local degs, n, j, s, i;
degs:=[1];
n:=Sum(tbl[1]);
for j in [2..Length(tbl)] do
s:=0;
for i in [1..Length(tbl)] do
s:=s+tbl[j] [i]*GaloisCyc(tbl[j][1i],-1)/tbl[1][i];
od;
degs[j]:=n/s;
od;
return degs;
end;

For the case A = 1, if ® is known, then the Fitting correspondent ¢ of the trivial
character KG is found by Remark (3.21). This yields the index parameters k;,
for i € Z, see Definition (1.2), from ®. Furthermore, if @, is known for arbitrary
A, by the first orthogonality relations, see Remark (3.9), the character degrees
Xo(1) = my, for ¢ € Iirg(Ey), can be determined from @, and the index
parameters k;, for ¢ € Z,. For the case A = 1 we show the relevant GAP code in
Table 5.

For the case A = 1, if ® is known, then the Krein parameters g;;x, see Definition
(4.5), can be determined using Proposition (4.6). We show the relevant GAP
code in Table 6.

(8.2)  We discuss the strategy to find the character table of Ey from the struc-
ture constants matrices. Let £y be the set of all centrally primitive idempotents
of E3. By Proposition (3.14), the rows of [£)] 4, € KPXITAl are a K-basis of
KYIT: | consisting of simultaneous eigenvectors of all the structure constants
matrices Pj)‘ e KIIXITA for j € Zy. Up to reordering and scalar multiples,
this is the only K-basis of K122l consisting of simultaneous eigenvectors of all
the Pj)‘.

Furthermore, the corresponding eigenvalues are the character values gp(ag\), for
¢ € It (E%) and j € Z). Hence to determine the character table ®, we could
just determine a K-basis consisting of simultaneous eigenvectors of all the Pj’\,
and subsequently compute the corresponding eigenvalues. But for the latter we
would have to determine all the Pf‘, for j € Zy. Indeed, we can do better.
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Table 6: GAP code: Finding the Krein parameters g;;; from @.

# tbl: @ for Fx commutative,
# a matrix with entries in the cyclotomic field K,
# (1 is the first character in @
# q: the g5, a list of lists of lists over K
KreinParameters:=function(tbl)

local q, n, m, i, j, k, t, s;

q:=0];

n:=Sum(tbl[1]);

m:=CharDegrees(tbl); # see Table 5

for i in [1..Length(tbl)] do

qlil:=[1;
for j in [1..Length(tbl)] do
qlil[j1:=0;
for k in [1..Length(tbl)] do
t:=0;

for s in [1..Length(tbl)] do
t:=t+GaloisCyc(tbl[i] [s],-1)
*GaloisCyc(tbl[j] [s],-1)
*tbl [k] [s]/tbl[1] [s]"2;
od;
qlil [j] [x]:=t*m[il*m[j]/n" 2;
od;
od;
od;
return q;
end;
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By Proposition (3.18), the rows of [£)] 4, € KX are a K-basis of K1XI2A]
consisting of simultaneous eigenvectors of all the dual structure constants ma-
trices I:’j)‘ = (P]?‘)T e KIBIXIIM | for j € Ty, see Proposition (3.17). Still, the
corresponding eigenvalues are the character values gp(o@-), for ¢ € Irri (Ey ) and
j € Z,. Furthermore, the row of [‘SA}A)\ corresponding to ¢ € It (E%) is equal
to % Je(a});j eIy € K2\ hence up to a scalar multiple is equal to the
corresponding row of ®.

Because of p(a7) = 1, for ¢ € Irrg (E%), to determine the character table @y,
it hence is sufficient to find a K-basis consisting of simultaneous eigenvectors
of all the ]5]?‘, for 7 € Z,, and to rescale these vectors to have an entry 1 in
position 2 = 1 € Z,. In turn, to find a K-basis consisting of simultaneous
eigenvectors of all the Pj)‘, it is sufficient to find a subset J C Z,, such that
C:= (a])f;j € J) K —algebra €quals Ej, and to compute {]SJ»A;j € J} only. By
Corollary (3.15), we have C = E3 if and only if the simultaneous eigenspaces of
{]5]-’\;]' € J} in K™l are 1-dimensional.

A similar algorithm is well-known for the group character table case, see [17, 71].
In that case, the character degrees usually are not known in advance. Hence,
in addition to finding simultaneous eigenvalues, the scaling factors to yield the
correct character degrees have to be determined as well.

To find the eigenspaces of Pj’\, for j € Z, we proceed as follows. Let pips € K [X]
be the minimum polynomial of Pj’\ e KIIXITA - Ag E3 is a commutative split
semisimple K-algebra, 115\ € K[X] is a separable polynomial. Hence to find the
eigenspaces of Pj’\, we have to find the irreducible factors of jip in K[X], which
are linear. As Pj’\ € QA(H))PAXITAl we also have ppy € Q(A(H))[X]. Hence
we first compute the irreducible factors of 11, in Q(A(H))[X], and subsequently
J

factorize the latter into linear factors in K[X].

Algorithms for polynomial factorisation over algebraic number fields are known,
see [12, Ch.3.6.2]. By Proposition (3.10) we even have p sy € Z[A(H)][X]; note

J
that by [50, Cor.2.2] the ring Z[A(H)] coincides with the ring of algebraic integers
in Q(A(H)). For the case A\ = 1 the polynomial s, has to be factorized in
J
Z[X]. Algorithms for polynomial factorisation over Z are known as well, see [12,
Ch.3.5], and are available in GAP. Furthermore, as the zeroes of pp\ € K[X]
J

are exactly the character values @(a?‘), for ¢ € Irrx(Ey), the factorisation
of ppx into linear factors can be done in the polynomial ring K’[X], where
J

K’ := Q\(H))[x(C); x € Irk(G), C € CI(G)], which is a splitting field for E7,
see Remark (3.21).

(8.3)  We briefly digress, and consider the case where E7- is non-commutative.
As the irreducible characters ¢ € Irrjc(E7%) are no longer necessarily linear, we
are faced with the problem to determine representing matrices for the action



66

of the Schur basis elements o' € Ay on the simple Ex-modules Sy, for ¢ €
Irrg (Ef‘() and i € Z,. Still, it suffices to find the structure constants matrices
P} ¢ KIAXITAl for i € Z,. But the technique described in Section (8.2),
to find the character table ®) of E% from possibly only part of the structure
constants matrices, does no longer work. Furthermore, Proposition (3.18) no
longer holds. Hence it seems to be unavoidable to compute all of the structure
constants matrices explicitly. For larger examples this might be a considerable
task. If the structure constants matrices are available, there are at least two
strategies to proceed.

Firstly, in particular if the degrees m,, = (1) of the ¢ € Irr g (Ey ) are small, we
could use the strategy described in Section (8.2). For i,j € 7y, such that ¢ = i*
and j # j*, by Remark (1.19) the structure constants matrices P} and Pj’\ :EPJ-A*
are diagonalisable over a suitable algebraic extension field of K. Hence we again
could compute the irreducible factors of the minimum polynomials pr € K[X],

find the corresponding characteristic spaces in K'*IZxlintersect them, and
compute the action of the structure constants matrices on these K-subspaces.
Secondly, in particular for the case A = 1, where P; € Z™*"™, for i € Z, we could
use general MeatAxe techniques over the rationals and the rational integers, see
[65, 66], to find the constituents of the regular E;;—module. For the time being,
no substantial examples have been dealt with computationally.

(8.4) In the remaining parts of Section 8 we discuss the strategy to determine
the Fitting correspondence explicitly. Let again Ey% be commutative.

Without loss of generality we may assume that K is a splitting field for KG. If
the full character table X = [x(C);x € Irrx(G),C € CI(G)] € KICUGIXICUG)I
of G as well as ®, are known, then necessary conditions to find the Fitting
correspondent X, € It (G) of ¢ € Irrx (E%) are given as follows. Note that,
although in many cases Irr}\((G) is known in advance and only the Fitting cor-
respondence has to be determined, Irr?{(G) need not be known for the following
approach.

By Section (8.1), the character degree x,(1) = m, for ¢ € Irrx(E%), can
be determined from ®,. Furthermore, by Remark (3.24), the matrix I'y €
QA(H))IAXICUSI " see Definition (3.19), can be determined from @) and Xj.
Now the v (C) € Q(\(H)), for i € Iy and C € CI(G), are algebraic integers,
and in particular for A = 1 we even have 7,;(C) € Ny, for ¢ € Z.

We first determine the sets Irr¥; (G) = {x € Irrx(G); x(1) = my}, for ¢ €
Irrg (E%). Thus HcpelrrK(E,*() Irr%; (G) can be considered as a set of candidate
cases for the Fitting correspondence searched for, where we restrict ourselves
to the cases where [x1,...,xz,|] € HLpGII‘I'K(E;\() Irr%, (@) has pairwise different
entries. From [x1,...,x|z,|] we obtain the submatrix X, ..y,  of X consist-
ing of the rows corresponding to xi,...,X|z,|- Then we compute the matrix
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r e KIIMXICUG)] defined by

X1y X|Zy|
I —_—
N ~diaglk; ;i € Th] - @Y - Xy, Ly, - diag|Cf; C € CU(G)].

By Remark (3.24),if I'y, ... x|, | has an entry which is not an element of Q(A(H))
or which is not an algebraic integer or which for the case A = 1 is a negative inte-
ger, then we discard the candidate case [x1, ..., x|z,|], otherwise [x1, ..., X|z,|] is
an admissible case. Let Fy C [] Irr%, (G) denote the set of admissible

candidate cases.

pelrrk (BY)

(8.5) Definition.

a) Let S¢y) be the symmetric group on the set CI(G) of conjugacy classes of
G, let m € S¢yy, and for x € Irrg (G) let x™:CI(G) — K be the class function
defined by x™:C — x(Cn~1). For s € Z the s-th power map Cl(G) — CI(G) is
defined as the map induced by the map G — G: g — ¢°. Then 7 is called a table
automorphism of Irr g (G), if m commutes with the s-th power maps on CI(G),
for all s € Z, and x™ € Irrg(G), for all x € Irrg(G). Let Aut(lirg(G)) <
Sei(g) denote the group of table automorphisms of Irr%(G). Furthermore, 7 €
Aut(Irrg (@) is a table automorphism of Irry (G), if additionally x™ € Irry (G),
for all y € Trry (G).

b) Let Sz, be the symmetric group on the set Zy, let 7 € Sz,, and for ¢ €
Irrge (E%) let ¢™: Iy — K be the class function defined by ¢™:i +— @(in™1).
Then 7 is called a table automorphism of Irrg (E7 ), if ™ € Trrg(E7), for
all p € Irrg(E7). Let Aut(lrg (E%)) < Sz, denote the the group of table
automorphisms of Irr e (E%).

(8.6) Remark.

a) Given the character table X € KICUDIXICUG of Trr (@), there are pro-
grams available in GAP to compute Aut(Irrgx(G)). Note that, by the orthogo-
nality relations for X, a table automorphism 7 € Aut(Irrx (G)) leaves the sets

Cl(G). :=={C € CI(G);|C| = ¢}, for ¢ € N, invariant.

Furthermore, given the character table ® € K« (E)IXIZl for the case A = 1,
by Remark (3.21), each m € Aut(Irrx(EK)) fixes the Fitting correspondent ¢
of the trivial K G-character. Hence 7 leaves the sets Zj, := {i € I; k; = k}, for
k € N, invariant. Thus we have Aut(rgx (Ex)) < [lieqs,.ier) Szi- For the
examples occurring in the present work, see Section (11.1), this turns out to be
a sufficiently small group such that we are able to check for all of its elements
whether they are in Aut(Irrx (E)) or not. In particular, if all the index param-
eters k;, for i € Z, are pairwise different, then we have Aut(Irrg (Fx)) = {1}.

b) For table automorphisms 7¢ € Aut(Irry(G)) and 75 € Aut(Irrg (Ex))

let [1g] € ZICUDIXICUD] and [rg] € ZITI*IZI denote the permutation matrices
inducing the corresponding column permutations of X; and ®, respectively. If
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Pyirxiz) € KIIXICUG fylfils the admissibility conditions in Section (8.4), then
L v am s
[mB] ™ Ty xig - [r6] = o - diag[k '] - (@ [wp]) " - & - [mc] - diag[|C]

also is an admissible matrix. Hence Aut(Irrg (Ex)) x Aut(Irr (G)) acts on the
set of admissible candidate cases F; for the Fitting correspondence, and the
strategy described in Section (8.4) yields unions of orbits under this action.

The strategy described in Section (8.4) and Remark (8.6) is applied in Section
(11.3).

9 Condensation

In Section 9 we discuss aspects of practical computational applications of con-
densation functors. We keep the notation of Section 6.

(9.1) Let © be as in Section (2.1), let A be a representation of © H, such that
the underlying © H-module O is ©-free of degree 1, and let €, € OH C ©G
denote the corresponding idempotent. We have exOG = \¢ as ©G-modules.
Hence, using Definition (6.4) and Remark (6.5), for V € mod-OG we have
Vey = C., (V) 2 Homeg (A%, V) = Homey (A, Vi) as ©-modules. Hence, if ©
is a field, then the underlying set of the condensed module Vey € mod-e)OGe)y
is the isotypic component of Vg belonging to A.

From the computational point of view, for given V € modeg-©G, we have to
find a ©-basis of Ve, and subsequently, for given g € G, we have to find the
action of €)ge) € €)OGey) on Ve, with respect to this basis. In practice, this
has to be done without having available explicit representing matrices for the
action of the elements of G on V, since typically rkg(V) is so large that we
would not be able to deal computationally with these matrices.

If X\ =1, let € := €;. In this case we have Ve = Fixy(V), the set of the H-
fixed points in V. This particular condensation functor is called a fized point
condensation functor. The latter have been applied to different types of F'G-
modules over finite fields F. Historically, the first application [77] has been
to permutation modules. We give the corresponding condensation formula in
Proposition (9.5). An implementation is available as the ZKD program in the
MeatAxe. Originally, this program returns representing matrices for the action
of ege on Ve, for g € G. We have generalised it slightly to return, optionally,
orbit counting matrices C'(g) having integral entries, see Definition (9.4).

Applying fixed point condensation functors to tensor product modules has been
sketched in [52], and has been worked out in [79, 48]; an implementation, with
a few improvements [58], is also available in the MeatAxe. Arbitrary induced
modules have been dealt with in [59], an implementation being available in GAP.
Great improvements for the permutation module case have been made by the
invention of the direct condense technique [67], which has subsequently been
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developed into a parallelised version in [45]; a modified version has been used
in [57] and we further elaborate on this technique in Section 10.

(9.2) Remark.

a) Let © € {K, F'} be as in Section (2.10), where in particular the characteristic
of F' is coprime to |H|, and let xy € ZIBrg(G) denote the Brauer character of
V € mod-OG. If © = F, then yv is a K-valued class function on the p’-classes
of G, which can be extended to a class function on G by letting xv (9) = xv (gp ),
where g = g, - gy € G denote the p-part and the p’-part of g € G, respectively.
If © = K, then yy is a K-valued class function on G anyway. Hence we have

dime(Vey) = ((xv)m N = (xv, A% e,

where (-,-)¢ and (-, )y denote the hermitian products on the K-valued class
functions on G and H, respectively. Hence the ©-dimension of the condensed
module Vey of V can be determined from purely character theoretic information
without actually applying the condensation functor.

b) Let k € 7 and g € HgrH, and let try., and try denote the ©-valued trace
functions on V' and Vey, respectively. As in the proof of Proposition (3.20) we
have

trye, (€xgex) = try(exgen) = ﬁ C > w(C) -ty (O),
cecl(G)
where v, (C) € O is as in Definition (3.19). We have try (C) = xv(C), if © = K,
and try (C) = X/VYE)» if © = F, respectively.
This has been applied to solve problems concerned with the determination of

decomposition numbers of algebraically conjugate ordinary characters, see [57,
65, 70].

(9.3) We proceed to prove the condensation formula, see Proposition (9.5),
to which fixed point condensation of permutation modules boils down.

Let A =1 and € = ¢;. Let U < G be another subgroup and = := U|G. Let
J = {1,...,7}, where 7 € N is the number of U-H-double cosets in G, and
let {3, € G;j € J} be a set of representatives of the U-H-double cosets in G,

where ¢, := 1¢.
As in Section (5.2) we have

Home (15, 1§) = Home (1, (1) 1) = @) Homen (1, (1,53, ,,)")-
jeTJ

(9.4) Definition. 3
a) For j € J let Ej := {Ug;h € E;h € H} C Eand E] := Yz £ € OF.
Hence £ := {Z;j € J} is a O-basis of O - €.
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b) For g € G and i,j € J let the orbit counting numbers ¢;;(g) € No with
respect to = =[], ;7 E; be defined by

cij(9) == {€ € Bis€g € 5} = [Big NEj| = 2N (Z597 ).
Let the orbit counting matriz C(g) € Ny™" with respect to = = [cr Ej: be-
longing to g, be defined by C(g):; := ¢;;(g), for i,5 € J.
(9.5) Proposition. Let g € G. Then the representing matrix for the action

of ege € e€©Ge on OF - ¢ with respect to the ©-basis =T is given as

legel=+ = Clg) - diag[|Z;|~"5j € J] € ©7%T.

_ - - H =
Proof. We have = - ege = ﬁ jeg HE€Ei g € B} ||Ej“ :j i

(9.6) Proposition. LetU = H,henceZ=Qand J =Z. Let g€ HgH C
G forl € Z. Then for i, j € Z and the structure constants p;;; € O, see Definition
(1.18), we have,
ki ki _ ki
Piij = 7 cij(g9) = o ;N (g7 = T 1Qig N Q] €O,
j J J

independent of the particular choice of g € Hg; H.

Proof. As in the proof of Proposition (2.2), we have
+ [H]|
Qo= Z €gihiir = ;] - €gie = k; - €gie € €OG.
ie{l,... ki } !

We may without loss of generality assume that g = ¢;. Thus we have

Cij (gl)

(ki - €gi€) - egie = L (kj - egje).
J

JET
Furthermore, by Proposition (2.2) we have (k; - ege) - (ki - egi€) = > ;o7 puij -
(kj - €gje). This yields the assertion.

(9.7) Remark. LetstillU = H, hence Z=Q and J =7.

a) If g € G is given, the row of C(g) = [¢;;(g);%,j € Z] corresponding toi =1 €
7 has exactly one non-vanishing entry. If this is in the column corresponding
to k € Z, then by Definition (9.4) we have g € HgiH. Furthermore, for the row
sums and column sums of C(g) we have 37,7 ¢;j(g) = k; and >, 7 ¢ii(9) = kj,
for fixed ¢ € Z and fixed j € Z, respectively.

b) If Ex is commutative, we have py;; = pu;, for 4, 4,1, € Z. Hence by Proposi-
tion (9.6) we have

P =k - C(g) - diaglk; ;5 € Z] = ki - [egielq+ -
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(9.8)  For the computation of orbit counting matrices, see Definition (9.4), for
the case = = 2, which is most interesting in the present work, we occasionally
use the following strategy, whose usefulness becomes clear in Section (10.3).

Let U < H,let J :={1,...,7}, where 7 € N is the number of H-U-double cosets
in G, and let {g; € G;j € J} be a set of representatives of the H-U-double
cosets in G, where §; := 1g. For j € J let Qj ={Hjju € Buec U} CQ
Then, for each j € J there is ¢ € Z such that Qj C ;. This defines a surjective
map ap,ig:J — 1.

Let &;;(g) :== {w € Qiswg € QJ}| € Ny, for 7,j € J and g € G, be the orbit
counting numbers with respect to = HjEJ Qj. Furthermore, let ¢;;(g) € Ny,
for 7,5 € Z and g € G, be the orbit counting numbers with respect to 2 =
[z €2 Hence we have

OEEDY Y &l

icagly (i) jeagy ()

To determine the sets a&lH(i) C J, for i € Z, we additionally compute orbit
counting matrices C'(h) = [¢;;(h);i,5 € J] € NJ*7, for h € H, where H C H
is a set of generators of H. From these we compute the finest set partition
{T CT;ke{l,....s}} of T, hence J = [[;_; Tk, such that we have j € Jj,
whenever ¢ € J and j € J such that é&;;(h) # 0 for some h € H. As (H) = H
and by the definition of the orbit counting numbers we conclude that s = r and
{a,}}H(i);i eIy ={T;ke{l,...,r}}

(9.9) We return to the case of A arbitrary. In practice we only compute
representing matrices for the action of a few elements {exger; g € G} C €xOGey,
for some subset G C G, on the module Veyx € modg-€)©Gey, where V €
modeg-OG. Hence we only know the action of the ©-subalgebra

Cg := (exgen; g € g>®—algebra C eAOGey

on Ve, which poses the problem to infer the structure of the €)©Gex-module
Ve, from an explicit analysis of the Cg-module structure of Vey. Different
strategies to tackle this problem have been developed, see for example [26, 38,
59]. The following idea and the criterion in Proposition (9.11) might be helpful
as well, although for the time being they have not yet been applied to substantial
examples.

Let V € mod,,-FG be a trivial source F'G-module; for example this holds for
V = exF'G as FG-modules. By [39, Thm.II.12.4] we have dimr Endpg(V) =
(Xv>Xy)a, where V- € modg-RG is the uniquely defined trivial source RG-

module such that V' = V as FG-modules, and where (-,-)¢ is the hermi-
tian product on the K-valued class functions on G. Hence in this situation
dimp Endpg (V) can be determined from purely character theoretic information,
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and as the assumptions of Remark (6.13) are fulfilled, dimp End,, pae, (Vey) is
also known.

If Cg C ey F (e, is an F-subalgebra, and the restriction of Vey to Cg is given, we
can explicitly determine Ende, (Vey), using the algorithms described in [74] to
compute endomorphism rings available in the MeatAxe. If dimp Endc, (Vey) >
dimp End, rge, (Ver), we compute representing matrices for the action of ad-
ditional elements exgey € exFGey on Vey, and thus enlarge the set G C
G and the F-subalgebra Cg C €\FGey, until we have dimp Ende, (Veyr) =
dimp End,, pge, (Ver). Hence we have explicitly determined Ende, pge, (Ver) =
Endc, (Vey).

Knowing End,, rge, (Ver), we may for example determine a direct sum decom-
position of the ey F'Geyx-module Vey into indecomposable summands and the
isomorphism types of the summands, using the relevant algorithms described in
[74], available in the MeatAxe. Furthermore we may infer the existence of certain

exF'Gey-modules, namely those which are images of €) F'Gey-endomorphisms of
VG)\.

Letting Dy, :exF'Gex — Endp(Vey) denote the corresponding representation,
in general we might still have a proper inclusion Dy, (Cg) C Dy, (exFGey), as
we might have a proper inclusion Dy, (exFGey) C EndEndEAFGq(VGA)(VQ) =
EndEndcg (vey)(Ver). To the knowledge of the author, the known general cri-

teria to ensure equality here, hence the double centralizer property, are quite
restrictive, see [14, Thm.VIIL.59.6].

(9.10) Let H' < H as well as A and X be as in Section (5.3). In particular, we
keep the condition that A and (A" —\)¢ have no K G-constituents in common,
and that the characteristic of F' is coprime to |H|. Let © € {K, R}. Then we
have A%¢y = Homeg(NY, AF) as ©-modules, and S\Gex, = Hompg()T’G, ;\G) as
F-vector spaces. Furthermore let Dg”‘: (Eé/)Q — EndeHomeg (N, A\¥) denote
the corresponding representation of (E} )° 2 ex/©Gey, and let Df‘;’j‘: (Ef;’)" —
EndyHompe (N, M%) denote the analogous one of (EI&)O X e FGes,. We
give an admittedly rather restrictive criterion to ensure the equality Dg'A(C) =
DJMEY), for a ©-subalgebra C C EY , and an analogous statement for Ef‘;’.

(9.11) Proposition. We keep the notation of Section (9.10).
a) Let a * € Homgg(NY, A\9) be as in Remark (5.7) and let C C E} be a
O-subalgebra. Then we have

EY - o) = Homeg (N9, X9),

and Dg,AQC) = DAMEY) holds if and only if C - o} = EY - o', B
b) Let a}”* € Hompa (N, AF) be as in Remark (5.7) and let C C E} be an
F-subalgebra. Then we have

EY -} = Hompa (N9, X9),
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and Df‘;’j‘(C) = Dj\?j‘(Ei‘;') holds if and only if C - a{vj‘ = E; : aiv:\.

