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1

Wenn es die Verwirklichung von Urträumen ist, fliegen zu können und mit den Fi-
schen zu reisen, sich unter den Leibern von Bergriesen durchzubohren, mit göttlichen
Geschwindigkeiten Botschaften zu senden, das Unsichtbare und Ferne zu sehen und
sprechen zu hören, Tote sprechen zu hören, sich in wundertätigen Genesungsschlaf
versenken zu lassen, mit lebenden Augen erblicken zu können, wie man zwanzig Jahre
nach seinem Tode aussehen wird, in flimmernden Nächten tausend Dinge über und
unter dieser Welt zu wissen, die früher niemand gewußt hat, wenn Licht, Wärme,
Kraft, Genuß, Bequemlichkeit Urträume der Menschheit sind, — dann ist die heutige
Forschung nicht nur Wissenschaft, sondern ein Zauber, eine Zeremonie von höchster
Herzens- und Hirnkraft, vor der Gott eine Falte seines Mantels nach der anderen
öffnet, eine Religion, deren Dogmatik von der harten, mutigen, beweglichen, messer-
kühlen und -scharfen Denklehre der Mathematik durchdrungen und getragen wird.

Allerdings, es ist nicht zu leugnen, daß alle diese Urträume nach Meinung der Nicht-
mathematiker mit einemmal in einer ganz anderen Weise verwirklicht waren, als
man sich das ursprünglich vorgestellt hatte. Münchhausens Posthorn war schöner
als die fabriksmäßige Stimmkonserve, der Siebenmeilenstiefel schöner als ein Kraftwa-
gen, Laurins Reich schöner als ein Eisenbahntunnel, die Zauberwurzel schöner als ein
Bildtelegramm, vom Herz seiner Mutter zu essen und die Vögel zu verstehen schöner
als eine tierpsychologische Studie über die Ausdrucksbewegungen der Vogelstimme.
Man hat Wirklichkeit gewonnen und Traum verloren. [...]

Man braucht wirklich nicht viel darüber zu reden, es ist den meisten Menschen heute
ohnehin klar, daß die Mathematik wie ein Dämon in alle Anwendungen unseres Leben
gefahren ist. Vielleicht glauben nicht alle diese Menschen an die Geschichte vom
Teufel, dem man seine Seele verkaufen kann; aber alle Leute, die von der Seele etwas
verstehen müssen, weil sie als Geistliche, Historiker oder Künstler gute Einkünfte
daraus beziehen, bezeugen es, daß sie von der Mathematik ruiniert worden sei und daß
die Mathematik die Quelle eines bösen Verstandes bilde, der den Menschen zwar zum
Herrn der Erde, aber zum Sklaven der Maschine mache. [...]

In Unkenntnis dieser Gefahren lebten eigentlich nur die Mathematiker selbst und ihre

Schüler, die Naturforscher, die von alledem so wenig in ihrer Seele verspürten wie

Rennfahrer, die fleißig darauf los treten und nichts in der Welt bemerken wie das

Hinterrad ihres Vordermanns. [60, pp.39–40]

0 Introduction

(0.1) Graphs which are related to finite groups are of interest in both algebraic
graph theory and group theory. From the group theoretical point of view,
graphs on which a given group acts might yield new insights into the structure
of the group; a few of the sporadic simple groups have even been discovered
as automorphism groups of certain graphs, see [11, Ch.16.3]. From the point
of view of algebraic graph theory, the automorphism group of a graph reflects
the internal symmetry of the graph. In the present work, we shed some light
on two aspects of this interplay between graphs and groups, namely so-called
distance-transitive graphs and more generally distance-regular graphs, and so-
called Ramanujan graphs; we give the appropriate definitions in Section 7.

Distance-transitivity is a rather strong graph theoretical condition, and in fact
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intimately relates the graph and its automorphism group. In particular, a
distance-transitive graph can be realized as an orbital graph arising from the
permutation action of its automorphism group on the vertex set of the graph,
where additionally this permutation action turns out to be multiplicity-free.
In particular the sporadic simple groups have been used in the construction
of certain distance-transitive graphs. In recent years much progress has been
made in the attempt to classify the distance-transitive and the distance-regular
graphs, see [8]; but for the time being these classification problems are still
open. Related to these graph theoretical classification problems is the group
theoretical problem of classifying the multiplicity-free permutation actions of
finite groups. Much work has been done on this classification problem as well,
see the comments in [34], but currently this also is still open.

Ramanujan graphs are characterised by a certain property of their spectrum.
Different constructions of series of Ramanujan graphs are known, and in all of
them groups play a certain role, see [44, Ch.1,Ch.4.5]. One of these constructions
realizes Ramanujan graphs as orbital graphs arising from a multiplicity-free
permutation action of a certain finite general linear group, see [76, Ch.II.19].
It seems natural to consider the multiplicity-free permutation actions of other
groups as well, in particular those of the sporadic simple groups, and to look for
Ramanujan graphs amongst the arising orbital graphs. For the smaller sporadic
simple groups such considerations have been made in the thesis [32], which the
author has had the opportunity to co-supervise.

It seemed worth-while to compile a database containing as many as possible
explicit results concerning the orbital graphs arising from permutation actions
of the sporadic simple groups. As far as a multiplicity-free permutation action
is concerned, the spectra of the arising orbital graphs are completely deter-
mined by, and indeed straightforwardly derived from, the character table of the
endomorphism ring of the underlying permutation module. Thus the kind of
information to be stored in a database is the character tables of these endo-
morphism rings. The database [7] is available electronically in GAP-readable
format, in

http://www.math.rwth-aachen.de/̃ Juergen.Mueller/mferctbl/mferctbl.html.

The multiplicity-free permutation actions of the sporadic simple groups, their
automorphism groups, their Schur covering groups and their bicyclic exten-
sions have been classified in [6, 43, 5]. The work of systematically computing
the character tables of the corresponding endomorphism rings, and related in-
formation, has been begun in [68]. In the thesis [32] these and other earlier
results, scattered in the literature, have been collected and the remaining cases
of multiplicity-free permutation actions of the sporadic simple groups and their
automorphism groups on up to 107 points have been dealt with. We have now
been able to compute the character tables for all but one (currently) of the
cases of multiplicity-free permutation actions of the sporadic simple groups,
their automorphism groups and their Schur covering groups on more than 107
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points; these are listed in Section (11.1), see Table 7. An examination of the
multiplicity-free permutation actions of the bicyclic extensions of the sporadic
simple groups currently is under way.

The techniques used to compute the character tables of the endomorphism rings
have been derived from methods of computational representation theory, so-
called condensation techniques, which in the first place have been developed to
determine decomposition numbers, in particular for the sporadic simple groups
and related groups. It has turned out that suitable modifications of these meth-
ods can be used as computational workhorses for the present tasks. In partic-
ular, we have developed new efficient techniques to deal computationally with
transitive group actions on large sets, and thus to enumerate long orbits or at
least substantial parts thereof.

(0.2) The overall outline of the present work is as follows.

Part I deals with the more theoretical aspects. We take a slightly more general
point of view as would be necessary to consider only permutation actions, inas-
much as we consider monomial representations of finite groups. In Section 1 we
introduce the first main actor, the endomorphism ring of a transitive monomial
representation of a finite group. We state the basic theorem revealing its struc-
ture, Schur’s Theorem, and we introduce the notions necessary to describe its
structural properties, in particular its regular representation. In Section 2 the
representation theory of the endomorphism ring is related to the representation
theory of the underlying group, the relevant notion being the Fitting correspon-
dence. In Section 3 we introduce the second main actor, the character table of
an endomorphism ring. We discuss its structural properties as well as its rela-
tion to the character table of the underlying group. In Section 4 we introduce
another structure an endomorphism ring of a permutation module is endowed
with, the Hadamard product. It is related to the tensor product structure on
the characters of the underlying group. The material in Sections 1–4 is inspired
by different expositions existing in the literature, where usually only the case of
permutation representations is treated. But it seems worth-while to treat the
slightly more general case of monomial representations in detail; in particular,
we make use of the description of the general situation later on.

In Section 5 we consider the case where we have two transitive monomial rep-
resentations such that there is an epimorphism from one of these to the other.
This causes relations between the character values of the two corresponding en-
domorphism rings. The exposition is inspired by observations the author has
made while compiling the above-mentioned database, where cases of two per-
mutation actions being related as above indeed occur. In turn the theoretical
description of this situation helps to compute a few of the character tables in
the database. In Section 6 we take a more general point of view by considering
arbitrary condensation functors. Condensation techniques, which are explicit
computational applications of so-called condensation functors, have proven to
be efficient workhorses for different tasks of computational representation theory,
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including the tasks we are faced with in the present work. It seems worth-while
to know as much as possible about the general properties of condensation func-
tors, formulated in terms of suitable module categories. In Section 7 we show
how the information collected in the database indeed can be used to describe
properties of the corresponding orbital graphs. We introduce the necessary no-
tions from algebraic graph theory, such as the notions of distance-transitive and
distance-regular graphs as well as Ramanujan graphs, and we indicate how the
relevant properties can be checked using the database. In particular, we provide
complete lists of imprimitive distance-transitive orbital graphs as well as non-
distance-transitive but distance-regular orbital graphs arising from multiplicity-
free permutation actions of the sporadic simple groups, their automorphism
groups and their Schur covering groups, up to the above-mentioned exception.
While the case of primitive distance-transitive orbital graphs for these groups
has been dealt with in [34], the imprimitive case has been open so far, up to the
knowledge of the author. Finally, we comment on Ramanujan orbital graphs.

Part II is concerned with the computational techniques which have been used
to actually compute the character table of an endomorphism ring, where we re-
strict ourselves to the commutative case. In Section 8 we describe a technique,
related to the Dixon-Schneider technique for the group algebra case, to com-
pute the character table of an endomorphism ring if enough information on its
regular representation is known. Furthermore, we introduce the notion of table
automorphisms, and indicate how this is related to the problem of determining
the Fitting correspondence for an explicitly given example. In Section 9 we con-
sider practical aspects of condensation techniques. In particular we place the
regular representation of an endomorphism ring into this context. We address
the problem, arising in many practical applications of condensation methods,
that we usually are not able to compute the full algebra acting on a condensed
module, and present new ideas to circumvent this. In Section 10 we describe the
ideas which have led to a new efficient technique to enumerate long orbits and
discuss a few of the technical details. In particular, under certain circumstances
this technique not only allows to enumerate an orbit, but also uses Schreier-Sims
techniques to collect group theoretic information, for example on the point sta-
bilizer. An implementation of this method has been used to deal with two of
the largest examples in the database.

Part III gives the details of the computations necessary to compile the above-
mentioned database, and gives two other applications of the techniques de-
scribed in the present work. In Section 11 we present more details on the design
of the database. In particular, we give references to earlier work used, and
indicate the list of cases we are concerned with subsequently. Furthermore,
we discuss the necessary computations to determine the Fitting correspondence
explicitly, where we have to take care of the fact that there might be several
multiplicity-free permutation actions for a fixed group to be considered at the
same time. To determine the Fitting correspondence for one of these cases, the
results on Krein parameters turn out to be helpful. In Sections 12–17 we case-
by-case discuss the multiplicity-free permutation actions which are not covered
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by earlier results. In particular, in Section 17 we deal conclusively with the
permutation action of the sporadic simple Baby Monster group B on the cosets
of a maximal subgroup isomorphic to the sporadic simple Fischer group Fi23.
For this action not even the lengths of the suborbits have been known before.
Besides the character table of the corresponding endomorphism ring, we are able
to find faithful permutation representations of the two-point stabilizers, which
determines the isomorphism types of these subgroups. Furthermore, we deal
with the exceptional case mentioned above, which is the permutation action of
the double cover 2.B of the Baby Monster on the cosets of a subgroup isomor-
phic to the Fischer group Fi23. This is a covering of the permutation action of
the Baby Monster group B on the cosets of the Fischer group Fi23 considered
above. Here we are able to determine the suborbit lengths and the isomorphism
types of the two-point stabilizers, but the character table of the corresponding
endomorphism ring (as yet) remains unknown.

Finally, we give two other applications of the techniques described earlier. In
Section 18 we present an application of the new technique to enumerate long or-
bits to solve a problem concerning the so-called Thompson-Smith lattice, whose
lattice automorphism group is a split central extension 2 × Th of the sporadic
simple Thompson group Th. This problem is related to the still open prob-
lem to determine the minimum of the Thompson-Smith lattice. In Section 19
we present, by way of an example, a new idea to interpret condensation re-
sults, which works for the case where the condensed module is precisely the
regular representation of the condensation algebra. The example dealt with
is the problem of determining the 3-modular decomposition numbers for the
sporadic simple Harada-Norton group HN ; we present partial results for the
non-principal block of defect 2.

(0.3) We assume the reader to be familiar with the ordinary and modular rep-
resentation theory of finite groups, as general references see [3, 14, 15, 16, 18, 39],
and occasionally with other prerequisites as well, which are mentioned on lo-
cation. The standard methods from computational representation theory, in
particular MeatAxe techniques, are also assumed to be known. We use the
MeatAxe implementation [69], which is referred to as the MeatAxe. Further-
more, the standard methods from computational group theory, in particular the
techniques dealing with permutation groups, are assumed to be known. We also
use the computer algebra system GAP [22]; we assume the reader to be familiar
with the techniques to access the information in its libraries, such as character
tables or tables of marks, and to actually apply the algorithms implemented
there, in particular those dealing with permutation groups, to explicitly given
examples.

As parts of the exhibition are technical in nature, we have tried to fix the
notation as early as possible and to keep it fixed throughout the whole of the
present work. Most of the pieces are introduced in Sections 1 and 3 as well
as 5. In later sections we have tried to give suitable backward references to
enhance legibility. For groups we use the notation introduced in [13], indicating
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the normal subgroup structure. For groups dealt with in [13] we also use the
notation used there to refer to conjugacy classes or irreducible characters. For
an extension of a group G by an outer automorphism of order 2, we denote
the extensions of a G-invariant irreducible character χ by χ±, where for groups
dealt with in [13] the character χ+ refers to the character actually printed there.
We use the notation Irr·(·) for the set of irreducible characters of an algebra,
where the subscript indicates the ground field.

(0.4) The author gratefully acknowledges enthusiastic and helpful discussions
with Robert Wilson, Max Neunhöffer, Gerhard Hiss and Thomas Breuer on the
topics of the present work. Furthermore, the present work could not have been
written without the possibility to make very heavy use of the computing facilities
at Lehrstuhl D für Mathematik, which quite a few of the other users indeed have
suffered from.

Finally, the author thanks Gerhard Hiss, Gunter Malle and Cheryl Praeger for
their willingness to act as referees for the present work, and for making valu-
able comments and suggestions, which have been incorporated into the current
version.

I Endomorphism rings and character tables

1 Endomorphisms of monomial representations

We begin by fixing the basic notation and definitions which will be in force
throughout the whole of the present work. The exposition of Section 1 is inspired
by [39, Ch.II.12].

(1.1) Let G be a finite group, and H ≤ G be a subgroup of index n := [G:H].
Let I := {1, . . . , r}, where r ∈ N is the number of H-H-double cosets in G, and
let {gi ∈ G; i ∈ I} be a set of representatives of the H-H-double cosets in G.
Hence we have G =

∐
i∈I HgiH. Without loss of generality let g1 := 1G.

For i ∈ I let Hi := Hgi ∩ H ≤ H, and {hij ∈ H; j ∈ {1, . . . , ki}} be a set of
representatives of the right cosets of Hi in H, where ki := [H:Hi]. Hence HgiH
decomposes into right H-cosets as HgiH =

∐ki
j=1Hgihij ⊆ G. Without loss of

generality let hi1 := 1H .

Hence we have G =
∐
i∈I
∐ki
j=1Hgihij . Let Ω := H|G be the set of right

cosets of H in G, let ωij := Hgihij , for i ∈ I and j ∈ {1, . . . , ki}, and for short
ωi := ωi1 = ω1gi, as well as Ωi := {ωij ∈ Ω; j ∈ {1, . . . , ki}}. Then Ω =

∐
i∈I Ωi

is the partition of Ω into H-orbits, where Hi := StabH(ωi) and ki = |Ωi|. In
particular we have Ω1 = {ω1} and k1 = 1.

Let πΩ:G → SΩ denote the group homomorphism from G to the symmetric
group SΩ on Ω defined by the transitive right action of G on Ω.
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(1.2) Definition. Let i ∈ I.
a) The number r is called the rank of H in G.
b) The number ki is called the i-th index parameter of H in G. The set Ωi is
called the i-th suborbit of G. The suborbit Ω1 is called the trivial suborbit.
c) The G-orbit Oi := (ω1, ωi) ·G ⊆ Ω× Ω of (ω1, ωi) ∈ Ω× Ω is called the i-th
orbital of G.
d) The orbital Oi∗ := {(ω′, ω) ∈ Ω × Ω; (ω, ω′) ∈ Oi} is called the orbital
paired to Oi, thus defining an involution ∗: I → I. If i = i∗, then Oi is called
self-paired.

Hence Ω × Ω =
∐
i∈I Oi is the partition of Ω × Ω into G-orbits, and we have

|Oi| = n · ki and Oi ∩ (Ω1 ×Ω) = Ω1 ×Ωi, as well as ki∗ = ki and ω1g
−1
i ∈ Ωi∗ .

(1.3) Let Θ be an integral domain. Let λ be a representation of ΘH, such
that the underlying ΘH-module is Θ-free of degree 1. The ΘH-module endowed
with the ΘH-action given by λ is denoted by Θλ. Let λG be the induced
representation of ΘG obtained from λ. Its underlying ΘG-module is given as
Θλ⊗ΘH ΘG =

⊕
i∈I
⊕ki

j=1 Θλ⊗ gihij ∼= ΘλΩ, where ΘλΩ is the free Θ-module
with Θ-basis Ω, the subscript still indicating the underlying ΘH-action, and
where the isomorphism is given by 1 ⊗ gihij 7→ ωij . Hence we may identify
Θλ ⊗ΘH ΘG and ΘλΩ using this ΘG-isomorphism. The action of G on ΘλΩ is
described as follows.

(1.4) Definition. Let g ∈ G. For i ∈ I and j ∈ {1, . . . , ki} let gihij · g =
h · gi′hi′j′ , where ωi′j′ = ωij · πΩ(g) and h ∈ H. Let

λωij (g) := λ(h) ∈ λ(H) ⊆ Θ.

Thus we have λG(g):ω 7→ λω(g) · (ω · πΩ(g)), for ω ∈ Ω.

(1.5) We introduce the first main actor of the present work. Let

EλΘ := EndΘG(Θλ ⊗ΘH ΘG)

be the ΘG-endomorphism ring of the induced ΘG-module Θλ ⊗ΘH ΘG, where
EλΘ also acts from the right. Hence Θλ⊗ΘH ΘG is endowed with a (ΘG⊗ΘE

λ
Θ)-

right module structure.

By the Frobenius-Nakayama relations and Mackey’s Theorem, see [3, Ch.3.3],
we have as Θ-modules

EλΘ
(1)∼= HomΘH(λ, (λG)H)
(2)∼=

⊕
i∈I HomΘH(λ, (λgiHi)

H)
(3)∼=

⊕
i∈I HomΘHi(λHi , λ

gi
Hi

),

where the representation λgi of ΘHgi is defined as λgi(h) := λ(gihg−1
i ), for

h ∈ Hgi . As λ is of degree 1, we have HomΘHi(λHi , λ
gi
Hi

) 6= {0} if and only if
λHi = λgiHi , in which case we have HomΘHi(λHi , λ

gi
Hi

) ∼= Θ.
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(1.6) Definition. Let Iλ := {i ∈ I;λHi = λgiHi}.

We have 1 ∈ Iλ, and since λHi = λgiHi implies λg
−1
i

H∩Hg
−1
i

= λ
H∩Hg

−1
i

, we have

i∗ ∈ Iλ whenever i ∈ Iλ. For the case λ = 1, the trivial representation of ΘH,
we have I1 = I.

(1.7) By the explicit formulation of the Θ-isomorphisms (1), (2) and (3) in
Section (1.5), we obtain an explicit basis of EλΘ as follows. Let i ∈ Iλ, and let
α′′i ∈ HomΘHi(λHi , λ

gi
Hi

) be defined by α′′i : Θλ → Θλ⊗ gi: 1 7→ 1⊗ gi, where the
underlying ΘHi-module of λgiHi is denoted by Θλ ⊗ gi. Indeed, for h ∈ Hi we
have α′′i · λgi(h) = λ(h) · α′′i : 1 7→ λ(h)⊗ gi.
The Θ-isomorphism (3) is given by the exterior trace map, which yields α′i ∈
HomΘH(λ, (λgiHi)

H) given by α′i: 1 7→
∑ki
j=1 λ(h−1

ij ) ⊗ gihij , where using Θ-

isomorphism (2) the underlying ΘH-module of (λgiHi)
H is

⊕ki
j=1 Θλ ⊗ gihij ≤

Θλ ⊗ΘH ΘG. Finally using Θ-isomorphism (1), which is the restriction map
α 7→ α|Θλ , this gives αλi ∈ EλΘ defined by

αλi : 1⊗ gi′hi′j′ 7→
(∑ki

j=1 λ(h−1
ij )⊗ gihij

)
· gi′hi′j′

=
∑ki
j=1 λ(h−1

ij )λωij (gi′hi′j′) · (ωij · πΩ(gi′hi′j′)),

for i′ ∈ I and j′ ∈ {1, . . . , ki′}, where the last equality uses the identification of
Section (1.3).

Let Aλ := {αλi ; i ∈ Iλ}. In particular, as λω1(gi′hi′j′) = 1, we have αλ1 = idΘλΩ.
For the case λ = 1 let αi := α1

i , for i ∈ I, and A := A1.

Hence we have shown the following theorem, which for the case λ = 1 first
appeared in [72], see also [39, Ch.II.12], and which is the basic theorem of the
present work.

(1.8) Theorem. EλΘ is a free module over Θ · idΘλΩ
∼= Θ of Θ-rank |Iλ| and

Aλ is a Θ-basis, the Schur basis, of EλΘ.

(1.9) We collect a few facts on the Schur basis elements αλi ∈ Aλ, for i ∈ Iλ.

For α ∈ EndΘ(ΘλΩ) let [α] = [α]Ω ∈ Θn×n be the representing matrix with
respect to the Θ-basis Ω of ΘλΩ. The matrix entries of [α] are denoted by
[α]ωω′ ∈ Θ, for ω, ω′ ∈ Ω.

For g ∈ G we let diag[λω(g);ω ∈ Ω] denote the diagonal matrix with entries
(diag[λω(g);ω ∈ Ω])ω′,ω′′ = δω′,ω′′ · λω′(g), for ω′, ω′′ ∈ Ω. Hence we obtain

[λG(g)] = diag[λω(g);ω ∈ Ω] · [πΩ(g)].

Thus we have

[λG(g)]−1 = [πΩ(g)]T · diag[λω(g)−1;ω ∈ Ω] = [λG(g)]T · diag[λω(g)−2;ω ∈ Ω].
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(1.10) Proposition. Let i ∈ Iλ. Then [αλi ]ωω′ = 0 unless (ω, ω′) ∈ Oi, in
which case we have [αλi ]ωω′ ∈ λ(H) ⊆ Θ. For i′ ∈ I and j′ ∈ {1, . . . , ki′} we
have

[αλi ]ω1,ωi′j′ =
{

0, if i′ 6= i,
λ(h−1

i′j′), if i′ = i.

If (ω̃, ω̃′) = (ω, ω′) · g for some g ∈ G, then we have

[αλi ]ω̃ω̃′ = [αλi ]ωω′ ·
λω′(g)
λω(g)

.

In particular, for the case λ = 1 we have, for i ∈ I,

[αi]ω,ω′ :=
{

1, if (ω, ω′) ∈ Oi,
0, if (ω, ω′) 6∈ Oi.

Proof. By Section (1.7) it only remains to prove the statement involving
[αλi ]ω̃ω̃′ . Let diag[λω(g)] := diag[λω(g);ω ∈ Ω] for short. Then we have

[αλi ]ω̃ω̃′ =
(
[πΩ(g)]−T · [αλi ] · [πΩ(g)]−1

)
ωω′

=
(
diag[λω(g)] · [λG(g)]−T · [αλi ] · [λG(g)]−1 · diag[λω(g)]

)
ωω′

=
(
diag[λω(g)−1] · [αλi ] · diag[λω(g)]

)
ωω′

= [αλi ]ωω′ · λω′ (g)
λω(g) . ]

We introduce a further structure on modules acted on monomially and their
endomorphism rings. For technical reasons we have to adjust the base ring
appropriately.

(1.11) Definition. Let K := Quot(Θ) be the field of fractions of Θ and
K ′ ⊆ K be the subfield generated by λ(H) over the prime field of K. As λ(H)
consists of roots of unity, there is an involutory field automorphism :K ′ → K ′

defined by λ(h) 7→ λ(h)−1 for h ∈ H. Let K ′′ := FixK′( ) ⊆ K ′.
Let 〈·, ·〉Ω be the non-degenerate hermitian form on K ′λΩ, with respect to the
field automorphism , defined by 〈·, ·〉Ω:K ′λΩ×K ′λΩ→ K ′: (ω, ω′) 7→ δω,ω′ .

Since for g ∈ G we have ωg = λω(g) · ωπΩ(g), the form 〈·, ·〉Ω is G-invariant.

(1.12) Definition. For i ∈ Iλ let i− ∈ {1, . . . , ki∗} and ηi ∈ H such that
g−1
i = ηi · gi∗ · hi∗i− . Furthermore let

ζi :=
λ(ηi)

λ(hi∗i−)
∈ λ(H).
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(1.13) Proposition. For i ∈ Iλ, the adjoint map (αλi )] ∈ EndK′(K ′λΩ) of
αλi with respect to the form 〈·, ·〉Ω is given by (αλi )] = 1

ζi
·αλi∗ . Thus we have an

involutory K ′′-algebra antiautomorphism of EλK′ given by

]:EλK′ → EλK′ :α
λ
i 7→

1
ζi
· αλi∗ .

Proof. For i ∈ Iλ, as [αλi ] · [λG(g)] = [λG(g)] · [αλi ], we have

[πΩ(g)]T · diag[λω(g);ω ∈ Ω] · [αλi ]T = [αλi ]T · [πΩ(g)]T · diag[λω(g);ω ∈ Ω].

Since [πΩ(g)]T · diag[λω(g);ω ∈ Ω] = [πΩ(g−1)], we conclude that [αλi ]T is a
scalar multiple of [αλi∗ ]. Since (ω1, ωi) · g−1

i = (ω1g
−1
i , ω1) and λωi(g

−1
i ) = 1 we

have

[αλi ]ω1g
−1
i ,ω1

= [αλi ]ω1,ωi ·
λωi(g

−1
i )

λω1(g−1
i )

=
1

λω1(g−1
i )

=
1

λ(ηi)
.

Because of [αλi∗ ]ω1,ω1g
−1
i

= λ(hi∗i−)−1, we have ζi · [αλi ]T = [αλi∗ ]. ]

(1.14) Corollary. Let i, j ∈ Iλ.
a) For the case λ = 1 we have α]i = αi∗ and thus [αi]T = [αi∗ ], for i ∈ I = Iλ.
b) Since αλi = (αλi )]] = ζi · (αλi∗)] = ζi

ζi∗
· αλi , we have ζi∗ = ζi.

c) If i = i∗, then we have ζi · (αλi )] = αλi , while if j 6= j∗, then we have
ζj · (αλj ± αλj∗)

] = αλj∗ ± αλj . Hence αλi and αλj ± αλj∗ commute with their
respective adjoint maps, and thus αλi and αλj ± αλj∗ are diagonalisable over an
algebraic closure of K ′.

The following notions first appeared in [28]. Their intention is to exhibit a finer
structure of the suborbits Ωi ⊆ Ω, for i ∈ Iλ.

(1.15) Definition. a) For i, j, k ∈ I, a triple (ω, ω′, ω′′) ∈ Ω × Ω × Ω such
that (ω, ω′) ∈ Oi, (ω′, ω′′) ∈ Oj , and (ω, ω′′) ∈ Ok is called triangle of type
(i, j, k). Let Tijk ⊆ Ω× Ω× Ω be the set of triangles of type (i, j, k).
b) For i, j, k ∈ Iλ, the λ-weight of the triangle (ω, ω′, ω′′) ∈ Tijk is defined as

λ(ω, ω′, ω′′) := [αλi ]ωω′ · [αλj ]ω′ω′′ · ([αλk ]ωω′′)−1 ∈ λ(H) ⊆ Θ.

For ζ ∈ λ(H) let

T λ,ζijk := {(ω, ω′, ω′′) ∈ Tijk;λ(ω, ω′, ω′′) = ζ}

be the set of triangles of type (i, j, k) and λ-weight ζ.
c) For i, j, k ∈ Iλ and ζ ∈ λ(H) let

Ωλ,ζijk := {ω ∈ Ω; (ω1, ω, ωk) ∈ T λ,ζijk } ⊆ Ωi.

Let S := {s ∈ {1, . . . , ki};ωis ∈ Ωλ,ζijk} and pλ,ζijk := |Ωλ,ζijk | = |S| ∈ N0.
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(1.16) Remark. As the Oi ⊆ Ω×Ω are invariant under diagonal G-action,
the sets Tijk, for i, j, k ∈ I, are invariant under diagonal action of G on Ω×Ω×Ω
as well. For i, j, k ∈ Iλ and (ω, ω′, ω′′) ∈ Tijk as well as g ∈ G we have

λ(ωg, ω′g, ω′′g) = [αλi ]ωg,ω′g · [αλj ]ω′g,ω′′g · ([αλk ]ωg,ω′′g)−1

= [αλi ]ωω′ · [αλj ]ω′ω′′ · ([αλk ]ωω′′)−1 · λω′ (g)
λω(g) ·

λω′′ (g)
λω′ (g) ·

λω(g)
λω′′ (g)

= λ(ω, ω′, ω′′).

Hence the sets T λ,ζijk for a fixed λ-weight ζ ∈ λ(H) are unions of G-orbits as well.
These are, as Ok ⊆ Ω × Ω is a single G-orbit, in natural bijection with the set
of Hk-orbits on Ωλ,ζijk .

As Ωi = {ωis; s ∈ {1, . . . , ki}} is as an H-set isomorphic to the set Hi|H of
right cosets of Hi in H, it follows that Ωλ,ζω1,i,ωk

is as an Hk-set isomorphic to∐
s∈S′(H

his
i ∩Hk)|Hk, where S′ ⊆ S is chosen such that {his; s ∈ S′} is a set

of representatives of the union
⋃
s∈S Hi · his ·Hk of Hi-Hk-double cosets in H.

Hence we have
pλ,ζijk =

∑
s∈S′

[Hk: (Hk ∩Hhis
i )].

(1.17) Proposition. For i, j, k ∈ Iλ let (ω1, ωis, ωk) ∈ T λijk, for some s ∈
{1, . . . , ki}. Let gihis · g−1

k = hs · gj∗hj∗t for some t ∈ {1, . . . , kj∗} and hs ∈ H.
Then we have

λ(ω1, ωis, ωk) = ζj · λ(hs) ·
λ(hj∗t)
λ(his)

.

Proof. We have [αλk ]ω1,ωk = 1 and [αλi ]ω1,ωis = λ(h−1
is ), as well as

[αλj ]ωis,ωk = [αλj ]ωisg−1
k ,ω1

· λω1(gk)
λωisg−1

k
(gk)

= [αλj ]ωisg−1
k ,ω1

· λ(hs),

since λω1(gk) = 1 and λωisg−1
k

(gk) = λ(h−1
s ). Using Proposition (1.13), we have

[αλj ]ωisg−1
k ,ω1

= [αλj∗ ]ω1,ωisg
−1
k

· ζj . As [αλj∗ ]ω1,ωisg
−1
k

= λ(h−1
j∗t), the assertion

follows. ]

The regular representation of the endomorphism ring EλΘ plays a central role in
the present work. The aim of the following definition is to facilitate a description
of the regular representation.

(1.18) Definition.
a) For i, j ∈ Iλ, by Theorem (1.8), we have αλi · αλj =

∑
k∈Iλ p

λ
ijkα

λ
k , for the

structure constants pλijk ∈ Θ. For the case λ = 1 let pijk := p1
ijk.
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b) For j ∈ Iλ, the representing matrix [αλj ]Aλ of the right regular action of
αλj on EλΘ, with respect to the Schur basis Aλ, is given by the j-th structure
constants matrix

[αλj ]Aλ = Pλj := [pλijk; i, k ∈ Iλ] ∈ Θ|Iλ|×|Iλ|,

with row index i and column index k. For the case λ = 1 let Pj := P 1
j .

(1.19) Remark. Let i, j, k ∈ Iλ.
a) By considering the matrix entry [αλi · αλj ]ω1,ωk , where [αλi · αλj ] still is the
representing matrix of the natural action of αλi ·αλj on ΘλΩ with respect to the
basis Ω, we obtain

pλijk =
∑

ζ∈λ(H)

ζ · pλ,ζijk .

Furthermore, we have
pijk =

∑
ζ∈λ(H)

pλ,ζijk .

Using the involutory K ′′-algebra antiautomorphism ]:EλK′ → EλK′ , see Propo-
sition (1.13), we obtain

pλj∗i∗k∗ =
ζi · ζj
ζk
· pλijk.

b) For the special case j = 1 we have gj = 1 and hence ζj = 1. Furthermore
S = ∅ unless i = k, in which case we have S ⊆ {1}, and for ωis = ωk,1 = ωk we
have λ(hs) ·

λ(hj∗t)

λ(his)
= 1. Thus pλ,ζi,1,k = δi,kδζ,1. Hence pλi,1,k = δi,k, as expected.

Analogously, for the special case i = 1 we have pλ1,j,k = δj,k.

For the special case k = 1 we have gk = 1 and hence S = ∅ unless j = i∗, in
which case we have λ(hs) ·

λ(hj∗t)

λ(his)
= 1. Hence S = ∅ unless ζ = ζj , in which

case we have S = {1, . . . , ki}. Hence we conclude pλ,ζi,j,1 = δi∗,j · δζ,ζi∗ · ki and
pλi,j,1 = δi∗,j · ζi∗ · ki.
c) We have

pijk = |{ω ∈ Ω; (ω1, ω) ∈ Oi, (ω, ωk) ∈ Oj}|
= |{ω ∈ Ωi; (ωk, ω) ∈ Oj∗}|

= |{ω ∈ Ωi; (ω1, ωg
−1
k ) ∈ Oj∗}|

= |{ω ∈ Ωi;ωg−1
k ∈ Ωj∗}|

= |Ωi ∩ (Ωj∗gk)|

= |(Ωig−1
k ) ∩ Ωj∗ |.

Because of this the pijk ∈ N0 are also called intersection numbers, and the
matrices Pj are also called intersection matrices.
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For j and k fixed, the k-th column sum of Pj is∑
i∈I

[Pj ]ik =
∑
i∈I

pijk =
r∑
i=1

|Ωi ∩ (Ωj∗gk)| = |Ωj∗gk| = kj .

d) Let K ′ ⊆ K be an algebraic closure of K ′, and let i, j ∈ Iλ, where i = i∗ and
j 6= j∗. By Corollary (1.14), the maps αλi and αλj ± αλj∗ are diagonalisable over
K, hence have square-free minimum polynomials over K. As EλK′ acts faithfully
on K ′Ω, the minimum polynomials of the regular action of αλi and of αλj ±αλj∗ on
Eλ
K

= EλK′ ⊗K′ K also are square-free. Hence the structure constants matrices
Pλi and Pλj ± Pλj∗ are diagonalisable over K as well.

2 Fitting correspondence

The aim of Section 2 is to describe the connection of the representation theory
of the endomorphism ring EλΘ with the representation theory of the underlying
group G. The exposition of Section 2 is inspired by [15, Ch.1.11.D].

(2.1) Let Θ be an integral domain such that the order |H| ∈ Θ of H is a unit
in Θ. Let λ be a representation of ΘH of degree 1 with underlying ΘH-module
Θλ. Let

ελ :=
1
|H|
·
∑
h∈H

λ(h−1) · h ∈ ΘH ⊆ ΘG

be the centrally primitive idempotent of ΘH belonging to λ.

We have an isomorphism of ΘG-modules

σ = σλ: ΘλΩ→ ελΘG:ωij 7→ ελgihij ,

where ΘλΩ ∼= Θλ ⊗ΘH ΘG is the induced ΘG-module obtained from Θλ, see
Section (1.3), and i ∈ I and j ∈ {1, . . . , ki}. The map

τ = τλ: EndΘG(ελΘG)→ (ελΘGελ)◦:α 7→ ελα

is an isomorphism of Θ-algebras, where (ελΘGελ)◦ denotes the opposed ring
with multiplication given by x ◦ y := y · x, for x, y ∈ ελΘGελ. The inverse of τ
is given by

τ−1 = τ−1
λ : (ελΘGελ)◦ → EndΘG(ελΘG): ελgελ 7→ (ελh 7→ ελgελh),

for g, h ∈ G.

(2.2) Proposition. We have an isomorphism of Θ-algebras

EλΘ → (ελΘGελ)◦:α 7→ (ασ)τ := (σ−1 · α · σ)τ,

and for i ∈ Iλ we have ((αλi )σ)τ = ki · ελgiελ. In particular, {ελgiελ; i ∈ Iλ} is
a Θ-basis of (ελΘGελ)◦, and we have ελgjελ = 0 for j 6∈ Iλ.
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Proof. Using Section (1.7) we get

((αλi )σ)τ = ελ(αλi )σ = ελgi ·

 ki∑
j=1

λ(h−1
ij ) · hij

 .

Since λgiHi = λHi , for h ∈ Hi we have λ(h−1) · ελgih = λ(h−1) · ελ · hg
−1
i · gi =

λ(h−1) · λgi(h) · ελgi = ελgi. Hence we obtain ((αλi )σ)τ = |H|
|Hi| · ελgiελ. The last

assertion follows from the fact that for k ∈ I the support of ελgkελ ∈ ΘG with
respect to the Θ-basis G of ΘG is contained in the H-H-double coset HgkH. ]

Proposition (2.2) exhibits EλΘ as a non-unitary Θ-subalgebra of (ΘG)◦. From
this we deduce the following additional structure on EλΘ.

(2.3) Proposition.
a) EλΘ is a symmetric Θ-algebra with respect to the symmetrising linear form

t:EλΘ → Θ:αλi 7→
1
|H|
· δi,1,

for i ∈ Iλ.
b) For i, j ∈ Iλ we have t(αλi · αλj ) = δi∗,j · ζi∗ ·ki|H| .

Proof. The group algebra ΘG is a symmetric algebra with respect to the
symmetrising linear form tG: ΘG → Θ:

∑
g∈G cg · g 7→ c1. Hence the Θ-algebra

ελΘGελ ⊆ ΘG also is a symmetric algebra, with respect to the restriction of tG
to ελΘGελ. For i ∈ Iλ we have t(ki · ελgiελ) = 1

|H| · δi,1. Hence the assertion in
a) follows from Proposition (2.2), and the assertion in b) follows from Remark
(1.19). ]

(2.4) Definition. For i ∈ Iλ let

α̂λi :=
|H|
ki · ζi∗

· αλi∗ .

Then Âλ := {α̂λi ; i ∈ Iλ} is called the dual Schur basis of EλΘ. For the case
λ = 1 let α̂i := α̂1

i , for i ∈ I, and Â := Â1.

(2.5) Remark. For the moment we drop the assumption that |H| is a unit
in Θ, and let ε̃λ :=

∑
h∈H λ(h−1) · h ∈ ΘH ⊆ ΘG. Then we still have an

isomorphism of ΘG-modules, σ̃λ: Θλ → ε̃λΘG:ωij 7→ ε̃λgihij , for i ∈ I and
j ∈ {1, . . . , ki}, analogous to Section (2.1). But in general the assertions of
Proposition (2.2) and Proposition (2.3) no longer hold, even if Θ is assumed to
be a field. For a treatment of this general situation see [10].
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(2.6) The non-unitary embedding of Θ-algebras in Proposition (2.2) also
reveals the precise relationship between the representation theory of EλΘ and
the representation theory of G.

Let K = Quot(Θ) be a field of characteristic coprime to |H|, which is a splitting
field for EλK . For ϕ ∈ IrrK(EλK) let Sϕ be the simple EλK-module affording
the character ϕ and dϕ := ϕ(1) = dimK(Sϕ) ∈ N. Let eϕ ∈ EλK be some
primitive idempotent such that eϕEλK/rad(eϕEλK) ∼= Sϕ as EλK-modules, and
let S∗ϕ := HomK(Sϕ,K) be the (EλK)◦-module dual to the EλK-module Sϕ. As
EλK is a symmetric K-algebra, we have EλKeϕ ∼= (eϕEλK)∗ as (EλK)◦-modules,
and thus EλKeϕ/rad(EλKeϕ) ∼= S∗ϕ as (EλK)◦-modules.

Let Pϕ := KλΩ · eϕ = KλΩ · EλKeϕ ≤ KλΩ and mϕ := dimK(Pϕ). As
KλΩ ∼= ελKG is a projective KG-module, Pϕ is a projective indecomposable
KG-module. Let χϕ ∈ IrrK(G) be the irreducible character of KG, being
afforded by the simple KG-module Sχϕ , such that Pϕ/rad(Pϕ) ∼= Sχϕ as KG-
modules.

Let P and P ′ be projective indecomposable KG-summands of KλΩ, occurring
in a fixed direct sum decomposition of KλΩ into projective indecomposable
KG-modules, and let e, e′ ∈ EλK be corresponding idempotents, such that P =
KλΩ · e and P ′ = KλΩ · e′. Then P ∼= P ′ as KG-modules if and only if
there is an isomorphism α ∈ EλK such that Pα = P ′ ≤ KλΩ. Hence we
have e′ = α−1 · e · α ∈ EλK , and thus eEλK/rad(eEλK) ∼= e′EλK/rad(e′EλK) as
EλK-modules. Conversely, if the latter assertion holds, then by [15, Exc.0.6.14]
there is an isomorphism α ∈ EλK such that e′ = α−1 · e · α ∈ EλK , and thus
Pα = P ′ ≤ KλΩ.

Let IrrλK(G) := {χϕ ∈ IrrK(G);ϕ ∈ IrrK(EλK)}. Let ϕ ∈ IrrK(EλK) and let
K ⊆ L be a field extension. As K is a splitting field for EλK , by [18, La.I.18.8]
we conclude that eϕEλK ⊗K L is an indecomposable EλL-module, where EλL ∼=
EλK ⊗K L. Thus eϕ ∈ EλK ⊆ EλL is a primitive idempotent in EλL, and hence
Pϕ⊗KL is an indecomposable LG-module. Thus Sχϕ is an absolutely irreducible
KG-module, and hence K is a splitting field for all simple KG-modules affording
a character in IrrλK(G).

Hence we have shown the following Proposition.

(2.7) Proposition. Let K be as in Section (2.6).
a) The map ϕ 7→ Pϕ induces a bijection, the Fitting correspondence, between
IrrK(EλK) and the set of isomorphism types of projective indecomposable sum-
mands of the KG-module KλΩ. Hence it induces a bijection between IrrK(EλK)
and IrrλK(G).
b) As KG-modules we have

KλΩ ∼=
⊕

ϕ∈IrrK(EλK)

 dϕ⊕
i=1

Pϕ

 .
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(2.8) If KG is semisimple, then we can even be a bit more specific.

Let K be of characteristic coprime to |G|, such that it is a splitting field for all
simple KG-modules affording a character in IrrλK(G). For χ ∈ IrrK(G) let Sχ
be the simple KG-module affording the character χ, and let εχ ∈ KG be the
centrally primitive idempotent corresponding to χ. Hence we have IrrλK(G) =
{χ ∈ IrrK(G); ελεχ 6= 0}, which is the set of the irreducible K-characters χ of
G, such that Sχ is a constituent of λG, see also [15, Ch.1.11.D].

For χ ∈ IrrλK(G) let ελεχ =
∑dχ
i=1 eχ,i be a decomposition of ελεχ = εχελ

into pairwise orthogonal primitive idempotents eχ,i ∈ KG, with corresponding
multiplicities dχ ∈ N. Then we have a direct sum decomposition as KG-modules

ελKG ∼=
⊕

χ∈IrrλK(G)

ελεχKG ∼=
⊕

χ∈IrrλK(G)

 dχ⊕
i=1

eχ,iKG

 ,

where eχ,iKG ∼= Sχ, for i ∈ {1, . . . , dχ}. Hence in this case the Fitting corre-
spondence is a bijection IrrK(EλK)→ IrrλK(G):ϕ 7→ χϕ, and we have Sχϕ = Pϕ
and mϕ = dimK(Sχϕ) as well as dχϕ = dϕ = dimK(Sϕ). Thus we have

EλK
∼=

⊕
ϕ∈IrrK(EλK)

EndKG(Sχϕ)dϕ×dϕ ∼=
⊕

ϕ∈IrrK(EλK)

Kdϕ×dϕ

as K-algebras. In particular, EλK is a semisimple K-algebra having K as a split-
ting field, and we have |Iλ| = dimK(EλK) =

∑
ϕ∈IrrK(EλK) d

2
ϕ. Furthermore, for

each ϕ ∈ IrrK(EλK), the K-algebra isomorphism τλ, see Section (2.1), restricts
to an isomorphism, where χ = χϕ,

Kdϕ×dϕ → (ελεχKGεχελ)◦ =
dϕ⊕
i=1

dϕ⊕
j=1

eχ,jKGeχ,i:Eij 7→ eχ,jfjieχ,i,

for some fji ∈ KG, for i, j ∈ {1, . . . , dχ}, and where Eij ∈ Kdϕ×dϕ is the matrix
unit given by [Eij ]i′j′ = δi,i′δj,j′ , for i′, j′ ∈ {1, . . . , dχ}.
Hence as (KG⊗K EλK)-modules we have

KλΩ ∼=
⊕

ϕ∈IrrK(EλK)

(
Sχϕ ⊗K Sϕ

)
,

where the above summands are pairwise non-isomorphic absolutely irreducible
(KG⊗K EλK)-modules. We have Sχϕ ⊗K Sϕ ∼=

⊕dϕ
i=1 Sχϕ as KG-modules and

Sχϕ ⊗K Sϕ ∼=
⊕mϕ

i=1 Sϕ as EλK-modules.

(2.9) Remark. Let K be of characteristic coprime to |G| and a splitting
field of EλK . Then EλK is commutative if and only if dϕ = 1, for all ϕ ∈ IrrK(EλK),
which holds if and only if |IrrK(EλK)| = dimK(EλK) = |Iλ|. In this case, KλΩ is
called multiplicity-free.
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(2.10) We conclude Section 2 by introducing the setting for decomposition
theory, and we show how the decomposition maps of G and Eλ are related.

Let K be of characteristic 0 and a splitting field for all simple KG-modules
affording a character in IrrλK(G). Hence K is a splitting field for EλK as well.
Without loss of generality we may assume that K is a cyclotomic field containing
Q(λ(H)). Let R ⊂ K be a discrete valuation ring in K with maximal ideal ℘CR
and finite residue class field F := R/℘ of characteristic p > 0, where p is coprime
to |H|. Let :̃R→ F denote the natural epimorphism.

By Theorem (1.8), EλR is an R-order in EλK . As λ(H) ⊆ R, let λ̃ := λ · ˜ ∈
IrrF (H). As the characteristic of F is coprime to |H|, we have λHi = λgiHi if and
only if λ̃Hi = λ̃giHi , for i ∈ I. Thus Iλ = Iλ̃, and hence we have an R-algebra
epimorphism EλR → Eλ̃F :αλi 7→ αλ̃i , for i ∈ Iλ. Without loss of generality we
may assume that F is a splitting field for Eλ̃F , and hence F is a splitting field
for all simple FG-modules affording a character in Irrλ̃F (G) as well.

Hence we have a decomposition map DG:G(KG)→ G(FG), where G(·) denotes
the corresponding Grothendieck groups, see [14, Ch.XII.82-83]. The considera-
tions there generalise straightforwardly to the algebras EλK and Eλ̃F , hence we
also have a decomposition map DE :G(EλK) → G(Eλ̃F ). For χ ∈ IrrK(G) and
χ′ ∈ IrrF (G) let dGχχ′ ∈ N0 denote the corresponding decomposition number with

respect to DG, for ϕ ∈ IrrK(EλK) and ϕ′ ∈ IrrF (Eλ̃F ) let dEϕϕ′ ∈ N0 denote the
corresponding decomposition number with respect to DE .