Proof. Let i’ € Zy and o) € Ay . Then by Section (1.7) and Definition (5.6)
we have ) /
) arMwl - Z X(h;,_j}) “A(hir) - wijs
Jre{l k)

where i = agr (i), and j € {1,...,k;} depends on j'. For i € Ty, by Corollary
21 .
(‘?/.11)7 we have aH/7H(z) C Zy. Hence frF)I.n gl = hg',j,gihij and gj, =
h} g;h;j, for some ji1 € {1,...,k;}, see Definition (5.6), we obtain
9 g - hagy - Wiy = g7 hiigi - hg
and thus X' (h} 1) A(hf,;,) = ¢, M(h;;"). Hence, by Proposition (5.4), for i € Zy
and ' € aI_ﬁyH(i) we have

!
/ ’ k /
ay ot = k—” - a} € Homeg (N9, 1Y),
i

This shows the first assertion in a). By Remark (5.9) the quotient ]Z’ € Nis

coprime to p. Hence an analogous argument shows the first assertion in b).

For the second assertion in a), we only have to show sufficiency. Let « € Egl.
Because of C-a}'* = Homegg (N, A9) there is 4 € C such that 3-a)'* = a-a}'.

By Proposition (5.4) for i € Zy we have a}* = a}* - a}. Hence we have

(a=pB)-a}* = (a—p)-a}™ a} = 0. Thus D3Ma) = Dg/A(ﬁ). An analogous
argument shows the second assertion in b). f

(9.12)  For the special case H = H' and A = X = 1, the representations
Dé‘)A and Df‘f‘ are the left regular representations of Fg and Ef, respectively.

These hence are faithful representations. We have ai? = af = idg,q and
ot = ap = idp o, and the criteria in Proposition (9.11) boil down to the

trivial statements that C = Fg if and only if C - ideg = Fe - ideq, and C = Eg
if and only if C - idpg = EF - idpq, respectively.

This special case has found practical applications, for example see [46] and also
Section (19.2). Another generalisation of this special case different from the one
given in Proposition (9.11) has been derived in [79, 46].

We conclude Section 9 with an observation concerning symmetric algebras,
which proves useful in Section (19.2).

(9.13) Proposition. Let © be a perfect field, and let A be a symmetric
finite-dimensional ©-algebra. For ¢ € Irrg(A) let S, € mod-A be the simple A-
module affording ¢, let d,, := dimg(S,) € No and f,, := dime Enda(S,) € Ny,
and let P, € mod-A be the projective cover of S,.
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a) Then the multiplicity of the constituent S, in an A-module composition
series of the regular A-module A equals fi -dime (P,).
3

b) The simple A-module S, is a projective A-module if and only if the above

multiplicity of S, equals ;l—“’, otherwise the multiplicity is at least 2 - ;lc—“’.
®

®

Proof. For ¢ € Irrg(A) let the Cartan number c,y € Ng be the multiplicity
of the constituent Sy in an A-module composition series of P,. Hence we have

dim@ (P‘P) = Z Copep * d¢.
pelrre (A4)

Let e, € A be a primitive idempotent such that ey, A/rad(eyA) = S, as A-
modules. By Remark (6.5) we have, as ©-vector spaces,

Syey = Homy(ey A, Sy) = Homy (ey A/rad(eyA), Sy) = Enda(Sy),

and hence fy, = dimg(Syey). Furthermore, by Propositions (6.6) and (6.7) we
have dimeg (e, A - ey) = dime (P, - €y) = cpy - fy. By [18, La.l.16.6] we have
dime (e, Aey) = dime (ey Aey). Hence we conclude ¢y - fy = Cyg - fo-

dl
As A =~ @cpelrr@(A) @zf;"l P, ) as A-modules, the multiplicity of S, in the

regular A-module A is equal to

d d 1 1
Yo P = Y fi'%:?' > dd,cq,w:f—-dlm@(P@).
® ® ®

pelrre (A) pelrre (A) pelrre (A)

This proves the assertion in a), the assertion in b) is clear. i

(9.14) Remark. Proposition (9.13) can be applied to the regular module
of the O-algebra A := e¢OGe, where € = ¢; € OH C OG, hence the situation
of Section (9.12). If © is a finite field, then the MeatAxe finds the simple
A-modules S, for ¢ € Irrg(A), the ©-dimensions d,, the ©-dimensions f,,
and the multiplicities of the S, as constituents in an A-module composition
series of the regular A-module. Hence from these standard MeatAxe results the
projective simple A-modules can be determined, as well as the ©-dimensions
of the projective indecomposable A-modules, without actually decomposing the
regular A-module into indecomposable summands. For such an application, see
Section (19.2)

10 Enumeration of long orbits

In Section 10 we describe strategies to enumerate long and ultra-long orbits.
Different variants of these are the main workhorses to collect the data neces-
sary to compute structure constants matrices. We elaborate on the basic idea
invented in [45], where the exposition given here is inspired by [57].
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(10.1) Let U < @G, let ¥ € N be the number of H-U-double cosets in G and
J =A{1,...,7},and let {g; € G;j € J} be a set of representatives of the H-U-
double cosets in G, where §; := 1¢. For j € J let Qj ={Hgjue QKuelU} CQ
and @; := Hg; € Qj C Q, where Q still is the set H|G of right cosets of H in
G. Note that in Section (9.8) we have assumed additionally that U < H holds,
which we do not do here. In the sequel of Section 10 we do not distinguish
between the G-set 2 = H|G and other G-sets isomorphic to €, such as sets of
vectors.

Let G C G be a set of generators of G, and let U C U be a set of generators of
U. We use a modification of the standard breadth-first orbit algorithm using G
to enumerate the G-orbit ). Namely, whenever we compute an element w € €2
which has not been encountered earlier in the orbit enumeration, then we first
compute its whole U-orbit w-U C €, using U, which hence is one of the Qj, for
j € J, and then proceed with the general orbit algorithm. Thus the G-orbit
) is enumerated piecewise, U-orbit by U-orbit. For each U-orbit w-U C Q we
encounter, we store a word in the set of generators G of G mapping the start
point wy; € Q to w € . To actually enumerate long and ultra-long orbits we
cannot afford to store all elements of €. Instead we only store a certain subset
of 2, which is done as follows.

We choose a subgroup U; < U < G, small enough such that the elements of Uy
can be enumerated explicitly, and objects representing the action of all of these
elements on 2 can be stored; these objects could be permutations, or matrices
if 2 is a set of vectors. Furthermore we choose a U;-set =1, such that there is a
homomorphism ¢: Qp, — =1 of Up-sets, where (7, denotes the U;-set 2 defined
by restricting the G-action to U;. We do not assume that ¢ is surjective, nor
that Uy acts transitively on =;, but we assume that |Z1]| is small enough such
that the elements of Z; can be enumerated explicitly, and all of them can be
stored.

For each Uj-orbit € - U; C =1 we choose an element &y € & - Uy C =1, which
is called the strongly minimal element of £ - Uy. For & # & € £€-U; C =
we store an element of U; mapping £’ to &; in practice this means a pointer to
that element of U;. For the strongly minimal element &, we store the elements
of Staby, (&) < Usp; in practice this again means pointers to the elements of
StabUl (50)

For a Uy-orbit w-U; C Q let & € g(w - Uy) = q(w) - Uy € Eq be the strongly
minimal element of the Uj-orbit ¢(w) - U;. Then the set ¢~ 1(&) Cw - Uy C Q
is called the set of weakly minimal elements of the Uj-orbit w - U;. The weakly
minimal elements of w - U; are given as w - u - Staby, (§9) C 2, where u € Uj is
the element stored with ¢(w) € Z; if g(w) € Z; is not strongly minimal, or u =1
if ¢(w) € E; is strongly minimal, while Staby, (§o) is stored with the strongly
minimal element &y € Z; belonging to g(w) - Us.

To enumerate () piecewise, U-orbit by U-orbit, we have to enumerate all the U-
orbits Q; C Q, for j € J, in turn. The latter again are enumerated piecewise,
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Ui-orbit by Uj-orbit. We store exactly the weakly minimal elements of the
U-orbits in 2, together with the information to which of the U-orbits 2;, for
j € J, they belong.

Hence, during the enumeration of €2, for w € Q we have to decide whether we
already have encountered the Uy-orbit w-U; C € earlier. To do this we compute
w-u € Q, where u € U; is the element stored with ¢(w) € Z; if g(w) € = is
not strongly minimal, or © = 1 if g(w) € Z; is strongly minimal. If w-u € Q is
already stored, then we have encountered w - Uy earlier. If w-u € € is not yet
stored, then we store all the weakly minimal elements of w - Uy C Q.

(10.2) A few comments on this general strategy are in order.

a) As we also store the information to which of the U-orbits Qj, for j € J, the
weakly minimal elements belong, this is sufficient to compute orbit counting
numbers with respect to Q =[], ; ;, see Definition (9.4).

b) To avoid to store too many elements of €, the proportion of weakly min-
imal elements of ) should be small. Hence there is a tendency of choosing
Uy such that the Uj-orbits in =; are long, at least on average; this makes the
proportion of strongly minimal elements of =Z; small. Furthermore, the sets
w - u - Staby, (&) C Q of weakly minimal elements of ) tend to be smaller, if
the stabilizers Staby, (§y) < U; are small. Hence at best we have some large
subgroup U; < U and some large set =1, having a tendency to contain mostly
regular U;-orbits. Contrary to this, as we require both the elements of U; and
of 21 to be explicitly enumerable, this poses upper bounds on how large U; and
=1 might possibly be chosen.

c) If Q is a set of vectors in an F'G-module V| where F is a finite field, then
a standard choice of the Uj-set E; is as follows. Let ¢:Vi;;, — Vi be a ho-
momorphism of FU;-modules, let =1 = Vi be the set of vectors in V; and let
q = ga:Qu, — Z1. Note that one possible pitfall here is that the zero vector
0 € 21 = V1 is a strongly minimal element of Z; and we have Staby, (0) = Uy,
hence all elements of ¢~1(0) N Q2 are weakly minimal elements of 2 and have to
be stored.

d) To store and recover elements quickly we use a hashing technique. If the
elements of ) are vectors over some finite field F', one technique to find a
suitable hash function is to view the entries of a vector as the coeflicients of
the |F|-adic expansion of an integer, and to take the latter as hash value. If
this yields a hash function whose range is too large, compared to the expected
number of weakly minimal elements of {2, then we are content with only using
part of the entries of the vectors to compute the hash function. Hash functions
of that type have indeed proven to be suitable for the kind of computations done
in the present work, although no attempt of a formal analysis has been made.

e) Depending on the example being under consideration, different amounts of
memory to store an element of 2 are needed. Hence we have to make choices, ful-
filling the requirements described above, such that we obtain a sufficiently small
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number of weakly minimal elements of €2, which actually have to be stored. We
do not go into a detailed analysis of memory requirements here; some numer-
ical considerations of these issues are given in [57] for the example examined
there, where in particular the problem, that the zero vector has a relatively
large stabilizer, cannot be neglected.

(10.3)  We briefly discuss implementational details.

a) The strategy described in Sections (10.1) and (10.2) has been implemented,
for € being a set of vectors in a vector space V over a finite field, in the pro-
grams described in [45]. These are also parallelised in the sense that the different
suborbits Qj C Q are treated in parallel. To use the full strength of this par-
allelisation, we have to ensure that | 7| is large compared to the number of
processors we want to use.

b) We also make use of modified versions of these programs [56], for 2 being a
set of subspaces of a vector space V over a finite field F', where we both allow
for 1-dimensional and higher dimensional F-subspaces. In the former case, the
necessary modifications of the programs are straightforward.

In the latter case, let 2 C V consist of F-subspaces of V' of F-dimension d € N.
Then a standard choice of the U;-set Z; is as follows. Let again §: V7, — Vi be
a homomorphism of FU;-modules. One possible choice of =1 is the set of all
F-subspaces of Vi. But it turns out that typically these sets are too large to
be enumerated explicitly. Instead we assume dimg im (§) > d+ 1 and let Z; be
the set of all F-subspaces of V; of F-dimension d. Still we have to ensure that
the elements of Z; can be enumerated explicitly. Thus we only have a map of
Up-sets § := 4o: Qu, — Z1, where Q := {w € ;4(w) € =1} C Q, which might
be a proper subset of 2. Hence this only allows to treat the w € Q as described
above, while all w € '\ Q are simply defined to be weakly minimal and hence
have to be stored.

To remedy this, we proceed as follows. Let ¢;: Vi, — V§, for i € {1,...,k} and
k € N, be homomorphisms of F'U;-modules, such that dimg im (g;) > d + 1, for
i €{1,...,k}. As becomes clear below, the different FU;-homomorphisms §;
should be as independent from each other as possible. Hence we additionally
require that

codimpg( ﬂ ker ¢;) = Z codimp ker(g;).
ie{l,....k} i€{l,....k}

Let again Z¢ be the set of all F-subspaces of V' of F-dimension d, and Q' :=
{we Qg(w) €LY CQaswell as §; := (Gi)gi: (), — 4, fori € {1,...,k}.
An element w € Q is processed as follows. If w € Q! then we may and do use
G1 as described above. If w ¢ Q' but w e Qz’ then we may and do use ¢z, and

way, and are simply defined to be weakly minimal and hence have to be stored.
Thus we have to choose k big enough such that we can afford to do so. A more
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detailed description of this idea, together with some numerical considerations
for the example examined there, is given in [57].

(10.4)  For ultra-long orbits © the assumptions in Section (10.1) on the ex-
plicit enumerability of the subgroup U; < U and the Uj-set =1 turn out to be
too strict. We still follow the strategy to enumerate €2 piecewise, U-orbit by
U-orbit, but instead of one subgroup U; < U we use a whole chain of subgroups
iteratively.

Let {1} :==Up < Uy < Uy < ... < U, < Ugy1 =: U be a chain of subgroups,
for some k£ € N, given by sets of generators U;, respectively. Hence Section
(10.1) deals with the case k = 1. For all ¢ € {1,...,k} let E; be a U;-set,
such that there are homomorphisms ¢; ;—1: (E;)y, , — Zi—1 of U;_1-sets, for
i€ {l,...,k+ 1}, where we let Zx11 := Q and Z is the trivial Uy-set with
ol =1.

Fori e {1,...,k} let 7, C U, be a set of representatives of the left cosets U;|U;_1
of U;—1 in U;. Thus u € Uy can be written as u = tp(u) - tx—1(u) - --- - t1(u),
where t;(u) € T;, for i € {1,...,k}. We assume that the sets 7; C U; can be
enumerated explicitly, but we do not assume that this can be done for the left
cosets U|Uy of U = Ug41 in Uy.

For i € {0,...,k + 1} we by induction define certain distinguished elements of
the U;-orbits in E;. For i € {0,...,k} we define strongly minimal elements such
that each U;-orbit in Z; contains exactly one strongly minimal element, while
fori e {1,...,k+ 1} we define weakly minimal elements of the U;-orbits in Z;,
where each Uj-orbit in Z; contains at least one, but possibly more than one,
weakly minimal element. For ¢ = 0 the Up-set Z¢ is a Uy-orbit and Z is the set
of strongly minimal elements of =Z.

Let ¢ € {1,...,k}. By induction we may assume that we have already defined
the strongly minimal elements of =; ;. Let £ € Z;. Using the set of coset
representatives 7; we obtain & - U; = HteT,’f -t-U;_1 C Z;, where t runs

through a suitable subset 7, C 7;. For ¢t € T/ let {}70 € Z;_1 be the strongly
minimal element of the U;_1-orbit qi,i_l(f T Ui—l) = qm_l(g . t) Uiz €2
The set of weakly minimal elements of £ - U; is defined as q;il_l({ét,OQ teT'}) C
£-U; C =;. In particular, for 4 = 1 this means that all elements of =; are
weakly minimal. We choose one of the weakly minimal elements of £ - U; C =;
as the strongly minimal element &y € £-U;, and for each weakly minimal element
&g £ & € £-U; C Z; we store an element of U;, as a word in the set of generators
U;, mapping & to &y, while for the strongly minimal element &, we store a set
of generators of Staby, (&), again as a set of words in the set of generators U;.

Let finally ¢ = k+ 1, hence we have Ug11 = U and Zg41 = Q. The set of weakly
minimal elements of a Uy-orbit £-Uy C S, 1 is defined as the set ¢=1(&o) € &- Uy,
where &, € Gr+1.6(& - Uk) = qrug1,5(€) - Uy C Ej is the strongly minimal element
of the Ug-orbit qry1.%(§) - Uy C Zi. The set of weakly minimal elements of a
Uk41-orbit €-Ugy1 C Zg41 is defined as the union of the sets of weakly minimal
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elements of the Uy-orbits contained in & - Ug41.

By induction, for ¢ € {1,...,k+ 1}, each U;-orbit in =; encountered is enumer-
ated piecewise, U;_1-orbit by U;_;-orbit. Exactly the weakly minimal elements
are stored, where for ¢ € {1,...,k} we store the additional information as de-
scribed above, while for i = k41 we additionally store the information to which
of the U-orbits Qj, for j € J, the weakly minimal elements belong. Finally, we
store elements of G mapping the start point w; € Q to @; € QJ— cQ,forjeJ,
as well as elements of U mapping @; € Qj to representatives of the Ug-orbits
in ;. These elements are stored as words in the sets of generators G and U,
respectively.

During the enumeration of €2, for w € @ we have to decide whether we have
already encountered the Ug-orbit w - Uy C Q earlier. To do this, as in Section
(10.1), we compute w-u € Q, where u € Uy, is the element stored with gx41 1 (w) €
Ek if grt1.6(w) € Eg is not strongly minimal, or v = 1 if gri1 k(w) € Zj is
strongly minimal. If w-u € € is already stored, then we have encountered w - U,
earlier. If w-u € Q is not yet stored, then we store all the weakly minimal
elements of w - U C Q, which are again given as w - u - Staby, (&) C €2, where
Staby, (§o) is stored with the strongly minimal element £, € =) belonging to
Gk+1,k (W) - Uk C Eg.

(10.5)  Again, a few comments on this general strategy are in order.

a) Let ¢ € {1,...,k}. Deviating from the strategy described in Section (10.1),
we do not store the weakly minimal elements in =; in advance, and we even
do not store all of them. We only store those weakly minimal elements which
actually belong to ¢i+1,;© -+ 0 qg k-1 ° @r+1,6(Qu,). Such an element is stored
if a preimage of it is encountered during the enumeration of €.

b) To find the sets 7; of representatives of the left cosets U;|U;—1 of U;_; in
U;, for i € {1,...,k}, as a set of words in the set of generators U;, we proceed
as follows. Let Z; be the regular transitive U;-set, hence we have =) = U, as
U;-sets. For i = 1 we use a standard breadth-first orbit algorithm using U; to
enumerate the elements of =) =2 U; =: 7;.

Let by induction ¢ > 2. We enumerate Z, piecewise, U;_1-orbit by U,_;-orbit,
but using a left orbit algorithm. Let & € E! be fixed. Using the isomorphism
=, 22 U; of U;-sets, the element &; € =) corresponds to 1 € U;. Whenever we
compute an element £ € Zj, whose U;_j-orbit £ - U;—1 C Z} has not been en-
countered before, we store an element u¢ € U;, as a word in the set of generators
U;, mapping &; to &, where we let ug, := 1, and then enumerate the U;_;-orbit
&-U;—1 C =Z. Thus we obtain a sequence {ug, , ue,, ...} C U;, and the left orbit
algorithm is now performed by running through this list, multiplying from the
left with the elements of Uf;, hence forming successively the products u - ug,, for
u € U;, and computing the U;_j-orbits & -u-ue, -U;—1 C Ej. As Zf =2 U; as Uy-
sets, on termination the set 7; := {ug,, ug,, ...} C U; is a set of representatives
of the left cosets U;|U;—1 of U;—1 in U;.
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To actually do these orbit enumerations we in turn may use the strategies de-
scribed in Section (10.1) or in Section (10.4), for the truncated subgroup chain
Up < Uy <...<U;—1 < U;. Having built up the U;_;-orbit structure on Z;,
for i € {1,...,k}, this can be used to compute in Uy, hence multiply or invert
elements of Uy, and writing the results again as a product of elements of the 7;.

c) Let &y € E; be a strongly minimal element. A set of generators of Staby, (§o)
is found as follows. We may assume &; - U; = HteT; & -t-U;—1 C =Z;, where
7, C 7, is a suitable subset as in Section (10.4). If ¢ - u € Staby,(§o), where
teT;and u € U;_1, then & -t € §-U;_1 C Z;. Hence we only have to consider
the coset representatives t € T := {t € T;;&p -t € & - U;—1}. Conversely, for
t € T there is a uy € U;_; such that & -t - uy = &, and we have Staby, (§) N
(t-Ui—1) = t - uy - Staby,_,(&). Hence we have to find the sets 7,/ C 7T;,
the elements u; € U;_1, and a set of generators of Staby,_, (&), where we have
Staby, , (§0) < Staby, ,(gi,i—1(&0)), and the latter group is known by induction.

d) As we do not assume that a set of representatives of the left cosets Ug41|Uk
of Uy in Ugy1 = U can be enumerated explicitly, the machinery using regular
transitive sets described above cannot immediately be extended to U. Occasion-
ally, we use another U-set Zj_, ;, which we choose to be faithful, together with
randomised Schreier-Sims techniques, to obtain results on certain subgroups of
U, such as stabilizers Staby (w), for w € Q. This tends to be helpful to find
break conditions, where some U-orbit w - U C Q is too long to be enumerated
completely, but where it suffices to know some substantial part of it, see Section
(17.8).

e) If Q is a set of vectors in an FG-module V', where F'is a finite field, then again
a standard choice of the U;-sets =, for i € {1,...,k}, is as follows. Let Vi :=
V, and let §i+1,4: (Vit1)v, — Vi be homomorphisms of FU;-modules, let =; = V;
be the set of the vectors in V;, and let ¢iy1,i = (¢i+1,i)=01: (Bit1)v, — Eie
Furthermore, a standard choice of the regular transitive set =, fori € {1,...,k},
is a regular U;-orbit in the FU;-module (V;)y,, for some j € {4,...,k+1}.

(10.6)  The strategy described in Sections (10.4) and (10.5) has been imple-
mented in GAP, for Q being a set of vectors in an F'G-module V', where F' is
a finite field. We make heavy use of the fast arithmetic for vectors over finite
fields, available in GAP, which employs the techniques also used in the MeatAxe.
Altogether, the relevant GAP code implementing the hashing techniques, com-
putations in Uy using the regular transitive U;-sets, for i € {1,. ..k}, the differ-
ent necessary orbit enumeration algorithms and the randomised Schreier-Sims
algorithms, keeping track of transversals and subgroup generators as words in
the given sets of generators, amounts to some 2000 lines of GAP code. A more
detailed description of this, including some numerical considerations of memory
requirements and running times, will be given elsewhere [54].
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IIT Explicit results

For all of Part III, let A = 1 be the trivial character of the subgroup H < G
under consideration, and let K be as in Section 3, depending on the group under
consideration. We keep the notation of Sections 1 and 3. Occasionally we need
another subgroup H’ < H, where we keep the notation of Section 5 and let
N =1 as well.

11 The database

(11.1)  We have compiled a database containing the character tables of the
endomorphism rings of the multiplicity-free permutation representations of the
sporadic simple groups, their automorphism groups and their Schur covering
groups, see [7]. Up to now, there still is a single exceptional case, where the
character table is not known, namely for G := 2.B and H := Fis3. As some
partial information is already known, see Section (17.11), there is hope that
this case will be successfully treated completely in the near future, see Section
(17.12). Furthermore, an examination of the multiplicity-free permutation rep-
resentations of the bicyclic extensions of the sporadic simple groups currently
is under way [7].

In the present work we provide proofs for the cases for the sporadic simple
groups, their automorphism groups and their Schur covering groups where n =
|2] > 107, see Table 7. In Sections 12-17 we deal with the different groups G
and subgroups H as indicated in Table 7. But before doing so, in the remaining
parts of Section (11.1) we comment on the smaller cases, on earlier results used
and on the explicit determination of the Fitting correspondence.

a) The multiplicity-free permutation representations of the sporadic simple
groups, their automorphism groups, their Schur covering groups and their bi-
cyclic extensions have been classified in [6, 43, 5].

b) The work of systematically computing structure constants matrices related
to the sporadic simple groups and their automorphism groups has been begun in
[68]. In the thesis [32], which the author has had the opportunity to co-supervise,
these and other earlier results, scattered in the literature, have been collected.
Furthermore, the remaining cases of multiplicity-free permutation actions of the
sporadic simple groups and their automorphism groups for n = |Q| < 107 have
been dealt with. We comment briefly on the methods used in [32], which we
refer to for more details.

For the sporadic simple groups up to group order 10%, hence the largest one being
McL, and a few of their automorphism groups, the tables of marks are known
and available in GAP. Together with the corresponding table of marks, GAP
provides the smallest faithful permutation representation of the corresponding
group, given in terms of a set of standard generators in the sense of [81], and
for each conjugacy class of subgroups a set of generators of a representative
of this class is given as words in the set of standard generators. Using this
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information, and the programs dealing with permutation groups available in
GAP, it is straightforward to compute the necessary permutation representations
and sufficiently many of the related structure constants matrices. Thus by the
technique described in Section (8.2) the character tables of the corresponding
endomorphism rings can be determined.

For quite a few of these cases, this strategy is not sufficient. Instead we have to
apply other standard techniques from the MeatAxe to construct the necessary
permutation representations, such as finding orbits of vectors, as is implemented
in the ZVP program of the MeatAxe. Here we use the database [83] as a source
of explicitly given representations for the sporadic simple groups and related
groups, where these as well are given in terms of sets of standard generators
in the sense of [81], and as a source of words describing sets of generators of
maximal subgroups.

c) For the Schur covering groups of the sporadic simple groups, the correspond-
ing permutation representations have been constructed in [43], with the ex-
ception of the cases G := 3.Fiy, and H := O1,(2) as well as G := 2.B and
H := Fis3, and sufficiently many of the related structure constants matrices
have been computed [41]. For the case G := 3.Fi5, and H = Op,(2) see
Section (12.2), for the case G := 2.B and H := F'ia3 see Section (17.11).

(11.2)  We briefly comment on the cases in Table 7 related to Fiss, to Fisz, to
Coq and to M. Here, either explicit permutations are known, and hence all the
structure constants matrices can be computed using Remark (1.19), or part of
the structure constants matrices have been computed elsewhere. In all of these
cases the character tables of the endomorphism rings can be computed using
the technique described in Section (8.2), since the known structure constants
matrices are sufficient to get 1-dimensional eigenspaces.

a) Let G := 3.Fig and H := 2F,(2)’. By [43], explicit permutations are known,
as well as the character table of the endomorphism ring [41].

b) Let G := Fis3 and H := Sg(2). The index parameters and the structure
constants matrices for the two smallest non-trivial suborbits Q5 and Q3 with
ko = 2295 and k3 = 13056 have been computed in [42].

c) Let G := Fis3 and H := 21 Mss. The index parameters and the structure
constants matrix for the smallest non-trivial suborbit Q5 with ky = 506 have
been computed in [42].

d) Let G := Coy and H := 2178.0 (2). The index parameters and the structure
constants matrix for the smallest non-trivial suborbit Qs with ks = 270 have
been computed in [34].

e) Let G :=2.Co; and H := Cos. By [43], explicit permutations are known, as
well as the character table of the endomorphism ring [41].

f) Let G := M and H := 2.B. The index parameters and the structure constants
matrix for the smallest non-trivial suborbit Qs with ks = 27143910000 have



Table 7: Large multiplicity-free permutation representations.

|G |H | n‘ 7“|Section ‘
3.Fiyy | 2F4(2) 10777536 | 25 | (11.2)
HN | A, 13680000 | 19 | (13.2)
HN Us(8).3, 16500000 | 19 | (13.4)
HN.2 | Sy 13680000 | 17 | (13.1)
HN.2 | U3(8).6 16500000 | 15 | (13.3)
Ly 3.McL 19212250 | 8 | (14.1)
Th 3D4(2).3 143127000 | 11 | (15.1)
Th 25.L5(2) 283599225 | 11 | (15.2)
Fiss | Ss(2) 86316516 | 13 | (11.2)
Figz | 2M. My 195747435 | 16 | (11.2)
Co; 217%.07 (2) 46621575 | 11 | (11.2)
2.Co; | Cos 16773120 | 12 | (11.2)
Jy 211 Moy 173067389 | 7 | (16.1)
Ja 21 Mo 4153617336 | 11 | (16.2)
Fiby, | 01(2) 50177360142 | 17 | (12.1)
Fib, | 37.0:(3) 125168046 080 | 18 | (12.4)
Fif,.2 | 076(2).2 50177360142 | 17 | (12.1)
Fil, .2 | 074(2) 100354720284 | 34 | (12.1)
Fify.2 | 37.0(3).2 125168046080 | 17 | (12.3)
3.Fiby, | O1(2) 150532080426 | 43 | (12.2)
B 2.2F¢(2).2 13571955000 | 5 | (17.1)
B 2.2F6(2) 27143910000 | 8 | (17.1)
B 21422 Co, 11707448673375 | 10 | (17.2) fF.
B Figs 1015970529280000 | 23 | (17.6) ff.
2.B Figs 2031941 058560000 | 34 | (17.11) f
M 2.B 97239461 142009186000 | 9 | (11.2)
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been computed in [64].

(11.3)  The character tables of endomorphism rings Ex contained in the
database, and in particular the indicated Fitting correspondence from the char-
acters ¢ € Trr(Eg) to the irreducible characters x, € Irry(G) of the corre-
sponding group G, have been compiled taking the following point of view into
account.

If a set G C G of standard generators of G in the sense of [81] is given, then
the conjugacy classes CI(G) can be defined by giving representatives as words
in the set G of generators. Such sets of standard generators and definitions
of the conjugacy classes are available for the sporadic simple groups, their au-
tomorphism groups and their Schur covering groups in [83]. This hence also
defines the irreducible characters Irrg(G) uniquely. Note that the character
table X of Irr i (G) alone leaves ambiguities which are described by the group
Aut(Trr g (G)) of table automorphisms of Irri (G), see Definition (8.5).

To determine the Fitting correspondence, we hence first find all the admissible
candidate cases F = Fj using the technique described in Section (8.4). The set
F is a union of orbits under the action of Aut(Irrg (Ex)) x Aut(Irrk (G)), see
Remark (8.6), hence also is a union of orbits under the action of the possibly
strictly smaller group Aut(Irrx(Ek)). To obey the point of view introduced
above, we have to determine which of the Aut(Irrx (Ek))-orbits in F gives the
Fitting correspondence, but then we are allowed to choose freely within this
orbit. In particular, we are done if F consists of exactly one such orbit.

Actually, for a few of the cases dealt with the determination of the Fitting cor-
respondence in the above sense would pose rather hard problems. Hence we
loosen our assumptions as follows. Let {Hi,...,H}, for some k € N, be a
set of representatives of the conjugacy classes of proper subgroups affording a
multiplicity-free permutation character 1%. Furthermore, let Aut(IrrzH" (@)
and Aut(IrrK(EéH"')), for i € {1,...,k}, be the corresponding table automor-
phism groups of Irrif” (@) and IrrK(E;(Hi ), respectively, see Definition (8.5). We
consider the sets F* of admissible candidate cases for the Fitting correspondence
for the subgroups H;, for i € {1,...,k}, at the same time. Namely,

k k
(H Aut(IrrK(E;(H"))> X (m Aut(IrrzH” (G)))

i=1 i=1

acts on Hle F?, where the first direct factor acts componentwise, while the
second one acts diagonally. Still, we have to determine which of the orbits
in Hle F* under the action of the above group gives the k-tuple of Fitting
correspondences, but then we are allowed to choose freely within this orbit. In
particular, we are done if Hle F? consists of exactly one such orbit.

(11.4) We comment on the computations involved in the explicit determina-
tion of the Fitting correspondence. The most complicated case is dealt with in



85

Section (11.5).

a) Actually, for the cases dealt with the technique described in Section (8.4),
applied to a fixed subgroup H, rather often yields a set F of admissible candidate
cases consisting of a single Aut(Irrg (Ex))-orbit, or F even consists of a unique
solution. In particular, the latter case occurs if the degrees x(1) for x € Irrf(G)
are pairwise different. Furthermore, Corollary (5.13) and Remarks (5.15), (5.16)
and (5.18) can be applied to delete inadmissible orbits.

b) For the remaining cases of those groups G' whose tables of marks are known,
see Section (11.1), we use one of the faithful permutation representations of G
and the programs dealing with permutation groups available in GAP to find
representatives of the conjugacy classes CI(G), and to find the matrices I' :=
[[CNHgl;i € Z,C € Cl(G)]| € ZFIXICUN!  see Definition (3.19), explicitly. The
only general technique known to the author to find the numbers |C N Hyg;| € Ny
is to fix C' € CI(G) and i € Z, to run through the elements of h € H explicitly
and to find out to which conjugacy class C' € CI(G) the element hg; belongs,
using conjugacy tests in G. This admittedly not too clever strategy turns out
to be doable for the present cases.

This also works for G := HS.2, as the relevant subgroups turn out to be H; :=
5?2: [2°] and Hy := Mj;. Hence we have |H;| = 4000 and 71 = 15 as well as
|Hz| = 7920 and ro = 17. The transitive permutation representation of G on
100 points is available in [83], in terms of a set of standard generators of G in the
sense of [81]. Using the programs dealing with permutation groups available in
GAP, we find the subgroups H; and Hs, representatives of the conjugacy classes
CI(@), and the matrices I € ZZIXICHE)I,

The same strategy works for 3.Ms, and 6.Ms2, where we use the table of marks
of May available in GAP and the permutation representations available in [83].

c) Let G := Ru and H := (22 x Sz(8)): 3. By the technique described in Section
(8.4), we find 2 admissible candidate cases for the Fitting correspondence. They
differ in the preimages of 34944a/b. For each of the other subgroups H of G
affording multiplicity-free permutation characters, namely 2F(2)’.2 and 2 F;(2)’
the technique described in Section (8.4) yields a set F¥ of admissible candidate
cases for the Fitting correspondence, which is exactly one orbit under the ac-
tion of the corresponding table automorphism group Aut(Irr K(E;f )). Hence we
are allowed to use the action of the full group Aut(Irrk (G)) of table automor-
phisms on the set of admissible candidate cases for the Fitting correspondence
for Ex. Using GAP we find that the image of the action of Aut(Irrk (G)) on the
characters in Irr} (G) is generated by the element (34944a, 34944b). Hence we
are allowed to choose freely from the set of admissible candidate cases for the
subgroup H.

d) Let G := ON and H := L3(7).2, as well as H' := L3(7). For both cases,
by the technique described in Section (8.4), we find 4 admissible candidate

cases each for the Fitting correspondence. They differ in the preimages of
26752a%, 526680 € Irrg (ER) C IrrK(E}f'). Hence, as the assumptions of
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Section (5.15) are fulfilled, the Fitting correspondence for E}(H " is determined
by the one for EIl{H. As H and H' are the only subgroups of G affording
multiplicity-free permutation characters, we are allowed to use the action of
the full group Aut(Irryf (G)) of table automorphisms on the set of admissible
candidate cases for the Fitting correspondence for EII(H . Using GAP we find
that the image of the action of Aut(Irry¥ (G)) on the characters in Irr 7 (G) is
generated by the elements (26752a™,26752a~) and (52668a™,52668a~ ). Hence
we are allowed to choose freely from the set of admissible candidate cases for
the subgroup H.

(11.5) Let G:= HN and H := Us(8).31, see Section (13.4) and in particular
Table 17. By the technique described in Section (8.4) we find 16 admissible
candidate cases for the Fitting correspondence. These are given by

{¢s, 050} — {35112a,35112b}

{ps s} — {374528a, 374528b}
{o12, 120} —  {656250a, 6562500}
{13, 0137} — {1361920b,1361920c}

while for the other characters in Irr(Ef ), their Fitting correspondent is uniquely
determined and as shown in Table 17.

The group Aut(Irrg (Ek)) of table automorphisms of Irrg (Ek), being defined
by its action on the columns of the character table ®, is generated by the
set {(5,5"),(8,8"),(12/,12"), (13',13")}. Hence we have [Aut(Irrg(Ex))| =
16. The image of the action of Aut(Irrx(Ex)) on the characters in Irr(Eg)

is generated by { (s, @5 )(@s:, sr), (Por, por) (@127, p1217) }, thus the image has
order 4.

For each of the other subgroups H of G affording multiplicity-free permutation
characters, namely A2 and Aj; as well as 2.HS.2, the technique described
in Section (8.4) yields a set F* of admissible candidate cases for the Fitting
correspondence, which is exactly one orbit under the action of the corresponding
table automorphism group Aut(IrrK(E;f’ )). Hence we are allowed to use the
action of the full group Aut(Irrk (G)) of table automorphisms on the set of
admissible candidate cases for the Fitting correspondence for Fy. Using GAP
we find that the image of the action of Aut(Irrk (G)) on the characters in Irrj (G)
is generated by {my, w2, w3}, where m1 := (35112a, 35112b)(374528a, 374528b) as
well as my := (656250a, 656250b) and 75 := (13619200, 1361920c¢).

Hence we may choose the Fitting correspondence, using Aut(Irrx (Ek)), to be
@5 > 35112a and @5 +— 35112b, and using Aut(Irr (G)) we may furthermore
choose 19/ +— 656250a and 19/ — 6562500 as well as 13 +— 13619200 and
137 — 1361920c. Hence we have to decide whether g — 374528a or g —
374528b.

Using Proposition (4.6), see also Section (8.1) and in particular Table 6, we find
the Krein parameter ga 5 8 = m # 0. Furthermore, using GAP we find
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that the tensor product 760a - 35112a of irreducible characters of G decomposes
in Irrx (G) as

760a - 35112a = 3344a+ 2-35112b + 267520a + 270864a + 374528a+
1185030a + 1361920a + 1575936a + 4561920a + . . .,

where we only give the constituents belonging to Irrj, (G). From this we conclude
by Proposition (4.8) that we have @g — 374528a and @g» +— 374528b.

12 The Fischer group F'i),

(12.1) Let G := Fi,.2 and H := 07,(2).2, as well as G' := Fi}, and
H' := 07,(2). We have » = 17 and ' = 34. The conditions of Remark (5.16)
are fulfilled.

The index parameters and the structure constants matrices for the two smallest
non-trivial suborbits Qg and Q3 of Q := H|G with ko = 25245 and ks = 104448
have been computed in [42]. Using the technique described in Section (8.2),
where these structure constants matrices are sufficient to get eigenspaces of

G
dimension 1, we obtain the character table of Fx = E}(H as given in Table 8.

’

G
By Remark (5.16), E}(H' and Fx have the same character table. The Fitting

/

correspondents for E;{I " are given as the restrictions (x,)c/. Again by Remark

G
(5.16), the character table of E}f' = E;(H' is determined by the character table
of Ex. As the general pattern of this is shown in Example (5.17), the character
table of E;(H " is not shown here.

(12.2) Let G := 3.Fi5, and H' := O,(2), as well as H := Z(G) x H' =
3x075(2). We have 7’ =43. Let X = 1 and let A5 € Irr}(H' (H) be as in Remark
(5.18).

The splitting of the suborbits ¢ € Z, the index parameters and the structure
constants matrices for the non-trivial suborbits €,,, Q.. as well as Q), and
Qf, Q4 Q4 on Q = H'|G, where 1,3 € Ty, but 2 ¢ Z,,, with k], = 1,
kf, = 75735 and k%, = 104448, have been computed in [41], using a technique
similar to the one employed in [42]. Using the technique described in Section
(8.2), and these structure constants matrices, we obtain a splitting of K 1xr!
into 39 eigenspaces of dimension 1, and two eigenspaces of dimension 2. One
of the latter is contained in the K-span of Irrx (Ex?) C IrrK(E}(H’), while the

—1
other one is contained in the K-span of Irr K(E;}d ) C Irr K(E}(H ). Employing a

technique similar to the one described in more detail for an analogous situation
in Section (12.3), we also find the splitting of the eigenspaces of dimension 2.

By Remark (5.18), to describe the character table of E;H/, it is sufficient to
give the character table of E}(H , see Table 8, and the character table of E;?, see
Table 9. In the latter character table we have made the following choice for the



38

=05,(2).2.

.2 and H :

24

= Fi!

Table 8: The character table for G :

0798 082LT— 082LT 08886 — 026T— 021GT 8€eT 0798
082LT— 96245 9L£67— 0Fv6T 88T — 9€66 2L9TT— T169—
€8y — 9T¥9T 088TT— 07 V6T 0969¢ 96105~ RGT e169—
8T6VY ¢169— 9€6£9 2egeT— 967V L— 919G~ 9G8LT— e169—
0021ST 08028 — 09L0G— 09LLL 0808G— 08652 — 9€L0— 0798
918017 008ZLT— 08709— 0FV6T 9609¢ 798G — 9L6VT 61VC
7902GT— 790251 — 9€6£9 9TPVeT PevLIT STIVE— ze1t T169—
TTe6E— 82699 02L6LT 07089— 00078— 8286 9€6L9— 07208—
096245 706€9 082LT 09€G68—  9TPOTE—  09602T— 91899 722001 —
280805 — 619GV 02110G 0VO6¥T—  008299—  T6T9GY 7OVeT 02169
9CTL9S— 02GL8G— 082599 02EVPS—  SOFT9S 70£0T 958191 959292
PPSEP09—  009€L0T 082G99—  096867—  9LGOSVE 9L12T0T 9L6STEC  SVTLETI—
02L996ST—  0PZ0S0L 008006T 009GZF T 009£T6S 09T89T 9,£696—  00SSIFT
0266829—  0968STTT 009LLECT—  00TEVYS 0009L£G—  0CIE6E€—  TSTI9TE  00T6TVT
09£€86. 9T890LFF—  0CZIL6TL—  OFO6TTOS  96FOSLOT— OFTHSZIT  9TS0LEC  FVLESGI—
969€.G80T  FFEISFEE—  0SOSLPO6— 09S8G8L9— 096FCFOS  VEPEPILE  9T9G608T— CIT06CE—
09ET6LILELT 0S00£0VEIZT  00VOPTSETL 00SPSISTHSG  OFFLETLFIC 0969€LG80T  ZIL6S06LS  09680CE9T
| LI 91 g1 Al g1 z1 11 01

0912— 0¥2e 080T— 087— SCLI—  08L—  SF Gp— 1| +P89GTILIOLT | LT

798— 8C18— 8709 TLoS—  TeV— 61 S €9 T || +PGL299TPO6ET | 9T

0765 Vv 8TLI— 9LLT—  9GFE o€ 92— 66— T || _PFFLEO66ITOT | ST

120€ eyl 09GL— 08¥2T 9cre 08.— 8 18€ T | 4+PSgeecosoze | I

0866T—  0TL0T—  0Z€F— 02€0T aLy 0TTT 88¢ gIe— T | —PP9S0069VET | €T

009T¢—  OFEC TaLy 78¢ 9T9—  000€ 918— 6. T || +PT69ESTOFST | @l

09L£7 P760— 918T¢—  8¢%9—  CI69— 96T 216 ILT 1| +PGg0STOR9ZT | IT

08LLS 2e89— 021ST Pr6VE 2€99T—  08LT 80L—  6€9— T || _PTIIR60STH | OT

0912~ FOTTIT 98197 0CLO0S—  STLT—  OVEVT  2L0€  Sh— T | +PELETST6L 6

0879 TeIG9—  OFSTET—  9G0L6—  S¥SIT 08661  889Z— 68T— T | —PSYLEGSSY 8

0826LT 02SGL—  9T86CT  F0€9C 962SG 0200T  9LLT 618 T | 4+PGPIEL8SE L

0082TL—  09695C—  C19S8C ¥R668F  99CFT—  00¥9%  9SGC—  6L0C T | +PEESI99T 9

000Z8LT— OF989TT  00ZSLT  O0Z6LES  PT0LG— 0019  ¥PS8  C8¥I— 1 | —PI199GS g

00Z1TEC  0999¥C 00¥20E—  0TL86L  TI199C— 00€LZ  ¥99S  G6IE€ T || 1PSCV6VT ¥

OPP6E9T  FSLZOTF  9T0SG6T  0Z6GFI— TSTGPT  OPLGPT  2GL9T  GGLT T | +PLLPLG ¢

OVOLFST  OTFOPET— ST6T6EE— T2I0T0Z  9EE86L  0SOLST  9S0€T— 6V0S— T | —PT1L9S 4

009TSSE6T  0STEETLOT  0998G8L9  0ZTLG6SY  9LEELLTT  0080LGT  SFFFOT  GP2Se 1| 47T 1

6 8 L 9 G v € 4 1| *X | 4
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i€ 0‘1?,1{@)7 for i € Z),. As we have i* = i, for i € Z, see Section (12.1), we
conclude that the pairing *: Z' — Z’ leaves the sets ;s ;; (i) invariant, for i € Z.

Hence for each i € Ty, we may without loss of generality choose i’ € a;ﬁ} (0
such that i* =4 and ¢"* = ¢

(12.3) Let G := Fi},.2 and H := 37.0(3).2. We have r = 17.

The index parameters and the structure constants matrices for the two smallest
non-trivial suborbits Qs and Q3 of Q := H|G with ks = 1120 and k3 = 49140
have been computed in [42]. Using the technique described in Section (8.2)
and the structure constants matrix P3, we obtain a splitting of K'*" into 15
eigenspaces of dimension 1, and an eigenspace of dimension 2. The struc-
ture constants matrix P, does not give a further splitting. As the charac-
ters in Irr}((G) have pairwise different degrees, the Fitting correspondents of
the characters in the 1-dimensional eigenspaces can be determined by Section
(8.1). From this we conclude that we have found the irreducible characters

{01,305, 07, ., 15,017} C Irrc (Ek¢ ), see Table 10.

A K-basis for the 2-dimensional eigenspace is given by {11,15}, see also Table
10. As we have pg(a1) = p16(a1) = 1, the missing characters are given by ¢ =
Y1+ as and @16 = Y1 + bipg, for a,b € K. As all values of x,, = 79452 373at
and x4,, = 17161712568a™ are rational integers, by Proposition (3.20) we have
a,b € Q. By the first orthogonality relations, see Proposition (3.8), we obtain

ki B XS‘JG(l).

2 (Y1 + aya)(ay))? n

This leads to a quadratic equation for a, with coefficients in QQ, which turns out

to have the solutions a = 2916 and @’ = —%. As @’ leads to a character whose
values are not all integers, by Proposition (3.10) we have g = ¥1 + 2916 - .
An analogous argument for 16 yields b = —108 and b = —2;1#, and thus

p16 = Y1 — 108 - 3. The characters g and 16 are also given in Table 10.

(12.4)  Let still G := Fi},.2 and H := 37.07(3).2, as well as G’ := Fi}, and
H' :=3".07(3). We have 7’ = 18 and r = 17.

Note that the condition on the KG-constituents of 1§ and (17)% in Remark
(5.16) are not fulfilled. We may identify H'|G" with Q := H|G. As the ranks
of the G’-action and of the G-action on Q are ' = 18 and r = 17, respectively,
the G’-suborbits and the G-suborbits on € coincide, except exactly one G-
suborbit which is the union of two G’-suborbits. It was shown in [42] that the
G-suborbit 15 splits into G’-suborbits as Q15 = Q15 U Qu50. As H' < H, the
group H interchanges the H'-orbits Q15 and Q15~, and for the index numbers we
hence have k15 = k150 = k—é‘” = 9183 300480. Using the above identification,

G G’
analogous to Remark (5.16), we have an embedding Ex = E;(H — E;(H’ of
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and H := 3 x O7,(2), where

24

!

= 3.F%

Table 9: The character table for G

A

= As3.