(2.11) Proposition. Let ϕ′ ∈ IrrF (Eλ̃F ) and let χ′ = χϕ′ ∈ Irrλ̃F (G) be its
Fitting correspondent.
a) For ϕ ∈ IrrK(EλK) and its Fitting correspondent χ = χϕ ∈ IrrλK(G) we then
have dGχχ′ = dEϕϕ′ .
b) If χ ∈ IrrK(G) \ IrrλK(G), then dGχχ′ = 0.

Proof. By [53, Thm.3.4.1], idempotents can be lifted from FG to RG, respec-
tively from Eλ̃F to EλR. Hence the assertions follow from Brauer reciprocity, see
[14, Thm.XII.83.9]. ]

3 Characters of endomorphism rings

In Section 3 we discuss characters of endomorphism rings over fields of character-
istic 0. The exposition of Section 3 is inspired by [27]. We begin by relating the
character values on Schur basis elements corresponding to paired orbitals, and
then use the symmetrising form to exhibit the centrally primitive idempotents
of the endomorphism ring.

Let K be a cyclotomic field containing Q(λ(H)) and being a splitting field for
all simple KG-modules affording a character in IrrλK(G). Let :K → K denote
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the involutory field automorphism defined by : ζ 7→ ζ−1 for all roots of unity
ζ ∈ K, extending the field automorphism of Q(λ(H)) defined in Section (1.11).

(3.1) Proposition. See also [39, Prop.II.12.12].
For i ∈ Iλ and ϕ ∈ IrrK(EλK) we have, where ζi ∈ K is as in Definition (1.12),

ϕ(αλi ) =
1
ζi
· ϕ(αλi∗).

Proof. As in Section (1.11) there is a G-invariant positive definite hermitian
form 〈·, ·〉Ω on KλΩ, thus the decomposition KλΩ ∼=

⊕
ϕ∈IrrK(EλK)

(
Sχϕ ⊗K Sϕ

)
as (KG ⊗ EλK)-modules, see Section (2.8), is an orthogonal direct sum. Thus
by Proposition (1.13) we have

ϕ(αλi ) = ϕ((αλi )]) =
1
mϕ
· trϕ((αλi )]) =

1
ζi ·mϕ

· trϕ(αλi∗) =
1
ζi
· ϕ(αλi∗),

where trϕ denotes the K-valued trace function on Sχϕ ⊗K Sϕ. ]

(3.2) Proposition.
a) The centrally primitive idempotent εϕ ∈ EλK corresponding to ϕ ∈ IrrK(EλK)
is given as

εϕ =
|H|
cϕ
·
∑
i∈Iλ

1
ki
· ϕ(αλi ) · αλi ,

where cϕ ∈ K is the corresponding Schur element, see also [15, Ch.1.9.B].
b) For ϕ ∈ IrrK(EλK) we have

cϕ =
|G|
mϕ

=
|G|
χϕ(1)

= cχϕ ,

where cχϕ ∈ K is the Schur element belonging to χϕ ∈ IrrλK(G) for the sym-
metric K-algebra KG with symmetrising form tG, see Proposition (2.3).

Proof. Using the symmetrising form t we have

εϕ =
1
cϕ
·
∑
i∈Iλ

ϕ(α̂λi ) · αλi =
|H|
cϕ
·
∑
i∈Iλ

1
ki · ζi∗

· ϕ(αλi∗) · αλi .

Hence the assertion in a) follows from Proposition (3.1) and Corollary (1.14).

For i ∈ Iλ, the trace of the action of αλi on KλΩ is given as trKλΩ(αλi ) =
δ1,i · n. Hence using a) we have trKλΩ(εϕ) = |H|

cϕ
· dϕ · n = |G|·dϕ

cϕ
. Furthermore,

the idempotent εϕ ∈ EλK acts as the identity on Sχϕ ⊗K Sϕ and annihilates
the other summands Sχϕ′ ⊗K Sϕ′ , for ϕ 6= ϕ′ ∈ IrrK(EλK). Hence we have
trKλΩ(εϕ) = dϕ ·mϕ. ]

We address the question of semisimplicity of the endomorphism ring Eλ̃F over a
field F of positive characteristic.
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(3.3) Remark. Let :̃R → F and λ̃ be as in Section (2.10), where in par-
ticular the characteristic of F is coprime to |H|.
a) For ϕ ∈ IrrK(EλK) let Dϕ:EλK → EndK(Sϕ) denote the corresponding rep-
resentation. Then the Schur element cϕ ∈ K is defined by the Frobenius-Schur
relations

∑
i∈Iλ Dϕ(α̂λi ) ·M · Dϕ(αλi ) = cϕ · tr(M) · idSϕ , for M ∈ EndK(Sϕ),

where tr is the K-valued trace function on EndK(Sϕ). Hence we have cϕ ∈ R,
and c̃ϕ is well-defined.
b) As Eλ̃F is a symmetric algebra, ϕ̃ ∈ IrrF (Eλ̃F ) is afforded by a projective
simple Eλ̃F -module if and only if ϕ̃ occurs with multiplicity dϕ̃ as a constituent
of the regular Eλ̃F -module Eλ̃F , while for the non-projective simple Eλ̃F -modules
this multiplicity is at least 2 · dϕ̃.

(3.4) Proposition. See also Tits’ Deformation Theorem [16, Thm.8.68.17],
[23, Thm.1.3.8] and [19].

We keep the notation of Section (2.10), where in particular the characteristic of
F is coprime to |H|. Then the decomposition map DE induces a bijection

{ϕ ∈ IrrK(EλK); c̃ϕ 6= 0 ∈ F} → {ϕ̃ ∈ IrrF (Eλ̃F ); ϕ̃ projective}.

In particular, Eλ̃F is semisimple if and only if c̃ϕ 6= 0 ∈ F for all ϕ ∈ IrrK(EλK).

Proof. If ϕ ∈ IrrK(EλK) such that dEϕϕ̃ 6= 0, then ϕ̃ occurs in the regular

Eλ̃F -module Eλ̃F ∼= ẼλK at least with multiplicity dϕ · dEϕϕ̃. If ϕ̃ is projective,
then by Remark (3.3) we conclude from dϕ ≥ dϕ̃ that dϕ = dϕ̃ and dEϕϕ̃ = 1.
Hence dEϕϕ̃′ = 0, for ϕ̃ 6= ϕ̃′ ∈ IrrF (Eλ̃F ), and dEϕ′ϕ̃ = 0, for ϕ 6= ϕ′ ∈ IrrK(EλK).
Furthermore we have c̃ϕ = cϕ̃, and by the Gaschütz-Ikeda Theorem, see [14,
Thm.IX.62.11], Sϕ̃ is a projective Eλ̃F -module if and only if cϕ̃ 6= 0 ∈ F .

Conversely, if ϕ ∈ IrrK(EλK) such that c̃ϕ 6= 0 ∈ F , then cϕ ∈ R is a unit. Let

εϕ,j :=
1
cϕ
·
∑
i∈Iλ

[Dϕ(α̂λi )]jj · αλi ∈ EλR ⊆ EλK ,

for j ∈ {1, . . . , dϕ}. Then εϕ =
∑dϕ
j=1 εϕ,j ∈ EλR is a decomposition of εϕ into

pairwise orthogonal primitive idempotents. Hence εϕE
λ
Rεϕ

∼= Rdϕ×dϕ as R-

algebras, thus ˜εϕEλRεϕ
∼= F dϕ×dϕ as F -algebras. Hence S̃ϕ is an irreducible

Eλ̃F -module, with corresponding Schur element c̃ϕ 6= 0 ∈ F . ]

(3.5) Remark. As cϕχ = cχ, for χ ∈ IrrλK(G), we conclude that Eλ̃F is
semisimple if and only if all KG-constituents of λG are of p-defect 0. Hence for
λ = 1, where the trivial KG-character is an element of IrrλK(G), the F -algebra
EF is semisimple if and only if p does not divide the group order |G|. But
for λ 6= 1 the F -algebra Eλ̃F might be semisimple even if p divides |G|, as the
following examples show.
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(3.6) Example.
a) Let F := F4 be the finite field of order 4, let G := S3 be the symmetric
group on 3 letters and H := A3 be the alternating group on 3 letters, and let
1 6= λ̃ ∈ IrrF (A3) be a non-trivial F -representation. Then λ̃G is an irreducible
F -representation of S3 of degree 2, and we have λ̃G ∼= ρ̃ as FS3-modules, where
ρ is the reflection K-representation of S3, whose Schur element is cρ = 3 ∈ K.
b) Let G := SL2(Fq) be the special linear group of degree 2 over Fq, where q
is a prime power q ≥ 4, and let H := U n T < G be a split Borel subgroup
with torus T ∼= Cq−1. We have |H| = q(q − 1) and |G| = q(q − 1)(q + 1).
Let F be a finite field of characteristic coprime to q(q− 1) containing primitive
(q − 1)-st roots of unity. Hence B has exactly q − 1 different F -representations
λ̃ ∈ IrrF (H) of degree 1, all of which are inflated from T . If 1 6= λ̃2, then λ̃G is
irreducible of degree q + 1, and hence has Schur element 0 6= q(q − 1) ∈ F . If
λ̃ 6= 1, but λ̃2 = 1, then λ̃G has two non-isomorphic constituents of degree q+1

2 ,
whose Schur elements hence are 0 6= 2q(q − 1) ∈ F .

We introduce the second main actor of the present work.

(3.7) Definition. The matrix

Φλ := [ϕ(αλi );ϕ ∈ IrrK(EλK), i ∈ Iλ] ∈ K |IrrK(EλK)|×|Iλ|,

with row index ϕ and column index i, is called the character table of EλK . For
λ = 1 let Φ := Φ1.

Explicit examples of character tables are shown in Examples (3.12) and (4.10) as
well as (5.17), and of course in Part III. In all the explicitly given tables we also
indicate the Fitting correspondence IrrK(EλK)→ IrrλK(G), see Proposition (2.7).
We proceed to prove the most important structural feature of the character table
of an endomorphism ring, the orthogonality relations.

(3.8) Proposition. Orthogonality relations.
a) We have the first orthogonality relations

Φλ · diag[k−1
i ; i ∈ Iλ] · ΦTλ = n · diag[

dϕ
mϕ

;ϕ ∈ IrrK(EλK)].

b) If EλK is commutative, then we have the second orthogonality relations

ΦTλ · diag[mϕ;ϕ ∈ IrrK(EλK)] · Φλ = n · diag[ki; i ∈ Iλ].

Proof. Because of ϕ(εϕ′) = δϕ,ϕ′ · dϕ, for ϕ,ϕ′ ∈ IrrK(EλK), by Proposition
(3.2) we have

∑
i∈Iλ

1
ki
· ϕ(αλi ) · ϕ′(αλi ) = δϕ,ϕ′ · |G|·dϕ|H|·mϕ = δϕ,ϕ′ · n·dϕmϕ

, which in
terms of matrices is just the assertion in a).
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If EλK is commutative, then by Remark (2.9) we have dϕ = 1 for all ϕ ∈
IrrK(EλK) and |IrrK(EλK)| = r, hence Φλ is a square matrix. Because of the first
orthogonality relations Φλ is invertible, and we have

Φ−Tλ · diag[ki; i ∈ Iλ] · Φ−1
λ =

1
n
· diag[mϕ;ϕ ∈ IrrK(EλK)].

From this the assertion in b) follows. ]

(3.9) Remark. In particular, by the first orthogonality relations we obtain

1
mϕ

=
1

dϕ · n
·
∑
i∈Iλ

1
ki
· ϕ(αλi ) · ϕ(αλi ),

for ϕ ∈ IrrK(EλK). As dϕ = ϕ(αλ1 ) is known from Φλ the degree χϕ(1) = mϕ of
the Fitting correspondent χϕ ∈ IrrλK(G) of ϕ ∈ IrrK(EλK) can be read off from
Φλ as soon as the ki, for i ∈ Iλ, are known; see also Remark (3.21).

As a direct consequence of the orthogonality relations we obtain the following
notion, which for the case λ = 1 first appeared in [20]. Part of the statements
in c) of Proposition (3.10) have been proved in [21], see also [80, Thm.V.30.1].

(3.10) Proposition.
a) For ϕ ∈ IrrK(EλK) and i ∈ Iλ, the character value ϕ(αλi ) ∈ K is an algebraic
integer. If EλK is commutative, then det Φλ ∈ K and det Φλ ∈ K are algebraic
integers, and we have (det Φλ)2 ∈ Q(λ(H)) and det Φλ · det Φλ ∈ Q.
b) Let EλK be commutative. Then the generalised Frame number

Nλ := n|Iλ| · (
∏
i∈Iλ

ki) · (
∏

ϕ∈IrrK(EλK)

1
mϕ

)

is a rational integer.
c) Let λ = 1 and EK be commutative. Then the Frame number N1 ∈ Z is
divisible by n2. Furthermore, N1 ∈ Z is a square in Z, if and only if either
i) |I| − |{i ∈ I; i∗ = i}| ≡ 0 mod 4 and det Φ ∈ Z, or
ii) |I| − |{i ∈ I; i∗ = i}| ≡ 2 mod 4 and det Φ ∈ iZ.
In particular, N1 is a square in Z, if all characters in Irr1

K(G) are rational-valued.

Proof. Let R be the set of all discrete valuation rings in K, without any
restriction to the characteristic of the residue class field of R. As the repre-
sentation of EλK affording ϕ can be realized over all rings R ∈ R, see Section
(2.10), we conclude that ϕ(αλi ) ∈

⋂
R∈RR, which by [15, Ch.I.4.C] is the ring

of algebraic integers in K.

If EλK is commutative, then from the second orthogonality relations, see Propo-
sition (3.8), we obtain by taking determinants

det Φλ · det Φλ · (
∏

ϕ∈IrrK(EλK)

mϕ) = n|Iλ| · (
∏
i∈Iλ

ki).
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Thus det Φλ ·det Φλ = Nλ ∈ Q is an algebraic integer. By Proposition (3.1), we
have Φλ = Φλ ·Qλ · diag[ζ−1

i ; i ∈ Iλ], where Qλ ∈ Z|Iλ|×|Iλ| is the permutation
matrix describing the permutation of the columns of Φλ induced by the pairing
involution ∗: Iλ → Iλ. Hence we have detQλ = (−1)

|Iλ|−|{i∈Iλ;i∗=i}|
2 . Thus we

obtain
Nλ = (−1)

|Iλ|−|{i∈Iλ;i∗=i}|
2 · (det Φλ)2 ·

∏
i∈Iλ

1
ζi
.

Hence we have (det Φλ)2 ∈ Q(λ(H)). This proves the assertions in a) and b).

For λ = 1, we have (det Φ)2 ∈ Q. Hence det Φ ∈ R or det Φ ∈ iR. From this the
characterisation of N1 ∈ Z being square in Z follows. As is shown in Remark
(3.21), we have ki = ϕ1(αi) for i ∈ I, where ϕ1 ∈ IrrK(EK) denotes the Fitting
correspondent of the trivial KG-character. Hence using the first orthogonality
relations, see Proposition (3.8), we obtain Φ·[1, . . . , 1]T = n·[1, 0, . . . , 0]T . Hence
det Φ is divisible by n in the ring of algebraic integers in K. If all characters in
Irr1

K(G) are rational-valued, by Remark (3.21) below, we have ϕ(αi) ∈ Q, for
ϕ ∈ IrrK(EK) and i ∈ I, hence det Φ ∈ Z, and by Proposition (3.1) we have
i∗ = i for all i ∈ I. This proves the assertions in c). ]

(3.11) Remark. In general, it is not true that N1 ∈ Z is a square, if only
i∗ = i holds for all i ∈ I, but no further assumption on det Φ is made, as the
following example shows, thus disproving a conjecture in [20].

(3.12) Example. Let G := J1 and H := L2(11) < G as well as λ = 1. The
character table Φ of the endomorphism ring EK is contained in the database,
see Section (11.1), and is given as follows, where r5 :=

√
5 ∈ R. According to

Definition (3.7), the rows and columns of Φ are indexed by ϕ ∈ IrrK(EK) and
i ∈ I = {1, . . . , 5}, respectively, and the entry of Φ in row ϕ and column i is
the character value ϕ(αi) ∈ K, for the Schur basis element αi ∈ A. Further-
more we indicate the Fitting correspondence IrrK(EK)→ Irr1

K(G):ϕ 7→ χϕ, see
Proposition (2.7).

ϕ χϕ 1 2 3 4 5

1 1a 1 11 12 110 132
2 56a 1 −7−r5

2
−3+3r5

2
5+7r5

2
3−9r5

2

3 56b 1 −7+r5
2

−3−3r5
2

5−7r5
2

3+9r5
2

4 76a 1 4 −2 5 −8
5 77a 1 1 4 −10 4

As is shown in Remark (3.21), we have ki = ϕ1(αi) for i ∈ I = {1, . . . , 5}.
Hence the index parameters are pairwise different, and thus we have i∗ = i
for all i ∈ I. But we have det Φ = −2 · 3 · 7 · 11 · 192 · r5 ∈ Q(r5) and hence
N1 = (det Φ)2 = 22 · 32 · 5 · 72 · 112 · 194 ∈ Z, which is not a square in Z.
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(3.13) Remark. Let EλK be commutative. Let e ∈ N and let ζe ∈ Q(λ(H))
be a primitive e-th root of unity such that Q(λ(H)) = Q(ζe). Let ζ2e ∈ C is a
primitive 2e-th root of unity. It follows from the proof of Proposition (3.10) that
Nλ is a square in the ring of integers of Q(ζ2e), which by [50, Cor.2.2] coincides
with Z[ζ2e]. But for the case λ 6= 1, no characterisation for the generalised Frame
number Nλ ∈ Q(λ(H)) to be a square in the ring of integers Z[λ(H)] = Z[ζe] of
Q(λ(H)) is known to the author.

This question is related to the question whether
∏
i∈Iλ ζi ∈ Q(λ(H)) is a square

in Z[λ(H)]. As by Corollary (1.14) we have ζi = ζi∗ , for i ∈ Iλ, we only have
to consider

∏
i∈Iλ,i=i∗ ζi ∈ Q(λ(H)). Hence let i ∈ Iλ such that i = i∗. By

Definition (1.12) we have ζi = λ(ηi)
λ(hii− ) . Let h ∈ Hi and η′ ∈ H such that

ηi · gi · hii− = g−1
i = η′ · gi · h · hii− = η′ · gihg−1

i · gi · hii−

Hence we have η′ · gihg−1
i = ηi and thus

λ(η′)
λ(h · hii−)

=
λ(ηi)

λ(gihg−1
i ) · λ(h) · λ(hii−)

=
1

λ(h)2
· λ(ηi)
λ(hii−)

.

Hence without loss of generality we may change the set of representatives of the
right cosets Hi|H of Hi in H. Let h, h′ ∈ H. Then we have

(hgih′)−1 = h′−1 · ηigihii− · h−1 = h′−1ηih
−1 · hgih′ · h′−1hii−h

−1,

and thus λ(h′−1·ηi·h−1)
λ(h′−1·hii− ·h−1) = λ(ηi)

λ(hii− ) = ζi. Hence without loss of generality we
may as well change the set of representatives of the H-H-double cosets in G.

Thus we may choose gi ∈ G such that for ωi := ω1gi ∈ Ω we have ωigi = ω1,
Thus we have g2

i ∈ Hi and g−1
i = ηi · gi = gi · ηi, where ηi ∈ Hi ≤ H. Having

made these choices, we have reduced the question whether
∏
i∈Iλ ζi ∈ Q(λ(H))

is a square in Z[λ(H)] to the question whether
∏
i∈Iλ,i=i∗ λ(ηi) ∈ Q(λ(H)) is a

square in Z[λ(H)]. For this, again, no general statement is known to the author.

We discuss the relationship between the character table of a commutative en-
domorphism ring EλK , the set of its centrally primitive idempotents, and its
structure constants matrices.

(3.14) Proposition. Let EλK be commutative, let

Eλ := {εϕ ∈ EλK ;ϕ ∈ IrrK(EλK)}

be the set of centrally primitive idempotents of EλK , and let [Eλ]Aλ ∈ K |Iλ|×|Iλ|
be the matrix describing the centrally primitive idempotents in terms of the
Schur basis Aλ, see Proposition (3.2).
a) Then Eλ is a K-basis of EλK and {εϕEλK ≤ EλK ;ϕ ∈ IrrK(EλK)} is the set of
all 1-dimensional EλK-submodules of EλK . For j ∈ Iλ we have

[Eλ]Aλ · Pλj = diag[ϕ(αλj );ϕ ∈ IrrK(EλK)] · [Eλ]Aλ ,
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where Pλj is the j-th structure constants matrix, see Definition (1.18).
b) We have [Eλ]Aλ = Φ−Tλ as well as

n · diag[m−1
ϕ ;ϕ ∈ IrrK(EλK)] · [Eλ]Aλ = Φλ · diag[k−1

i ; i ∈ Iλ].

Proof. The regular EλK-module EλK decomposes as EλK ∼=
⊕

ϕ∈IrrK(EλK) εϕE
λ
K ,

where dimK(εϕEλK) = 1, for ϕ ∈ IrrK(EλK). We have εϕ ·αλj = ϕ(αλj )·εϕ, for ϕ ∈
IrrK(EλK). From that and the uniqueness of the centrally primitive idempotents
the assertions in a) follow. The assertions in b) follow from Proposition (3.2)
and the second orthogonality relations, see Proposition (3.8). ]

(3.15) Corollary. Let J ⊆ Iλ and C := 〈αλj ; j ∈ J 〉K−algebra ≤ EλK . Then
we have C = EλK if and only if EλK ∼=

⊕
i∈{1,...,|Iλ|} Si as C-modules, where the

Si ≤ EλK are pairwise non-isomorphic C-modules such that dimK(Si) = 1.

(3.16) Definition.
a) For i, j ∈ Iλ let α̂λi · αλj =

∑
k∈Iλ p

λ
îjk̂
· α̂λk , for the dual structure constants

pλ
îjk̂
∈ Q(λ(H)), where Âλ = {α̂λk ; k ∈ Iλ} is the dual Schur basis, see Definition

(2.4). For the case λ = 1 let pîjk̂ := p1
îjk̂

.

b) For j ∈ Iλ, the representing matrix [αλj ]Âλ of the right regular action of
αλj on EλK , with respect to the dual Schur basis Âλ, is given by the j-th dual
structure constants matrix

[αλj ]Âλ = P̂λj := [pλ
îjk̂

; i, k ∈ Iλ] ∈ Q(λ(H))|Iλ|×|Iλ|,

with row index i and column index k. For the case λ = 1 let P̂j := P̂ 1
j .

(3.17) Proposition. Let i, j, l ∈ Iλ.
a) For the structure constants matrix Pλi∗ we have

Pλi∗ = ζi · diag[kj ; j ∈ Iλ] · (Pλi )T · diag[k−1
l ; l ∈ Iλ].

b) For the dual structure constants pλ
îjl̂

we have pλ
îjl̂

= kl·ζl∗
ki·ζi∗

· pλi∗jl∗ .

c) If EλK is commutative, then we have P̂λj = (Pλj )T .
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Proof. Using Corollary (1.14), Remark (1.19), the symmetrising form t, see
Proposition (2.3), and Definition (2.4) we obtain

pλji∗l = ζi·ζj∗
ζl∗
· pλij∗l∗

= ζi·ζj∗
ζl∗
· t(αλi αλj∗ α̂λl∗)

= ζi·ζj∗
ζl∗
· |H|·ζlkl

· t(αλi αλj∗αλl )

= ζi·ζj∗
ζl∗
· |H|·ζlkl

· kj
|H|·ζj∗

· t(αλl αλi α̂λj )

= kj ·ζi
kl
· pλlij .

This shows the assertion in a). Furthermore, we have

pλ
îjl̂

= t(α̂λi α
λ
j α

λ
l ) =

kl · ζl∗
ki · ζi∗

· t(αλi∗αλj α̂λl∗) =
kl · ζl∗
ki · ζi∗

· pλi∗jl∗ .

This shows the assertion in b), while the assertion in c) follows from

pλ
îjl̂

= t(α̂λi α
λ
j α

λ
l ) = t(α̂λi α

λ
l α

λ
j ) = t(αλl α

λ
j α̂

λ
i ) = pλlji. ]

(3.18) Proposition. Let EλK be commutative and j ∈ Iλ.
a) Let [Eλ]Âλ ∈ K |Iλ|×|Iλ| be the matrix describing the centrally primitive
idempotents of EλK in terms of the dual Schur basis Âλ. Then we have

[Eλ]Âλ · (P
λ
j )T = diag[ϕ(αλj );ϕ ∈ IrrK(EλK)] · [Eλ]Âλ

and
[Eλ]Âλ =

1
|G|
· diag[mϕ;ϕ ∈ IrrK(EλK)] · Φλ.

b) We have Pλj = ΦTλ · diag[ϕ(αλj );ϕ ∈ IrrK(EλK)] · Φ−Tλ .

Proof. The first assertion in a) follows from Proposition (3.14) and Proposi-
tion (3.17). By Proposition (3.2) and its proof we have

[Eλ]Âλ = [
1
cϕ
· ϕ(αλi );ϕ ∈ IrrK(EλK), i ∈ Iλ],

with row index ϕ and column index i. Hence the second assertion in a) follows.
The assertion in b) follows from those in a). ]

Finally, we discuss the relationship between the character table Φλ of EλK , see
Definition (3.7), and the ordinary character table of the underlying group G.
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(3.19) Definition. Let Cl(G) denote the set of conjugacy classes of G and
let

Xλ := [χ(C);χ ∈ IrrλK(G), C ∈ Cl(G)] ∈ K |Irr
λ
K(G)|×|Cl(G)|

denote the character table of IrrλK(G), with row index χ and column index C.
For C ∈ Cl(G) and i ∈ I let

γλi (C) :=
∑
h∈H

δC(hgi) · λ(h−1) ∈ Q(λ(H)),

where δC :G → {0, 1} is defined by δC(g) = 1 if and only if g ∈ C. Note that
γλi (C) does not depend on the particular choice of the representative of the
double coset HgiH ⊆ G. Let

Γλ := [γλi (C); i ∈ Iλ, C ∈ Cl(G)] ∈ Q(λ(H))|Iλ|×|Cl(G)|

with row index i ∈ Iλ and column index C. The γλj (C) for j 6∈ Iλ are dealt
with in Proposition (3.22).

For λ = 1 let γi(C) := γ1
i (C) = |C ∩ Hgi| ∈ Z and Γ := Γ1 ∈ Qr×|Cl(G)|, for

i ∈ I and C ∈ Cl(G).

(3.20) Proposition. For the character table Φλ of EλK we have

Φλ =
1
|H|
· Xλ · ΓTλ · diag[ki; i ∈ Iλ].

Proof. Let ϕ ∈ IrrK(EλK) and χ ∈ IrrλK(G) be its Fitting correspondent, see
Proposition (2.7) and Section (2.8). For α ∈ EλK and σ = σλ as in Section (2.1),
let ασχ, denote the image of ασ ∈ EndKG(ελKG) under the projection onto
the direct summand Kdϕ×dϕ belonging to χ. Hence we have ϕ(α) = tr(ασχ).
Furthermore we have Kdϕ×dϕ · τ = ελεχKGεχελ ⊆ εχKGεχ ∼= Kmϕ×mϕ , where
mϕ = χ(1) and τ = τλ is as in Section (2.1). Hence the Pierce decomposition of
εχKGεχ with respect to ελεχ shows that we have tr(ασχ) = χ((ασχ)τ). Since for
χ 6= χ′ ∈ IrrλK(G) we have χ((ασχ′)τ) = 0, we conclude that ϕ(α) = χ((ασχ)τ) =
χ((ασ)τ). For i ∈ Iλ we hence have

ϕ(αλi ) = χ(((αλi )σ)τ)

= ki · χ(ελgiελ)

= ki
|H|2 ·

∑
h,h′∈H λ(h−1) · λ((h′)−1) · χ(hgih′)

= ki
|H|2 ·

∑
h,h′∈H λ((h′h)−1) · χ(h′hgi)

= ki
|H| ·

∑
h∈H λ(h−1) · χ(hgi)

= ki
|H| ·

∑
C∈Cl(G) γ

λ
i (C)χ(C). ]
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(3.21) Remark.
a) In particular, for λ = 1 let ϕ1 ∈ IrrK(EK) be the Fitting correspondent of
the trivial KG-character. Then we have, for i ∈ I,

ϕ1(αi) =
ki
|H|
·
∑

C∈Cl(G)

|C ∩Hgi| = ki ∈ N.

Hence the index parameters ki, for i ∈ I, can be read off from the character
table Φ of EK . Note that the values of ϕ1 on A are positive integers, and that
by the orthogonality relations, see Proposition (3.8), ϕ1 is uniquely determined
by this condition.

b) Let for the moment EλK be commutative, and let

K ′ := Q(λ(H))[χ(C);χ ∈ IrrλK(G), C ∈ Cl(G)].

As dϕ = 1 for all ϕ ∈ IrrK(EλK), by [18, La.IV.9.1] the Schur indices over
Q(λ(H)) of all χ ∈ IrrλK(G) are equal to 1. Thus K ′ is a splitting field for all
simple KG-modules affording a character in IrrλK(G), and hence for EλK as well.

c) Let without loss of generality K be a splitting field for KG, and let ρ ∈
Gal(K/Q(λ(H))). As λρ = λ, we conclude that IrrλK(G) is Gal(K/Q(λ(H)))-
invariant. As (Γλ)ρ = Γλ, the set IrrK(EλK) also is Gal(K/Q(λ(H)))-invariant
and we have χϕρ = (χϕ)ρ ∈ IrrλK(G), for ϕ ∈ IrrK(EλK). In particular, if
λ(H) ⊆ R, we have χϕ = χϕ ∈ IrrλK(G).

(3.22) Proposition.
a) For j 6∈ Iλ we have γλj (C) = 0 for all C ∈ Cl(G).
b) For χ 6∈ IrrλK(G) we have

∑
C∈Cl(G) γ

λ
i (C)χ(C) = 0 for all i ∈ Iλ.

Proof. Without loss of generality we assume that K is a splitting field for
KG. Let X = [χ(C);χ ∈ IrrK(G), C ∈ Cl(G)] ∈ K |Cl(G)|×|Cl(G)| denote the full
K-character table of G. Hence as in the proof of Proposition (3.20) we have
χ(ελgkελ) = 1

|H| ·
∑
C∈Cl(G) γ

λ
k (C)χ(C), for k ∈ I.

By Proposition (2.2), we have ελgjελ = 0 ∈ KG, for j 6∈ Iλ. Hence for all
χ ∈ IrrK(G) we have

∑
C∈Cl(G) γ

λ
j (C)χ(C) = 0. Thus X ·[γλj (C);C ∈ Cl(G)]T =

0 ∈ K |Cl(G)|×1. As X is invertible, the assertion in a) follows. For χ 6∈ IrrλK(G)
we have ελεχ = 0 ∈ KG, hence χ(ελKGελ) = 0. From that the assertion in b)
follows. ]

(3.23) Proposition. See also Ree’s Formula [15, Thm.1.11.28].
We have

Xλ = diag[
mϕ

dϕ
;ϕ ∈ Irr(EλK)] · Φλ · Γλ · diag[|C|−1;C ∈ Cl(G)].
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Proof. For C ∈ Cl(G) let C+ :=
∑
g∈C g ∈ KG be the corresponding conju-

gacy class sum. Since C+ ∈ Z(KG), we have λG(C+) ∈ EλK . Thus we have
λG(C+) =

∑
i∈Iλ γi · α

λ
i ∈ EλK , for γi ∈ K. By the definition of the αλi , see

Section (1.7), we have, for i ∈ Iλ and fixed j ∈ {1, . . . , ki},

γi :=
∑
h∈H

δC(hgihij) · λω1(hgihij) · λ(hij) =
∑
h∈H

δC(hgi) · λ(h) = γλi (C).

For ϕ ∈ IrrK(EλK) let χ ∈ IrrλK(G) be its Fitting correspondent, see Section
(2.8), and let trϕ denote the K-valued trace function on the KG⊗KEλK-module
Sχϕ ⊗K Sϕ. For i ∈ Iλ we then have trϕ(αλi ) = mϕ · ϕ(αλi ) and trϕ(C+) =
dϕ · |C| · χ(C). Thus χ(C) = mϕ

dϕ·|C| ·
∑
i∈Iλ γ

λ
i (C) · ϕ(αλi ). ]

(3.24) Remark. Proposition (3.20) describes Φλ in terms of Xλ and Γλ,
while Proposition (3.23) describes Xλ in terms of Γλ and Φλ. We briefly discuss
the remaining case of describing Γλ in terms of Φλ and Xλ.

Let EλK be commutative. Then from Proposition (3.23) and the orthogonality
relations, see Proposition (3.8), we obtain

Γλ =
1
n
· diag[k−1

i ; i ∈ Iλ] · ΦTλ · Xλ · diag[|C|;C ∈ Cl(G)].

Hence we have

Yλ := 〈[γλi (C);C ∈ Cl(G)]; i ∈ Iλ〉K
= 〈[χϕ(C) · |C|;C ∈ Cl(G)];ϕ ∈ IrrK(EλK)〉K
≤ K1×|Cl(G)|.

By Proposition (3.20) and the second orthogonality relations, see Proposition
(3.8), we have

Γλ ·
(
X Tλ · diag[mϕ;ϕ ∈ Irr(EλK)] · Xλ

)
· ΓTλ = |G| · |H| · diag[k−1

i ; i ∈ Iλ].

Hence {[γλi (C);C ∈ Cl(G)]; i ∈ Iλ} is an orthogonal K-basis of Yλ, with respect
to the hermitian form defined by the bracketed term. The latter hence is positive
definite on Yλ. Furthermore, because of the orthogonality relations for Xλ we
have

X ′λ ·
(
X Tλ · diag[mϕ;ϕ ∈ Irr(EλK)] · Xλ

)
· (X ′λ)T = |G|2 · diag[mϕ;ϕ ∈ Irr(EλK)],

where for short X ′λ := Xλ · diag[|C|;C ∈ Cl(G)]. From that we conclude that
{[χϕ(C) · |C|;C ∈ Cl(G)];ϕ ∈ IrrK(EλK)} also is an orthogonal K-basis of Yλ.

4 Krein parameters

In Section 4 we restrict ourselves to the case λ = 1, and discuss another algebraic
structure on EK , which has a connection to the tensor product structure on
Irr1

K(G). As general references see for example [8, Ch.2.3] and [2, Ch.II.3].
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Let K be a cyclotomic field being a splitting field for all simple KG-modules
affording a character in Irr1

K(G).

(4.1) Definition.
a) For A = [aij ; i, j ∈ {1, . . . , n}] ∈ Kn×n and B = [bij ; i, j ∈ {1, . . . , n}] ∈
Kn×n, both with row index i and column index j, let the Hadamard product be
defined by

A ? B := [aijbij ; i, j ∈ {1, . . . , n}] ∈ Kn×n.

b) As EK → Kn×n:αi 7→ [αi]Ω, for i ∈ I, is a faithful K-representation, EK
becomes a commutative K-algebra, denoted by E?K , by the Hadamard product
αi ? αj := δi,j · αi, for i, j ∈ I.

(4.2) Remark.
a) Hence A is the set of centrally primitive idempotents of E?K .
b) For λ arbitrary and i, j ∈ Iλ ⊆ Iλ2 , by Proposition (1.10) we have

[αλi ]Ω ? [αλj ]Ω = δi,j · [αλ
2

i ]Ω.

Hence there is a generalised Hadamard product ?:EλK × EλK → Eλ
2

K .

(4.3) We give an interpretation of the Hadamard product on EK in terms of
the permutation module KΩ.

Let ∆: Ω→ Ω×Ω:ω 7→ (ω, ω) be the diagonal map, and ∆Ω⊥ := (Ω×Ω)\∆Ω ⊆
Ω×Ω. Thus KΩ⊗K KΩ is endowed with the structure of a ((KG⊗K EK)⊗K
(KG⊗K EK))-module, and it decomposes as KG-module as

KΩ⊗K KΩ ∼= K(Ω× Ω) ∼= K(∆Ω)⊕K(∆Ω⊥) ∼= KΩ⊕K(∆Ω⊥).

Let ι:KΩ → KΩ ⊗K KΩ and π:KΩ ⊗K KΩ → KΩ be the KG-injection and
the KG-projection corresponding to the above direct sum decomposition.

(4.4) Proposition. Keeping the notation of Section (4.3), let α, α′ ∈ EK .
Then we have

ι · (α⊗ α′) · π = α ? α′ ∈ EK .

Proof. With respect to the K-bases Ω of KΩ and Ω ⊗ Ω of K(Ω ⊗ Ω) we
have [ι]ω,(ω′⊗ω′′) = δω,ω′δω′,ω′′ and [π](ω′⊗ω′′),ω = δω,ω′δω′,ω′′ . Furthermore
[α⊗ α′](ω′⊗ω′′),(ω̃′⊗ω̃′′) = [α]ω′,ω̃′ · [α′]ω′′,ω̃′′ . Hence for ω, ω̃ ∈ Ω we get

[ι · (α⊗ α′) · π]ω,ω̃

=
∑
ω′,ω′′,ω̃′,ω̃′′∈Ω

(
[ι]ω,(ω′⊗ω′′) · [α⊗ α′](ω′⊗ω′′),(ω̃′⊗ω̃′′) · [π](ω̃′⊗ω̃′′),ω̃

)
= [α⊗ α′](ω⊗ω),(ω̃⊗ω̃)

= [α]ω,ω̃ · [α′]ω,ω̃. ]

We introduce suitable structure constants of E?K and show their relationship to
the character values of Schur basis elements.
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(4.5) Definition. Let EK be commutative. Let IrrK(EK) = {ϕi; i ∈ I},
and for i ∈ I let εi ∈ EK be the centrally primitive idempotent corresponding
to ϕi. For i, j ∈ I we have εi ? εj =

∑
k∈I qijk · εk, for the Krein parameters

qijk ∈ K of E?K .

(4.6) Proposition. Let EK be commutative. Then for i, j, k ∈ I we have

qijk =
mi ·mj

n2
·
∑
l∈I

1
k2
l

· ϕi(αl) · ϕj(αl) · ϕk(αl).

Proof. By Proposition (3.2), for i ∈ I we have εi =
∑
j∈I

mi
n·kj · ϕi(αj) · αj ,

where mi := mϕi . Hence for i, j ∈ I we obtain

εi ? εj =
mi ·mj

n2
·
∑
l∈I

1
k2
l

· ϕi(αl) · ϕj(αl) · αl.

Let E := {εi ∈ EK ; i ∈ I} be the K-basis of EK consisting of the cen-
trally primitive idempotents, and let Ê = {ε̂i; i ∈ I} the corresponding dual
K-basis with respect to the symmetrising form t, see Proposition (2.3). By
Proposition (3.14) we have [E ]A = Φ−T , hence we conclude [Ê ]Â = Φ, where
Φ = [ϕi(αj); i, j ∈ I] ∈ Kr×r denotes the character table of EK . Hence for
i ∈ I we have ε̂i =

∑
j∈I ϕi(αj) · α̂j . Thus we obtain

qijk = t((εi ? εj) · ε̂k)

= mi·mj
n2 ·

∑
l∈I
∑
s∈I

1
k2
l
· ϕi(αl) · ϕj(αl) · ϕk(αs) · t(αl, α̂s). ]

(4.7) Remark. Let EK be commutative and let ϕ1 be the Fitting correspon-
dent of the trivial KG-character. As by Remark (3.21) we have ϕ1(αi) = ki,
for all i ∈ I, and m1 = 1, by the first orthogonality relations, see Proposition
(3.8), we obtain

q1jk =
mj

n2
·
∑
l∈I

1
kl
· ϕj(αl) · ϕk(αl) = δj,k ·

mj

n2
· n
mk

= δj,k ·
1
n
,

for j, k ∈ I. Furthermore, for i, j ∈ I, we have

qij1 =
mi ·mj

n2
·
∑
l∈I

1
kl
· ϕi(αl) · ϕj(αl) = δi,j ·

mi

n
,

where by Remark (3.21) we let i ∈ I such that ϕi = ϕi.

As was promised at the beginning of Section 4, we prove the relationship between
the Hadamard product on EK and the tensor product structure on Irr1

K(G). An
application of Proposition (4.8) is given in Section (11.5).
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(4.8) Proposition. See also [73].
Let EK be commutative and i, j, k ∈ I, such that qijk 6= 0. Then the character
χϕk ∈ Irr1

K(G) is a constituent of the product χϕi · χϕj ∈ ZIrrK(G).

Proof. For i ∈ I let Si := Sχϕi denote the simple KG-module affording the
character χi. Hence we have KΩ ∼=

⊕
i∈I Si. Let ιi:Si → KΩ be the KG-

injections and πi:KΩ→ Si be the KG-projections corresponding to the above
direct sum decomposition. Hence we have πi · ιi = εi ∈ EK , for i ∈ I. By
assumption we have εk · (εi ? εj) = qijk · εk 6= 0. By Proposition (4.4) we have

εk · (εi ? εj) = πk · ιk · ι · ((πi · ιi)⊗ (πj · ιj)) · π
= πk · ιk · ι · (πi ⊗ πj) · (ιi ⊗ ιj) · π,

where the natural tensor product maps πi ⊗ πj :KΩ ⊗K KΩ → Si ⊗K Sj and
ιi ⊗ ιj :Si ⊗K Sj → KΩ ⊗K KΩ are KG-homomorphisms with respect to the
diagonal KG-action. It follows that 0 6= ιk · ι · (πi ⊗ πj):Sk → (Si ⊗K Sj). As
Sk is a simple KG-module the assertion follows. ]

(4.9) Remark. Using Remark (4.7), as χϕ1 ∈ Irr1
K(G) is the trivial KG-

character, Proposition (4.8) for i, j, k ∈ I implies the trivial statements that for
j = k the character χϕk is a constituent of χϕ1 · χϕj = χϕj , and that for i = j
the trivial character χϕ1 is a constituent of χϕi · χϕj = χϕi · χϕi .
If at least one of i, j, k equals 1, by Remark (4.7), the converse of Proposition
(4.8) holds as well. But this is not true in general, as the following example
shows.

(4.10) Example. Let G := M11 and H := A6 < A6.23 < G. The character
table of the endomorphism ring EK , see Definition (3.7), is contained in the
database, see Section (11.1), and is given as follows, where we also indicate the
Fitting correspondence IrrK(EK)→ Irr1

K(G), see Proposition (2.7).

ϕ χϕ 1 2 3
1 1a 1 1 20
2 10a 1 1 −2
3 11a 1 −1 .

Let i = j = k = 3. Using GAP, see Section (8.1) and Table 6, by Proposition
(4.6) we get q333 = 0. But using the ordinary character table of G, also available
in GAP, we find that χϕ3 indeed is a constituent of the tensor product χϕ3 ·χϕ3 .

(4.11) Remark. We conclude Section 4 by discussing briefly a rationality
property of the Krein parameters.

Let EK be commutative and i, j, k ∈ I. It follows from Propositions (4.6) and
(3.1) that we have qi,j,k ∈ R, and by [2, Thm.II.3.8] we even have the Krein
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condition qi,j,k ≥ 0. According to [2, p.70] it is an open question, when the
Krein parameter qi,j,k ∈ R is rational. In [2, p.71] an example is given, where
the qi,j,k ∈ R are at most quadratic irrationalities.

The database, see Section (11.1), contains quite a few examples where some of
the Krein parameters are irrational, many of these are quadratic irrationalities.
But there also occur irrationalities of higher degree. Using GAP, see Section
(8.1) and Table 6, by Proposition (4.6) we find the following examples.
a) Let G := M12.2 and H := M8.(A4 × 2) < M8.(S4 × 2) < G. The character
table of the endomorphism ring EK has entries from both the quadratic number
fields Q(

√
3) and Q(

√
5), and there are Krein parameters being irrationalities

of degree 4.
b) Let G := J1 and H := 23.7.3 < G. The character table of the endomorphism
ring EK has entries both from the quadratic number field Q(

√
5) and from the

cubic number field contained in the 19-th cyclotomic field, and there are both
Krein parameters being irrationalities of degree 3 and of degree 6, respectively.

5 Coverings

In Section 5 we examine the situation where we have given transitive G-sets Ω
and Ω′ such that there exists an epimorphism Ω′ → Ω of G-sets. In particular,
we discuss how the character tables of the endomorphism ring corresponding to
Ω and of the endomorphism ring corresponding to Ω′ are related, provided a
disjointness condition on the KG-constituents of λG and of (λ′H − λ)G holds,
see Section (5.3).

(5.1) We begin by fixing some more notation, which will be in force for the
remaining parts of the present work. Let H ′ ≤ H ≤ G be another subgroup.

As in Section (1.1) let I ′ := {1, . . . , r′}, where r′ ∈ N is the number of H ′-H ′-
double cosets in G, and let {g′i ∈ G; i ∈ I ′} be a set of representatives of the
H ′-H ′-double cosets inG, where g′1 := 1G. For i ∈ I ′ letH ′i := (H ′)g

′
i∩H ′ ≤ H ′,

and {h′ij ∈ H ′; j ∈ {1, . . . , k′i}} be a set of representatives of the right cosets of
H ′i in H ′, where k′i = [H ′:H ′i] and h′i1 := 1H′ . Let Ω′ := H ′|G be the set of
right cosets of H ′ in G, and n′ := [G:H ′]. Let ω′ij := H ′g′ih

′
ij , for i ∈ I ′ and j ∈

{1, . . . , k′i}, and for short ω′i := ω′i1, as well as Ω′i := {ω′ij ∈ Ω′; j ∈ {1, . . . , k′i}}.

(5.2) Let Θ and λ be as in Section (1.3), and let λ′ := λH′ . We describe the
relationship between λG and λ′G.

Let Iλ′ := {i ∈ I ′;λ′H′i = λ
′g′i
H′i
}. As in Section (1.5) and Section (1.7) we have

HomΘG(λ′G, λG)
(1)∼= HomΘH′(λ′, (λG)H′)
(2)∼=

⊕
g∈H|G|H′ HomΘH′(λ′, (λ

g
Hg∩H′)

H′)
(3)∼=

⊕
g∈H|G|H′ HomΘ(Hg∩H′)(λ′Hg∩H′ , λ

g
Hg∩H′),
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where the sums run over a set of representatives of the H-H ′-double cosets
in G. Again we have HomΘ(Hg∩H′)(λ′Hg∩H′ , λ

g
Hg∩H′) 6= {0} if and only if

λ′Hg∩H′ = λgHg∩H′ , in which case we have HomΘ(Hg∩H′)(λ′Hg∩H′ , λ
g
Hg∩H′) ∼= Θ.

Furthermore, the Θ-isomorphism (1) still is given by α 7→ α′ := α|Θλ′ .

(5.3) We fix an appropriate setting to be able to describe the relationship
between the character tables of EλK and Eλ

′

K . In particular the disjointness
condition formulated below will be in force throughout Section 5. We encounter
several examples for this situation in Part III. After some preparation, the
precise relationship between the character values on the Schur basis elements of
EλK and Eλ

′

K , respectively, is given in Corollary (5.13).

Let K, R and F be as in Section (2.10), where in particular the characteristic
of F is coprime to |H|. Let K be a splitting field for all simple KG-modules
affording a character in Irrλ

′

K (G). We have λ′G = λG + (λ′H − λ)G, thus K is
a splitting field for all simple KG-modules affording a character in IrrλK(G) as
well. We furthermore assume that λG and (λ′H −λ)G have no KG-constituents
in common. In particular this holds if Eλ

′

K is commutative, since then dϕ = 1
for all ϕ ∈ Irr(Eλ

′

K ).

We remark that for the case λ = 1, and hence also λ′ = 1, the condition
of 1GH and (1HH′ − 1H)G having no KG-constituents in common is related to
the notion of generalised normal subgroups introduced in [75, Ch.I.5], see [75,
Thm.III.19.15].

Hence IrrλK(G) ⊆ Irrλ
′

K (G) is the set of constituents of λG and Irrλ
′

K (G)\ IrrλK(G)
is the set of constituents of (λ′H − λ)G. Thus as KG-modules we have

Kλ′Ω′ ∼= KλΩ⊕
∑

χ∈Irrλ
′
K (G)\IrrλK(G)

Kλ′Ω′εχ,

where εχ ∈ KG is the centrally primitive idempotent belonging to χ ∈ IrrK(G).
Let αλ′λ ∈ Eλ

′

K denote the corresponding KG-projection onto KλΩ. Hence we
have EλK ∼= αλ′λE

λ′

Kαλ′λ and Eλ
′

K
∼= αλ′λE

λ′

Kαλ′λ ⊕ (1 − αλ′λ)Eλ
′

K (1 − αλ′λ) as
K-algebras. Thus in this sense we can consider EλK is a subset of Eλ

′

K , and
IrrK(EλK) as a subset of IrrK(Eλ

′

K ).