08€25— 0816 0987 91992 — VLVTT 8869—
07056 0zET 08886~ F99LT 9GTPT—  STLI—
96295—  09CFE— FOTTE 9.57T 816 FTseT
7O8VCE  00CEV 969£E— 9290. 9T1zLe—  VESel
9L68GT—  00TEV 0967LT 89€8G— 09€G7—  TESET
OTzETG—  OFFEL 095GHT 7€9LE— 89T 8V80L—
08TLT 009LET 007761 09689T— 0CLTLT—  OV0S6—
9LETOF—  09L€€8—  OPSIG— 808¢STC 87918 2E0T6T
09L120C— 0960VLI—  OV9ZIVI—  SF09ZOT—  OV0S9 8TLT
POGL6TT  00C€99T—  OFSS661—  CE0SSTT 08896FT  9E6S67—
0FZOFES— 0096281 008968G  0T66006T  000£0TS  0STG99
09TSSE6T  096FFCSE  0T666S0C— 96999L9€—  ¥8L8LIOT  CSTSOVY
0SF89STHS  008S61922— 00STETEEE  0T66VS09T— OFSLSLIOT 0STSTTS—
| L1 A1 1 £1 2l 01

vove—  vOVT 9L9C—  9LET 0ge—  0€ 1 [ »poTTG29601C | €1

969¢ ¥20€ ¥92€ V98— 09—  OFe— T || DL6VS6FIT0ST | T

4L PrEL— 9geT 9G¥E—  @6V— 26T T || P9GE0L09TLOT | TT

89L9T— 9699 7866— 798 896Z  TI6 T | POZSSPESIST | 0T

TLOV—  9€66— 9T0FT— 091¢—  OVES  POTT— T || P960LILOSOT |6

9€€0L—  0TESS PPE6F  STEST—  09ZF  9€€ T || PILSERSE0T | 8

0089€  OFCLG— 0266V  SS9FT 008y  FOLT T | PI9P6T0S6T | 2

950£5—  00FZE PP690T  T6EL9  098L  TOTT— T || D6LS6LLEY |9

OPFT9Z  S9€T6 OVCeh— ST€€e—  OVere  OFFF T || POSLVEO6T g

TIGTFI—  9LE66T—  ¥8LYT 0vETE  ¥86E— T | P60STELI i

009L66T  080€0L  0Z66V 0206  000FS  SOGIT T | PESTI0E ¢

PPIV69—  9€6CEET— TOSEE6  FTFETF— 09468  09T8— T || PFSGHI e

0029GL9T 0TETSPS  0TETLST 9EES6L— 00LT6E  T06GE 1 || PESL 1

8 L 9 g ¥ £ 17X E




91

Fil,.2 and H := 37.04(3).2.

Table 10: The character table for G :

06 078— 0zL 09¢— 8T 0vZ 0¢
: 087.8— . . 88¥2S 09LLL OVLET—
02L6— 0v2E 09LLL— 0888¢ P¥50G 0¥S1G 08697 —
0V729¢ 0269£5— 0896608 09L670T— 926701 009LLL OFLEY
08286 . 08097 — 072e 9T2LT— 0910z— 02201 —
8080TT— 9L028— TIEE6 810eE— 0289 0VV6T 9162~
70691 V8762 880101 . : : 89685
AR 9ve8L— zE]S 8V9T8— 090201 07089 92TTH—
02TH05— 07089 95997 962€£9T 87918 — 9L6TL— TYSTL
918G, 09€92T 082££0— 0F99TT F0E8CI— 80829 098%
09162 02690T 082E£ET 0F99TT— 9191¢C—  8TLLIZ—  89ZF9T
PY€T89 912020~ . 9L120C— 2e9TST—  9L1203—  O0SIE9—
CITL69T 825678 8966€T gIES90T—  $92€0E 028GeT—  TIGO6T
82€0TEC—  TE80TLT 8VCELE SVCELE 70£8TT 00888¢ T8/THT—
080L£8T—  TE09LLZ—  9T96L9T C19T6G¢E PY6TIC—  T699%E—  SV6T6G—
0269€52— 009806 078669 0V28E8C—  9LETLTT 09TFF2T—  0C9TIS—
SOVOLLY—  TGEVHITI 7662990~  TE9S0T6T—  OT8CGG6—  OFIVOEST  T6TSTICT
091GE20T—  0C68TGLE—  0STISSIS—  0F90F60¥ 9TZL8LLL  00V9ZE0E—  OVETTVETE
08VTZ00ETES  0S|TFECTTEE  09600999£8T  0T6TISGLYST 7982007969 0F90ZS8STS  098L99T06T
| L1 91 g1 1 1 g1 1
06 0r— €9 o1— ! &
0v2E 0801 — 1999 08¥9—  OFPI—  098— 0. 00g  0F— I I
0879— 0vzE €ve— PRIG—  OFPI—  098— 29T 005  OF— T +P89GZILIITLT | 9T
08959¢ 0ZLLTT—  69T06T  TLPIP—  OPPI—  09€—  98I€  00€  OF— T | 4PELECSYEL 9
089T— : L16C 72e— 0¥2e v ovTI— - 1 || r16v9807€TIC | L1
PI6T— 26901 18TC—  T65C 91 8RIT—  98F—  9€ P T | 4+P02669€890LT | GT
: 8286— 65TE— . 962, QLe— 8c— 1 00ZTLTESSTE | 7T
912.LT 8€6L— L9L9T—  TL06 PrGG— 88 PEIT  ¥62— ¥I T || 1POROSLEGLLSG | €T
¥20€ 78LGE G19g g61¥e—  CITFI—  ¥0S z88 ¥8—  9¢ T | 4PST606VESTE | 2T
ze0eT 7eees—  GYog RIS 89TE—  9¢€6 0L2— 88G¢  ¥OT T || 1PGeeecosoze | 11
FO9TT 8TIL— 6108—  9€L0C TLvS 918¢—  ¥GLT  TEL  OF— T || 1PGZ0STOV9ZT | 0T
PYG0G 6€L9 LLY6 969¢€ vOvge—  8gLT  @8LI— 89F  F9— T | +PGLITGG690T | 6
960TFC—  0FZE L929T—  9€L03—  S¥09 7929 PEIT  FEel  ¢ST T || +P9LLOSETSE | 8
9LTF9E— 0091 €SYPIT  ¥ESTEl  29660—  PRLE  FE8E 99— g€ T | 4+P9g089TZIT | L
87918 0912.LZ 6LILE—  TEVFE 7O880T  PHIST  2OFE  CLLE  ¥EC 1 || +PST69ES0V g
0vvERE 09701 629E.L 89GEG—  00SF9 0Z€ET  C2€C 022 00T T | +DSPIEL8GE ¥
PRLOVEE  0TG86LS €678 PRLILY  QPPEI®  FOTOL  ¥E00T  ¥R9L  ©6E T | 4PSST6TT ¢
089T08F  0TEEIY—  GIOVISE  SOVLIOT  09T9G 09T62— 992T€  006€ OF— T | +DLLFLG 4
02L9L86CF 0SFFRGO8C  LG6G8LIZY 9689TELG 08FSCZIC  0SFII8  299GL% OVI6Y 0CIT T 471 I
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K-algebras given by, for j € 7,

1€,
a; ", it g # 15,
o
J ’ ’
G G
1I—I 1H

a ) +ogl, if j=15.

G/
Furthermore, we have (x,,)c € Irr}f/ (G") for i # 14, while x,,, splits under
restriction to G’ as (xe,,)ar = 10776 585600a + 10776 585 600b. Using the
Fitting correspondence, see Proposition (2.7), for KG and Fx as well as for

’

el G .
KG' and EZ", we obtain Irrg (E2) = {ohi € T,i # 14} U {@ly, @}
G/
where for ¢ € Z\ {14} and j € Z\ {15} we have 4,0;(04;”') = ¢i(e;). Furthermore
we have, for j # 15,
/ 12’/ / 1?1,,
P1ar (%‘ ) = Plar (O‘j ) = ¢p1a(ay),

and using the first orthogonality relations, see Proposition (3.8), with respect
to ¢! we obtain, for i # 14,

el el
17,

14, wi(ais)
802(0‘15 ) = <P;(O‘15“) == .

2

Finally, we have

el el a’ a’

17, 17, 17, 17
P (o +a ) = Pl (f + aifl) = pra(ars) = 101088.

Again using the first orthogonality relations with respect to ¢}, where now
Xe14 (D)
Xe, (1) = Xy, (1) = =24

’ !
15 1% .
O (aq’) and @40 (g F'), which leads to

, we obtain a system of two linear equations for

el a’

{Dh 4 (0B), @y (0 )} = {—112752, 213840}

’

G
This determines the values of the characters in Irrg (E;H ") completely. The
Gl
character table of E}(H " is shown in Table 11, where the latter character values
are indicated in bold type.

13 The Harada-Norton group HN

(13.1) Let G:= HN.2 and H := Sy1, as well as G’ := HN and H' := Ay;.
We have r = 17.
Let Q := H|G. As n = |2 = 13680000 is small enough, using GAP, we

construct explicit permutations for the action of G on . Let additionally
H := S5, where we have H < H < G and [H: H] = 12. Let Q := H|G, where
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Fil, and H' := 37.07(3).

Table 11: The character table for G’ :

08286 070£T— 070€5— 072 9TCLT— 0910%— 0220T—
02L6— 07ze 0888¢— 0888¢— 0888¢ 750G 078TG 08697 —
8080TT— 9,026~ 9599¥ 9599¥ 870eE— 02€8G 0PV6T 9167
F069LT— Qe TSLTIT—  OPSEIT . : : 968G
70691 — PRV6¢ 0FSEIT 2eLTIT— 8968
20T 97E8L— 916 916 87918 090201 07089 9CTTI—
08T70T— 07089 8TEET 8TEET 962€9T 8F9T8— 9,62~ P87L
918G 09€92T 0¥99TT—  OF99TT—  OF99TT F0E8CT— 80229 0987
09162 02690T 0¥99TT 079911 0799TT— 91912~  STLLIG—  89THIT
€289 921202~ : : 9L1208— TE9TST—  9LT205—  O8T€9—
CITL69T TG6V8— 78669 78669 TIEC0T—  $92E0€ 02SGGT—  TIG06T
8CE0TTC—  TE80TTT 729981 729981 8TTELE F0E8TT 00888¢ TV —
077292 0869£SC—  09L670T 09L670T 09L670T—  9L6¥0T 009LLL 07LEY
0S0LE8T—  TE09LLT—  S086ES8 8086¢8 C1GT6GE VY6VFC—  T699%E—  STEI6G—
0269£92—  009806F 02667¢ 02667¢ 0VZ8EST—  9LETLTT 09TFFCT—  0C9TT8—
SOVOLLY—  TGBVIIT 96V9ZEST—  O6F9ZEST—  CES0T6T—  9TSTCG6—  OFOP0ESE  ©6CSTIT
09TG€T0T—  0T682GLE—  OF90¥60F—  OF90F60F—  OFI0T60¥ OTCL8LLL  00F9ZE0E—  OFETTIEE
08¥1200822S  0SSTYEETEEE  0SVO0LEST6  0STOOLEST6  0TGTISSLYST  F98T00¥969  0F90TSSSTS  098L99T06T
[ L1 91 ST 1 1 e1 1 1
089T— L16 20— 0722 Ty 0vT— 1 || p1679807€erS | L1
0879 0v2e S PRIG—  OFFI— 09— 29T 00¢  OF— T | PS9GEILIONLT | OT
Pr6T— 26901 181C—  T69C 91 8QTT—  98F—  9¢ ¥ 1| P02669¢890LT | ST
: 8C86— 6e1e— - . 962 gLe— - 82— T || 900998G9LLOT | ,¥T
RC86— 6918 962 8LE— 82— T || 00998G9LLOT | T
912LT 8E6L— L9L9T—  TL06 PPeG— @88 VEIT  ¥6— ¥T T | POSO/LEGLLG | €T
720€ RLGE a79¢ ¢6T¥C—  CITFI—  0G 288 78—  9¢ T || PSg6067ESTE | ol
2e02T Teees—  Gog PRI 89TE—  9€6 0Lc— 88¢ 0T T || PGgeecosoze | 1T
79911 8CTL— 6108—  9£L0C dhge 918¢—  ¥G.C  ©E€L  Ob— T || PS20STOR9ZT | 0T
PS0G z6€L9 LLV6 969¢¢ ¥Ovee—  STLT E8LT— 89F  ¥9— T | PGLITSG690T | 6
960TFe—  OFCE L9L9T—  9€L00— 8709 7929 PEIT  FLel  ©ST T || P9SLOSETRT 8
9LTP9E—  009TC €SPYIT  VeSTel  ©966c—  TRLE  FE’E  9€9— € T || P9S0S9TTIT L
089597 0CLLTT— 692061  CLYIF—  OFFI—  09€—  O8T€ 006  OF— T || PELETST6L 9
87918 0912.% 6LILE—  TEVHE FO880T  FRIST  COVE  ¢LLe  VeT T | pee69esor G
0vvEre 09L70T 629¢.L 89GEG— 00879 0C€eT  Teee  08ge  00C T || PGPIEL8GE ¥
7RLOVEE  0TS86LG  €6T98 PRLILY  STREI®  FOT9L  PE00C  FH9L  T6E T || DRGT6TET ¢
0%9T08F  0TEE9Y—  699FISC  SOPLIOT  09TIS 09T6c— 992T€ 0066 OF— T || DLLVLS z
0L9.S6TY 0STFPREIST  L6GSLIZY  9689TELS 0SPSTEIZ  0SPII8 299G OFI6Y 0TIl 1| »I I
01 6 8 L 9 g ¥ ¢ e 1] *X | &
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HN.2 and H := 512.

Table 12: The character table for G :

08 09€ 00c—  0S—  00I— 89— G 0h— 2T T | +P96290¥ | 0T
: . 02— 08T 08 zL - 8T— T | +P0GLSOE | 6
08T ovs—  0gp 0ST— 09 8T—  gF— 09 ar 1| +pozeLoz | 8
0GL— 006 0ST— 00T— S0T— G2& - 8v— T ¥eeoL | L
026T— 091 00T  00£— 00F €9  SST  OFG— @9 T | +P6269T |9
0c6T— 0821  099T— 006  00F 88—  GIG  0SF @8  T| +P0OI68 |G
0882  09TZ— 006— 00  002— GCEET  S6F  Ove &l 1| +oppee |7
0879  0SSTT— 0967  00TT  SSTT— GSPT  080T— €T T | 4+109L ¢
08TLT 0G8PT— 0066— O00FF  @6L  GLVC 86T— T 992 4
08829¢  0P9ZEE  0SSTIE  00£69  00S0€  TE99T  G6EOT OF0S 9% T || 42T T
Lot 6 8 L 9 g v 3 4 1] *X 2
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G
n = 1140000. The character table of E;(H as is contained in the database, see
Section (11.1), is given in Table 12.

Let G C G be a set of standard generators of G in the sense of [81]. We start
with explicitly known permutations for the action of the elements of G on
available in [83]. Using the randomised Schreier-Sims algorithm implemented
in GAP, keeping track of transversals and subgroup generators as words in the
given set of generators, see Section (10.6), we obtain a Schreier subgroup chain
of G and a set H of generators of H, given explicitly as words in G. Restricting
to the smallest non-trivial suborbit Qs, where ko = 462, we obtain a faithful
permutation action of H. By a random search we find a subset of H, again
explicitly as words in the set of generators of H, generating a subgroup of order
39916 800 = 11!, which we hence may choose as H = Sy;. Using the programs
implemented in GAP dealing with permutation groups, explicit permutations
for the action of  on the set of right cosets Z := H|H of H in H can be
determined.

Let {gi;i € {1,...,7}} be a set of representatives of the right cosets H|G of H
in G, where g := 1. Let {hj;j € {1,. [H H]}} be a set of representatives
of the right cosets H|H of H in H, Where hy := 1. Hence we obtain a set
of representatives {h;gi;j € {1,..., [H.H]}J € {1,...,n}} of the right cosets
H|G of H in G. Let m5:G — S5 as well as e H — S[H:H] and mo: G — S,

denote the group homomorphisms defined by the action of G on €, by the
action of H on Z and by the action of G on €, respectively. As noted above
both 7 and 7= are given in terms of the sets Q and H of generators of G and
H, respectively. Explicit permutations for the action of G and of H on €2 are
obtained as follows.

For g € G as well as i € {1,...,7} and j € {1,...,[H: H]}, let i’ := i - 74(g)
and j' == j-7=(g§; - g+ §;'). Hence we have ngl g=h- l}j,g,»,7 for some
h € H. Thus m(g) can be determined from g, (g) and 7=, where we have to
write g; - g - g;,l € H as a word in the given set H of generators of H. This
can be done in GAP using the Schreier subgroup chain of G obtained above,
containing the transversals and subgroup generators as words in the given set
H of generators.

Hence we are prepared to apply the ZKD program in the MeatAxe, see Section
(9.1), to some arbitrarily chosen elements of G. Using Proposition (9.6) and
Remark (9.7) we obtain some of the structure constants matrices P, for some
k € Z. Using the technique described in Section (8.2) and sufficiently many of
the P, we obtain the character table of EFx as shown in Table 13. Rows and
columns have been reordered and column indexing has been adjusted to exhibit
the phenomena described in Section 5, see Example (5.14), where the character

G
table of E,# is given in Table 12.



96

HN.2 and H := Sll~

Table 13: The character table for G :

08% 087 — 007 007 —

08T 08T— : :

96— 9.8 800T— 8001

0ze—  0z€ 007 — 00

08¥ 087 — 0021 005T—

0VFI—  OFFT 02 0gL—

0800T  0800T— 0025%—  003S%

088 08 02EY 009T—  008—  009— 002T—

: : . 09T¢—  080T—  091% 096

086T 08T 08%9—  009€ 008T 008T— 009

06—  0cL— - 0022 009€ 008T—  00gI—

0211¢— 0C6T—  0T6T 0078 00gF 0096—  00S¥

0CT1— 06—  09€CT 002€T—  0099— 00801 0087

089T¢ 088  0869%— 00ZL—  009€—  009€ 00792 —

082TL  08¥9  09GCHI— : 0076¢  00Z€T

08006T  0SZLT 0088TT— 0076S— 0088TT— 008G

080T66€ 08829¢ 089166€ 008¥6FC  00VLFET  009TES  00969€

| 01 01 6 .8 8 L 9
88— 00T gI—  0ST 0ST— 8 8— I— 1 | +posz8Lse | LT
gsc  0ST— g0T— 0ST—  0ST /% 8y—  I— T || +P089LOVE | 9T
: I FRI— ST /T— 9¢—  9¢ I— 1 || 4po00cLeg | T
61 00F— 80¢  0¢ 05— ¢1—  al I— T || 108F1€0C | 71
89T— 00T 89 09g— 0S¢ tL— oL I— T || +P0€0S8TT | €1
8¥9— 89F 08T 06— 06 ) ¢l— 1— 1 | 4vgzieg9 | ot
82Ge— 001¢  8¢PT  0S0T—  0S0T 89T 89T— T1— T || 47S0%6 1
07— 0FE— 89— 09 01 08y—  al ¢l T 1 || 12962907 | 0T
gey  09¢ gl 0sF— 06— 80T— 80T— TIT T | 4+P0GLS9E | 6
80T— 06—  8I—  0SF— 06—  0CL ) ) IT T | +pozeLoz |8
89—  0¥S— 80T— 0S¢ 0SF 88¢— 88¢— IT I Vool | L
g6LE  09T€  ©€9  0SCT  OT€  088— L&  GTlE IT T || 4762691 |9
82G—  OFF— 88—  0STC 080T 096  ¢6F  @6F 1T T || 1POT68 g
g66L 0999  TEET  0S6¥ 066 088  TL ) T T || 4o¥¥ee ¥
8CTL— OF6G— S8IT— 0G8¥T 0.6 096¢T— T6L  T6L IT T || 42092 ¢
geLy 0966  ©6L  0SL¥G  0S6¥ 8RTT— 88TT— TIT I 99% z
€666 09168  ©E99T 0S6E0T 060 08¥09  ©LLE €Ll TI1 T || 471 I
wS 48 /S uv i /£ 4G /C ul 1 __ X _ ¢
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(13.2)  Let still G := HN.2 and H := Sy, as well as G’ := HN and H' :=
A1, and H := S15. We have ' = 19.

A H'|G' can be identified with Q := H|G, to determine the character table

Gl
of E;{H' we also use the explicit permutations for G obtained above. Sets of
generators of G’ < G as well as of A1 @ H' := HNG' < G’ and of H' < H',

given as words in G, are available in [83]. Hence the same technique as used
G/
for the character table of Fx yields the character table of E;H'. It is shown in

Table 14, where r5 := /5 € R.

Alternatively, we could also apply the technique used in Section (12.4), for which
we need to know which suborbits of Q split. As we have [H: H'] = 2 as well as
r =17 and v’ = 19, there are exactly two of the suborbits of the G-action on
which each split into two suborbits of the G’-action. To find out, which suborbic‘;cs
split, we also identify H'|G’ with Q, and compare the character tables of E;H ,
o
see Table 12, and E;{"7 which is contained in the database, see Section (11.1),
and has originally been computed in [63]. We find that the suborbits Q5 and Qg
split, see Table 12. Hence we conclude that the suborbits 23, and Qg split, see
Table 13. The relevant character values are obtained as in Section (12.4) and are
indicated in Table 14 in bold type. In Table 14, rows and columns have been
reordered and column indexing has been adjusted to exhibit the phenomena
described in Section 5.

(13.3) Let G := HN.2 and H := U3(8).6, as well as G’ := HN and H' :=
Us(8).31. We have r = 15.

Let G C G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible FoG-module V' of Fa-dimension 760 available in [83]. The subgroup
H < G is a maximal subgroup of GG, and H' < G’ is a maximal subgroup of
G’. A set of generators H of H and a set of generators G’ of G’, both given as
words in G, is available in [83] as well. Using the MeatAxe, a set of generators
of H', again as words in the set of generators H of H, can be found.

Using the MeatAxe, we find that Vg has a uniquely determined trivial Fo H'-
submodule. Hence, if we pick the vector 0 # vy € Vp in this submodule we
conclude that there is a G-set isomorphism between the G-set vy, - G C V and
2 := H|G, where the latter can also be identified with H'|G'.

We apply the technique described in Section (10.3) for U = H’, where Uy < U
is a cyclic subgroup of order 21. The FoU;-epimorphic image V; is chosen to be
isomorphic to V; = 6a & 6a, where 6a is one of the irreducible FoU;-modules of
Fo-dimension 6. We find the orbit counting numbers for the elements of G’ with
respect to 0 = HjeJ Qj first, using the notation of Section (9.8), and using

the set of generators H of H yields the orbit counting numbers with respect to
Q= HieI Q.
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= A

HN and H' :

Table 14: The character table for G’ :

08¥ 08v— : ‘ 00% 00%—

08T 08T— : ‘ :

9LG— 9.8 : : 800T— 800T

0%e— 03¢ : ‘ 00%— 00%

08¥ 087 — : : 0031 0031~

oVPI—  OFFI : ) 0% 02—

0800T 0800T— ° ’ 00%S%—  002ST

088 08 091% 091% 0091— 008— 009— 00gT—

: : : : 091%— 080T—  091¢ 096

0861 08T 0veE— 0vge— 009¢ 008T 008T— 009

06L—  0CL— 910912 910912— 0022 009¢ 008T— 003T—

06L—  0TL— 910912— 910912 003 009¢ 008T— 003T—
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Using Remark (9.7), we obtain some of the structure constants matrices for Fx,
such that using the technique described in Section (8.2) we obtain a splitting of
K7 into eigenspaces of dimension 1. The character table of Ex is shown in
Table 15.

(13.4) Let still G := HN.2 and H := U3(8).6, as well as G’ := HN and
H' :=U3(8).3;. We have v/ = 19.

The splitting of the suborbits €2;, for ¢ € Z, into the suborbits Qj, for j € J,
is known by [34], but can also be deduced from the results on orbit counting
numbers in Section (13.3). The split suborbits are {5,8,12,13}. As [H: H'] = 2,
a split suborbit of G splits into two suborbits of G’ of equal length.

Using the orbit counting matrices with respect to Q@ =JJ.. 7 Qj found for G’ in
Section (13.3), and the technique described in Section (8.257 we obtain a splitting
of K™ into 11 eigenspaces of dimension 1, and 4 eigenspaces of dimension 2,
where K-bases {11,159, },..., {17, ¢s} of the latter are given in Table 16.