(5.4) Proposition. Let λ and λ′ be as in Section (5.3), where in particular
λG and (λ′H − λ)G have no KG-constituents in common.
a) HomRG(λ′G, λG) has an R-basis Aλ′λ := {αλ′λi ; i ∈ Iλ}, defined using the
R-isomorphism (1) in Section (5.2) by

(αλ
′λ
i )′ = (αλi )′ ∈ HomRH(λ, (λG)H) ≤ HomRH′(λ′, (λG)H′),

where Aλ = {αλi ; i ∈ Iλ} is the Schur basis of EλR.
b) Using the natural embedding HomRG(λ′G, λG) → HomKG(λ′G, λG) of R-
modules, the set Aλ′λ also is a K-basis of HomKG(λ′G, λG).
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c) HomFG(λ̃′G, λ̃G) has an F -basis Aλ̃′λ̃ := {αλ̃′λ̃i ; i ∈ Iλ}, defined by

(αλ̃
′λ̃
i )′ = (αλ̃i )′ ∈ HomFH(λ̃, (λ̃G)H) ≤ HomFH′(λ̃′, (λ̃G)H′),

where Aλ̃ = {αλ̃i ; i ∈ Iλ} is the Schur basis of Eλ̃F .

Proof. By Section (2.10), we have Iλ̃ = Iλ. Furthermore, we have

dimK HomKG(λ′G, λG) = rkRHomRG(λ′G, λG) = dimF HomFG(λ̃′G, λ̃G)

and dimK E
λ
K = rkREλR = dimF E

λ̃
F . As λG and (λ′H − λ)G have no KG-

constituents in common, we have HomKG(λ′G, λG) ∼= HomKG(λG, λG) = EλK .
]

(5.5) Corollary. For i ∈ Iλ we have HgiH = HgiH
′ ⊆ G, and thus H ′

acts transitively on Ωi. In particular, we have [H ′: (H ′ ∩Hgi)] = ki = [H:Hi].

(5.6) Definition.
a) For i′ ∈ I ′ and j′ ∈ {1, . . . , k′i} let i ∈ I and j ∈ {1, . . . , ki} as well as
h′′i′j′ ∈ H be defined by g′i′h

′
i′j′ = h′′i′j′ · gihij ∈ G. For j′ = 1 let for short

h′′i′ ∈ H be defined by g′i′ = h′′i′ · gihij ∈ G, and let

ζ ′i′ := λ(h′′i′) · λ(hij) ∈ λ(H).

Furthermore, as i ∈ I depends on i′ ∈ I ′ but not on j′ ∈ {1, . . . , k′i}, this defines
a surjective map αH′,H : I ′ → I.
b) The map ofG-sets Ω′ → Ω:ω′i′j′ 7→ ωij , for i′ ∈ I ′ and j′ ∈ {1, . . . , ki′}, where
i = αH′,H(i′) ∈ I and j ∈ {1, . . . , ki}, by Corollary (5.5) induces surjective maps
Ω′i′ → Ωi, for i ∈ Iλ and i′ ∈ α−1

H′,H(i). The suborbit Ωi is said to split into
the suborbits {Ω′i′ ; i′ ∈ α−1

H′,H(i)}. If |α−1
H′,H(i)| = 1, then Ωi is said to be a

non-split suborbit.

(5.7) Remark.
a) For i ∈ I we have

∑
i′∈α−1

H′,H(i) k
′
i′ = [H:H ′] · ki.

b) By Proposition (5.4), for 1 ∈ Iλ we obtain αλ
′λ

1 ∈ HomRG(λ′G, λG) as

αλ
′λ

1 :Rλ′Ω′ → RλΩ:ω′i′j′ 7→ λ(h′′i′j′) · ωij ,

for i′ ∈ I ′ and j′ ∈ {1, . . . , k′i}, where i = αH′,H(i′) ∈ I and j ∈ {1, . . . , ki},
and h′′i′j′ ∈ H is as in Definition (5.6). Furthermore, an analogous statement

holds for αλ̃′λ̃1 ∈ HomFG(λ̃′G, λ̃G).
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(5.8) Lemma.
a) For i ∈ I we have

HgiH =
∐

x∈H′|H|(H∩Hg
−1
i )

 ∐
y∈(H∩H′xgi )|H|H′

H ′ · x · gi · y ·H ′
 ,

where x and y run through sets of representatives of the double cosets indicated.
b) For i ∈ Iλ we have

HgiH =
∐

y∈(H∩H′gi )|Hi|(H′∩Hgi )

H ′ · gi · y ·H ′,

where y runs through a set of representatives of the double cosets indicated.

Proof. The group H◦ × H acts transitively on HgiH by (h, h̃):x 7→ hxh̃,
for h, h̃ ∈ H and x ∈ HgiH, where H◦ denotes the opposed group. Hence
StabH◦×H(gi) = {(hg

−1
i , h−1) ∈ H × H;h ∈ Hi}. As the H ′-H ′-double cosets

contained in HgiH are exactly the H ′◦×H ′-orbits under this action, we have to
find representatives (x, y) ∈ H×H of the StabH◦×H(gi)-(H ′◦×H ′)-double cosets
in H◦ ×H, hence representatives of the orbits of StabH◦×H(gi)◦ × (H ′◦ ×H ′)
on H◦ × H with respect to the action ((a, b), (c, d)): (h, h̃) 7→ (cha, bh̃d), for
(a, b) ∈ StabH◦×H(gi), as well as c, d ∈ H ′ and h, h̃ ∈ H.

Without loss of generality we let the first component x ∈ H run through a fixed
set of representatives of the H ′-(H ∩Hg−1

i )-double cosets in H. For the action
of (H ∩Hg−1

i )×H ′◦ on H we get

Stab
(H∩Hg

−1
i )×H′◦

(x) = {(hx, h−1) ∈ (H∩Hg−1
i )×H ′;h ∈ (H∩Hg−1

i )x
−1
∩H ′}.

Hence, for fixed x ∈ H, the second component y ∈ H is to be chosen from a set
of representatives of the orbits of

{((a, b), (c, d)) ∈ StabH◦×H(gi)◦ × (H ′◦ ×H ′); (a, c) ∈ Stab
(H∩Hg

−1
i )×H′◦

(x)}

on {x} ×H. This proves the assertion in a).

Since we have i∗ ∈ Iλ, it follows from by Corollary (5.5) that we have

[H:H ′] = [(H ∩Hg−1
i ): (H ′ ∩Hg−1

i )].

Hence we have H ′ ·(H∩Hg−1
i ) = H. Furthermore, because of [Hi: (H ′∩Hgi)] =

[H:H ′], we have a bijection

(H ∩H ′gi)|Hi|(H ′ ∩Hgi) → (H ∩H ′gi)|H|H ′:
(H ∩H ′gi) · y · (H ′ ∩Hgi) 7→ (H ∩H ′gi) · y ·H ′.

Thus the assertion in b) follows from a). ]
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(5.9) Remark. Let i ∈ Iλ. Hence there is a bijection between the set
{Ω′i′ ; i′ ∈ α

−1
H′,H(i)} and the set of of representatives y of the double cosets indi-

cated in Lemma (5.8). Using this bijection we may write the index parameters
k′i′ , for i′ ∈ α−1

H′,H(i), also as k′i,y.

Because of H ′ ∩H ′giy ≤ H ′ ∩Hgi ≤ H ′ we have

k′i,y
ki

= [(H ′ ∩Hgi): (H ′ ∩H ′giy)] ∈ N.

Because of H ′ ∩ H ′giy = (H ′ ∩ Hgi) ∩ (H ∩ H ′gi)y, the quotients k′i,y
ki

are the
lengths of the orbits of the subgroup H ′ ∩Hgi ≤ Hi with respect to the action
of Hi on the set of right cosets (H ∩H ′gi)|Hi. As H ∩H ′gi and H ′∩Hgi are not

necessarily conjugate in Hi, we might in particular have k′i,y
ki

> 1 for all double
coset representatives y.

If y runs through the set of representatives of the double cosets indicated in
Lemma (5.8), then y−1 · g−1

i runs through a set of representatives of the H ′-
H ′-double cosets of G contained in Hg−1

i H = Hgi∗H. As H ′ ∩ H ′y−1g−1
i ≤

H ′ ∩Hg−1
i , we conclude that {k′j′ ; j′ ∈ α

−1
H′,H(i∗)} = {k′i′ ; i′ ∈ α

−1
H′,H(i)}, with

multiplicities. As ki = ki∗ , the same holds for { k
′
j′

ki∗
; j′ ∈ α−1

H′,H(i∗)}.

The following Proposition gives a description of the cardinality |α−1
H′,H(i)∩Iλ′ |,

for i ∈ I, in terms of irreducible characters of H.

(5.10) Proposition. Let Eλ
′

K be commutative. Then for i ∈ I we have

|α−1
H′,H(i) ∩ Iλ′ | =

∑
χ∈Irrλ

′
K (H)

〈χHi , χ
gi
Hi
〉Hi ,

where 〈·, ·〉Hi denotes the hermitian product on IrrK(Hi).

Proof. Let for short 〈·, ·〉 denote the hermitian product on ordinary characters,
where the group in question always will be clear from the context. As g−1

i =
ηigi∗hi∗i− , where ηi, hi∗i− ∈ H, see Definition (1.12), for χ ∈ Irrλ

′

K (H) we have

〈χHi , χ
gi
Hi
〉 = 〈χg

−1
i

H∩Hg
−1
i

, χ
H∩Hg

−1
i
〉 = 〈χgi∗Hi∗ , χHi∗ 〉.

Hence it is enough to show that the right hand side of the asserted equa-
tion equals |α−1

H′,H(i∗) ∩ Iλ′ |. As dϕ = 1 for all ϕ ∈ IrrK(Eλ
′

K ), we have

0 = 〈χG, χ̃G〉 =
∑
i∈I〈χHi , χ̃

gi
Hi
〉, for χ 6= χ̃ ∈ Irrλ

′

K (H), hence 〈χHi , χ̃
gi
Hi
〉 = 0
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for all i ∈ I. As all χ ∈ Irrλ
′

K (H) occur in λ′H with multiplicity 1, we have∑
χ∈Irrλ

′
K (H)

〈χHi , χ
gi
Hi
〉

= 〈(λ′H)Hi , (λ
′H)giHi〉

=
∑
t∈H′|H|Hi〈(λ

′t
H′t∩Hi)

Hi , (λ′H)giHi〉

=
∑
t∈H′|H|Hi〈λ

′t
H′t∩Hi , ((λ

′gi)H
gi )H′t∩Hi〉

=
∑
t∈H′|H|Hi

∑
s∈H′gi |Hgi |(H′t∩Hi)〈λ

′t
H′t∩Hi , (λ

′gis
H′gis∩H′t∩Hi)

H′t∩Hi〉

=
∑
t∈H′|H|Hi

∑
s∈H′gi |Hgi |(H′t∩Hi)〈λ

′t
H′gis∩H′t∩Hi , λ

′gis
H′gis∩H′t∩Hi〉

(1)
=

∑
t∈H′|H|Hi

∑
s∈(H′tg

−1
i ∩H)|H|H′

〈λ′tg
−1
i s

H′∩H′tg
−1
i

s
, λ′
H′∩H′tg

−1
i

s
〉,

where the sums run over sets of representatives of the double cosets indicated,
and where equation (1) because of t ∈ H and sg

−1
i ∈ H follows from

〈λ′tH′gis∩H′t∩Hi , λ
′gis
H′gis∩H′t∩Hi〉 = 〈λ′tH′gis∩H′t∩Hgi , (λ

′gisg−1
i

H′gisg
−1
i ∩H′tg

−1
i ∩H

)gi〉

= 〈λ′tg
−1
i

H′gisg
−1
i ∩H′tg

−1
i

, λ
′gisg−1

i

H′gisg
−1
i ∩H′tg

−1
i

〉

= 〈λ′tg
−1
i ·gis

−1g−1
i

H′∩H′ts
−1g−1

i

, λ′
H′∩H′ts

−1g−1
i

〉.

If s and t run through sets of representatives of the double cosets indicated on
the right hand side of equation (1), then by Lemma (5.8) the elements t · g−1

i s
run through a set of representatives of the H ′-H ′-double cosets in G contained
in Hg−1

i H. ]

(5.11) Corollary. For s, t ∈ H as on the right hand side of equation (1) in
the proof of Proposition (5.10), we have H ′s

−1gi ∩H ′t ≤ Hi. Hence because of
λH′ = λ′ we conclude

1 ≥ 〈λ′tg
−1
i s

H′∩H′tg
−1
i

s
, λ′
H′∩H′tg

−1
i

s
〉 ≥ 〈λHi , λ

gi
Hi
〉 ≥ 0.

Thus for i ∈ Iλ we obtain α−1
H′,H(i) ⊆ Iλ′ .

(5.12) Proposition. For i ∈ Iλ and i′ ∈ α−1
H′,H(i) ⊆ Iλ′ , see Corollary

(5.11), using the identification from Section (5.3), we have

αλ′λ · αλ
′

i′ · αλ′λ =
k′i′ · ζ ′i′
ki

· αλi ,

where ζ ′i′ is as in Definition (5.6), and

αλi =
1

[H:H ′]
·

∑
i′∈α−1

H′,H(i)

1
ζ ′i′
· αλ

′

i′ .
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Proof. By Section (5.3) we have EλK
∼= αλ′λE

λ′

Kαλ′λ ⊆ Eλ
′

K . Because of
((αλ′λ)σλ′ )τλ′ = ελ and ελελ′ = ελ = ελ′ελ, the K-algebra isomorphism in
Proposition (2.2) translates the non-unitary embedding αλ′λEλ

′

Kαλ′λ ⊆ Eλ
′

K of
K-algebras into the embedding ελKGελ ⊆ ελ′KGελ′ . Hence

ελ · (ελ′g′i′ελ′) · ελ = ελ · h′′i′gihij · ελ = ζ ′i′ · (ελgiελ).

Let H ⊆ H ′ ×H ′ be chosen such that H ′g′i′H
′ = {h′g′i′h′′ ∈ G; (h′, h′′) ∈ H}.

Hence we have

k′i′ · ελ′g′i′ελ′ = 1
|H′| ·

∑
(h′,h′′)∈H λ

′((h′h′′)−1) · h′g′i′h′′

= [H:H′]
|H| · ζ

′
i′ ·
∑

(h′,h′′)∈H λ((h′h′′i′hijh
′′)−1) · h′h′′i′gihijh′′.

Rewriting ki · ελgiελ analogously, the assertion follows. ]

(5.13) Corollary. Let i ∈ Iλ.
a) For ϕ ∈ IrrK(EλK) ⊆ IrrK(Eλ

′

K ) and i′ ∈ α−1
H′,H(i) we have

ϕ(αλ
′

i′ ) =
k′i′ · ζ ′i′
ki

· ϕ(αλi ).

b) For ϕ ∈ IrrK(Eλ
′

K ) we have

∑
i′∈α−1

H′,H(i)

1
ζ ′i′
· ϕ(αλ

′

i′ ) =
{

[H:H ′] · ϕ(αλi ), if ϕ ∈ IrrK(EλK) ⊆ IrrK(Eλ
′

K ),
0, if ϕ ∈ IrrK(Eλ

′

K ) \ IrrK(EλK).

In particular, if Ωi is a non-split suborbit and thus α−1
H′,H(i) = {i′}, then for

ϕ ∈ IrrK(Eλ
′

K ) \ IrrK(EλK) we have ϕ(αλ
′

i′ ) = 0.

(5.14) Example.
a) Let G := J4 and H := 211:M24 as well as H ′ := 211:M23, where λ = 1 and
λ′ = 1. Hence we have r = 7 and r′ = 11 as well as Iλ = I and Iλ′ = I ′. The
character tables of the endomorphism rings EK and E1H′

K are given in Sections
(16.1) and (16.2), see Table 21 and Table 22, respectively. The splitting of the
suborbits Ωi is given as follows, where i′ ∈ αH′,H(i)−1 and i ∈ I.

i
k′
i′
ki

1 1, 23
2 8, 16
3 24
4 24
5 4, 20
6 24
7 1, 23
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b) Let G := HN.2 and H := S12 as well as H ′ := S11, where λ = 1 and λ′ = 1.
Hence we have r = 10 and r′ = 17. The character table of the endomorphism
ring E

1H′
K is given in Section (13.1), see Table 13. The splitting of the Ωi

is given as follows, where i′ ∈ αH′,H(i)−1 and i ∈ I. Note that, even since
〈1HH′ , 1HH′〉H = 2, the suborbit Ω5 of Ω splits into three suborbits of Ω′.

i
k′
i′
ki

1 1, 11
2 6, 6
3 12
4 2, 10
5 1, 5, 6
6 12
7 12
8 4, 8
9 12

10 1, 11

We conclude Section 5 by discussing three particular cases of the above general
situation, which are of importance later on.

(5.15) Remark. Let [H:H ′] = 2 and λ′ = 1. Hence we have Irr1
K(H) =

{1, 1−}, where 1− ∈ IrrK(H) denotes the inflation of the non-trivial irreducible
character of H/H ′ to H. Hence both elements of Irr1

K(H) can be chosen as λ as
above. By Remark (5.7) and Remark (5.9), for i ∈ I, we distinguish two cases.

a) We have α−1
H′,H(i) = {i′}, thus k′i′ = 2 · ki. Hence we have HgiH = H ′giH

′

and [(H ′ ∩Hgi): (H ′ ∩H ′gi)] = 2. By Proposition (5.10) we have 1−Hi 6= (1−)giHi ,
hence i 6∈ I1− . Thus, by Corollary (5.13), still using the identification from
Section (5.3), for ϕ ∈ IrrK(E1H′

K ) we have

ϕ(α1H′
i′ ) =

{
2 · ϕ(α1H

i ), if ϕ ∈ IrrK(E1H
K ),

0, if ϕ ∈ IrrK(E1−H
K ).

b) We have α−1
H′,H(i) = {i′, i′′}, thus k′i′ = k′i′′ = ki. Hence we have HgiH =

H ′giH
′ .
∪ H ′giyH

′, where {gi, giy} is a set of representatives of the double
cosets indicated in Lemma (5.8). We have H ′ ∩H ′gi = H ′ ∩H ′giy = H ′ ∩Hgi .
By Proposition (5.10) we have 1−Hi = (1−)giHi , hence i ∈ I1− . Without loss of
generality let g′i′ := gi and g′i′′ := giy. As y ∈ Hi \ (H ∩ H ′gi), by Definition
(5.6), applied to λ = 1−, we obtain ζ ′i′ = 1 and ζ ′i′′ = λ(y) = −1. Thus, by
Corollary (5.13), for ϕ ∈ IrrK(E1H′

K ) we have

ϕ(α1H′
i′ ) =

{
ϕ(α1H′

i′′ ) = ϕ(α1H
i ), if ϕ ∈ IrrK(E1H

K ),

−ϕ(α1H′
i′′ ) = ϕ(α1−H

i ), if ϕ ∈ IrrK(E1−H
K ).

An example for this situation is given in Section (17.1).
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(5.16) Remark. Let G′ ≤ G such that [G:G′] = 2. Let H 6≤ G′ and
H ′ := G′ ∩ H, hence we have [H:H ′] = 2, and we may identify H ′|G′ with
Ω := H|G via H ′g 7→ Hg, for g ∈ G′. Hence without loss of generality we may
in particular choose the double coset representatives gi ∈ G′ < G, for i ∈ I.

Let λ′ = 1. As in Remark (5.15) we have Irr1
K(H) = {1, 1−}, where now

1− ∈ IrrK(H) is extendible to 1− ∈ IrrK(G), where 1− ∈ IrrK(G) is the inflation
of the non-trivial irreducible character of G/G′ to G. Hence the condition that
1GH and (1−)GH have no KG-constituents in common is equivalent to χ 6= χ ·1− ∈
IrrK(G) and χ · 1− 6∈ Irr1

K(G), for χ ∈ Irr1
K(G).

a) Let E1G
′

H′
K := EndKG′(KΩ) and as usual EK = E

1GH
K := EndKG(KΩ). From

Clifford theory and the condition on the KG-constituents of 1GH we conclude

that dimK(E1G
′

H′
K ) = dimK(EK) holds. Hence the H ′-orbits and the H-orbits on

Ω coincide, and thus for the corresponding Schur K-bases {α1G
′

H′
i ; i ∈ I} and A =

{αi; i ∈ I} of E1G
′

H′
K and EK , respectively, we have α1G

′
H′
i = αi ∈ EndK(KΩ), for

i ∈ I. Hence E1G
′

H′
K and EK are isomorphic K-algebras, and the sets IrrK(E1G

′
H′
K )

and IrrK(EK) can be identified via ϕ′ 7→ ϕ: (αi 7→ ϕ′(α1G
′

H′
i )), for i ∈ I. Thus

E
1G
′

H′
K and EK have the same character table.

Furthermore, by Proposition (3.2), we have E1G
′

H′ = E , where E1G
′

H′ and E are

the centrally primitive idempotents of E1G
′

H′
K and EK , respectively. Thus for the

Fitting correspondents of a pair of characters IrrK(E1G
′

H′
K ) 3 ϕ′ 7→ ϕ ∈ IrrK(EK)

being identified as above we have χϕ′ = (χϕ)G′ ∈ Irr1H′
K (G′).

b) Assume that, for i ∈ I, we have |α−1
H′,H(i)| = 1. Then, by Remark (5.15), we

have HgiH = H ′giH
′ ⊆ G′, a contradiction. Hence we have α−1

H′,H(i) = {i′, i′′},
and k′i′ = k′i′′ = ki. Let z ∈ H \ H ′. Since H ′gizH ′ ⊆ G \ G′ and H ′giH

′ .
∪

H ′gizH
′ ⊆ HgiH, we have equality here. Hence without loss of generality let

g′i′ := gi and g′i′′ := giz.

Let ε := ε1H′ ∈ KH
′ ⊆ KG′ ⊆ KG. Then for E1H′

K = E
1G
H′
K we have (E1H′

K )◦ ∼=
εKGε as K-algebras. The latter has {εgiε; i ∈ I}

.
∪ {εgizε; i ∈ I} as a K-basis,

see Proposition (2.2). For i, j ∈ I we have εgiε · εgjε ∈ KG′ and εgizε · εgjzε ∈
KG′ as well as εgiε · εgjzε ∈ K(G \G′) and εgizε · εgjε ∈ K(G \G′). Hence we
have

εKGε = εKG′ε⊕ εK(G \G′)ε

as K-vector spaces and εKGε is a Z/2Z-graded K-algebra, also called a K-

superalgebra. Furthermore, we have εKG′ε ∼= (E1G
′

H′
K )◦ as K-algebras.

Let (ki · εgiε) · (kj · εgjε) =
∑
l∈I p

′
jil · (kl · εglε), where the p′ijl ∈ K, for i, j, l ∈ I,

denote the structure constants of E1G
′

H′
K , see Definition (1.18). As z2 ∈ H ′, we
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obtain the structure constants matrices of E1H′
K as

P
1H′
j′ =

[
P ′j .

. P ′j

]
∈ K2r×2r and P

1H′
j′′ =

[
. P ′j
P ′j .

]
∈ K2r×2r,

where P ′j ∈ Kr×r is the corresponding structure constants matrix of E1G
′

H′
K .

Using the above form of the structure constants matrices of E1H′
K , we conclude

that E1H′
K also is commutative, and for a pair of characters IrrK(E1G

′
H′
K ) 3 ϕ′ 7→

ϕ ∈ IrrK(EK) being identified as above we obtain ϕ+, ϕ− ∈ IrrK(E1H′
K ) such

that, for i ∈ I,

ϕ+(αi′) = ϕ+(αi′′) = ϕ′(α1G
′

H′
i ) = ϕ(αi),

ϕ−(αi′) = −ϕ−(αi′′) = ϕ′(α1G
′

H′
i ) = ϕ(αi),

where {αi′ ; i ∈ I}
.
∪ {αi′′ ; i ∈ I} is the Schur K-basis of E1H′

K .

By Remark (5.15), the set {ϕ+;ϕ ∈ IrrK(EK)} is in Fitting correspondence to

Irr1
K(G), while {ϕ−;ϕ ∈ IrrK(EK)} corresponds to Irr1−H

K (G) = 1− · Irr1
K(G). As

H ′gi ⊆ G′ and H ′giz ⊆ G \G′, for i ∈ I, we conclude from Proposition (3.20)
that, for χ ∈ Irr1

K(G), we have χϕ+ · 1− = χϕ− .

(5.17) Example. Let G := J2.2 and H := U3(3).2, as well as G′ := J2 and
H ′ := U3(3). The character table of the endomorphism ring EK , see Definition

(3.7), which equals the character table of E1G
′

H′
K , and the character table of E1H′

K

are both contained in the database, see Section (11.1). They are given as follows,
where for all three cases the Fitting correspondence, see Proposition (2.7), is
indicated as well.

ϕ χϕ′ χϕ 1 2 3
1 1a 1a+ 1 36 63
2 36a 36a+ 1 6 −7
3 63a 63a+ 1 −4 3

ϕ χϕ 1′ 1′′ 2′ 2′′ 3′ 3′′

1 1a+ 1 1 36 36 63 63
2 1a− 1 −1 36 −36 63 −63
3 36a+ 1 1 6 6 −7 −7
4 36a− 1 −1 6 −6 −7 7
5 63a+ 1 1 −4 −4 3 3
6 63a− 1 −1 −4 4 3 −3
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(5.18) Remark. Let H ′ EH such that [H:H ′] = 3, and λ′ = 1. Hence we
have Irr1

K(H) = {1, λ3, λ
−1
3 }, where λ3,∈ IrrK(H) denotes the inflation of one

of the non-trivial irreducible characters of H/H ′ to H. Hence all the elements
of Irr1

K(H) can be chosen as λ as above, and we have Iλ3 = Iλ−1
3

. For i ∈ I we
have 〈(λ3)Hi , (λ3)giHi〉Hi = 1 if and only if 〈(λ−1

3 )Hi , (λ
−1
3 )giHi〉Hi = 1. Hence by

Proposition (5.10) we distinguish two cases.

a) We have α−1
H′,H(i) = {i′}, thus k′i′ = 3 · ki. Hence we have i 6∈ Iλ3 . Thus,

by Corollary (5.13), still using the identification from Section (5.3), for ϕ ∈
IrrK(E1H′

K ) we have

ϕ(α1H′
i′ ) =

{
3 · ϕ(α1H

i ), if ϕ ∈ IrrK(E1H
K ),

0, if ϕ 6∈ IrrK(E1H
K ).

b) We have α−1
H′,H(i) = {i′, i′′, i′′′}, thus k′i′ = k′i′′ = k′i′′′ = ki. Hence we

have i ∈ Iλ3 , and HgiH = H ′giH
′ .∪ H ′giyH ′

.
∪ H ′giy′H ′, where {gi, giy, giy′}

is a set of representatives of the double cosets indicated in Lemma (5.8). As
H ′ ∩ Hgi E Hi and H ∩ H ′gi E Hi, we may choose y′ = y−1. Without loss
of generality let g′i′ := gi as well as g′i′′ := giy and g′i′′′ := giy

−1. As y ∈
Hi \ (H ∩H ′gi), by Definition (5.6), applied to λ3, we obtain ζ ′i′ = 1, as well as
ζ ′i′′ = λ3(y) = ζ3 and ζ ′i′′′ = λ3(y−1) = 1

ζ3
, where ζ3 ∈ K is a primitive third

root of unity. Thus, by Corollary (5.13), for ϕ ∈ IrrK(E1H′
K ) we have

ϕ(α1H′
i′ ) =


ϕ(α1H′

i′′ ) = ϕ(α1H′
i′′′ ) = ϕ(α1H

i ), if ϕ ∈ IrrK(E1H
K ),

1
ζ3
· ϕ(α1H′

i′′ ) = ζ3 · ϕ(α1H′
i′′′ ) = ϕ(αλ3

i ), if ϕ ∈ IrrK(Eλ3
K ),

ζ3 · ϕ(α1H′
i′′ ) = 1

ζ3
· ϕ(α1H′

i′′′ ) = ϕ(αλ
−1
3
i ), if ϕ ∈ IrrK(Eλ

−1
3

K ).

Let :K → K denote the involutory field automorphism as in Section 3. As
the set Irr1H′

K (G) is invariant under , by Remark (3.21) we conclude that ϕ ∈
IrrK(Eλ

−1
3

K ) if and only if ϕ ∈ IrrK(Eλ3
K ). Hence to determine the character

table of E1H′
K it is sufficient to know, for which i ∈ I we have |α−1

H′,H(i)| > 1,
and to determine the character tables of E1H

K and Eλ3
K .

An example for this situation is given in Section (12.2).

6 Condensation functors

In Section 6 we occupy a much more general point of view, which encompasses
the cases of the endomorphism rings EλK as special cases. It turns out that
this is the right setting to formulate and understand some of the most powerful
techniques of computational representation theory. We begin in a fairly general
setting, thereby correcting an impreciseness in [57].
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Let Θ be a principal ideal domain. Let A be a Θ-algebra, which is a finitely
generated Θ-free Θ-module. Let mod-A be the abelian category of finitely
generated right A-modules. For the necessary notions from category theory see
[1, Ch.II.1] and [36, Ch.I].

(6.1) Definition.
a) Let V be a finitely generated Θ-free Θ-module, and let U ≤ V be a Θ-
submodule. Then the Θ-pure Θ-submodule

UV :=
⋂
{X;X ≤ V is a Θ-pure Θ-submodule, U ≤ X} ≤ V

is called the pure closure of U in V . For the notion of Θ-purity see [39, Ch.I.17].
b) Let modΘ-A be the full additive subcategory of mod-A consisting of its
Θ-free objects. In particular, if Θ is a field we have modΘ-A = mod-A.

(6.2) Proposition. Let V,W ∈modΘ-A and α ∈ HomA(V,W ).
a) Then a kernel kerα and a cokernel cokα exist in modΘ-A.
b) The natural map, induced by α,

coimα := cok (kerα)→ ker(cokα) =: imα

from the coimage of α to the image of α is an isomorphism if and only if V α ≤W
is a Θ-pure submodule. In particular, if Θ is not a field then modR-A fails to
be an exact category.

Proof. The set theoretic kernel kerα ∈mod-A of α again is a Θ-free module,
and hence, together with its natural embedding into V , it is a categorical kernel
of α in modΘ-A.

As (V α)W ≤ W is a Θ-pure submodule, we have W/(V α)W ∈ modΘ-A. Let
β:W → W/(V α)W denote the natural epimorphism. Let X ∈ modΘ-A and
γ ∈ HomA(W,X), such that αγ = 0. Then for w ∈ (V α)W there is θ ∈ Θ such
that θw ∈ V α, hence we have θw · γ = 0, and since X is a Θ-free module we
conclude wγ = 0. Hence γ factors through β, and cokα := W/(V α)W together
with β is a categorical cokernel of α in modΘ-A. This shows the assertions in
a).

As kerα ≤ V is a Θ-pure submodule, we have cok (kerα) ∼= V/ kerα. As
(V α)W ≤ W is a Θ-pure submodule, we have ker(cokα) ∼= (V α)W . From that
the assertion in b) follows. ]

(6.3) Definition. Let V,W,U ∈ modΘ-A as well as α ∈ HomA(V,W ) and

β ∈ HomA(W,U). The sequence V α→W
β→ U is called exact, if imα = kerβ in

the category modΘ-A.

We introduce the objects of interest in Section 6, condensation functors and
functors related to them, and discuss a few of their properties. The intention is
to show their usefulness as a tool to analyse a given module category in practice.
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(6.4) Definition. See also [25, Ch.6.2].
Let e ∈ A be an idempotent.
a) The additive exact functor

Ce: mod-A→mod-eAe:V 7→ V e,

mapping α ∈ HomA(V,W ) to its restriction α|V e ∈ HomeAe(V e,We) to V e, is
called the condensation functor or Schur functor with respect to e. For V ∈
mod-A the eAe-module V e ∈mod-eAe is called the condensed module of V .
b) The uncondensation functor with respect to e is the additive functor

Ue :=?⊗eAe eA: mod-eAe→mod-A.

For W ∈ mod-eAe, the A-module W ⊗eAe eA ∈ mod-A is called the uncon-
densed module of W .

(6.5) Remark. Ce is equivalent to the tensor functor ? ⊗A Ae: mod-A →
mod-eAe, using the equivalence σe:Ce →? ⊗A Ae of functors from mod-A to
mod-eAe given by σe(V ):V e→ V ⊗A Ae: ve 7→ v ⊗ e.
Furthermore, there is an equivalence τe: HomA(eA, ?) →? ⊗A Ae of functors
from mod-A to mod-eAe, given by τe(V ): HomA(eA, V ) → V e:α 7→ eα, with
inverse given by τ−1

e (V ):V e→ HomA(eA, V ): v 7→ (ea 7→ v · a).

Ce ◦Ue is equivalent to the identity functor on mod-eAe using the equivalence
given by V ⊗eAe eA · e→ V : v ⊗ ea · e 7→ veae, for V ∈mod-eAe.

(6.6) Proposition.
a) Ce induces an additive functor from modΘ-A to modΘ-eAe.

b) Let V,W,U ∈ modΘ-A and let V α→ W
β→ U be an exact sequence in

modΘ-A, see Definition (6.3). Then V e
α|V e−→ We

β|We−→ Ue is an exact sequence
in modΘ-eAe.

Proof. If V ∈mod-A is a Θ-free module, then V e ∈mod-eAe also is a Θ-free
module. This shows the assertion in a).

Both (V α)W · e ≤ (V α)W and (V α)W ≤ W are Θ-pure submodules. Hence
(V α)W · e ≤ W is a Θ-pure submodule, thus this holds for (V α)W · e ≤ We as
well. Hence we have (V α · e)We ≤ (V α)W · e. Furthermore, for w ∈ (V α)W · e =
(V α)W ∩We there is θ ∈ Θ such that θw ∈ V α ∩We = V α · e. Hence we also
have (V α)W · e ≤ (V α · e)We, and thus equality holds. Using the exactness of
Ce as a functor from mod-A to mod-eAe, the assertion in b) follows. ]

The most important case, as far as computational applications are concerned,
is where the base ring Θ is a field.
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(6.7) Proposition. See also [57, La.3.2].
Let Θ be a field.
a) Let S ∈mod-A be a simple A-module. Then we have Se 6= {0}, if and only
if S is a constituent of eA/rad(eA) ∈mod-A. If Se 6= {0}, then Se ∈mod-eAe
is a simple eAe-module.
b) Let S, S′ ∈mod-A be simple A-modules, such that Se 6= {0}. Then we have
S ∼= S′ in mod-A if and only if Se ∼= S′e in mod-eAe.
c) Let T ∈mod-eAe be a simple eAe-module. Then there is a simple A-module
S ∈mod-A such that T ∼= Se as eAe-modules.

Proof. By Remark (6.5) we have Se ∼= HomA(eA, S) ∼= HomA(eA/rad(eA), S)
as Θ-vector spaces. From this the first assertion in a) follows. Let 0 6= v ∈ Se.
Since S is a simple A-module, we have v · eAe = vA · e = Se. From this the
second assertion in a) follows.

Let Se ∼= S′e in mod-eAe. Choose a decomposition of e ∈ A as a sum of pairwise
orthogonal primitive idempotents in A. We have HomA(eA, S) ∼= Se 6= {0} as
Θ-vector spaces, if and only if there is a summand eS ∈ eAe ⊆ A such that eSA
is a projective indecomposable module with eSA/rad(eSA) ∼= S in mod-A.
Applying the condensation functor CeS : mod-eAe → mod-eSAeS , we obtain
SeS ∼= S′eS in mod-eSAeS . Hence we have {0} 6= S′eS ∼= HomA(eSA,S′) as
Θ-vector spaces, thus S′ ∼= S in mod-A. This proves the assertion in b).

By Remark (6.5) we have Ce ◦ Ue(T ) ∼= T 6= {0} in mod-eAe, hence Ue(T ) 6=
{0}. Thus there is a simple A-module S ∈mod-A such that HomA(Ue(T ), S) 6=
{0}. By the Adjointness Theorem [15, Thm.0.2.19] we have as Θ-vector spaces

HomA(T ⊗eAe eA, S) ∼= HomeAe(T,HomA(eA, S)) ∼= HomeAe(T, Se) 6= {0}.

Thus we conclude that {0} 6= Se ∈ mod-eAe is a simple eAe-module, hence
Se ∼= T in mod-eAe. ]

Given an idempotent e ∈ A, this leads to some further structural features of the
category of A-modules. Their usefulness becomes clearer below.

(6.8) Definition. Let Θ be a field and let e ∈ A be an idempotent.
a) Let Σe ⊆ mod-A be a set of representatives of the isomorphism types of
simple A-modules S ∈mod-A such that Se 6= {0}. In particular, Σ1 is a set of
representatives of the isomorphism types of all simple A-modules.
b) Let mode-A be the full subcategory of mod-A consisting of all A-modules
all of whose constituents are isomorphic to an element of Σe. The natural
embedding induces the fully faithful exact functor Ie: mode-A→mod-A. Let

CΣ
e := Ce ◦ Ie: mode-A→mod-eAe.

c) For V ∈mod-A let P(V )
ρ→ V denote its projective cover, and let Ω(V ) :=

ker ρ ∈ mod-A be the Heller module of V . Let modΩ,e-A be the full sub-
category of mod-A consisting of all A-modules V such that both V/rad(V ) ∈
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mode-A and Ω(V )/rad(Ω(V )) ∈mode-A. The natural embedding induces the
fully faithful exact functor IΩ,e: modΩ,e-A→mod-A. Let

CΩ
e := Ce ◦ IΩ,e: modΩ,e-A→mod-eAe.

(6.9) Remark. Let Θ be a field and let e ∈ A be an idempotent.
a) By Proposition (6.7), the set {Se;S ∈ Σe} ⊆ mod-eAe is a set of represen-
tatives of the isomorphism types of all simple eAe-modules.
b) If Σe = Σ1, then the projective A-module eA ∈ mod-A is a progenerator
of mod-A. Hence in this case, by [15, Thm.0.3.54], Ce induces an equivalence
between mod-A and mod-eAe. Thus Ce is fully faithful and essentially surjec-
tive.

We discuss properties of the condensation functor Ce in the general case, where
we do not assume that Ce induces an equivalence. Proposition (6.10) shows that
CΣ
e is a suitable functor to examine the submodule structure of A-modules.

Proposition (6.11) and Example (6.14) show that CΣ
e is fully faithful, but in

general is not essentially surjective. Proposition (6.15) then shows how this
failure to be an equivalence can be remedied by using the functor CΩ

e .

(6.10) Proposition. Let Θ be a field, e ∈ A be an idempotent and let
V ∈ mode-A. Then CΣ

e induces a lattice isomorphism between the submodule
lattices of V and CΣ

e (V ).

Proof. Clearly CΣ
e preserves inclusion of submodules and commutes with

forming sums and intersections of submodules. Hence CΣ
e induces a lattice

homomorphism from the submodule lattice of V to the submodule lattice of
CΣ
e (V ). Since V ∈ mode-A this homomorphism is injective. It remains to

prove that it is also surjective.

Let α:W → V e be an injective homomorphism of eAe-modules. Applying Ce to
HomA(Ue(W ), V ) and using the equivalences of Remark (6.9) yields a Θ-linear
map

(Ce)Ue(W ),V :

{
HomA(W ⊗eAe eA, V ) → HomeAe(W,HomA(eA, V )):

β 7→
(
w 7→ (ea 7→ (w ⊗ e)β · a)

)
.

This coincides with the adjointness Θ-homomorphism given by [15, Thm.0.2.19],
and hence is a Θ-isomorphism. Let β := (Ce)−1

Ue(W ),V (α) ∈ HomA(Ue(W ), V ).
Then we have Ue(W )β ≤ V and Ce(Ue(W )β) = (Ce ◦ Ue(W ))α = Wα. ]

(6.11) Proposition. Let Θ be a field and let e ∈ A be an idempotent. Then
the functor CΣ

e : mode-A→mod-eAe is fully faithful.
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Proof. If Σe = Σ1, then we have CΣ
e = Ce, and by Remark (6.9) the functor

Ce is an equivalence of categories, in particular Ce is fully faithful. Hence we
may assume Σe 6= Σ1. Let e′ ∈ A be an idempotent orthogonal to e, such that
Se′ 6= {0} if and only if S ∈ mod-A is a simple A-module isomorphic to an
element of Σ1 \Σe, and let f := e+e′ ∈ A. Hence Σf = Σ1 and thus the functor
Cf : mod-A → mod-fAf is an equivalence of categories, in particular Cf is
fully faithful. Note that, since there might be a simple A-module S ∈ mod-A
isomorphic to an element of Σe such that S(1− e) 6= {0}, in general we cannot
simply let f = 1 ∈ A.

We have the Pierce decomposition fAf = eAe⊕ eAe′ ⊕ e′Ae⊕ e′Ae′ of fAf as
a Θ-vector space. Hence, for V ∈ mod-eAe and v ∈ V as well as a ∈ A, let
v · eae′ = v · e′ae = v · e′ae := 0. It is straightforward to check that this defines
an fAf -module structure on V . Thus we obtain a functor Ife : mod-eAe →
mod-fAf . As, for V,W ∈ mod-eAe, we have HomfAf (Ife (V ), Ife (W )) =
HomeAe(V,W ), the functor Ife is fully faithful. By the choice of e′ ∈ A we fur-
thermore conclude Ife ◦Ce ◦Ie = Cf ◦Ie as functors from mode-A to mod-fAf .
As both Ie and Ife , as well as Cf , are fully faithful, the assertion follows. ]

(6.12) Corollary. Let Θ be a field and let e ∈ A be an idempotent.
a) For V ∈mode-A we then have EndA(V ) ∼= EndeAe(V e).
b) In particular, if S ∈ mode-A is a simple A-module, then S is absolutely
simple if and only if Se ∈mod-eAe is.

(6.13) Remark. Let Θ be a field and let e ∈ A be an idempotent.
a) Let V ∈ mode-A and let C ⊆ eAe be a Θ-subalgebra. Then we have
EndeAe(V e) ⊆ EndC(V e), and by Corollary (6.12) we have equality if and only
if dimΘ EndC(V e) = dimΘ EndA(V )
b) The functor CΣ

e : mode-A → mod-eAe is not necessarily essentially surjec-
tive, hence not necessarily an equivalence of categories, as the following example
shows.

(6.14) Example. Let Θ be a field of characteristic 2, let G := A5 be the
alternating group on 5 letters, andA := ΘG, where we assume Θ to be a splitting
field for A. The 2-modular Brauer characters of G can be found in [37]. Let
H ≤ G be a cyclic subgroup of order 5, let λ = 1 be the trivial representation
of ΘH and ε = ε1 ∈ ΘH ⊆ A, where the notation is as in Section (2.1).

As εA ∼= 1GH as A-modules, we have Hom(εA, S1) 6= {0}, where S1 denotes
the trivial A-module. Furthermore, εA is a projective A-module, and since
dimΘ(P(S1)) = 12, where P(S1) denotes the projective cover of S1, we conclude
εA ∼= P(S1) as A-modules, hence ε ∈ A is a primitive idempotent, and thus
HomA(εA, S) = {0} for all simple A-modules S 6∼= S1. Hence we have Σε = {S1}
and S1ε is the only simple εAε-module, up to isomorphism.

As εA is a non-simple, projective indecomposable module for the symmetric
algebra A, its endomorphism ring EndA(εA) ∼= (εAε)◦ as Θ-algebras, see Section
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(2.1), is a local Θ-algebra containing non-zero nilpotent elements. Hence εAε
is not semisimple and in particular we have Ext1

εAε(S1ε, S1ε) 6= {0}. As G is a
perfect group, we have Ext1

A(S1, S1) = {0}. Hence all modules in modε-A are
semisimple. Thus CΣ

ε is not essentially surjective.

(6.15) Proposition. See also [1, Prop.II.2.5].
Let Θ be a field and e ∈ A be an idempotent. Then the functor CΩ

e : modΩ,e-A→
mod-eAe is an equivalence of categories.

Proof. Let V ∈ mod-eAe and S ∈ Σ1. By the Adjointness Theorem [15,
Thm.0.2.19] we have HomA(Ue(V ), S) ∼= HomeAe(V,HomA(eA, S)) as Θ-vector
spaces. As HomA(eA, S) = {0} if S 6∈ Σe, we have Ue(V )/rad(Ue(V )) ∈
mode-A. By [3, Cor.2.5.4] we have HomA(Ω(Ue(V )), S) ∼= Ext1

A(V ⊗eAe eA, S)
as Θ-vector spaces. If P ∈ mod-eAe is a projective eAe-module, and hence a
direct summand of a free eAe-module, then P ⊗eAe eA ∈mod-A is a projective
A-module. Thus by the Eckmann-Shapiro Lemma [3, Cor.2.8.4] we conclude
Ext1

A(V ⊗eAe eA, S) ∼= Ext1
eAe(V,HomA(eA, S)) as Θ-vector spaces. Hence we

also have Ω(Ue(V ))/rad(Ω(Ue(V ))) ∈mode-A.

Thus Ue restricts to a functor Ue: mod-eAe → modΩ,e-A. By Remark (6.5)
CΩ
e ◦ Ue is equivalent to the identity functor on mod-eAe. Conversely, for

V ∈modΩ,e-A we have Ue◦Ce(V ) ∼= HomA(eA, V )⊗EndA(eA)◦ eA ∈modΩ,e-A.
Hence it is sufficient to show that the natural evaluation map

ν: HomA(eA, V )⊗EndA(eA)◦ eA→ V :α⊗ ea 7→ (ea)α

is an isomorphism of A-modules.

Assume that ν is not surjective. Then there is S ∈ Σe and 0 6= β ∈ HomA(V, S)
such that im ν ≤ kerβ ≤ V . As β is surjective, eA ∈mod-A is a projective A-
module, and HomA(eA, S) 6= {0}, there is α ∈ HomA(eA, V ) such that αβ 6= 0.
Hence imα 6≤ kerβ ≤ V , which is a contradiction. Hence ν is surjective, and
we thus have an exact sequence

{0} → ker ν → HomA(eA, V )⊗EndA(eA)◦ eA
ν→ V → {0}

of A-modules. Since Ce ◦ Ue is equivalent to the identity functor on mod-eAe,
applying Ce yields the exact sequence {0} → (ker ν)e → V e

id→ V e → {0} of
eAe-modules. Hence we conclude (ker ν)e = {0}.

As ν is surjective, the projective cover P(V )
ρ→ V yields the existence of µ ∈

HomA(P(V ),HomA(eA, V ) ⊗EndA(eA)◦ eA) such that µν = ρ. As (Ω(V )µ)ν =
(ker ρ)µν = {0}, there is κ ∈ HomA(Ω(V ), ker ν) such that Ω(V )µ = Ω(V )κ ≤
ker ν. From(ker ν)e = {0} and Ω(V )/rad(Ω(V )) ∈ mode-A we conclude that
Ω(V )µ = {0}. Hence there is υ ∈ HomA(V,HomA(eA, V ) ⊗EndA(eA)◦ eA) such
that ρυ = µ. Thus we have ρυν = ρ. As ρ is surjective, we conclude υν = idV .
Hence ker ν is a direct summand of HomA(eA, V )⊗EndA(eA)◦ eA ∈ modΩ,e-A,
and hence ker ν/rad(ker ν) ∈ mode-A. As (ker ν)e = {0} we conclude ker ν =
{0}, and thus ν is injective as well. ]
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(6.16) Remark. Let V ∈mod-A and e ∈ A be an idempotent. The natural
evaluation map ν: HomA(eA, V )⊗eAe eA→ V used in the proof of Proposition
(6.15) is the preimage of idHomA(eA,V ) under the adjointness Θ-isomorphism,
see [15, Thm.0.2.19],

HomA(HomA(eA, V )⊗eAe eA, V ) ∼= HomeAe(HomA(eA, V ),HomA(eA, V )).

This leads to the definition of relative uncondensation functors, which are of
practical importance, see Section (6.22).