G
Using the character table of Ex = E}{’ given in Table 15, we conclude that

o
we have found {¢1, ..., ¢4, 96, V7, 10, P11, 135 - - -, P15} C Irr(EIl{"), see Table
17. Furthermore, the Fitting correspondents of 5/, w5~ are 35112ab, and we
have 5, 50 € (¥1,12) k. Analogously, ps/,ps» correspond to 374528ab and
s, s € (3,14) K, while wgr, g correspond to 656250ab and @g, g €
(Y5,06) i, and finally @19/, 19+ correspond to 1361920bc and @19/, p12v €
(17,s) rc. Using GAP we find that x,,(G) € Q(v/5) C R, fori € {5,5",8,8"},
while x,, (G) € Q(v/—19) € R, for i € {9,9”}, and x,,(G) C Q(v—10) € R,

for i € {12/,12"}, where all of the latter irreducible characters are non-rational.

From this we obtain s/, @57, ps/, s, using the same technique as in Section
(12.3). By Remark (3.21), the values of the characters g/, g, @12/, 127 On
the Schur basis elements are not all real, and using the same technique as in
Section (12.4) we conclude

lc;/ a’ a’ a’

! ’ 1 ! 1 ’ G
po(ag +o5f) = pelag) +oolas) = polagt) = 288,

16" 16" 16/ 16/ 16
pror(ag” +az") = pr(ag) F e (as”) = p(ag”) = 108,

where ~ is the involutory field automorphism of K as defined in Section 3.

As in Section (12.3) we let o = 95 + abs and w12 = Y7 + bis, for a,b € K.
The above equations already determine the real parts 42 and %t of a and b,
respectively. As we know the degrees x,(1) of the Fitting correspondents of ¢/

and 19/, the orthogonality relations, see Proposition (3.8), lead to quadratic

a—a

equations for the imaginary parts “z* and % of a and b, respectively. This
yields g and 19/, as well as @9 = Py and Y127 = P1o7.

G/
The character table of E;(H/ is shown in Table 17, where again we indicate the
relevant character values in bold type, and where r5 := /5 € R as well as
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Us(8).6.

HN.2 and H :

Table 15: The character table for G :

965 61T t0c—  T6c—  gee—  L9§—  €AT—
PPI— 968 cL— cL— TL6— 89 2oL
PeIT—  6GT— STTT ¢le—  ehe—  Lel—  gel—
9201 692T—  T9I—  TEF—  8LE e1g bk
PSVZ—  1L6T 8601 80T 816 L99—  €S0T—
968 PrEI—  8CI 8TT T6T—  TE8—  T6S
ZqTI—  9LG— ZeTI—  TGTT 9.6 9.6—  0CL
91z Fo0e— 8001 879 8CLT  STLT  879—
P8GE—  9LEG T6LT— ST TL9— STl 2991
9€€9 yoel—  Tee—  SOF T69T— 8061  8GG—
9.8 FOSC—  TESS—  SSPL 809%  TSIT—  S00T—
PSESV—  F908—  SGI9T  STI9T  STT— S89€0T  GITPT
Pee8c— 9LTCC  TLPLT— TLOTS—  8OLFC  89GLT  TLEGT
9162L  F98S0T— SFFIG  T6TFG— 8ST9E  T6ELO— GEFHG
9LLGTCC  9LLGTGS  8TLGTCI  STLSTTT  S96LSL 896LSL  TLV6S9
K jal 1 4 11 01 6
tee—  Lve— 91 89T— 98 6C 9z— 1| +1026194¥ | o1
cL9— 8¢ p—  Sh—  ¥S— 99— 6 T || 40892072 | 71
8TCT  €£9€ 9€T  8y—  ¥6T— 60T 93— T | 4+P9€6GLST | €1
8L¢ L60— 96 80T— F8—  IS— ¥G  T|| OVS€eLT | Tl
coL— €T 9TT  2g¢ 92T 6 PG T || +P0T6TIET | TT
892 8CT POL— T6T  9LT TP 6T T | +P0g0SSTT | 0T
9.5 : 0ce 88T 8P 08T— G— T| 009CIET | 6
cL6—  T—  var— el PPI—  9¢— 18— T || 9%06FL |8
TL9—  TLOT— VeT— TL9  FW9— F9E 61 1| 1PF980LC | L
gev—  Tl— 9L ©l9  99€ PV 6 T | +vozeLoz |9
cev—  8GLT  ¥9—  S¥El— FRI—  F89 66 T| FTT0L |G
889C  TL0E— 968  889¢— 910  ¥6 66 1| 1PSO¥6 i
8V09  8TES 968 TL9  9E€VE  FILT 19— 1| PEFEE ¢
T6TVC— STLT  9T9L  8892— FOLV— ¥g0e 18— 1| +P09L 4
879657 STETET 96089 TLOIG 98952 FIEFT  6£ST T || 401 1
8 L 9 g v ¢ 4 T #X | &




101

Us(8).31.

HN and H' :=

Table 16: 2-dimensional eigenspaces for G' :

e— €
920T  692T— €Fe— 18 9Tc— 9Tg— 8L €I¢ LT
. . o o . . . . :
ZGTT— 9L6—  STLI— 9.6 9.6 9.6 9LG  9.6—  0ZL
. . . . oz ; . .
91¢  FE0g— F0S  F0S  SF9— 96TT STLT 8ILT  8¥9—
. . . s ; e . .
9.8 F0€c— OTPP— OTPP— 2€0F  9SPE  S09F ESTI— 800T—
| g1 V1 LT LT Ll Gl 1 01 6
- T S
681 68T 16— 9%  80T— 78— 18— ¥ T | 0T619€T | Lt
. . . 1— 1 . wm\@
88C  88% 0ze  88¢ 8y 08T— G¥— T || 098999 | S
1— 1 . . . . wm\y
TL6— gL—  veh— 9¢ 98 ¥FI— 9g— 18— 1 || sesple | fp
c— e . . . . . . . . N%\
gev— 8Tl ¥9—  ¥E9— FT9— ¥FI— ¥89 66 1 ||grice | ¢
_ u8 8 (L 9 uS S i £ 4 it : _
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110 := 1 -v10 € C and 19 := i-v19 € C. The Fitting correspondence is
determined in Section (11.5).

14 The Lyons group Ly

(14.1) Let G := Ly and H' := 3.McL, as well as H := 3.McL.2. We have
r’ =8 and r = 5.

Let G C G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible FsG-module V' of Fs-dimension 517 available in [83]. The subgroup
H < @ is a maximal subgroup of GG, and a set of generators of H, given as
words in G, is available in [83] as well. Using the MeatAxe, a set of generators
‘H' of H', again as words in the set of generators of H, can be found.

Using the algorithms to compute submodule lattices described in [47] available
in the MeatAxe, we find that Vg = 1a @ 210a @ 306a as FsH'-modules, where
1la, 210a and 306a are the absolutely irreducible F5 H'-modules of the respective
dimensions, see [37]. Hence all F5 H’-submodules of V- are also invariant under
the action of F5 H and using the MeatAxe we find that the trivial F5H’-module
la extends to the non-trivial linear F5 H-module 1a~. Hence, if we pick a vector
0 # vy € la < Vg, we conclude that there is a G-set isomorphism between
the G-orbit vy - G CV and Q' := H'|G.

To use the strategy described in Section (10.3) efficiently, we proceed as de-
scribed in Section (9.8). We choose a subgroup U < H’, and compute the
orbit counting numbers with respect to ' = Hje 7 Qg first. From these the
orbit counting numbers with respect to Q' = [[, 7 Q; are found. We choose
U :=3x M1 < 3.McL = H’, which is a maximal subgroup of H’. A set of
generators of U, given as words in H’, is available in [83] as well. We have
|U| = 23760 and using GAP we find (1%,,15)c = 837, thus we have |J| = 837,
while |Z'| = v’ = 8. Furthermore, we choose U; < U to be a subgroup of order
11. Using the MeatAxe we find Vi, = 47 - la @ 47 - 5a @ 47 - 5b, where la,
5a and 5b are the irreducible FsU;-modules of the respective dimensions. As
F5U;-epimorphic image V; we choose one of the irreducible quotients V; = 5a.

We compute the orbit counting numbers for the elements in G and those in H’,
and applying Section (9.8) and Remark (9.7) we obtain two of the structure
constants matrices Py, and Py,, for k1, ke € Z'. Using the technique described
in Section (8.2), we obtain a splitting of K> into 6 eigenspaces of dimension
1, and an eigenspace of dimension 2, where a K-basis {11,192} of the latter is
shown in Table 18. As the degrees of the characters in Irr (G) are pairwise
different, we conclude that we have found {¢1, ..., s, ps}, while g and @7 are
missing.

We could compute more of the structure constants matrices, until these yield
only eigenspaces of dimension 1. But proceeding as in Section (12.3), we let
we = U1 + ate and @7 = Y1 + by, for a,b € K. This yields a € {1800} and
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Us(8).31.

HN and H' :=

Table 17: The character table for G’ :

965 16TT 10T— 10T— 9V T— 9VT— eee—  L98— CLT—
4% 96¢ 9¢— 9¢— 9¢— 9¢— TL6—  89F a0L
YeI1—  601— 659G 649G 90T— 90T— ve—  LTT1— €eL—
90T 69¢1— 0Tigzz + 18— OTiggZ — 18— 91¢— 9Tc— 8¢ €18 L
9201 6931 — Oliczgz — 18— OM1GZZ + 18— 91¢— 915— 8LE €18 .2
78VC—  TL6T 675 675 4 4 816 29G— €80T—
968 TreT— 79 79 79 79 61—  TE8— 068
8I1— 9.6— 6TIpR¢ — 9LG— 6MIPRE + 9LG— 9.6 9.8 9.8 9LG— 0G.L
CSTT—  9.6— 6TIpR¢ + 9LG— 6MIPRE — 9LG— 9.6 9.5 9.5 9L6— 0%L
91% 7008— 705 705 91006 — ¥2E€ 91006 +¥TE  8TLI 8TLI 879—
91% 7008— 705 705 91006 +¥2E 91006 —¥TE  8TLI 8TLI 879—
78GE—  9.€G 968— 968— ig44 ig44 cL9—  8a1 2891
9€€9 voGL— 9L5— 9L3— 70% 703 C69T— 8061 8GG—
9.6 Y08C— 9TFy— 9TFy— 4100%C — ¥PLE 9I00¥C + ¥PLE S09F ¢STIT—  800T—
9.6 v0cc— 9TFi— 9TVH— 2100%C + ¥PLE 9I00¥C — ¥PLE 809F ¢STT—  800T1—
78€8F—  ¥908— 7908 7908 7908 7908 CSTT— 89¢0T  GIT¥I
¥008%—  9L1TC 9¢.8— 9¢.8— 96685 — 9£G8G— 89L¥C  89GLT  TLEST
9.GC. 79880T— ¥228% 7338% 9605T— 9605T— 88G9E  T6EL9— TEVFS
9LLGTGS 9L.G1SC  ¥#98319 798319 798%19 798519 896.8L 896.8L  TL¥689
| g1 ha LT £1 Gl 21 A1 01 6
T11— 11— ve— 91 78— 78— 98 6% 9¢— T || P0g6T19SY | ST
9¢e— 98e— 8CS = Veo— vo— 76— 99— 6 T || »089LOTC | ¥1
609 609 €3¢ 9¢1 Vo— i ¥61— 601 9g— T || P9€6GLGT | €1
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166— 166— €aT1 91T 9gT 93T 93T 6 4 T || POZ6T9ET | TT
78¢ 78¢ 8CT 70L— 96 96 9L1 747 61 T || POLOSRIT | OT
88% 887 : 1145 STIRy + %1 T8y — TPI 8T 08T— SG¥— T || 90929%9 | .6
88C 88% 0%¢ STy — $¥1 SUSY +FP1 ST 08T— S%— T | P0S29%9 | ,6
Sa0GH — 98%—  SI0GY + 98V~ CL— vev—  9¢ 9¢ YWI— 96— 18— T || 98TS¥LE | .8
210Gy + 98—  910S9¥ — 98%— CL— vey—  9€ 9¢ PPI— 96— 18— T | pReShLE | 8
9¢e— 98e— CLOT—  Veo—  9gg 9¢¢ 7P9—  ¥9¢ 61 T || P#980.L% L
915— 915— oL— 91L 9¢¢ 9¢¢ 99¢ g 6 1 || P02SL9¢ 9
910081 + 9T1Z— SI008T — 91C— 8GLI 79—  ¥g9— 79— PPI—  ¥89 66 T || 9¢116¢ #S
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96051 — 96051 — 8TLIT 919L  ¥PEI— TRET— Y0L¥— ¥20¢ 18— T | P09L 4
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b € {£675}. The orthogonality relations, see Proposition (3.8), imply a - b < 0.
This determines the character table of E}(H' up to a table automorphism of
Irr(E}{H'), see Definition (8.5).

The character table of E}(H " is shown in Table 18. Rows and column have been
reordered and column indexing has been adjusted to exhibit the phenomena
described in Section 5, where the character table of Ex = E}¥ is contained in
the database, see Section (11.1).

(14.2) Remark. Let C34 € CI(G) denote the 3A-conjugacy class of G, see
[13]. Then G acts on Cs4 by conjugation, and as H' = C(3a), where 3a € Cs4
is a suitable representative of the 3A-conjugacy class, the G-sets Q' and Csz
are isomorphic. Using GAP, we compute the class multiplication coefficients

maasa,c = |{(z,y) € G xGix,y € C3a,2y = 20 € C}| € Ny,

where C € CI(G) and z, € C is a fixed element. We find mgsa 34.c # 0 for the
conjugacy classes C € {C14,C54,C35,Cs4,C55,Cs4,C104,C154}. Hence we
have a bijection between these conjugacy classes and the orbitals O] C Q' x 0,
for i € Z’. Furthermore, the corresponding index parameters k; are given as

ke = %% Using the character table of Ex = Ef, this determines the

splitting of the suborbits Q; of Q, for ¢ € Z, into those of ’. The split suborbits
are ¢ € {1,3,5}.

L Cl kel
14 11
34 1)1
3B | 30800 | 2
44 | 534600 | 3
5B | 7185024 | 5
6A | 534600 | 3
104 | 3742200 | 4
154 | 7185024 | 5

15 The Thompson group Th

(15.1) Let G :=Th and H :=3D,(2).3. We have r = 11.

Let G C G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible FoG-module of Fa-dimension 248 available in [83]. Tensoring with
F4 over Fy yields an F4G-module V.

The subgroup H < G is a maximal subgroup of G, and a set of generators of
H, given as words in G, is available in [83] as well. Using the algorithms to
compute submodule lattices described in [47] available in the MeatAxe, we find
that Vg has exactly two H-invariant 1-dimensional F4-subspaces. We choose
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Table 18: The character table for G := Ly and H' := 3.McL.

- T &
ve0e—  ¥30€ . . - 1 L
9.£2 967~ - 1 || pogreLes | 8
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V20— ¥20€ 008T— _ 00ST I— 1 || PGeLTSIT | 9
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9€Lz—  98Lt— 019G 09— 09— 02— T T || poogheet | €
9LLL—  9LLL—  0S0F—  CZIOT  GZT0T  0S9— T T || PP69sF | @
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one of them, (vy)r, <V say, and as H < G is a maximal subgroup of G, we
conclude that there is a G-set isomorphism between the G-orbit (vy)r, - G of
1-dimensional F4-subspaces of V and Q) := H|G.

To use the strategy described in Section (10.1) efficiently, we proceed as de-
scribed in Section (9.8). We choose a subgroup U < H, and compute the
orbit counting numbers with respect to 2 = Hje 7 Qj first. From these the
orbit counting numbers with respect to Q = [[,.; Q; are found. We choose
U = 21" 1,(8):3 = Np(2a) < H, where Co4 € CI(H) denotes the 2A-
conjugacy class of H, and 2a € C34. The subgroup U < H is a maximal
subgroup of H. A set of generators of U, given as words in the set of gener-
ators of H, is found using a standard MeatAxe technique, exploiting the fact
that the subgroup U is the centralizer in H of an element of order 2. We have
|U| = 774144, and using GAP we find (1%, 1) = 241, thus we have | J| = 241,
while |Z| = r = 11. Furthermore, we choose Uy := 9:6 < U to be a subgroup
of order 54. Using the MeatAxe we find that Vi, has an absolutely irreducible
F,U;-epimorphic image V; of Fy-dimension 6. Hence U acts faithfully on V.

We compute the orbit counting numbers for the elements in G. Applying Section
(9.8), Remark (9.7) and using the technique described in Section (8.2), we obtain
a splitting of K'X" into eigenspaces of dimension 1. The character table of Ex
is shown in Table 19, where the index parameters have also been found in [51],
see also [34].

(15.2) Let G :=Th and H := 25.L5(2). We have r = 11.

We apply the same strategy as described in Section (15.1). Let G C G be as
in Section (15.1), and let V' be the absolutely irreducible FoG-module of Fa-
dimension 248. Again, the subgroup H < G is a maximal subgroup of G, and
a set of generators of H, given as words in G, is available in [83] as well. Using
the algorithms to compute submodule lattices described in [47] available in the
MeatAxe, we find that Vg has exactly one 5-dimensional absolutely irreducible
FyoH-submodule W. As H < G is a maximal subgroup of G, we conclude
that there is a G-set isomorphism between the G-orbit W - G of 5-dimensional
Fy-subspaces of V and 2 := H|G.

We choose U := (2 x 24).L4(2) < 2°.(2%: L4(2)) < H, hence U is a preimage of a
Levi subgroup of a maximal, maximal parabolic subgroup of L5(2), with respect
to the natural group epimorphism H — L5(2). We have |U| = 645120, and using
GAP we find (1§,15)c = 482, thus we have |J| = 482, while |Z| = r = 11.
Applying a few standard MeatAxe techniques we find a set of generators of U
as words in the set of generators of H.

We choose Uy := (7:3) x2 < A7 < L4(2) < U to be a subgroup of order 42; note
that L4(2) & As. Again applying a few standard MeatAxe techniques, we find
a set of generators of U; as words on the set of generators of U. Furthermore,
using the algorithms to compute submodule lattices described in [47] available
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Th and H :=3D,(2).3.

Table 19: The character table for G :

9G7E— 0FvT 88 798 88T 88T vee 88T 081— ¢<p— 1| pogLpsore | 11
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798 96— 8001 8TLI 910c— I 8C6—  88¢— 08T ATT— T | P0O00T9SSZ | 6
9are P8GT TIEE—  888E—  9ELC TL8T veee—  88¢— 98— 66 T | »p8eLLcTT | 8
070L— ze0c— 0009 PP T6eT—  0F9¢ erT 096 c6v €07 T | PYSEISSy | L
0798 88¢C 00C.—  T98— 89T¢€ 0v0S—  826—  OFFT  ©I9  LIT— T | PLELOLEE |9
720e— 960.—  S00T 8709— 9GO0 ze0v 96TV 88—  T0S  T¥P— T || pOP20SFE | G
0CL06—  SFF9S 009GL— 9.GTL  8F09 0GTST  2SE9T  0g€h— ¢lle  €2€T T | »9ge19 i
08Ceee—  FHI06 880T0T  096CT  9689L  T66VE— OFPSL—  9LLL— OFEC 6SF T | PGLSOE €
. 8TE6TY 70€062— CIL6LT— T6997 Teq9  LGFT— T || peTT 4
9990L9G0T FSTTFLIT S88G0SS  TIGSTIS  9E6TE0G  TLFI0GE  9LSPOST  GIL6LT  F98SHF  661LT T || PT T
11 01 6 8 L 9 g v 3 4 1| *X IEN
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in the MeatAxe, we find that V7, has an FoU;-epimorphic image isomorphic to

> 3a
v=@| |
k=1
where the summands are pairwise isomorphic uniserial FoU;-modules with com-
position series as indicated, and where 3a is one of the absolutely irreducible
FyU;-modules of Fo-dimension 3. Hence we obtain FyU;-epimorphisms gy, for
k € {1,...,5}, given by concatenating the natural projection onto Vj with ei-
ther of the projections onto the indecomposable summands of V5. We have
dimp, im () = 6, for k € {1,...,5}.

We compute the orbit counting numbers for the elements in G, applying Section
(9.8), Remark (9.7) and using the technique described in Section (8.2), we obtain
a splitting of K" into 7 eigenspaces of dimension 1 and two eigenspaces of
dimension 2, where K-bases {11,192} and {13,104} of the latter are shown in
Table 20. Using the degrees of the characters in Irr (G) we conclude that we
have found {¢1, ©2, ©s5, Y6, Y8, P10, P11}, While @3, @4, @7 and g are missing.

As Xy, Xes € Irr} (G) are a pair of complex conjugate characters, by Remark
(3.21) this also holds for ¢3, ¢4 € Irrx (E'x ). Hence, by Proposition (3.1), there
is at least one pair of non-self-paired orbitals. Hence we conclude that there
is exactly one such pair, namely the orbitals {4,5}. Thus we have @3, 04 €
(1,02) Kk, and 7,09 € (P3,04) . As @7, pg are real-valued, we obtain these
characters using the technique described in (12.3). From ¢3(as) = p3(aq) we

find the real part w = —1008 of ¢3(ay). From this ¢3 and @4 are
determined, using the technique described in Section (13.4).

The character table of Ef is shown in Table 20, where ig := i - v/6 € C, and
where the index parameters have also been found in [34].

16 The Janko group J;

(16.1) Let G := J; and H := 2'1: My,. We have r = 7.

The index parameters and the structure constants matrix for the smallest non-
trivial suborbit Q2 with k2 = 15180 have been computed in [35]. Using the
technique described in Section (8.2), where this structure constants matrix is
sufficient to get eigenspaces of dimension 1, we obtain the character table of Ex
as given in Table 21, where r33 := V33 eR.

(16.2)  Let still G := Jy and H := 2'1: Moy, as well as H' := 2!1: My3. We

have ' = 10. Let Q := H|G and €' := H'|G, hence we have % =[H:H'] = 24.

Let G C G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible FoG-module V' of Fa-dimension 112 available in [83]. The subgroup
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Th and H := 25.L5(2).

Table 20: The character table for G :
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Table 21: The character table for G := J, and H := 21: My,.
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H < G is a maximal subgroup of G, and a set of generators of H, given as words
in G, is available in [83] as well.

Using the MeatAxe and the absolutely irreducible Fo H-module 11a, on which
the normal 2-subgroup 2'' < H hence acts trivially, by a random search we
find a set of standard generators of H/2' = My,. Using V, it turns out that
this set indeed generates a subgroup isomorphic to Msy in H. Furthermore, by
a random search we find an element of H contained in the normal subgroup
21 9 H. As My, acts non-trivially on the normal subgroup 21, the latter is an
absolutely irreducible Fo Mys-module. Altogether this yields a set of generators
of H, which is a preimage of a set of standard generators of the epimorphic
image Moy = H/2' of H. A set of generators of Mas, given as words in a set of
standard generators of May, is available in [83] as well. Hence this can be used
to find a set of generators H' of H' as words in the set of generators of H found
above, and to find a set of standard generators of a subgroup Mas = H' N Moy <
H. Note that M3 acts non-trivially on the normal subgroup 2'' < H’, hence
the latter is an absolutely irreducible Fy Mas-module, see [37].

Using the algorithms to compute submodule lattices described in [47] available
in the MeatAxe, we find that

la
116
44b
44a |’
11la
la

Vi =

a uniserial Fo H-module with composition series as indicated, where the con-
stituents are absolutely irreducible Fo H-modules of the respective dimensions,
see [37], and 11a/b and 44a/b are pairs of mutually contragredient Fo H-modules.
Furthermore, we find that Vg  is a uniserial FoH’-module, where the FoH-
constituents of Vp restrict to pairwise non-isomorphic absolutely irreducible
FoH' -modules. Let V' < Vg be the uniquely determined FyH-submodule of
Fs-dimension 12, being isomorphic to V' =2 111aa } as FoH-modules. Hence
the G-orbit V' - G of 12-dimensional Fa-subspaces of V is as a G-set isomorphic
to €. While enumerating the G-orbit V' - G, we collect a set {g; € G;i € T} of
representatives of the right cosets H|G of H in G, as words in the set G. From
that we find the G-action on Q' as follows.

We use the strategy which has also been used in Section (13.1). Let E:= H'|H
be the set of right cosets of H' in H. Let {h;;j € {1,...,[H:H']}} be a set
of representatives of the right cosets H'|H of H' in H, where h; := 1. Hence
we obtain a set of representatives {h;g;;j € {1,...,[H:H']},i € Z} of the
right cosets H'|G of H in G. Let mo:G — S, as well as 7=: H — Sig.p1
and 7g: G — S, denote the group homomorphisms defined by the action of
G on Q, by the action of H on Z, and by the action of G on ', respectively.
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For g € Gaswell asi € T and j € {1,...,[H:H'}, let i’ := i - mq(g) and
j' =37 -7m=(gi-g-g;"). Hence we have hjg;-g = h- hj g, for some h € H.
Thus mg/(g) can be determined from 7 (g) and 7=, where we have to determine
7=(gi - g - §;; ") explicitly. This is achieved as follows.

Let V* := Homp, g (V', F3) denote the Fo H-module contragredient to V/. Hence

1 .
we have V'* = 11ab ] as FoH-modules. It turns out that there is v* € V'*
such that the H-orbit v* - H C V’* is as an H-set isomorphic to the exterior
square Z A E of Z, hence we have |2 A E| = 276. Using the H’-action on Z A Z,
the elements of v*- H C V'* can be identified with the subsets of cardinality 2 of
E. Given g;-g-g;' € H = Stabg(V’), using the MeatAxe, we compute matrices
representing its action on V' and on V'*. From that its action on ZEAE is found,
and using the identification with subsets of cardinality 2 of =, the permutation
m=(gi - g - g;,l) € S(m.m) can be determined.

To use the strategy described in Section (10.1) efficiently, we proceed as de-
scribed in Section (9.8). We choose Uy := Lo(11) < U 1= May < Mas =
H' N Myy < H, where a set of standard generators of Mg, given as words
in a set of standard generators of Ms3, and a set of standard generators of
Ly(11), given as words in a set of standard generators of May, are available
in [83]. We have |U| = 443520, and using GAP we find (1%,1%)c = 582 and
(1%,, 1§>G = 9609. Furthermore, using the algorithms to compute submodule
lattices described in [47] available in the MeatAxe, we find that

2 4 2
~ | 10a la
Vi, = [ L } ® [ 10 } @G?la@@lOb@@lzzxa,
1= 1= 1=

as FoU;-modules, where the constituents 1la and 10a are absolutely irreducible
FyU;-modules of the respective dimensions, and 10b and 24a are irreducible
FoU;-modules having splitting field Fy, see [37]. As FoU;-epimorphic image V;
1105 @®10b, together
with the corresponding FoUp-projection. Hence we have dimp, V3 = 21.

we choose an FoU;-direct summand of V¢, isomorphic to {

Using the technique described in Sections (10.3) and (9.8) we compute the orbit
counting numbers for the elements in G and H’. Using Remark (9.7) and the
technique described in Section (8.2), it turns out that that the resulting structure
constants matrices are sufficient to obtain a splitting of K 1" into eigenspaces
of dimension 1. The character table of E;(H " is given in Table 22. Rows and
column have been reordered and column indexing has been adjusted to exhibit
the phenomena described in Section 5, see Example (5.14), where the character
table of Ex is given in Table 21, and 733 := /33 € R.

17 The Baby Monster B

(17.1)  Let G := B and H := 2.2E4(2).2, as well as H' := 2.2F(2) and
N =1, hence we have Irrj (H) = {1,17}, see Remark (5.15). We have 7 = 5
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Table 22: The character table for G := J; and H' := 21 M.
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and the split suborbits are Z;- = {1,2,4}, as is shown in [29], where also the
character tables of Ex and E}; are given. Using Remark (5.15), from this the
character table of E}(H' can be determined. The character tables of Ex and
E}- as well as E}(H " are given in Table 23.

(17.2) Let G := B and H := 2'*22.Co,. We have r = 10.

The index parameters k;, for ¢ € 7 have been determined in [34], but no explicit
proof is given there. Unfortunately, the values for the index parameters given
there do not sum up to n = [G: H]. Hence we compute the index parameters
anew, by applying the same strategy as in Remark (14.2).

Let Cap € CI(G) denote the 2B-conjugacy class of G, see [13]. Then G acts
on Cyp by conjugation, and as H = Cg(2b), where 2b € Cyp is a suitable
representative of the 2B-conjugacy class, the G-sets 2 and Csp are isomorphic.
For C € CI(G) let (Cop)c := {g € Cap;(2b) - g € C} C Csp, which are unions
of H-orbits. Letting k¢ := [(Cag)c| € No, we have ke = %%M, where
map,2B,c € Ny is the corresponding class multiplication coefficient. Using GAP
we compute the class multiplication coefficients map 25,c € No and find k¢ # 0
for the conjugacy classes

C € {Ci4,C2B,Cop,C34,Cup,Cug,Cic,Cs4,Cec },

and the cardinalities ko as given in Table 24.

As we have r = 10, but only find 9 conjugacy classes C' € CI(G) such that ko #
0, we conclude that precisely one of the corresponding subsets (Cop)c C Caop
consists of two H-orbits, while the others consist of one H-orbit. As kop is
the only of these cardinalities which is not a divisor of |H|, we conclude that
(Cep)ap splits. The lengths of the two suborbits contained in (Cop)ap are
determined in Section (17.4). Sorting the suborbits with respect to increasing
lengths gives the indexing with ¢ € 7 also indicated in Table 24.

After all, it turns out that in [34] the value of ky = kyg is falsely stated as
4700602 368, obviously a misprint.

(17.3) Let G C G be a set of standard generators of G in the sense of [81].
We start with explicitly known matrices for the action of the elements of G on
the absolutely irreducible FoG-module V of Fa-dimension 4370 available in [83].
The subgroup H < G is a maximal subgroup of G, and a set of generators of
H, given as words in G, is available in [83] as well. Using a random search
and the MeatAxe, we find a set of generators H of H being a preimage of a set
of standard generators of C'o; with respect to the natural group epimorphism
H — Cos. Using the MeatAxe we find that Vi has a uniquely determined trivial
submodule la < Vg, and if we pick 0 # vy € la < V we conclude that the
G-orbit vy - G C V is as a G-set isomorphic to 2.



115

Table 23: The character tables for G := B and H := 2.2Fg(2).2, where A\ = 1

and A = 17, as well as for H' := 2.2FE4(2).
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Table 24: Conjugacy classes and suborbits.

| i| C] kc | splits into | dimg, Fixy () |
1114 1
2,31 2B 7379550 | 93150 + 7286400 2322
412D 262310400 2202
6|34 9646 899 200
5| 4B 4196 966 400 1256
8 |4E | 537211699200 1114
714G | 470060236 800 1166
9| 5A | 4000762036224
10 | 6C | 6685301 145600

We apply the strategy described in Section (10.6), and we choose the following
chain of subgroups

G=B > U, =U:=H=2"20p, > 21422 [,
> Uz := 211.M22
> U :=2.Moy
> U := LQ(].].),

where we have the following group orders

|B| = 4154781481226426191177580544000000 ~ 4-1033,
21422, Coy| = 354883595 661213696000 ~ 4-10%,
2 Mys| = 908328960 ~ 9-10%,
12.May| = 887040 ~ 9-10°,
|Lo(11)] = 660 ~ 7-10%

Words in the set of standard generators of Coy giving a set of standard genera-
tors of the maximal subgroup Mas < Coy are available in [83]. We apply these
to the set of generators H of H, which indeed yields a set of generators of the
maximal subgroup 2'722.My3 < H, as an analysis using the MeatAxe shows.
Furthermore, words in the set of standard generators of M,z giving a set of
standard generators of the maximal subgroup Mo < Moz are also available in
[83]. An application of these yields a subgroup 21722, Ms; < H, as the MeatAxe
shows.

Let 2122 =~ N < H be the maximal normal 2-subgroup of H, which is an
extraspecial group, such that Coy acts absolutely irreducibly on the Fo-vector
space N/Z(N) of Fa-dimension 22, see [13, 37]. The MeatAxe shows that the
FyMas-module (N/Z(N))ns,,, for the subgroup May < Mas < Cog, has the
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structure

la
_ | 100
(N/Z(N))M22 = 10a ’

la

a uniserial Fo Mss-module with composition series as indicated, where the con-
stituents are absolutely irreducible Fo Mss-modules of the respective dimensions,
and 10a, b are a pair of mutually contragredient Fy Mas-modules, see [37].

Going over to an s H-epimorphic image W of Vg of an Fy-dimension small
enough to do random searches using the MeatAxe quickly and on which Z(H) =
Z(N) acts trivially, we proceed as follows. The group acting on Wai+22 py,, is
isomorphic to 222. Mas, and by a random search we find an element of N/Z(N) &
222 which under the conjugation action of M, generates the FyMss-submodule
of (N/Z(N)),, of Fo-dimension 11. By a random search using the MeatAxe,
where we modify the given generators of 222. M,y by multiplying with elements
of this FqMos-submodule, we find a set of generators of a subgroup 2''.Mas,
as words in the given generators of 21722 My,. Applying these to 2'722. My,
acting on Vi, we obtain a subgroup 2 x 2''.Ms,, as the MeatAxe shows, and we
straightforwardly find a subgroup 2''. My < 2 x 2. My, in there.

We already know that the normal subgroup 2 <2 My, as an Fo Mao-module
is uniserial having the trivial Fo Mss-module la as its socle. Using the above
strategy again, we find a subgroup 2.Mss < 2''.Ms,, which is a non-split central
extension of Msy by a cyclic group of order 2. As the set of generators we have
obtained is a preimage of a set of standard generators of Moy, we use the words
giving a maximal subgroup Lo(11) < Mo available in [83], to find a subgroup
2 x Ly(11) < 2.My and straightforwardly a subgroup Lo(11) < 2 x Ly(11) <
2.Ms5 in there.

To specify the FoU;-modules V; and the maps §iy1,i: (Vig1)y, — Vi of FoUi-
modules, for ¢ € {1,...,3}, as in Section (10.5), we proceed as follows. Let
Vi := Vg = (4370a) . Using the programs to determine socle series described
in [49] available in the MeatAxe, we compute a few layers of the socle series of
the FoUs-module Vi7, contragredient to Viy,, which amounts to computing a few
layers of the radical series of Vi;,. Going over to Vi, /rad®(Vy,), by a random
search using the MeatAxe we look for a suitable FyUs-epimorphic image. The
most restrictive of the conditions required for an application of the strategy
described in Section (10.6) turns out to be the one, that the regular transitive
Ui-sets 27, for i € {1,...,3}, are assumed to be realizable as a regular U;-orbit of
vectors in one of the quotient modules (V;)y,, for i < j € {1,...,4}, see Section
(10.5). Using the MeatAxe and a random search, we find a suitable quotient
module V3 of Vi, /rad®(Vyy,) of Fa-dimension 78, and let g4 3: (Va)p, = Vi, — V3
denote the corresponding natural FoUs-epimorphism. Furthermore, using the
algorithms to compute submodule lattices described in [47] available in the
MeatAxe, we find a suitable quotient module V5 of (V3)y, of Fa-dimension 31
with corresponding natural FoUs-epimorphism ¢ 2: (V3)y, — V2, and a suitable
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quotient module Vi of (V3)y, of Fe-dimension 21 with corresponding natural
FyUr-epimorphism o 1: (V2)y, — Vi. Hence the chosen quotient modules have
the following Fo-dimensions.

(7] U, [ ding, V/ |
B 4370
4| 21422 Co, 4370
3 2 My, 78
2 2. Mo, 31
1| Ly(11) 21

(17.4) Let wy = vy € V. To find representatives w; € Q; Cvg -G CV
and elements g; € G such that w; = wyg;, for 1 # ¢ € Z, we use the G-
set Cap isomorphic to €2, see Section (17.2). By a random search using the
MeatAxe we compute the action on V of few elements g € G, given as words
in G, and check to which conjugacy class of G the commutator [(2b),g] :=
(2b) - (g1 - (2b) - g) € G belongs. This is done by computing the order of
[(2b),9] € G and dimp, Fixy ([(2b), g]), where the Fo-dimensions of the fixed
spaces of representatives of the relevant conjugacy classes of G are as given
in Table 24. This yields representatives of the suborbits i € {1,4,6,...,10}.
Summing up the k; for i € {1,4,6,...,10} and dividing by ||, we obtain a
fraction of ~ 0.9996. Hence it seems to be rather improbable to find further
suborbits using a random search.

To proceed we concentrate on €. If we had indeed ko = 93150, we would
be tempted to conjecture that there is an element 20' € N < H such that
20 € Cyp and (2b) - (20') € Cop as well as Oy (2b') = 2121 (210: My,: 2), where
210: Mys:2 < Coy is a maximal subgroup and Cx(2b') N N = 21421 Words in
the set of standard generators of C'oy giving a set of standard generators of the
maximal subgroup 20: Myy:2 < Coq are available in [83], and the MeatAxe in-
deed shows that the Fo(2'%: Mas: 2)-module (N/Z(N))g10.pz,,.2 is uniserial with

structure
la

106
10a |’
la

(N/Z(N))210!M2212 =

using the notation from Section (17.3). Applying these words to the set of
generators H of H, an analysis using the MeatAxe indeed yields a set of gen-
erators of a subgroup 2'*2!,(210: M5,:2) < H, where the normal subgroup
21421 21421 (210: £f,):2) mecessarily is a preimage of the Fo(219: Mayy: 2)-
submodule of Fy-dimension 21 with respect to the natural group epimorphism
N — N/Z(N). Computing Fixy (21721.(210: Mys: 2)) we find a fixed vector wy €
Q of 21421 (210: My, 2), different from wy, and as [H : (21721.(210: Myy:2))] =
93150 we have thus proved that ko = 93150 and k3 = 7286400, see Section
(17.2). By applying the strategy described in Section (10.6), we enumerate a
substantial part of suborbit g, say, and by checking randomly a few elements
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in the G-orbit of wy € Q we find an element in g, and thus an element g, € G,
as a word in the set of generators G, such that wigs = wo. Furthermore, it is
straightforward to enumerate €23 completely by a standard breadth-first orbit
algorithm.

We are also tempted to conjecture that the set Qs - go C  contains elements of
Q3 and 5, which are the two suborbits of which we not yet have representatives.
This indeed turns out to be true, by checking a few elements of 25 - g5 using the
same strategy as was used above for the longer suborbits.

(17.5)  We are now able, by applying the strategy described in Section (10.6),
to enumerate substantial parts of the suborbits i € {5,...,10}. A problem
arises for the suborbits ¢ € {3,4}, since it turns out that in these cases the order
[Staby, (G4,3(w;))]| is large, which contradicts the assumptions made in Section
(10.5) and causes the programs to become ineffective; we circumvent this.

We determine the structure constants matrix P» = [p;ox;i,k € Z] € Z7%"
for the smallest non-trivial suborbit Q9, with k; = 93150. For i,k € Z, by
Proposition (9.6) we have

ki

ks
Di2k = cok(gi) = 7 [Q2g: N Q|
ki, kx,

where the ¢35(g;) € No are the orbit counting numbers with respect to Q =
[1;c7 €, see Definition (9.4). Hence the remaining task is to apply successively
the elements g; € G, for i € Z, to all elements of 2y C Q C V explicitly, and
find the cardinalities |Q2g; N Q| € Ny, for k € T.

Given w € Q99; and k € Z, we have to check whether w € € holds. For
k & {3,4}, as we have enumerated only a part of 0 explicitly, again it is not
sufficient to check w € Qsg; C V itself, but a few other elements of w- H C V
have to be checked as well. Still, this method only allows to prove membership,
but not to disprove it. Hence, in a first run over £ € Z we only test very few
elements of w- H C V| at most 5 say, for membership in Q. If w € 3¢g; cannot
be proven to belong to a particular suborbit, we start a second run over k € 7,

where we now test some more elements of w- H C V, at most 1000 say.

We could repeat this until all of {5g; is treated. But actually after the second
run, only a very few elements have not been proven to belong to a particular
suborbit. Hence we have found lower bounds for the ¢z ;(g;) € Ng, where by
Remark (9.7) we have ), -7 c2x(g:) = ki, for i € Z. Furthermore, we have the
following numerical conditions on the ¢z x(g;) € Ny. As all the index parameters
k;, for i € Z, are pairwise different, we conclude that all suborbits are self-paired.
Hence by Proposition (3.17) we have, for i,k € Z,

kk kk kk k‘i k

k
c2,k(9i) = T Pak = P2k = g Ph2d = PR2a S o c2,i(gx) € Z,
3 1 1 3

which hence is an integrality condition. In particular, we have ¢z x(g;) = 0 if and
only if ¢3;(gx) = 0. It turns out that these conditions are sufficient to find all
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the numbers ¢z x(g;) € No, for i,k € Z, where (i, k) & {(3,3), (3,4), (4,3), (4,4)}.
Using these numerical conditions, there are only finitely many possibilities for
the matrix entries co 1(g;) € No, for i,k € {3,4}, left. It turns out that the
number of candidate matrices is small enough to check the following additional
necessary condition for all of them.

By Proposition (1.19) the structure constants matrix P, € Z"*" is diagonalisable
over an algebraic closure of Q. As all characters in Irry (G) are rational-valued,
by Propositions (3.10) and (3.20) we have ® € Z"*". Thus the characteristic
polynomial of P, splits into linear factors over the rationals. It turns out that the
latter condition is fulfilled by precisely one of the candidate structure constants
matrices obtained by Remark (9.7) from the above candidate orbit counting
matrices. This determines the structure constants matrix P, € Z"*" as is shown
in Table 25.

Using the technique described in Section (8.2), and the matrix P» we obtain
a splitting of K'*" into 8 eigenspaces of dimension 1 and an eigenspace of
dimension 2. Using the degrees of the characters in Irrk (@), see Section (8.1),
we conclude that we have found the characters {1, p3, s, ..., ©10}, while @9
and ¢, are missing. These are found using the technique described in Section
(12.3). The character table of Ex is shown in Table 26.

(17.6) Let G := B and H := Flis3, which is a maximal subgroup of G. We
have r = 23.

First of all we construct an F'G-module, for a suitable finite field F', containing
a vector being H-invariant, but not G-invariant. Let 4370a be the absolutely
irreducible FoG-module of Fa-dimension 4370. Representing matrices for a set
of standard generators {a,b} C G in the sense of [81] are available in [83]; the
elements a and b have order 2 and 3, respectively. Words in the set of standard
generators giving a set of standard generators of H are also available in [83]. The
FyH-module (4370a) i turns out to have the constituents 782a and 3588a, where
the latter are absolutely irreducible Fo H-modules of the respective dimensions;
hence 4370a would not serve our purposes.

Let R C K and F be as in Section (2.10). Let V € modg-RG be an R-free
RG-module such that V ®pr K is an irreducible KG-module of K-dimension
4371. By [13], V ®r K is absolutely irreducible and uniquely determined up
to equivalence. All the character values of V @p K are rational integers. As
V ®g K occurs as a constituent of multiplicity 1 in a rational representation of
G, namely the permutation representation 1'§E6(2)’ see Section (17.1), we by [18,

La.IV.9.1] conclude that the rational Schur index of V ®g K is equal to 1. Hence
for our constructive purposes we may choose K := QQ and, as we construct a

module in characteristic 2, let R := Zs), the localisation of Z C Q at the prime
ideal (2) < Z, hence we have F' = Fs.

As the 2-modular reduction V := V € mod-FyG of V has the FyG-module
4370a and the trivial FoG-module la as its constituents, we conclude by [39,
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B and H := 2'122.Cos.

Table 25: Structure constants matrix P, for G :

IGFES  0068G 09L8G 0TSEY  SW6PC  S00EY 009G7TT0£S899 | 0T
9622¢ GLITE 0CLOS 89.TE TLVIV 7229€029L000F | 6
0CEy  GTIF  G6VE  09.G 09€ST  0TL0€ 002669TTTLES | 8
090€ 098¢  0F0S  L8TOT S¥6¥C FIV0E 09LES TISHI 0089£20900LF | L
9¢ 00T g1 168 S¥0C . 0026689796 9
LT : 0¢T ¢l 168  LOST 0CL9 T6I¥C 9S0GH 00799696 T¥ g
: qr 0¢ : 02y GIST  02€F 0V 00701EZ9Z 1

. I a4 0eT €9 26V 007982 ¢

: 1 qr €9 626 0STE6 || 0STE6 4

. : ) . ) . .

Lot 6 8 L 9 g v g z I IE B
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= 21722 Co,.

B and H :

Table 26: The character table for G :

T16V6C 09€L02— V20651 —
07989€ 9€.L788— 0TLVTY 0VZ8ET
002£2GT— 720607 T 0089L— 00785
02£0TLT— 706499C 009126~ 02GL0T
00082191 9LLGGTIT— 002LV TV 0082599—
0821ZE0 9626557 009TFFZTI—  0SF9IE96—
007926 T T 9L620TT6T—  00T6TICH
0960260EL—  STELOVTH— 07229€00T 969££GL09
009LTSTZ6TT—  VTTHOTEESS 00070EVLYS  00VCVEVTLE—
009SPTT0EG899  ¥ZTIE0ZILO00F  00T669TTTLES  0089ETOI00LY
| o1 6 8 L
89.2€ TSIl 0798 9¢6—  €GT— T || P00STTIEESSHTI | OT
09607 — 082LT 0962T— 09—  G€T T || P0STSTyETICLey | 6
00ZSTI—  009LS— 009€— 0076 egv— 1 || P9S0EETINBIEY | 8
02618 082€TT—  00ZL 09GT G60T T || PGSPPELGOTILS | L
0070L8—  00ZSTOT 00795 0088  GLEE T || PRLVLE0LSTE 9
02669 02GTE9T 00SVEE—  0968F  G6F T || POZSTIECLTY g
0079088 00¥20LG— 00795 00066  STOC— T || PVTTEROLYE 1
SOEVTGEE  TEPPL6GT  OFPSLLLE  PTPGIC  L8TOT T || POGLSSH6 €
00097806  00089LZF  00VZ0LG— 00GTLL  S20T— T || P9S296 4
0026689796 0079969617  00¥0TEE9Z  00¥98TL  0STE6 T || I I
9 g v 3 4 1] #X | &
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Cor.1.17.5] that V can be chosen such that

~ la
V= [ 4370a ]

is a uniserial FoG-module with composition series as indicated. Furthermore, by
[13], we have (V@g K)g = 1a® 782a ® 3588a as K H-modules, where the latter
are absolutely irreducible K H-modules of the respective dimensions. Hence we

—_

conclude that the 2-modular reductions 782a and 3588a are irreducible FoH-

—_

modules, where we have 782a = 782a and 3588a = 3588a. As V', and hence Vg
as well, are 2-modular reductions of R-free modules, we conclude by [39, 1.17.3]
that, as Fo H-modules,

~ ——

Vi = (Vg = (V) = la & 782a & 3538a.

Let 0 # vy € Vi such that la = (vy)p, < V. Hence the G-orbit vy -G CV
is isomorphic to Q := H|G as G-sets.

We construct the FoG-module V' explicitly, using the FoG-module 4370a and a
variant of the randomised technique to compute an upper bound on the dimen-
sion dimp, Ext]%_QG(la,él?)?()a) described in [46], of which we have a new GAP
implementation, using the fast arithmetic for vectors over finite fields. We use
the interpretation of Ext%zg(la, 4370a) as group cohomology

Exty,(la,4370a) = Hj (G,4370a) == Z} (G, 4370a)/BE, (G, 4370a),

where Z' := Zj (G,4370a) and B' := By (G,4370a) < Z' are the group
of 1-cocyles and 1-coboundaries of G with values in 4370a, respectively. Let
Zp ={¢ € Z4¢(b) =0} < Z' and B} := Z} N B < B!, where b € G is the
standard generator of G of order 3. Using the restriction map

resg, vy : Hy, (G, 4370a) — Hy ((b), (4370a) )

to the cyclic subgroup (b) < G, see [3, Ch.3.6], as well as the semisimplicity of
the group algebra Fa(b), we obtain

Hy, (G,4370a) = Zg, (G,4370a)/Bg, (G, 4370a) = Z, / By .

The elements of Z! are maps from G to 4370a fulfilling the cocyle relations,
hence ¢ € Z} is determined if ((a) is known, where a € G is the standard
generator of G of order 2. Hence we have a Fy-linear embedding v,: Z} —
V:( — ((a). If w(A, B) is an abstract word in the letters {A, B}, such that
w(a,b) =1 € G, then using the cocyle and coboundary relations this translates
into Fo-linear equations to be fulfilled by the elements of v,(Z}) and v,(B}). We
choose some abstract words as above, where we simply use the orders of some
elements in G, and finally end up with Fa-subspaces v, (B}) < v,(Z}) <V such
that dim v, (B{)+1 = dimv,(Z}). As we already know that there is a non-split
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extension of la with 4370a, by [3, Cor.2.5.4] we have Extf, (1a, 4370a) # {0}.
Hence we have shown that dimp, Exty,(la, 4370a) = 1.