(6.17) Definition. Let V ∈ mod-A and e ∈ A be an idempotent. Let
α:W → V e be an injective homomorphism of eAe-modules. Then we have a
homomorphism of A-modules

(α⊗ id) · ν: W ⊗eAe eA
α⊗id−→ V e⊗eAe eA

ν−→ V,

where ν: HomA(eA, V )⊗eAeeA→ V is the natural evaluation map as in Remark
(6.16). The A-module im ((α⊗ id) · ν) ≤ V is called the uncondensed module of
W relative to α and V .

(6.18) We consider the question how condensation functors relate to modular
reduction.

Let K be an algebraic number field, and let R ⊂ K be a discrete valuation
ring in K with maximal ideal ℘ C R and finite residue class field F := R/℘ of
characteristic p > 0. Let :̃R→ F denote the natural epimorphism.

Let A be an R-algebra, which is a finitely generated R-free R-module, let AK :=
A⊗RK and AF := A⊗RF , and let :̃A→ AF denote the natural epimorphism.
Let e ∈ A ⊆ AK be an idempotent. We have the Pierce decomposition of R-
modules A = eAe⊕ (1− e)Ae⊕ eA(1− e)⊕ (1− e)A(1− e). As A is an R-free
R-module, this also holds for eAe ≤ A, and we have eAe ⊗R K ∼= eAKe as
K-algebras and eAe⊗R F ∼= ẽAF ẽ as F -algebras.

If V α→ W
β→ U is an exact sequence in modR-A, see Definition (6.3), then it

follows from the proof of Proposition (6.2) that the induced sequence of eAKe-

modules V ⊗RK
α⊗id−→ W⊗RK

β⊗id−→ U⊗RK is an exact sequence in mod-eAKe.
Note that this does not necessarily hold for the induced sequence of ẽAF ẽ-

modules V ⊗R F
α⊗id−→ W ⊗R F

β⊗id−→ U ⊗R F in mod-ẽAF ẽ.

As in the group algebra case, see [14, Ch.XII.82-83], which straightforwardly
generalises to the general case considered here, we define decomposition maps
D:G(AK) → G(AF ) and De:G(eAKe) → G(ẽAF ẽ), where G(·) denotes the
corresponding Grothendieck groups, as follows. Let S ∈ mod-AK is a simple
AK-module, and let Ŝ ∈ modR-A, such that Ŝ ⊗R K ∼= S as AK-modules.
Let T ∈ mod-AF be a simple AK-module. Then the decomposition number
dS,T ∈ N0 is defined as the multiplicity of the constituent T in an AF -module
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composition series of ˜̂S := Ŝ ⊗R F ∈ mod-AF . The decomposition numbers
deS,T ∈ N0 for simple modules S ∈ mod-eAKe and T ∈ mod-ẽAF ẽ are defined
analogously.

(6.19) Proposition. Let A be as in Section (6.18) and let e ∈ A ⊆ AK be
an idempotent.
a) The additive functors HomA(eA, ?) ⊗R K and HomAK (eAK , ? ⊗R K) from
modR-A to mod-eAKe are equivalent.
b) The additive functors HomA(eA, ?) ⊗R F and HomAF (ẽAF , ? ⊗R F ) from
modR-A to mod-ẽAF ẽ are equivalent.

Proof. As A is an R-free R-module, this also holds for eA ≤ A. For V ∈
modR-A, hence HomA(eA, V ) ≤ HomR(eA, V ) also is an R-free R-module.
From that the assertions follow. ]

(6.20) Proposition. Let A be as in Section (6.18) and let e ∈ A ⊆ AK be
an idempotent. Let S ∈ mod-AK be a simple AK-module and T ∈ mod-AF
be a simple AF -module, such that {0} 6= T ẽ ∈mod-ẽAF ẽ. Then we have

dS,T = deSe,T ẽ.

In particular, if Se = {0} then we have dST = 0.

Proof. Let Ŝ ∈ modR-A such that Ŝ ⊗R K ∼= S as AK-modules. By Propo-
sition (6.19), for Ŝe ∈ modR-eAe we hence have Ŝe ⊗R K ∼= Se as eAKe-
modules. Thus the decomposition number deSe,T ẽ ∈ N0 is the multiplicity of

the constituent T ẽ in an ẽAF ẽ-module composition series of ˜̂Se ∈ mod-ẽAF ẽ.

By Proposition (6.19) we have ˜̂Se ∼= ˜̂
Sẽ as ẽAF ẽ-modules. As Cẽ: mod-AF →

mod-ẽAF ẽ is an exact functor, by Proposition (6.7) we conclude that the multi-

plicity of the constituent T ẽ in an ẽAF ẽ-module composition series of ˜̂Sẽ equals
the multiplicity of the constituent T in an AF -module composition series of˜̂
S ∈ mod-AF , where the latter by definition is the decomposition number
dS,T ∈ N0. ]

(6.21) Remark. The statements of Proposition (2.11) are a special case of
those of Proposition (6.20).

To see this let K, R and F , as well as λ be as in Section (2.10), where in
particular the characteristic of F is coprime to |H|, and let A := RG. Then we
have ελ ∈ RG, and ελKGελ ∼= (EλK)◦ as K-algebras, as well as ελRGελ ∼= (EλR)◦

as R-algebras, and ελ̃FGε̃λ̃
∼= (Eλ̃F )◦ as F -algebras, see Proposition (2.2). For

χ ∈ IrrK(G) let Sχ ∈mod-KG denote the simple KG-module affording χ, see
Section (2.8). Then Sχ · ελ ∼= HomKG(ελKG,Sχ) 6= {0} as K-vectors spaces, if
and only if χ ∈ IrrλK(G).
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Let χϕ ∈ IrrλK(G) denote the Fitting correspondent of ϕ ∈ IrrK(EλK), see
Proposition (2.7). Hence we have Sχϕ ∼= ελKG · eϕ ≤ ελKG as KG-modules,
where eϕ ∈ EλK is an idempotent as in Section (2.6). Thus we have Sχϕελ ∼=
ελKGeϕ · ελ = ελeϕ · ελKGελ as ελKGελ-modules, where ελeϕ ∈ ελKGελ is
an idempotent. By Proposition (2.2) the latter ελKGελ-module can be iden-
tified with the (EλK)◦-module eϕ(EλK)◦ = EλKeϕ. Let Sϕ ∈ mod-EλK denote
the simple EλK-module affording ϕ, and let S∗ϕ := HomK(Sϕ,K) be the (EλK)◦-
module dual to the EλK-module Sϕ. As EλK is a symmetric K-algebra, we have
EλKeϕ

∼= (eϕEλK)∗ ∼= S∗ϕ as (EλK)◦-modules.

Similarly, for ϕ ∈ IrrF (Eλ̃F ) we have Pϕ ∼= ελ̃FG · eϕ as FG-modules, and hence
analogously the ελ̃FGελ̃-module Pϕ ·ελ̃ can be identified with the (Eλ̃F )◦-module
Eλ̃F eϕ

∼= (eϕEλ̃F )∗. Let χϕ ∈ Irrλ̃F (G) denote the Fitting correspondent of ϕ and
let Sχϕ := Pϕ/rad(Pϕ) ∈mod-FG be the simple FG-module affording χϕ. As
Pϕ is an FG-direct summand of ελ̃FG, we have {0} 6= HomFG(ελ̃FG, Sχϕ) ∼=
Sχϕ · ελ̃ ∈ mod-ελ̃FGελ̃. As Eλ̃F is a symmetric F -algebra, the latter ελ̃FGελ̃-
module can be identified with the (Eλ̃F )◦-module S∗ϕ ∼= (eϕEλ̃F )∗/rad((eϕEλ̃F )∗).

We have a decomposition map DE◦ :G((EλK)◦) → G((Eλ̃F )◦), where the corre-
sponding decomposition numbers are denoted by dE

◦

·,· ∈ N0. Let S ∈ mod-EλK
be a simple EλK-module and let T ∈ mod-Eλ̃F be a simple Eλ̃F -module. Thus
S∗ ∈ mod-(EλK)◦ and T ∗ ∈ mod-(Eλ̃F )◦ are simple modules and we have
dE
◦

S∗,T∗ = dES,T .

(6.22) We conclude Section 6 with a few general remarks on computational
applications of condensation functors; for more specific applications see Section
9.

Relative uncondensation functors, see Definition (6.17), have been used heavily
as a constructive tool; for example to construct irreducible representations of the
larger sporadic simple groups over finite fields using the MeatAxe, see [59, 78].
Condensation functors inducing equivalences between mod-A and mod-eAe,
where A is a group algebra over a finite field have been studied in [46].

The other extreme, where e ∈ A is a primitive idempotent, has been used in
[47] to give an algorithm to compute submodule lattices. An implementation for
algebras over finite fields is available in the MeatAxe, of which we make heavy
use in the analysis of the examples dealt with in Part III. Other applications
of condensation functors with respect to primitive idempotents are the com-
putation of socle series [49] and the computation of endomorphism rings [74]
of modules. Implementations for algebras over finite fields are available in the
MeatAxe as well, these are also used in Part III.
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7 Orbital graphs

In Section 7 we give an application using the information collected in the
database, see Section (11.1). We begin by fixing the notation and giving the
necessary definitions. We assume the reader familiar with the basic notions of
graph theory, as a general reference see [4, 24].

(7.1) Definition.
a) A (simple non-directed) graph G is a tuple (V,E, ι), where V = {v1, . . . , vn}
is a finite set of vertices and E = {e1, . . . , em} is a finite set of edges, as well as
ι: E→ {{v, w}; v, w ∈ V, v 6= w} is an injective incidence map. If ι(e) = {v, w},
for e ∈ E, then the edge e ∈ E and the vertices v, w ∈ V are called incident.
If for v, w ∈ V there is an e ∈ E such that ι(e) = {v, w}, then the vertices
v, w ∈ V are called adjacent, denoted by v ∼G w. A pair (v, e) ∈ V × E such
that v ∈ ι(e) is called a flag of G.

The number of vertices adjacent to a vertex v ∈ V is called the valency of v. If
all vertices of G have the same valency, then G is called regular. If the vertex set
V can be partitioned into V = V1

.
∪ V2 such that |ι(e) ∩Vi| = 1 for i ∈ {1, 2}

and for all e ∈ E, then G is called bipartite.

b) A path of length d in G, for d ∈ N0, is a sequence {v0, . . . , vd} ⊆ V of vertices
such that vi−1 ∼G vi, for i ∈ {1, . . . , d}. The distance d(v, w) = dG(v, w) ∈ N0∪
{∞} of v, w ∈ V in G is the minimum length of a path such that v0 = v and vd =
w, if such a path exists, and d(v, w) = dG(v, w) = ∞ otherwise. The diameter
d(G) ∈ N0 ∪ {∞} of G is the maximum distance d(v, w) of vertices v, w ∈ V.
If d(G) <∞, then G is called connected. The largest connected subgraph of G
having v ∈ V as one of its vertices is called the connected component of v.

For d ∈ N0 and v ∈ V let the distance sets Gd(v) := {w ∈ V; d(v, w) = d} ⊆ V
and G≤d(v) := {w ∈ V; d(v, w) ≤ d} ⊆ V. For d ∈ N0 the d-th distance graph
Gd of G is defined by having vertex set V, and vertices v, w ∈ V being adjacent
if w ∈ Gd(v).

c) A connected graph G is called distance-transitive, if the group Aut(G) of
graph automorphisms of G acts transitively on the the distance sets Gd(v), for
all v ∈ V and d ∈ {0, . . . , d(G)}.
A regular connected graph G of valency k ∈ N is called distance-regular, if
i) for all d ∈ {1, . . . , d(G)} as well as v ∈ V and u ∈ Gd(v) the cardinality
|{w ∈ Gd−1(v);w ∼G u}| is independent of the particular choice of v ∈ V and
u ∈ Gd(v), and
ii) for all d ∈ {0, . . . , d(G)− 1} as well as v ∈ V and u ∈ Gd(v) the cardinality
|{w ∈ Gd+1(v);w ∼G u}| is independent of the particular choice of v ∈ V and
u ∈ Gd(v).
If both of these conditions are fulfilled, then for v ∈ V we let kGd := |Gd(v)| ∈ N
denote the valency of Gd, for d ∈ {0, . . . , d(G)}; and for u ∈ Gd(v) we let

cd := |{w ∈ Gd−1(v);w ∼G u}| ∈ N0 for d ∈ {1, . . . , d(G)},
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as well as

bd := |{w ∈ Gd+1(v);w ∼G u}| ∈ N0 for d ∈ {0, . . . , d(G)− 1}.

Hence we have b0 = k and c1 = 1. The sequence [k, b1, . . . , bd(G); 1, c2, . . . , cd(G)]
of non-negative integers is called the intersection array of G.

A distance-regular graph G is called primitive, if all the distance graphs Gd,
for d ∈ {0, . . . , d(G)}, are connected, otherwise it is called imprimitive. A
distance-regular graph G is called antipodal if d(G) ≥ 2 and if the relation
{(v, w) ∈ V×V; d(v, w) ∈ {0, d(G)}} is an equivalence relation on V.

(7.2) Remark.
a) A distance-transitive graph G is distance-regular, and the group Aut(G) acts
flag-transitively, hence in particular edge-transitively and vertex-transitively.
b) Let G be a distance-regular graph. If G is bipartite then the distance graph
G2 is not connected. If G is antipodal then the distance graph Gd(G) is not
connected. If G is imprimitive of valency k ≥ 3 then by [8, Thm.4.2.1] it is
bipartite or antipodal or both.
c) Let G be a distance-regular graph of diameter d(G) ≥ 3. Then by [8,
Prop.5.1.1] the sequence [kG0 , . . . , kGd(G) ] of positive integers is unimodal, hence
there are i, j ∈ {1, . . . , d} such that i ≤ j and

1 = kG0 < kG1 < . . . < kGi = . . . = kGj > . . . > kGd(G) .

Furthermore, if for some d, e ∈ {0, . . . , d(G)} such that d < e and d+ e ≤ d(G)
we have kGd = kGe , then we also have kGd+1 = kGe−1 .

(7.3) Definition. Let G be a graph.
a) The symmetric matrix AG := [aij ; i, j ∈ {1, . . . , n}] ∈ Zn×n defined by

aij =
{

1, if {vi, vj} ∈ im (ι),
0, if {vi, vj} 6∈ im (ι),

is called the adjacency matrix of G. As the matrix AG is diagonalisable over R,
let ρ1 > . . . > ρs for some s ∈ N denote the pairwise different eigenvalues of AG.
The set of eigenvalues {ρ1, . . . , ρs} ⊆ R of AG, together with their multiplicities,
is called the spectrum of G.
b) If G is a regular graph of valency k ∈ N, then the number

ρG := max{|ρi| ∈ R; i ∈ {1, . . . , s}, |ρi| < k} ∈ R

is called the graph spectral radius of G. A connected regular graph G of valency
k ∈ N is called a Ramanujan graph if ρG ≤ 2 ·

√
k − 1.
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(7.4) Remark.
a) If G is a regular graph of valency k ∈ N, then by [4, Prop.I.3.1] we have
|ρi| ≤ k, for all i ∈ {1, . . . , s}, where ρ1 = k, whose multiplicity equals the
number of connected components of G. Furthermore, if G is connected, then
by [24, Thm.8.8.2] G is a bipartite graph if and only if ρs = −k. In this case,
−ρ ∈ R is an eigenvalue of AG whenever ρ ∈ R is.
b) The notion of Ramanujan graphs is related to the notion of expander graphs.
For a discussion of these notions, in particular how groups come into play in some
of the constructions, and further references, see for example [44, Ch.1,Ch.4.5]
and [76, Ch.II.19].

The following definition introduces the graphs we deal with in the sequel, orbital
graphs. We show how some of the properties of orbital graphs can be deduced
from the data collected in the database, see Section (11.1). We keep the notation
of Section (1.1), where in all of Section 7 we assume λ = 1 and K to be as in
Section 3.

(7.5) Definition. Let 1 6= i ∈ I, let αi ∈ A be the corresponding Schur
basis element of EZ, and let [αi] ∈ Zn×n be the representing matrix of its action
on ZΩ, with respect to the basis Ω, see Proposition (1.10).
a) If i = i∗ corresponds to a self-paired orbital, then the graph Oi with vertex
set Ω, defined by the adjacency matrix [αi] ∈ Zn×n, is called the i-th orbital
graph of Ω.
b) If i 6= i∗ corresponds to a not self-paired orbital, then the graph Oi with
vertex set Ω, defined by the adjacency matrix [αi] + [αi∗ ] = [αi] + [αi]T ∈ Zn×n,
see Corollary (1.14), is called the i-th orbital graph of Ω. It coincides with the
i∗-th orbital graph Oi∗ of Ω.

Let O0
i denote the connected component of Oi containing the vertex ω1 ∈ Ω.

(7.6) Remark.
a) Let 1 6= i ∈ I. As G acts transitively on the i-th orbitalOi ⊆ Ω×Ω, the group
G acts as a vertex-transitive and edge-transitive group of graph automorphisms
on Oi. If i = i∗ then G acts as a flag-transitive group of graph automorphisms
on Oi, while if i 6= i∗ then G does not act flag-transitively. The connected
components of Oi are all isomorphic to O0

i as graphs and permuted transitively
by G.
b) As the vertices adjacent to ω1 in Oi are (Oi)1(ω1) = Ωi, the orbital graph
Oi is a regular graph of valency ki. As H acts transitively on the suborbits
Ωk ⊆ Ω, for k ∈ I, the distance sets (Oi)d(ω1) ⊆ O0

i and (Oi)≤d(ω1) ⊆ O0
i , for

d ∈ N0, are unions of suborbits.
c) For a subset J ⊆ I \{1}, such that for i ∈ J we also have i∗ ∈ J , the graph
OJ with vertex set Ω, defined by the adjacency matrix

∑
i∈J [αi] ∈ Zn×n,

is called the generalised orbital graph of Ω with respect to J . In particular,
for J = I \ {1}, the generalised orbital graph OI\{1} is the complete graph
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with vertex set Ω. Note that the group G does not act edge-transitively on a
generalised orbital graph which is not an orbital graph.

(7.7) Proposition. Let k ∈ I and d ∈ N0.
a) Let 1 6= i ∈ I such that i = i∗. Then the matrix entry [(Pi)d]1,k ∈ N0 equals
the number of paths of length d in Oi connecting ω1 and ωk ∈ Ω. Letting
Ki,≤−1 := ∅ as well as

Ki,≤d := {k ∈ I; [(Pi)s]1,k > 0 for some s ∈ {0, . . . , d}} ⊆ I,

and Ki,d := Ki,≤d \ Ki,≤(d−1) ⊆ I, we have (Oi)d(ω1) =
∐
k∈Ki,d Ωk, and hence

d(O0
i ) = min{d ∈ N;Ki,d = ∅} − 1.

In particular Oi is connected if and only if Ki,≤d(O0
i )

= I.
b) Let j ∈ I such that j 6= j∗. Then the matrix entry [(Pj + Pj∗)d]1,k ∈ N0

equals the number of paths of length d in Oj connecting ω1 and ωk ∈ Ω. Letting
K∗j,≤−1 := ∅ as well as

K∗j,≤d := {k ∈ I; [(Pj + Pj∗)s]1,k > 0 for some s ∈ {0, . . . , d}} ⊆ I,

and K∗j,d := K∗j,≤d \K∗j,≤(d−1) ⊆ I, we have (Oj)d(ω1) =
∐
k∈K∗j,d

Ωk, and hence

d(O0
j ) = min{d ∈ N0;K∗j,d = ∅} − 1.

In particular Oj is connected if and only if K∗
j,≤d(O0

j )
= I.

Proof. By Definition (1.18) we have αdi = α1 ·αdi =
∑
k∈I [(Pi)d]1,k ·αk ∈ EK .

By [4, La.I.2.5] the matrix entry [(αi)d]ω1,ωk ∈ N0, for k ∈ I, is the number
of paths of length d connecting ω1 and ωk. By Remark (7.6) the distance set
(Oi)≤d(ω1) is a union of suborbits. From this the assertions in a) follow. The
assertions in b) are proved analogously. ]

(7.8) Proposition. Let 1 6= i ∈ I such that i = i∗, and such that the
orbital graph Oi = O0

i is connected.
a) Then Oi is distance-regular if and only if
i) for all d ∈ {1, . . . , d(Oi)} and k ∈ Ki,d, see Proposition (7.7), the number∑
l∈Ki,d−1

[Pi]lk ∈ N0 is independent of the particular choice of k ∈ Ki,d, and
ii) for all d ∈ {0, . . . , d(Oi)− 1} and k ∈ Ki,d the number

∑
l∈Ki,d+1

[Pi]lk ∈ N0

is independent of the particular choice of k ∈ Ki,d.
If both of these conditions are fulfilled, then the entries of the intersection array
are given as

cd =
∑

l∈Ki,d−1

[Pi]lk ∈ N0 for d ∈ {1, . . . , d(Oi)} and k ∈ Ki,d,
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as well as

bd :=
∑

l∈Ki,d+1

[Pi]lk ∈ N0 for d ∈ {0, . . . , d(Oi)− 1} and k ∈ Ki,d,

while for d ∈ {0, . . . , d(Oi)} the valency of the distance graph (Oi)d is given as

k(Oi)d =
∑
l∈Ki,d

kl,

where the kl = |Ωl|, for l ∈ I, are the index parameters of Ω.
b) The group G acts distance-transitively on the graph Oi if and only if we
have |Ki,d| = 1 for all d ∈ {0, . . . , d(Oi)}.
c) If Oi is distance-regular, then it is primitive if and only if for all d ∈
{1, . . . , d(Oi)} the eigenvalue

∑
l∈Ki,d kl ∈ Z of the matrix

∑
l∈Ki,d [αl] ∈ Zn×n

has multiplicity 1.
d) If Oi is distance-regular, then it is bipartite if and only if −

∑
l∈Ki,1 kl ∈ Z

is an eigenvalue of the matrix
∑
l∈Ki,1 [αl] ∈ Zn×n.

e) If Oi is distance-regular, then it is antipodal if and only if d(Oi) ≥ 2 and for
all l, s ∈ Ki,d(Oi) and k ∈ I \ (Ki,d(Oi) ∪ Ki,0) = I \ (Ki,d(Oi) ∪ {1}) we have
plsk = 0.

As in Proposition (7.7), similar statements hold for j ∈ I such that j 6= j∗ and
such that Oj = O0

j is connected.

Proof. By Definitions (7.5) and (1.18) we have

[Pi]lk = plik = pli∗k = |{ω ∈ Ωl;ω ∼Oi
ωk}|.

Thus the assertion in a) follows from Definition (7.1) and the definition of the
sets Ki,d in Proposition (7.7). The assertion in b) is clear. By definition of
the sets Ki,d the matrix

∑
l∈Ki,d [αl] ∈ Zn×n is the adjacency matrix of the

distance graph (Oi)d. Hence the assertions in c) and d) follow from Remark
(7.4). Finally, let A :=

∑
s∈Ki,d(Oi)

[αs] ∈ Zn×n. Then the relation

{(ω, ω′) ∈ Ω× Ω;ω = ω′ or ω′ ∈ (Oi)d(Oi)}

is an equivalence relation if and only if A2 ∈ Zn×n is a Z-linear combination of
[α1] = [idZΩ] ∈ Zn×n and A. Hence the assertion in e) follows from Definition
(1.18) and the non-negativity of the structure constants. The statements for
j 6= j∗ are proved analogously. ]

(7.9) Proposition. See also [8, Prop.4.1.11].
Let 1 6= i ∈ I such that G acts distance-transitively on the orbital graph Oi.
a) We have j = j∗ for all j ∈ I.
b) The endomorphism ring EK is as a K-algebra generated by the Schur basis
element αi ∈ EK . In particular, EK is a commutative ring.
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Proof. By distance-transitivity we have i = i∗ ∈ I. By Propositions (7.7)
and (7.8) we have |Ki,d| = 1 for all d ∈ {0, . . . , d(Oi)} and Ki,≤d(Oi) = I,
hence all suborbits are self-paired. Furthermore, we have d(Oi) = r − 1, and
from the proof of Proposition (7.7) we conclude that the minimum polynomial
of the structure constants matrix Pi has degree at least r. Hence we have
dimK(〈Pi〉K-algebra) = r = dimK(EK). ]

(7.10) Let 1 6= i ∈ I such that i = i∗. Then the spectrum of the graph Oi

is the set of eigenvalues in R of [αi] ∈ Zn×n, together with their multiplicities.
Analogously, if j ∈ I such that j 6= j∗, then the spectrum of the graph Oj is the
set of eigenvalues in R of [αj ] + [αj∗ ] ∈ Zn×n, together with their multiplicities.