Using the interpretation in [3, Prop.3.7.2] an element in v, (Z} ) \va (B} ) describes
the matrix entries in a representing matrix for the action of @ € G on a non-split
extension V of la with 4370a. Furthermore, as [Exty,(la,4370a) \ {0} = 1
the FoG-module V' is uniquely determined up to isomorphism.

(17.7)  To apply the strategy described in Section (10.6), we choose the fol-
lowing chain of subgroups

G=B>U;:=U:=H = Fis3>U;3:= 58(2) > U = 210:A8 > Uy .= Ay,

where we have the following group orders

|B| = 4154781481226426191177580544000000 ~ 4-1033,
|Fligs| = 4089470473293004800 ~ 4-10',
1Ss(2)] = 47377612800 ~ 4-10'
|210: Ag] = 20643840 ~ 2-107,

|A7] = 2520 ~ 2-10%

Words in the set of standard generators of H giving a set of non-standard gener-
ators of the maximal subgroup Sg(2) < H, are available in [83]. Using standard
MeatAxe techniques, using the constituents of Vg (s), we derive a suitable small
faithful permutation representation of Sg(2). Then running through some ran-
domly chosen elements of Sg(2), we find a set of standard generators in the sense
of [81].

The subgroup 2'0: Ag < Sg(2) is a maximal subgroup of index 2295. To find a set
of generators of 2'0: Ag, we first compute the uniquely determined transitive per-
mutation representation of Sg(2) on 2295 points, again using standard MeatAxe
techniques and the constituents of Vg (z). From this, using the Schreier-Sims
algorithm, a set of generators of the point stabilizer 21°: Ag is found. Running
through some randomly chosen elements of 210: Ag, we find a set of generators
of a complement Ag of the normal subgroup 2'° <1 219: Ag, and finally a set of
generators of A7 < Ag.

We specify the FoU;-modules V; and the maps §iy1,:: (Vig1)y, — Vi of FoUi-
modules, for ¢ € {1,...,3}, as in Section (10.5). Let V, := 782a be as in Section
(17.6), and let ¢: Vg — Vj be the natural Fo H-projection of Vg onto its Fy H-
direct summand isomorphic to V. Using the algorithms to compute submodule
lattices described in [47] available in the MeatAxe, we find that (V)y, has a
uniquely determined FyUs-quotient module isomorphic to

16a }

Vs = [ 26a

a uniserial FoUs-module with composition series as indicated, where the con-
stituents are the absolutely irreducible FyUs-modules of the respective dimen-
sions, see [37]. Let ds 3: (Va)u, — V3 be the natural FoUs-epimorphism. Analysis
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of the FoUs-module (V3)y, shows that (V3)p, has a uniquely determined FoUs-
submodule of Fy-dimension 11. The FoUs-quotient module V5 with respect to
this submodule has the structure

la
4a

6a ® 6a |’
1l4a

Vo=

where the diagram indicates the radical and socle series, and the constituents
are absolutely irreducible FoUs-modules of the respective dimensions, see [37].
Let gs2: (Vs)u, — V2 be the natural FoUs-epimorphism. Finally, the FoU;-
module (V3)y, turns out to have a uniquely determined FoU;-quotient module
isomorphic to

Vi 2 4a @ 14a,

where the constituents are absolutely irreducible FoU;-modules of the respec-
tive dimensions, see [37], obtained as the restrictions of the absolutely irre-
ducible FyUs-modules of these dimensions. Let ¢ 1: (V2)y, — Vi be the natural
FyU;p-epimorphism. Hence the chosen quotient modules have the following Fo-
dimensions.

[ ] U | dimg, V; |
B 4371
4|  Fias 782
3| Ss(2) 42
2 | 210: 44 31
1 Ar 18

(17.8)  We do not describe the partition 2 = [, €; into the G-suborbits
Q; directly, but instead find the H-orbits G(2;) C V4, for i € Z. This is done
using the strategy described in Section (10.6), applied to the group H = U =
U, and the chain of subgroups Us > U; > U;. In turn, to describe an H-
orbit §(§%;) = @; - H C Vg, for @; := §(w;) € §(9;), we do not enumerate
w; -+ H completely, but while enumerating @; - H use a randomised Schreier-
Sims technique to find subgroups of Staby (©;). To do this, we use the smallest
faithful permutation representation of H on 31671 points, which in terms of a
set of standard generators of H is available in [83].

We terminate the enumeration of w; - H if the product of the number of elements
of @; - H found and the order of the subgroup of Staby(®;) found exceeds
|TH‘. Then we know the orbit length |@; - H| and have even obtained Stab g (@;)
explicitly as a permutation group, where we additionally find a set of generators
of Staby (@;) as words in the set of standard generators of H. Hence we may
compute w; - Staby (0;) C Q C V, provided |w; - Stabg (©;)] is small enough to
do so. In this case, as we have

[Stab g (w;)] - |w; - Staby (@;)] = |Stabg (@;)],
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we are able to find ;| = %’
H(W;

as a permutation group. Hence, using the algorithms dealing with permutation
groups available in GAP, we are also able to find the structure of the subgroup
H; < H. The cases for which |w; - Stabp (&;)| is too large to proceed as just
described, have to be dealt with separately, which is commented on below.

and obtain H; = Staby(w;) explicitly

It turns out that there are suborbits §2;, for i € Z, apart from the trivial suborbit
Oy, for which §(w;) = {0} C V, and hence Staby(®;) = H holds. To find
H,; = Stabpy (w;) for these i € Z, these suborbits have to be dealt with separately,
which also is commented on below. Furthermore, it might happen that §(€;) =
4(Q;), for i # j € Z. In this case we would have to distinguish ; and €; by
other means. But it turns out that, apart from the cases where §(w;) = {0},
even the orbit lengths |§(€2;)], for ¢ € Z, are pairwise different.

To find some of the representatives w; € Q, for ¢ € Z, we begin with w; = vy €
Q C V, apply a few random elements of GG, and for the elements w € € thus
obtained enumerate §(w)-H C Vj, as was described above. This random search
yields 14 of the suborbits €;, namely for ¢ € {1,7,11,13,...,23}, see Table 27,
where the suborbits 2; are sorted with respect to increasing index parameters
k; = |Q;|. Summing up the k; for ¢ € {1,7,11,13,...,23}, and dividing by ||,
we obtain a fraction of ~ 0.998. Hence it seems to be rather improbable to
find further suborbits using a random search. To proceed, using the facts we
already know, we are tempted to look for candidate subgroups H < H which
might occur as stabilizers Staby (w;) = H;. Indeed, the author has been hinted
to the right guesses for the remaining 9 subgroups Staby (w;) < H, namely for
i€{2,...,6,8,...,10,12}, by [82].

Given a candidate H < H, we apply the usual strategy of combining sets of
generators of subgroups given in [83] with standard MeatAxe techniques to find a
set of generators of H as words in the set of standard generators of H. Using the
MeatAxe, we find the Fy-subspace Fixy (H) < V, and for each 0 # v € Fixy (H)
we proceed as follows. We compute a few elements v € v-G C V, and check
whether G(v') € V; is an element of an H-orbit §(Q;) C Vj, for some i € Z,
encountered earlier. As we have enumerated only a part of §(£2;) explicitly, it is
not sufficient to check G(v’) itself, but depending on the proportion of elements
of §(£2;) enumerated explicitly, we check a few other elements of ¢(v') - H C Vj,
as well. If we succeed in proving §(v') € §(£2;), then the technique described
in Section (10.6) also yields an element of h € H, given as a word in the set
of standard generators of H, mapping §(v') to @; € §(Q;). It is then checked
whether v'h = w; € Q holds, which proves that indeed v € Q. Thus the cases
i € {2,5,10} are dealt with straightforwardly. We briefly comment on the other
cases, including those for which |w; - Stabp (@;)| is large.

a) We have G(w;) = 0 € V4 for i € {3,4}, and, by construction, Stabg (w3) >
Sg(2) and Stabg (ws) > 2. Maz. As both candidate subgroups Sg(2) < H and
2 Mys < H are maximal subgroups, we conclude that equality holds.

b) For i = 8 we have 2 x 2Fy(2) < Ny(2a) = 2.Fisy < H, where for 1 #
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B and H := Fi23.

Table 27: Suborbits of G :

+ 20 (7 x v) 007 71 6L 680 <00 166 €8¢ | £C
€6 110 1€ TSG ST 007 ZFE 7€ FS6 29T | TT
22T g0 P0G 12 00z TS0 VS TLT 06T | 12
AR A A 4 0. 0€ 078 GE9 €82 0T €ET | 0T
+ % (V)*T'C 079 08 0Z£ 08V 6L9T1L0S | 61
+ 5 070 56 02T S9T OF68Z0EF | 8T
eIy X g 080 06T 096280 0LV VIS TG | LT
20 (V)T ;T 09G ZTE 0800L869T8.921 | 9T
+ 6 (% x oY) 00 8T¢ TLT0806£9888 L | CT
+ |¢ ¢ (8¢, (e)en e PRITLL 0026LL0LG282S | ¥1
8Y°,¢ 087 08¢ G 09LEETTLLFSGT | €1
¢ (g % ¢) 09T 87 € 08 L680952STT | ¢T
v:(p)Ts 008916 € 9eG LLGFSOFFOT | 1T
+ |z Ay Zlaeers YN 01T 0800118 096G Z6€ ST F0S 01
080T (€)t0 x &g (€)e x &§ 9L1¥LV CT 008796 ££S 09T 6
+ |z19266¢8 | TrgT A2Vl X @ 007 T¥6 G¢ TGG LVF SLLETT 8
¢ T g8 10 011G g€ | £97 2418 011G g4 1€ | CGETE60TT 00¥ GST 9IS €€ L
+ (c) fo 007 ZSTFLT TSE T60 8L €T 9
e 009 T00 6% 87T 88 L€G 8 G
+ | GEVLVLGOT | ®Crd SN 11 080 99G T68 0C GET L7 G6T i
+ | 91591€98 | fCug (¢)8s 008219 LLE LT 91¢9T1£ 98 ¢
2z () fo 008829 6S€ 706 6 968 21¥ z
+ €10 008700 £62 €47 047 680F | T T
s | o | (0)Hans 'y [ I'H] "6l =" E

(*m) Hgeigl
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2a € Z(2 x 2Fy(2)’) we have 2a € Cy4 € CI(H), where the latter in turn
denotes the 2A-conjugacy class of H. Using the ordinary character tables of
2x 2F,(2)" and of all the maximal subgroups of H, as well as the programs using
ordinary character tables to find candidates for the natural maps between the
conjugacy classes of a candidate subgroup and those of a given group, available
in GAP, we find that 2.Fisy & Ngy(2a) < H is the only maximal subgroup
of H containing 2 x 2Fy(2)’. Furthermore, 2 x 2F;(2)’ < Ng(2a) in turn is
a maximal subgroup. As by construction Stabg(wg) > 2 x 2F4(2)’, we only
have to check that Stabgy(ws) < Ng(2a), and that G(ws) # 0 € V4 as well as
Stabg (G(ws)) > N (2a) holds.

c) For i = 9 we have S5 x G2(3) < Ny (3a) = S3 x 07(3) < H, where 3a €
S3 <53 X Go(3) is an element of order 3, which turns out to be an element of
Cs4 € Cl(H), where the latter in turn denotes the 3A-conjugacy class of H. It
turns out that S3x07(3) contains two conjugacy classes of subgroups isomorphic
to S3xG2(3), and indeed exactly one of them yields a fixed vector in V' belonging
to €, different from w; = vy € V. Proceeding as in the case ¢ = 7, for the correct
subgroup S5 x G2(3), we find that S3xO07(3) = Ny (3a) < H is the only maximal
subgroup of H containing S3 x G2(3). Furthermore, S3 x O7(3) < Ng(3a) in
turn is a maximal subgroup. As by construction Staby(wg) > S3 x G2(3), we
only have to check that Staby(wg) < Ng(3a), and that §(wg) # 0 € Vi as well
as Stabp(¢(wg)) > Ny (3a) holds.

d) For i = 12 we have (2 x 2.Ma3).2 < Np(2b) = 22.U5(2).2 < H, where for
1 # 2b € Z((2 x 2.M32).2) we have 2b € Cop € CI(H), where the latter in
turn denotes the 2B-conjugacy class of H. It turns out that 22.Ug(2).2 contains
three conjugacy classes of subgroups isomorphic to (2 x 2.Mas2).2, and indeed
exactly one of them yields a fixed vector in V belonging to €2, different from
wy=vg eV.

e) For the last remaining case i = 6 we may assume that all the other 22
suborbits have already been found. We find that H has exactly three conjugacy
classes of maximal subgroups which contain a subgroup isomorphic to Oér (2),
namely subgroups isomorphic to Sg(2), to O (3): S3 and to 2.Figg, respectively.
It turns out that a subgroup Og (2) < Sg(2) yields fixed vectors in V' belonging
to €, different from w; = vy € Q and w3 € €.

(17.9)  For later use, see Section (17.11), we collect the following facts about
some of the groups H;, using the programs dealing with permutation groups
available in GAP.

a) For i = 4 the subgroup My3 < 21.My3 = Hy acts irreducibly on the el-
ementary abelian normal subgroup 2!! < 2'' Mys, hence 2''.Mys is a perfect
group.

b) For ¢ = 10 the subgroup Mj; < 210 My = Hyp acts irreducibly on the
elementary abelian normal subgroup 2'9 <219 M, hence 2'°.M;; is a perfect
group.

c) For i = 13 the group Hy3 = 27.Ag is not 2-perfect, since the normal sub-
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group 27 <0 27.Ag is elementary abelian, but as an FyAg-module is isomorphic

la N . " . s
to { 6a } , & uniserial 3 Ag-module with composition series as indicated, where

the constituents are absolutely irreducible Fy Ag-modules of the respective di-
mensions, see [37].

d) For i = 14 the group Hy4 = 27.U3(3) is a perfect group, since the normal
subgroup 27 < 27.U3(3) is elementary abelian, and as an FyUsz(3)-module is
(132 , a uniserial FyUs(3)-module with composition series as
indicated, where the constituents are absolutely irreducible FyUs(3)-modules of
the respective dimensions, see [37].

isomorphic to

(17.10)  We compute the structure constants matrix P, = [p; 2 x;1,k € Z] €
Z"*" for the smallest non-trivial suborbit o, with ko = 412896, using the strat-
egy described in Section (17.5). Hence again the remaining task is to enumerate
Qo C V explicitly, to apply successively the elements g; € G, for i € Z, to all
elements of Qs C ©Q C V, and to find the cardinalities ¢z 1 (g;) = [Q29: Q| € No
by checking for membership in €y, for £ € Z. As we have not enumerated the
G-suborbits directly, but the H-orbits ¢(€2;) C Vy, for i € Z, instead, see Section
(17.8), the membership test is done by checking whether §(w) € §(2x) holds,
for w € Qag; and k ¢ {3,4}. As we have enumerated only a part of §({)
explicitly, again it is not sufficient to check §(w) itself, but a few other elements
of (w) - H C V have to be checked as well. For the exceptional cases k € {3,4}
we cannot check at all whether §(w) € §(€2) holds. But it turns out that the
numerical conditions given in Section (17.5) are sufficient to find all the matrix
entries ¢ 1 (g;) € No, for 4,k € Z, in particular those for k € {3,4}.

The structure constants matrix P, € Z"™*" can be determined using Remark
(9.7), it is shown in Tables 28 and 29. Using the technique described in Section
(8.2), the structure constants matrix P, turns out to be sufficient to obtain a
splitting of K1*" into eigenspaces of dimension 1. The character table of Fi is
given in Tables 30, 31 and 32.

(17.11) Let G:=2.Band H' := Figz as well as H := Z(G) x H' = 2 X Fliag.
The assumptions of Remark (5.15) are fulfilled. We have » = 23 and ' = 34,
where Q := H|G and Y := H'|G. We determine the 11 split and 12 non-split
suborbits.

Let i € 7 such that §; is a non-split suborbit. Hence by Remark (5.15) we have
[((H'NnHY%):(H' NH")] =2, and thus we have H' N H% < H' but H' N H9% £
H'% . Furthermore, by Corollary (5.5) we have [H': (H' N H%)| = k; = [H: Hj]
anyway, and thus [H;: (H' N HY%)| = [H: H'] = 2. Hence H' N HY% is a normal
subgroup in H; of index 2, and in turn H' N HY% has H' N H'9 as a normal
subgroup of index 2.

The structure of the subgroups H; < H is indicated in Table 27, see also Section
(17.9), where the subgroups H; < H considered here are split central extensions
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= Fizg.

B and H :

Table 28: Structure constants matrix P> for G :
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Fliss, continued.

B and H :=

Table 29: Structure constants matrix P, for GG :
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B and H := F’igg.

Table 30: The character table for G :

TETOTT 967.L— 9€TTL— 96797 639G— 9TTT—  00%— T || oogLevaszgeoros | €o
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Flisz, continued.

B and H

Table 31: The character table for G :
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Flisz, continued.

B and H :=

Table 32: The character table for G :
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of the subgroups given in Table 27 by the central subgroup Z(G) of order 2.
Hence we conclude that for ¢ € {1,3,4,6, 10,14, 18} the subgroup H; < H has
only 2-perfect subgroups of index 2, and thus these are 7 of the split suborbits,
as is indicated in the last column of Table 27. Note that by Section (17.9) the
above condition on the subgroup structure does not hold for His.

We have a closer look at the embedding of the subgroups H; into G. As all
characters in Irr;(H "(@) are rational-valued, by Propositions (3.20) and (3.1) and
the orthogonality relations, see Proposition (3.8) we conclude that all suborbits
of Q' are self-paired. Hence we may without loss of generality choose the set of
representatives {g;;i € Z} of the H-H-double cosets in G such that g7 € H'.
We still assume that ¢ € Z such that €; is a non-split suborbit. Let H' < H’
be a subgroup such that H' N HY% < H’', and let H := Z(G) x H' < H. Hence
we have H; < H. Since H' N H% £ H'% we also have H' N H% £ H'%  but we
have H' N H9 < H; = HY < HY%.

Let fg: CI(H) — CI(G) denote the natural map between the conjugacy classes
of H and those of G, and let fg,’ﬁ:Cl(f{') — CI(H) denote the natural map
between the conjugacy classes of H' and those of H. Let f,,:CI(H) — CL(H9")
be the natural bijection between the conjugacy classes of H and those of HY,
induced by conjugation with g; € G; its restriction to CI(H') also is denoted by
fg;- Hence the natural map between the conjugacy classes of H9 and those of
Gis fgo fgf:Cl(f{gi) — CI(@), and the natural map between the conjugacy
classes of H'9 and those of HY is f,, o far o f!]_il:Cl(ﬁ’gi) — CI(HY).

For the natural maps
fCl(H' N HY) — CI(H') and f":CI(H' N H%) — CI(HY")
we hence have

FICUH'NHY)) € fg,0f 0 gofy (CLH)) and fgofm gof = fgof, of".

We use the programs using ordinary character tables to find candidates for
the natural maps between the conjugacy classes of a candidate subgroup and
those of a given group available in GAP, to check whether such maps f’ and
f" exist for the index 2 subgroups H” of the groups H; not yet dealt with.
Given H”, we compute the candidates for the natural map CI(H") — CI(H),
and check whether we can find candidate maps f; and fs, such that f; factors
through some f:CI(H") — CI(H') as f; = far o f', where f" and f” :=
fg: 0 f2:CL(H") — CI(H9") fulfil the above conditions, which amount to

f2(CU(H")) € f g(CI(H")) and  fzofi=fgofo

We specify H' := H’, hence H = H. The ordinary character tables of G as well
as H and H' are available in GAP. It turns out that there are 4 candidates for the
natural map fg:CI(H) — CI(G), which are exactly one orbit under the action
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of the group of table automorphisms of G, hence we may choose one of them,
and keep it fixed. The map fy+ g:CI(H') — CI(H) is uniquely determined.

Let i = 8, hence we have Hg = 22 x 2F4(2)’. Thus all its index 2 subgroups are
isomorphic to 2 x 2F(2)’, whose ordinary character table is available in GAP. It
turns out that no pair of maps f 2:Cl(2 x 2Fy(2)’) — CI(H) fulfilling the above
conditions exists.

Let i = 15, hence we have Hyjs = 2 x (Ag x Ag):22. As we are looking for
maps fi factoring through fr g, we may restrict ourselves to the direct factor
(Ag x Ag): 2% of index 2. Its ordinary character table can be determined using
the Dixon-Schneider algorithm available in GAP. It turns out that no pair of
maps f1,2:Cl((Ag x Ag):2%) — CI(H) fulfilling the above conditions exists.

Let ¢ = 19, hence we have Hig = 2x2.L3(4).22. Again we may restrict ourselves
to the direct factor 2.L3(4).25 of index 2, whose ordinary character table is
available in GAP. It turns out that no pair of maps f1 2: Cl(2.L3(4).22) — CI(H)
fulfilling the above conditions exists.

Let i = 23, hence we have Hoz = 2 x (A5 x A5):22. Again we may restrict
ourselves to the direct factor (A5 x As): 22 of index 2, whose ordinary character
table can be determined using the Dixon-Schneider algorithm available in GAP.
But it turns out that it would be too time-consuming to compute the candidates
for the natural map CI((As x A5):2%) — CI(H). Using GAP and the permutation
representations of (Asx As): 22 & Ha3/Z(G) and of (Agx Ag): 22 = Hy5/Z(G) as
subgroups of Fis3 = H/Z(G), we find that (A5 x As): 22 is Figs-conjugate to a
subgroup of (Ag x Ag): 22. Hence we may assume (As x As): 2% < (Agx Ag): 2% <
H'. Thus we specify H' := (Ag % Ag): 22. We use the candidates for the natural
map CI(H') — CI(H) already found above, and as we keep fg:CL(H) — Cl(G)
fixed, we find that the natural map CI(H) — CI(G) is uniquely determined.
Finally, it turns out that no pair of maps f1 o: CI((Asx As): 22) — CI(H) fulfilling
the above conditions exists.

Hence we have found the remaining 4 split suborbits to be i € {8,15,19, 23}, as
is indicated in Table 27.

(17.12)  Unfortunately, up to now it has not been possible to compute the
character table of Ell(H', apart from the relations between the character values
given in Remark (5.15). There are serious obstacles we are faced with.

It turns out that no suitable faithful representation of G is available to be
used for a computational approach analogous to the one which has been used
for = H|G, see Section (17.6). Furthermore, only the second smallest non-
trivial suborbit ¢ = 3, where k3 = 86316516, is a split suborbit. To find the
character table of E}{I ", by Remark (5.15), we have to determine Irrx (E} ),
where Z;- C 7 is the set of split suborbits. Applying a technique as was used
in Section (17.10) would imply to run explicitly through the k3 = 86316516
elements of 13, instead of the ko = 412896 elements of 5.
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We mention some more indirect ideas, which might be helpful, but still have to
be elaborated further.

a) We could try to use a technique which was used in [29] for the groups B
and 2.2E4(2).2 as well as 2.2E4(2). For the present case this involves finding
the 1~ -weights ¢ € {£1} of the triangles in Z;;; C Q x Q x Q, for j,k € Z;-,
and some fixed ¢ € Z;-, see Definition (1.15). This can be reduced to the sets
ngk’c C Q;, see Remark (1.16), which in turn are unions of Hy-orbits. We are
tempted to choose ¢ = 3, the smallest non-trivial split suborbit, but still we are

faced with k3 = 86316516 elements, and the sets Qé;i C Q3 in most cases
seem to be far away from being single Hj-orbits.

b) By Remark (3.24), the matrix T'; € ZZ*IC{&) can be determined, see Defi-
nition (3.19). To find the character table of E}. , it is sufficient, by Proposition
(3.20), to find the matrix 'y~ € Z%1-*ICUS] The matrix entries of T'; and
I'- aswellasI'y,, € ZEXICUG are related, where the relations can be made
precise. Furthermore, the rows of I'y- form an orthogonal K-basis of the K-
subspace of KTi-*ICUG)I they span, where the latter can also be described in
terms of values of the characters in Irrj, (G), see Remark (3.24).

18 The Thompson-Smith lattice

In Section 18 we give another application of the technique described in Section
(10.6), to a problem related to the still open question of determining the min-
imum of the so-called Thompson-Smith lattice. We begin by fixing the setting
and stating the problem we solve computationally.

(18.1) Let G:=Th and G C G be a set of standard generators of G in the
sense of [81]. Let V be the absolutely irreducible, even, unimodular ZG-lattice of
Z-rank 248, the so-called Thompson-Smith lattice. Matrices for the action of the
elements of G and the Gram matrix of the scalar product (-, -}y on V are known,
see [62]. Let the minimum of V be defined as min V' := min{(v, v)y;0 # v € V}.
By [40] we have min V' > 10.

Let H := 3 x G2(3) < Ng(H) = (3 x G2(3)):2 < G, where Ng(H) < G is
a maximal subgroup. It turns out that Fixy (V) = (vy)z for some vy € V,
while vy - Ng(H) = {£vn}. As Ng(H) < G is a maximal subgroup, there is
a G-set isomorphism between the G-orbit vy - G C V and Q := H|G, where
n = |Q| = 7124544000, and using GAP we find |Z| = r = 778. Note that the
G-orbit vy - G C V is a symmetric orbit, hence we have —v € vy - G whenever
v €E€vyg-G.

It turns out that (vg,vy)y = 12. Hence we have minV € {10,12}. It is
conjectured and still an open problem that min V' = 12. Related to this problem,
it has been conjectured [61] that

{{v,vg)v;v €vy -G CV,u# tog} ={0,£1,£2,+3, +4, +6}.
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We prove the latter conjecture, see Table 33.

(18.2) Let V be the absolutely irreducible F3G-module obtained from V' by
3-modular reduction. Using the MeatAxe, we find that Vi has a uniquely de-
termined trivial F3H-submodule. We pick one of the vectors 0 # vy € Vg in
this submodule, and it turns out that v - Ng(H) = {£0x }. Hence we conclude
that there is a G-set isomorphism between the G-orbit vy - G C V and Q.

We enumerate the G-orbit 2 = 0y - G piecewise, H-orbit by H-orbit, using the
technique described in Section (10.6). As G acts by lattice automorphisms on
V, and H = Stabg(vy), we have (v,vg)y = (v- h,vg)y forv €V and h € H.
Hence the level sets

(vg - G)e:={vevy -G CV;({v,vg)v = c},

for ¢ € {—12,...,12}, are unions of H-orbits. Hence to find out for which of
these levels we have (vy - G). # 0, we only have to compute (v;, vy )y for a set
of representatives v; € V, for ¢ € Z, for the H-orbits in vy - G = Q, where we
have |Z| = r = 778. This even yields further information, namely how the level
sets decompose into H-orbits.

We choose the chain of subgroups
U, = U3(3)2 < U;:= G2(3) <Us3=U:=H=3x G2(3),

where Uy < Uj is a maximal subgroup. A set of generators of Ng(H) = (3 X
G2(3)): 2, given as words in G, is available in [83]. Using the MeatAxe, we find a
set of generators of H as well as a set of standard generators of Us, in the sense
of [81], as words in G, and again a set of generators of U; as words in the set of
standard generators of U, is available in [83].

Using the 3-modular Brauer character table of G3(3):2, see [37], and GAP we
find that VNG( i) has the following constituents with multiplicities: la, 2 - 1b,
7 - 14a, 49a, 2 - 49b, where these are absolutely irreducible F3Ng(H )-modules
of the indicated Fs-dimensions, and the ordering is as in the 3-modular Brauer
character table of G2(3): 2. Using the algorithms to compute submodule lattices
described in [47] available in the MeatAxe, we find that VNG( ) has a unique

epimorphic image Vs of F3-dimension 63. We have V5 & }éz } as FsNg(H)-
modules, a uniserial F3 Ng(H)-module where the diagram indicates the radical
and socle series of V,. Furthermore, we have (Va)y, = 7a4§a7b as FgUs-

modules, where again the constituents are absolutely irreducible F3Us-modules,
and the the diagram indicates the radical and socle series. Using the 3-modular
Brauer character table of U; = Us(3):2, see [37], and GAP we find that (V3)p,
has the following absolutely irreducible constituents: 1b, 6a, 7a, 7b, 12a, 30a, all
with multiplicity 1. Again using the MeatAxe we find that (‘72)(]1 has a unique
epimorphic image Vi & 6a @ 7b as F3U;-modules, hence V; has Fs-dimension
13.
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Table 33: Level sets and H-orbits.

L el (-Gl |IZ]]
0] 3712825584 | 380
1| 1587081600 | 158
2| 117615888 | 32
3| 1106560 | 4
4 53703 | 2
5 N -
6 1456 | 2
7
8
9

10
11 N
12 1] 1

] c | H-orbit lengths |
6 | 728,728

4| 9477,44226

3 | 5824,157248,471744,471744

(18.3) We enumerate the orbit 0y -G, using the technique described in Section
(10.6), and find the H-orbits in ¥y - G, where there are r = 778 of them.
Additionally, for each such H-orbit (vg - G); = §;, for i € Z, we compute an
element g; € G, as a word in the set of generators G, mapping vy to an element
of (0p - G);. As we have 0y - G = Q = vy - G as G-sets, we apply the g; € G,
for i € Z, to vy, and collect the data on the scalar products (vgg;, vy)y and
the suborbit lengths |vgg; - H| = |Q;] = |0gg; - H|.

The result is shown in Table 33, where for each level ¢ € {0,...,12} we give the
cardinality |(vy - G).| and the number |Z..| of H-orbits comprising the level set
(vg - Q). For c € {—12,..., -1} we have |(vyg - G).| = |(vyg - G)—.| and |Z.| =
|Z_.|. In particular, the non-empty level sets are as stated in the conjecture
in Section (18.1). For given ¢ € {—12,...,12} the lengths of the H-orbits
comprising the level set (vy - G). are also known. This seems to be particularly
interesting for ¢ € {3,4,6}, where the lengths of the H-orbits comprising these
level sets are also given in Table 33.

19 The Harada-Norton group HN in characteristic 3

In Section 19 we present by example a new technique to use condensation results
to determine decomposition numbers for finite groups. Historically, finding de-
composition numbers was the very problem condensation techniques have been
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invented for, see [77]. Since then, these techniques have been applied by various
people, see for example [26, 38, 57, 59).

Keeping the notation of Section 9, and letting A = 1 and ¢ = ¢; € A := FG,
we consider V := €A, which is a projective A-module. Hence the criterion in
Section (9.12) is applicable as well as Proposition (9.13), see Remark (9.14). The
information thus obtained is used to find projective indecomposable characters.
We need some preparations first.

(19.1) Let G:= HN and p:= 3. Let K, R and F be as in Section (2.10),
where K is a splitting field of KG and F is a splitting field of F'G of characteristic
p=3. Let 5174:21%4 54 =~ [ := Ng(5b) < G, where 5b € Csp € Cl(G), where
the latter in turn denotes the 5B-conjugacy class of G; the ordinary character
table of H is available in GAP.

Using GAP we find the following data on the 3-modular blocks B; of G, where
dp, € Ny denotes the defect of B;, while kp, := |Irrx(B;)| € N and lp, :=
|Irrp(B;)| = |IBrp(B;)| € N denote the number of irreducible ordinary and
irreducible 3-modular Brauer characters of B;, respectively. The last column
corresponds to the union of the blocks of defect 0.

i 1 2 3
dg, | 6 2 1[0
kg, |33 9 3|9
Ig, |20 7 2|9

Nothing has to be done for block B3 of defect 1. We partly analyse block By of
defect 2. This is part of a full analysis of block Bs and the principal block B;
currently being work in progress [31]. We assume the reader familiar with the
notion of basic sets, see [30].

Using GAP we find that the set
BS := {8910a, 16929a, 270864a, 1185030a, 1354320a, 15759364, 4561920a }

of irreducible ordinary characters in B is a basic set of Brauer characters in
Bs, as is indicated by the underlined entries in the first column in Table 34.
We also give there a basic set PS := {Uy,...,¥7} C ZIrrg(B2) of projec-
tive characters in ZIrrk (Bs), decomposed into the irreducible ordinary char-
acters By, and indicate the origin of the ¥;, for ¢ € {1,...,7}. The charac-
ters {69255a, 1066527a, 3878280a} C Irrk (G) are ordinary characters of defect
0. Since |H| is not divisible by 3, all the irreducible ordinary characters in
Irr i (H) are projective characters, where 17, A € Irrx (H) denote linear charac-
ters of order 2 and 4, respectively, and 5b € Irr g (H) is one of the rational-valued
characters of degree 5. It turns out that (3 - (5b)¢, x) € Z, for all x € BS, hence
the Bs-component of % - (5b)€ is a projective character in Bs.

Thus W7 is a projective indecomposable character. We consider the possible pro-
jective summands of Wg. These are sums of a multiple of W7 and the characters



141

Table 34: Basic set P.S of projective characters in By for G := HN and p := 3.

‘ 7 ‘ Xi H \Ifl \IJQ \I/g \114 \I/5 \116 \IJ7 H 1G ‘ \Ifé \II% \I/g
8 8910a 1 . 2
10 16929a 1 . 1
19| 270864a . . 1 . . . . .
32 | 1185030a 1 1 1 3 1 4 1 .
33 | 1354320a 2 2 . 2 2 1 2 1 .
37 | 1575936a 1 2 1 1 2 1 . . . 1
43 | 2784375a 2 2 1 3 5 2 . 3 1 1
49 | 4561920a 1 2 2 6 9 4 1 2] a b c
50 | 4809375a 1 3 3 ) 9 4 1 3| a b—=1 c+1
| [1®mps] 2 1 5 —14 9o |
i | origin
(1)

N O O W N

1066527a - 133D
/\G

5 (50)¢
3878280a - 133a
69255a - 3344a
69255a - 760a
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Table 35: Basic set P.S’ of projective characters in Bs.

| il w e W, W, w g W

.

8 8910a || 1 .

10 16929a .1

19 270864a | . . 1 . .

32 1185030a | 1 1 1.

33 1354320a || 1 .2 1

37 1575936a || . 11 .1

43 2784375a || 1 13 1 1 .

49 4561920 || 1 2 2 6 3 1 1

50 4809375a || 1 3 3 5 3 1 1

1“inPS || 2 1 1 -5

1) inPS" || 1 1 -1

\I'é’Q’?’ shown in Table 34, where a + b + ¢ < 4. Using the decomposition of the
By-component of the projective character 1¢, where 1 € Irrg (H) is the trivial
character, into the basic set PS of projective characters, as is also shown in
Table 34, we conclude that the projective indecomposable summand of Wg con-
taining W} is a 3-fold summand of ¥5. Hence W is a projective indecomposable
character, and we have a € {0,...,3}. Furthermore, both the projective inde-
composable summands of g containing U2 and W3, respectively, are summands
of ;. Hence we have b+c¢ < 1. From that we conclude that both ¥; — \Il?3 — \I/g
and Wy — 2 - W2 — 2. U3 are projective characters. Hence we obtain the ba-
sic set PS’ of projective characters as shown in Table 35, where ¥, = W, for
i€{1,2,3,4,7},as well as Uy := U5 —2-W+2-Uy and ¥g :=3-Ug—V5—2-Uy,
while \Iﬂl lel—\I//6+\IJ7 and \1112 = \112—2\1’,6+2\IJ7

In Table 35 we also show the decomposition of the Bs-component of the pro-
jective characters 1¢ and (17)¢ into the basic set P.S’ of projective characters.
From this it follows that ¢ := W{ — U’ is a projective character, and we obtain
the basic set PS” of projective characters as shown in Table 36, where ¥/ = ¥/,
for i € {1,2,3,4,6,7}. In Table 36 we also show the decomposition of the Bs-
components of the projective characters 1¢ and (17)% into the basic set PS”
of projective characters.

(19.2)  We are prepared to apply the technique described in Section (10.3) to
Q:= H|G and U := H, yielding the action of eF3Ge on F3Qe, where the latter
eF3Ge-module is isomorphic to the regular eF3Ge-module eF3Ge.

Using the decomposition of 1¢ into Irrgc(G) shown in Table 37, where the dis-
tribution of Irrx (G) into the blocks By, B, Bs and the characters of defect 0
is indicated as well, we obtain (1¢,1%)¢ = 127, while (1¢ - ep,,1%)¢ = 62 as
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Table 36: Basic set PS” of projective characters in Bs.

| il vy vy vy vy ey wy ]

.

8 8910a | 1 . . . . . ] 2
10 16929a O
19 270864a A .
32 1185030a | 1 1 11 . 4
33 1354320a | 1 .2 1 2
37 1575936a : ) |
43 2784375a || 1 1 3 1 1 3
49 4561920a¢ | 1 2 2 6 2 1 1| 2
50 4809375 || 1 3 3 5 2 1 1] 3

1“inpPs”| 2 1 1 —4
(1) inPS" || 1 1 -1

well as (19 - ep,,1%) ¢ = 47 and (1€ - €p,,1%)¢ = 2, where e, € KG denote
the central block idempotents of KG, for i € {1,2,3}, see Remark (9.2).

We choose )
N a
V= { 132a } ’

a uniserial F4G-module with composition series as indicated, where the con-
stituents are absolutely irreducible F,G-modules of the respective dimensions,
which is the 2-modular reduction of an absolutely irreducible Q(v/5)G-module.
Representing matrices for the action of a set of standard generators of G, in the
sense of [81], are available in [83]. Furthermore, a generating set of H given as
words in the set of standard generators of G is also available there. We find
Vg =2 1a®32a®100a as F4H-modules, where the summands are absolutely irre-
ducible F4H-modules of the respective dimensions. Choosing 0 #£ v € la < Vg,
as H < G is a maximal subgroup, we obtain that € is as a G-set isomorphic to
the G-orbit (v)p, -G of 1-dimensional Fy-subspaces of V. Furthermore we choose
Cys 2 U; < H. As U; is a cyclic group, the centrally primitive idempotents
of F,U; are straightforwardly determined. This yields the decomposition of the
semisimple F4U;-module Vi, into its F,U;-isotypic components. A standard
MeatAxe technique then allows to find an irreducible F,U;-epimorphic image V;
of Vi, of F4-dimension 10.

This yields the orbit counting numbers with respect to Q = [[,.; ©;. By Propo-
sition (9.5) we obtain representing matrices for the action of a few randomly
chosen elements {egre € eF3Ge; k € {1,2,...}}, on F3Qe, where the above set
is chosen such the criterion in Section (9.12) is fulfilled. Using the MeatAxe we
find the constituents of the eF3Ge-module F3Qe¢, their multiplicities, and the
F3-dimensions of the endomorphism algebras of the simple eF3Ge-modules as
follows, see Remark (9.14).
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Table 37: Characters 1¢ and (17)¢ decomposed into Irrg (G).

(7] o [1]1 ][] xi 11t ] [{] xi [1]1 ]
1 la || 1 . 25 | 656250a || 1 ) 32 | 1185030a || 4 1
2 133a || . 1 26 | 6562506 || 1 . 33| 1354320a || 2| 2
3 1330 || . 1 27 | 718200a || 1 2 37 | 1575936a || . 1
4 760a || . ) 28 | 7182000 || 1 2 43 | 2784375a || 3| 2
5 3344a || . . 29 | 1053360a || - . 49 | 4561920a || 2 1
6 8778a Il . ) 34 | 1361920a || 1 1 50 | 4809375a || 3 1
7 8778b || . ) 35 | 13619200 || . . 23 | 406296a .
9 9405a || . 2 36 | 1361920c || . . 38 | 1625184a || 1 1
11| 35112a || . . 40 | 2375000a || 3 | 3 39 | 2031480a || 1 1
12| 351120 | . . 41 | 2407680a || 2| 2 15 692550 1 1

17 | 214016a || 1| .| |46 | 3424256a || 3| 3| | 31 | 10665270 || .| 1
21 | 374528a || . | . 8 8910a [ 2| 1| |51 |5103000a || 1| 1
22| 374528b (| .| .| | 10| 16929a || 1| .| |52 51030006 | 1| 1
24 [ 6531250 || 2| 1] |19 | 270864a | .| .| |53 |5332635a || 2| 4
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[la|1b[1c][1d]le[1f [1g[1h[2a[2b]2c | 2d | 2¢ |
12 8] 5] 1] 2[22[40] 1] 2] 2] 2] 1][11
L[] 1 1[f1]1]2]1

Let x € Irrx(G) be a character of defect 0, and let 3; be an R-free RG-
module affording x. Then the 3-modular reduction 3; of 3; is a projective
simple FG-module. If 3; - € # {0}, then by Propositions (6.7) and (6.15) the

eFGe-module g; - € is a projective simple eFGe-module. Using Table 37 we
conclude by Proposition (9.13) that in this sense {69255a,69255b} correspond
to {1d, 1h}, that {2985984a, 3878280a, 5332635a} correspond to {2a, 2b, 2c}, and
that {5103000a, 51030006} correspond to 2d, where the 3-modular character field
of the characters 5103000a, b is Fyg, yielding a projective simple F3G-module S
such that Endp,¢(S) = Fg. By Corollary (6.12) we conclude that Se is a
projective simple eF3Ge-module such that Endep,ce(Se) = Fo.

As the block Bjs is of defect 1, using the Brauer-Dade theory of blocks of
cyclic defect, see [18, Ch.VII], we find from Table 37 that the Bs-component
of the F3G-module 1¢ is a projective indecomposable F3G-module P. As
(19 - €p,,1%) ¢ = 2, using Propositions (6.19) and (9.13) we conclude that P
corresponds to le.

Using Table 36 we find that the Bs-component of the FsG-module 1¢ has at
least three different projective indecomposable F3G-summands, where at least
one of them occurs with multiplicity 2. Again by Proposition (9.13) we conclude
that 2e corresponds to a projective indecomposable F3G-module in By. From
(19 - €p,,19) g = 47 we conclude that {1a, 1b, 1¢} also correspond to projective
indecomposable F3G-modules in By, while {1f,1g} correspond to projective
indecomposable F3G-modules in Bj.

Using Proposition (6.19) again, we find (¥7,1%)g = 16 and (¥},1%) g = 18 as
well as (0% 1) ¢ = 17 and (¥4,1%)¢ = 5. As was shown in Section (19.1),
the character U7 is projective indecomposable, and the character U —a - U7 is
a projective indecomposable character for some a € {0,1,2}. Hence by Propo-
sition (9.13) we conclude that the projective indecomposable F3G-module af-
fording U7 corresponds to le, and that U’ := UJ — ¥ is a projective in-
decomposable character afforded by a projective indecomposable F3G-module
corresponding to la. Hence from Table 36 we obtain the projective characters
U = WY — W and U — 2. As WY occurs with multiplicity 2 in 1¢ and
(U 1¢)g = 11, we conclude that W}’ is a projective indecomposable charac-
ter, being afforded by a projective indecomposable F3G-module corresponding
to 2e. As (U —W? 19) 5 = 13, the character ¥4 — ¥ is not a projective inde-
composable character. A consideration of the possible projective summands of
U — U2 shows that ¥}’ := ¥ — 2.0 is a projective indecomposable character,
being afforded by a projective indecomposable F3G-module corresponding to 1b.
Hence we obtain the basic set P.S”" of projective characters as shown in Table
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Table 38: Basic set PS” of projective characters in By.

| i o vy wy ey ey vy ey w1

8 8910a || 1 . . . . . 2] 1
10 16929a | : : : ‘ 1

19 270864a . .1 . : : B T
32 1185030a || 1 1 11 . 4] 1
33 1354320a || 1 ) 1 2| 2
37 15759364 . 11 .1 1
43 2784375a || 1 1 3 1 1 31 2
49 4561920a . .2 6 1 1 12| 1
50 4809375a .1 3 5 1 1 31 1

1¢ in PS”" 2 1 . o1 |
(17)% in PS" 1 . : . |

38, where U/ = W/ for i € {3,4,6,7}.

(19.3) Let H' < H be the unique subgroup of index 2. We apply the tech-
nique described in Section (10.3) to Q := H'|G and U := H’, yielding the
action of €'F3Ge’ on F3Q'¢’, where ¢ € F3H' C F3G is the centrally primitive
idempotent belonging to 1z:. Using the decomposition of 1§, = 1¢ + (17)¢
into Irrx (@) shown in Table 37, we obtain (1%,,1%,)c = 460, as well as
(1§, -eB,,1%)a = 250 and (1§, - €p,, 1%/ = 102 and (1%, - €p,,1%. )¢ = 8.

We choose as V' one of the absolutely irreducible FgG-modules of Fg-dimension
133; it is the 3-modular reduction of an absolutely irreducible Q(v/5)G-module.
Representing matrices for the action of a set of standard generators of G on
V' are available in [83]. A generating set of H' as words in the generating set
of H is found by a standard application of the MeatAxe. Using this we find
Vi = 1a @ 32a ® 100a as FgH’'-modules, where the constituents are absolutely
irreducible Fg H'-modules of the respective dimensions. Furthermore, all the
FgH'-submodules of Vy/ are invariant under the action of H on V', where la
extends to a linear Fg-representation of FgH of order 2. Hence choosing 0 #
v € la < Vi we obtain that € is as a G-set isomorphic to the G-orbit =
v-G C V. Furthermore, by a random search, we choose 52: Dg = U; < H'. A
standard MeatAxe technique yields an epimorphic image V; of the semisimple
FoU;-module Vy: of Fg-dimension 4.

Proceeding as in Section (19.2), we find the constituents of the €'F3Ge'-module
F3Q'¢’, their multiplicities and the Fs-dimensions of the endomorphism algebras
of the simple € F3Ge¢'-modules as follows.
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|1a|1b|lc|1d|1e|1f|2a‘2b|20|2d|2e|3a|4a|4b|6a‘6b‘
1710|110 1|74 1| 1| 4| 74246 |17| 2| 4| 6| 6
1) 1) 1 1) 1| 1 2] 1 1} 2| 1| 1| 2| 1| 1|1

Using Table 37, and proceeding as in Section (19.2), we conclude that the con-
stituents {1d, 1f, 2a,4a, 4b, 6a,6b} correspond to the irreducible ordinary char-
acters of defect 0 occurring in 1%,. Furthermore, the Bz-component of the F3G-
module 1%, is the direct sum P @ P, where P is the projective indecomposable
F3G-module as in Section (19.2). Hence 2b corresponds to P. As all irreducible
ordinary characters in Irrx (Bs) are rational-valued, we conclude that Fs is the
character field of all irreducible characters in Irrp(Bs2), hence F3 is a splitting
field for all simple F'G-modules affording a character in Irrp(B2). From this and
Table 38 we conclude that all projective indecomposable €F3Ge’-submodules of
FsQYe’ - ep, have an Fz-dimension at most 17. Hence {la,1b,1¢,2¢,3a} are
the constituents of F3Q'e’ corresponding to projective indecomposable F3G-
summands of 1, - ep,.

We have already shown that the characters ¥/ and U9’ as well as ¥/’ and
Ul are projective indecomposable, see Table 38. As (¥} 1%,)¢ = 17 and
(U 16)e = 10 as well as (V2 15,)e = 17 and (V) 14,)¢ = 17, while
(v’ 1%1>G = 7, we conclude that 3a corresponds to a projective indecom-
posable FsG-module affording ¥/, one of {1b, 1c¢} corresponds to ¥4’, while
la corresponds to ¥Y') and 2¢ corresponds to ¥/'. Hence we conclude that
Ul = Wy — Wl is a projective indecomposable character, being afforded by
a projective indecomposable F3G-module corresponding to the other one of
{1b, 1c}.

Note that we could determine which of {1b, 1¢} corresponds to ¥4’ and which to
U by an analysis of the submodule structure of the ¢ F3Ge'-modules F5Q'¢’,
using the algorithms to compute submodule lattices described in [47] available
in the MeatAxe. Anyway, we obtain the basic set PS”" of projective characters
as shown in Table 39, where W} = W/ for i € {1,2,3,4,5,7}.

Hence for block Bs it remains to find the projective indecomposable summands
of U4 and ¥}”. This requires different tools as well and will be done elsewhere,
together with an analysis of the principal block B; [31].
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