As the regular K-representation of EK is a faithful representation, the eigen-
values of [αi], for 1 6= i ∈ I such that i = i∗, are precisely the eigenvalues in
R of the matrix Pi ∈ Zr×r representing the action of αi on the regular module
EK , see Definition (1.18), where by Remark (1.19) the matrix Pi is diagonal-
isable over R. Analogously, the eigenvalues of [αj ] + [αj∗ ], for j ∈ I such that
j 6= j∗, are precisely the eigenvalues in R of (Pj + Pj∗) ∈ Zr×r, where again
by Remark (1.19) the matrix (Pj + Pj∗) is diagonalisable over R. Furthermore,
the eigenvalues of

∑
l∈Ki,d [αl] ∈ Zn×n and

∑
l∈K∗j,d

[αl] ∈ Zn×n for d ∈ N0 and
i, j ∈ I as above, see Proposition (7.8), are precisely the eigenvalues in R of∑
l∈Ki,d Pl ∈ Z

r×r and
∑
l∈K∗j,d

Pl ∈ Zr×r, respectively, where by Proposition
(1.13) the sets Ki,d and K∗j,d are invariant under ∗: I → I, hence by Remark
(1.19) the latter matrices are diagonalisable over R.

To determine the eigenvalues of Pi ∈ Zr×r and their multiplicities as eigenvalues
of [αi] ∈ Zn×n, for 1 6= i ∈ I such that i = i∗, we proceed as follows. By first
decomposing the regular K-representation of EK as a direct sum of siple EK-
modules Sϕ, for ϕ ∈ IrrK(EK), and subsequently diagonalising the action of αi
on the simple EK-summands, each eigenvalue of αi is attached to one or more
of the ϕ ∈ IrrK(EK), see Section (2.8). Hence we are reduced to finding the
eigenvalues of the action of αi on the simple EK-modules Sϕ, for ϕ ∈ IrrK(EK).
If EK is commutative, then the eigenvalues of the action of αi on Sϕ are precisely
the entries of the character table of EK in the column corresponding to i ∈ I.
The multiplicity of an eigenvalue of [αi] ∈ Zn×n is the sum of the degrees of the
Fitting correspondents of the ϕ ∈ IrrK(EK) attached to it. By Remark (3.9)
these degrees can also be determined from the character table of EK .

The sums [αj ] + [αj∗ ] and
∑
l∈Ki,d [αl] as well as

∑
l∈K∗j,d

[αl], for d ∈ N0 and
i, j ∈ I as above, are dealt with analogously, using the sums of the columns
corresponding to {j, j∗} and Ki,d as well as K∗j,d, respectively.

We conclude Section 7 by presenting two classification results using the data
collected in the database, being concerned with distance-regular orbital graphs,
and Ramanujan orbital graphs, respectively.



58

(7.11) Using the data contained in the database, see Section (11.1), it is
straightforward to implement the technique described in Propositions (7.7) and
(7.8) and Section (7.10) into GAP. Hence for the sporadic simple groups, their
automorphism groups and their Schur covering groups we obtain a classification
of their distance-regular orbital graphs afforded by a multiplicity-free permuta-
tion action, up to the single exception G = 2.B and H = Fi23 not yet dealt with;
as soon as the data for the bicyclic extensions of the sporadic simple groups is
available, these cases can be dealt with as well, see Section (11.1).

By Proposition (7.9) this covers all distance-transitive graphs having one of the
above-mentioned groups as a group of automorphisms. The primitive distance-
transitive graphs amongst them have been classified in [34], hence we do not list
them here. The imprimitive cases are given in Table 1. Below we rule out the
existence of a distance-transitive orbital graph for the exceptional case G = 2.B
and H = Fi23 not dealt with in Section (11.1), hence the latter list indeed is
complete.

Let us assume to the contrary that one of the orbital graphs, Oi say, afforded
by the permutation action of G = 2.B on the right cosets of H = Fi23 is
distance-transitive. As this permutation action has rank r = 34, see Section
(17.11), by Proposition (7.8) we conclude that Oi has diameter d(Oi) = 33 and
that the sequence of index parameters can be reordered to yield the sequence
[k(Oi)0 , . . . , k(Oi)33 ] of the valencies of the corresponding distance graphs (Oi)d,
for d ∈ {0, . . . , 33}. Using Remark (5.15), the index parameters can be derived
from the splitting of suborbits as given in Table 27, see also Section (17.11). By
Proposition (7.2) we conclude that k(Oi)0 = k(Oi)33 = 1 and furthermore that
k(Oi)d = k(Oi)33−d for d ∈ {0, . . . , 16}, a contradiction to the sequence of index
parameters derived from Table 27. Hence none of the orbital graphs afforded
by this permutation action are distance-transitive.

For the distance-regular orbital graphs, afforded by a multiplicity-free per-
mutation action where the group under consideration does not act distance-
transitively, we restrict ourselves to the edge-transitive cases, which are shown
in Table 2. For the non-edge-transitive cases we would have to consider all the
generalised orbital graphs, see Remark (7.6). This would be doable, but the
author does not expect interesting results.

In Tables 1 and 2, we indicate the rank r ∈ N of the permutation action under
consideration, the orbital i ∈ I leading to the corresponding distance-regular
orbital graph, its valency k ∈ N, the cardinality n ∈ N of its vertex set, its
diameter d ∈ N, its intersection array, and whether it is primitive p, bipartite b,
or antipodal a, see Definition (7.1).

Using the data given in Tables 1 and 2, it is possible to identify the corresponding
graphs. The imprimitive distance-transitive orbital graphs of diameter 5 ofHS.2
and M22.2 are described in [8, Ch.6.11]. The non-distance-transitive orbital
graphs of diameter 8 of 3.M22 and of diameter 4 of 3.F i′24 are described in [8,
Ch.6.12]. The non-distance-transitive orbital graph of diameter 4 of 3.Suz is a 3-
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fold antipodal cover, see [8, Ch.4.2.A], of the primitive distance-transitive Suzuki
graph of diameter 2. The orbital graph of diameter 4 of J2 is the J2-graph, see [8,
Thm.13.6.1], whose full graph automorphism group is isomorphic to J2.2 and
acts distance-transitively. The orbital graphs of diameter 3 of M24 and M12

are, by [8, Thm.6.1.1], the Johnson graphs J(12, 3) and J(24, 3), see [8, Ch.9.1],
whose full graph automorphism groups act distance-transitively. The imprim-
itive distance-regular graphs of diameter 3 are described in [8, Ch.14,pp.431–
432]. Finally, the distance-regular graphs of diameter 2 are precisely the strongly
regular graphs, see [8, Ch.A.1], as a general reference see [9, 33].

(7.12) Using the data contained in the database, see Section (11.1), the tech-
nique described in Section (7.10) and GAP, it is straightforward to obtain a
classification of the Ramanujan orbital graphs for the sporadic simple groups,
their automorphism groups and their Schur covering groups, coming from a
multiplicity-free permutation action, up to the single exception G = 2.B and
H = Fi23 not yet dealt with; as soon as the data for the bicyclic extensions of
the sporadic simple groups is available, these cases can be dealt with as well,
see Section (11.1).

By the discussion of Ramanujan graphs in [44], a Ramanujan graph tends to be
the more interesting the smaller its valency is, compared to the cardinality of
its vertex set. Accordingly, a subset of the Ramanujan connected orbital graphs
of the above-mentioned groups and permutation actions is shown in Table 3;
complete results for the generalised orbital graphs such that n ≤ 107 have been
compiled in [32]. In Table 3 we indicate the rank r ∈ N of the permutation action
under consideration, the orbital i ∈ I leading to the corresponding Ramanujan
orbital graph, its valency k ∈ N, the cardinality n ∈ N of its vertex set, and its
diameter d ∈ N.

II Computational techniques

8 Intersection numbers and character tables

In Section 8 we discuss computational techniques useful to deal with structure
constants matrices, character tables of endomorphism rings, and the Fitting
correspondence. We keep the notation of Sections 1 and 3. In particular let Φλ
be the character table of the endomorphism ring EλK , see Definition (3.7) and
Section (1.5), where K is as in Section 3.

Throughout Section 8 we assume EλK to be commutative.

(8.1) If Φλ is known, then the structure constants matrices Pλj , for j ∈ Iλ,
see Definitions (1.6) and (1.18), can be determined using Proposition (3.18). As
this is particularly nice and straightforward to implement in GAP, we show the
relevant GAP code in Table 4.
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Table 1: Imprimitive distance-transitive orbital graphs.
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Table 2: Non-distance-transitive distance-regular orbital graphs.
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Table 3: Ramanujan orbital graphs of valency k ≤
√
n.

G H i r n k d

M12.2 32.2.S4 2 9 440 4 6
M22 23:L3(2) 2 5 330 7 4
M22.2 23:L3(2)× 2 2 5 330 7 4
M22.2 23:L3(2) < 23:L3(2)× 2 3 10 660 7 5
J2 21+4

− :A5 2 6 315 10 4
J2.2 21+4

− :S5 2 5 315 10 4
M12 32.2.S4 2 5 220 12 3
M12 32.2.S4 2 5 220 12 3
J2.2 (A5 ×D10).2 2 8 1008 12 5
M22.2 A7 2 6 352 15 4
J2 A4 ×A5 2 7 840 15 4
J2.2 (A4 ×A5).2 2 7 840 15 4
J2.2 A4 ×A5 < (A4 ×A5).2 3 14 1680 15 5
HS.2 51+2

+ : [25] 2 15 22176 50 3
M24 26: (L3(2)× S3) 3 5 3795 56 3
M24 26: (L3(2)× 3) < 26: (L3(2)× S3) 3 8 7590 56 3
M24 26: (L3(2)× 3) < 26: (L3(2)× S3) 4 8 7590 56 3

Table 4: GAP code: Finding the Pλj from Φλ.

# tbl: Φλ for EλK commutative,
# a matrix with entries in the cyclotomic field K
# mats: the Pλj for j ∈ Iλ, a list of matrices over K
IntersectionMatsFromCharTable:=function(tbl)

local mats, trtbl, itrtbl, j, diag;
mats:=[];
trtbl:=TransposedMat(tbl);
itrtbl:=trtbl^ (-1);
for j in [1..Length(tbl)] do

diag:=DiagonalMat(List([1..Length(tbl)],i->tbl[i][j]));
mats[j]:=trtbl*diag*itrtbl;

od;
return mats;

end;
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Table 5: GAP code: Finding the mϕ from Φ.

# tbl: Φ for EK commutative,
# a matrix with entries in the cyclotomic field K,
# ϕ1 is the first character in Φ
# degs: the mϕ for ϕ ∈ IrrK(EK), a list of positive integers
CharDegrees:=function(tbl)

local degs, n, j, s, i;
degs:=[1];
n:=Sum(tbl[1]);
for j in [2..Length(tbl)] do

s:=0;
for i in [1..Length(tbl)] do

s:=s+tbl[j][i]*GaloisCyc(tbl[j][i],-1)/tbl[1][i];
od;
degs[j]:=n/s;

od;
return degs;

end;

For the case λ = 1, if Φ is known, then the Fitting correspondent ϕ1 of the trivial
character KG is found by Remark (3.21). This yields the index parameters ki,
for i ∈ I, see Definition (1.2), from Φ. Furthermore, if Φλ is known for arbitrary
λ, by the first orthogonality relations, see Remark (3.9), the character degrees
χϕ(1) = mϕ, for ϕ ∈ IrrK(EλK), can be determined from Φλ and the index
parameters ki, for i ∈ Iλ. For the case λ = 1 we show the relevant GAP code in
Table 5.

For the case λ = 1, if Φ is known, then the Krein parameters qijk, see Definition
(4.5), can be determined using Proposition (4.6). We show the relevant GAP
code in Table 6.

(8.2) We discuss the strategy to find the character table of EλK from the struc-
ture constants matrices. Let Eλ be the set of all centrally primitive idempotents
of EλK . By Proposition (3.14), the rows of [Eλ]Aλ ∈ K |Iλ|×|Iλ| are a K-basis of
K1×|Iλ|, consisting of simultaneous eigenvectors of all the structure constants
matrices Pλj ∈ K |Iλ|×|Iλ|, for j ∈ Iλ. Up to reordering and scalar multiples,
this is the only K-basis of K1×|Iλ| consisting of simultaneous eigenvectors of all
the Pλj .

Furthermore, the corresponding eigenvalues are the character values ϕ(αλj ), for
ϕ ∈ IrrK(EλK) and j ∈ Iλ. Hence to determine the character table Φλ, we could
just determine a K-basis consisting of simultaneous eigenvectors of all the Pλj ,
and subsequently compute the corresponding eigenvalues. But for the latter we
would have to determine all the Pλj , for j ∈ Iλ. Indeed, we can do better.
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Table 6: GAP code: Finding the Krein parameters qijk from Φ.

# tbl: Φ for EK commutative,
# a matrix with entries in the cyclotomic field K,
# ϕ1 is the first character in Φ
# q: the qijk, a list of lists of lists over K
KreinParameters:=function(tbl)

local q, n, m, i, j, k, t, s;
q:=[];
n:=Sum(tbl[1]);
m:=CharDegrees(tbl); # see Table 5
for i in [1..Length(tbl)] do

q[i]:=[];
for j in [1..Length(tbl)] do

q[i][j]:=[];
for k in [1..Length(tbl)] do

t:=0;
for s in [1..Length(tbl)] do

t:=t+GaloisCyc(tbl[i][s],-1)
*GaloisCyc(tbl[j][s],-1)
*tbl[k][s]/tbl[1][s]^ 2;

od;
q[i][j][k]:=t*m[i]*m[j]/n^ 2;

od;
od;

od;
return q;

end;
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By Proposition (3.18), the rows of [Eλ]Âλ ∈ K
|Iλ|×|Iλ| are a K-basis of K1×|Iλ|,

consisting of simultaneous eigenvectors of all the dual structure constants ma-
trices P̂λj = (Pλj )T ∈ K |Iλ|×|Iλ|, for j ∈ Iλ, see Proposition (3.17). Still, the
corresponding eigenvalues are the character values ϕ(αλj ), for ϕ ∈ IrrK(EλK) and
j ∈ Iλ. Furthermore, the row of [Eλ]Âλ corresponding to ϕ ∈ IrrK(EλK) is equal
to mϕ
|G| · [ϕ(αλj ); j ∈ Iλ] ∈ K1×|Iλ|, hence up to a scalar multiple is equal to the

corresponding row of Φλ.

Because of ϕ(αλ1 ) = 1, for ϕ ∈ IrrK(EλK), to determine the character table Φλ,
it hence is sufficient to find a K-basis consisting of simultaneous eigenvectors
of all the P̂λj , for j ∈ Iλ, and to rescale these vectors to have an entry 1 in
position i = 1 ∈ Iλ. In turn, to find a K-basis consisting of simultaneous
eigenvectors of all the P̂λj , it is sufficient to find a subset J ⊆ Iλ, such that
C := 〈αλj ; j ∈ J 〉K−algebra equals EλK , and to compute {P̂λj ; j ∈ J } only. By
Corollary (3.15), we have C = EλK if and only if the simultaneous eigenspaces of
{P̂λj ; j ∈ J } in K1×|Iλ| are 1-dimensional.

A similar algorithm is well-known for the group character table case, see [17, 71].
In that case, the character degrees usually are not known in advance. Hence,
in addition to finding simultaneous eigenvalues, the scaling factors to yield the
correct character degrees have to be determined as well.

To find the eigenspaces of P̂λj , for j ∈ Iλ, we proceed as follows. Let µP̂λj ∈ K[X]

be the minimum polynomial of P̂λj ∈ K |Iλ|×|Iλ|. As EλK is a commutative split
semisimple K-algebra, µP̂λj ∈ K[X] is a separable polynomial. Hence to find the

eigenspaces of P̂λj , we have to find the irreducible factors of µP̂λj in K[X], which

are linear. As P̂λj ∈ Q(λ(H))|Iλ|×|Iλ|, we also have µP̂λj ∈ Q(λ(H))[X]. Hence
we first compute the irreducible factors of µP̂λj in Q(λ(H))[X], and subsequently
factorize the latter into linear factors in K[X].

Algorithms for polynomial factorisation over algebraic number fields are known,
see [12, Ch.3.6.2]. By Proposition (3.10) we even have µP̂λj ∈ Z[λ(H)][X]; note
that by [50, Cor.2.2] the ring Z[λ(H)] coincides with the ring of algebraic integers
in Q(λ(H)). For the case λ = 1 the polynomial µP̂λj has to be factorized in
Z[X]. Algorithms for polynomial factorisation over Z are known as well, see [12,
Ch.3.5], and are available in GAP. Furthermore, as the zeroes of µP̂λj ∈ K[X]

are exactly the character values ϕ(αλj ), for ϕ ∈ IrrK(EλK), the factorisation
of µP̂λj into linear factors can be done in the polynomial ring K ′[X], where

K ′ := Q(λ(H))[χ(C);χ ∈ IrrλK(G), C ∈ Cl(G)], which is a splitting field for EλK ,
see Remark (3.21).

(8.3) We briefly digress, and consider the case where EλK is non-commutative.
As the irreducible characters ϕ ∈ IrrK(EλK) are no longer necessarily linear, we
are faced with the problem to determine representing matrices for the action
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of the Schur basis elements αλi ∈ Aλ on the simple EλK-modules Sϕ, for ϕ ∈
IrrK(EλK) and i ∈ Iλ. Still, it suffices to find the structure constants matrices
Pλi ∈ K |Iλ|×|Iλ|, for i ∈ Iλ. But the technique described in Section (8.2),
to find the character table Φλ of EλK from possibly only part of the structure
constants matrices, does no longer work. Furthermore, Proposition (3.18) no
longer holds. Hence it seems to be unavoidable to compute all of the structure
constants matrices explicitly. For larger examples this might be a considerable
task. If the structure constants matrices are available, there are at least two
strategies to proceed.

Firstly, in particular if the degrees mϕ = ϕ(1) of the ϕ ∈ IrrK(EλK) are small, we
could use the strategy described in Section (8.2). For i, j ∈ Iλ, such that i = i∗

and j 6= j∗, by Remark (1.19) the structure constants matrices Pλi and Pλj ±Pλj∗
are diagonalisable over a suitable algebraic extension field of K. Hence we again
could compute the irreducible factors of the minimum polynomials µPλi ∈ K[X],
find the corresponding characteristic spaces in K1×|Iλ|, intersect them, and
compute the action of the structure constants matrices on these K-subspaces.
Secondly, in particular for the case λ = 1, where Pi ∈ Zn×n, for i ∈ I, we could
use general MeatAxe techniques over the rationals and the rational integers, see
[55, 66], to find the constituents of the regular EλK-module. For the time being,
no substantial examples have been dealt with computationally.

(8.4) In the remaining parts of Section 8 we discuss the strategy to determine
the Fitting correspondence explicitly. Let again EλK be commutative.

Without loss of generality we may assume that K is a splitting field for KG. If
the full character table X = [χ(C);χ ∈ IrrK(G), C ∈ Cl(G)] ∈ K |Cl(G)|×|Cl(G)|

of G as well as Φλ are known, then necessary conditions to find the Fitting
correspondent χϕ ∈ IrrK(G) of ϕ ∈ IrrK(EλK) are given as follows. Note that,
although in many cases IrrλK(G) is known in advance and only the Fitting cor-
respondence has to be determined, IrrλK(G) need not be known for the following
approach.

By Section (8.1), the character degree χϕ(1) = mϕ, for ϕ ∈ IrrK(EλK), can
be determined from Φλ. Furthermore, by Remark (3.24), the matrix Γλ ∈
Q(λ(H))|Iλ|×|Cl(G)|, see Definition (3.19), can be determined from Φλ and Xλ.
Now the γλi (C) ∈ Q(λ(H)), for i ∈ Iλ and C ∈ Cl(G), are algebraic integers,
and in particular for λ = 1 we even have γi(C) ∈ N0, for i ∈ I.

We first determine the sets IrrϕK(G) := {χ ∈ IrrK(G);χ(1) = mϕ}, for ϕ ∈
IrrK(EλK). Thus

∏
ϕ∈IrrK(EλK) IrrϕK(G) can be considered as a set of candidate

cases for the Fitting correspondence searched for, where we restrict ourselves
to the cases where [χ1, . . . , χ|Iλ|] ∈

∏
ϕ∈IrrK(EλK) IrrϕK(G) has pairwise different

entries. From [χ1, . . . , χ|Iλ|] we obtain the submatrix Xχ1,...,χ|Iλ|
of X consist-

ing of the rows corresponding to χ1, . . . , χ|Iλ|. Then we compute the matrix
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Γχ1,...,χ|Iλ|
∈ K |Iλ|×|Cl(G)| defined by

Γχ1,...,χ|Iλ|
:=

1
n
· diag[k−1

i ; i ∈ Iλ] · ΦTλ · Xχ1,...,χ|Iλ|
· diag[|C|;C ∈ Cl(G)].

By Remark (3.24), if Γχ1,...,χ|Iλ|
has an entry which is not an element ofQ(λ(H))

or which is not an algebraic integer or which for the case λ = 1 is a negative inte-
ger, then we discard the candidate case [χ1, . . . , χ|Iλ|], otherwise [χ1, . . . , χ|Iλ|] is
an admissible case. Let Fλ ⊆

∏
ϕ∈IrrK(EλK) IrrϕK(G) denote the set of admissible

candidate cases.

(8.5) Definition.
a) Let SCl(G) be the symmetric group on the set Cl(G) of conjugacy classes of
G, let π ∈ SCl(G), and for χ ∈ IrrK(G) let χπ: Cl(G)→ K be the class function
defined by χπ:C 7→ χ(Cπ−1). For s ∈ Z the s-th power map Cl(G) → Cl(G) is
defined as the map induced by the map G→ G: g 7→ gs. Then π is called a table
automorphism of IrrK(G), if π commutes with the s-th power maps on Cl(G),
for all s ∈ Z, and χπ ∈ IrrK(G), for all χ ∈ IrrK(G). Let Aut(IrrK(G)) ≤
SCl(G) denote the group of table automorphisms of IrrλK(G). Furthermore, π ∈
Aut(IrrK(G)) is a table automorphism of IrrλK(G), if additionally χπ ∈ IrrλK(G),
for all χ ∈ IrrλK(G).

b) Let SIλ be the symmetric group on the set Iλ, let π ∈ SIλ , and for ϕ ∈
IrrK(EλK) let ϕπ: Iλ → K be the class function defined by ϕπ: i 7→ ϕ(iπ−1).
Then π is called a table automorphism of IrrK(EλK), if ϕπ ∈ IrrK(EλK), for
all ϕ ∈ IrrK(EλK). Let Aut(IrrK(EλK)) ≤ SIλ denote the the group of table
automorphisms of IrrK(EλK).

(8.6) Remark.
a) Given the character table X ∈ K |Cl(G)|×|Cl(G)| of IrrK(G), there are pro-
grams available in GAP to compute Aut(IrrK(G)). Note that, by the orthogo-
nality relations for X , a table automorphism π ∈ Aut(IrrK(G)) leaves the sets
Cl(G)c := {C ∈ Cl(G); |C| = c}, for c ∈ N, invariant.

Furthermore, given the character table Φ ∈ K |IrrK(EK)|×|I| for the case λ = 1,
by Remark (3.21), each π ∈ Aut(IrrK(EK)) fixes the Fitting correspondent ϕ1

of the trivial KG-character. Hence π leaves the sets Ik := {i ∈ I; ki = k}, for
k ∈ N, invariant. Thus we have Aut(IrrK(EK)) ≤

∏
k∈{ki;i∈I} SIk . For the

examples occurring in the present work, see Section (11.1), this turns out to be
a sufficiently small group such that we are able to check for all of its elements
whether they are in Aut(IrrK(EK)) or not. In particular, if all the index param-
eters ki, for i ∈ I, are pairwise different, then we have Aut(IrrK(EK)) = {1}.
b) For table automorphisms πG ∈ Aut(Irr1

K(G)) and πE ∈ Aut(IrrK(EK))
let [πG] ∈ Z|Cl(G)|×|Cl(G)| and [πE ] ∈ Z|I|×|I| denote the permutation matrices
inducing the corresponding column permutations of X1 and Φ, respectively. If
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Γχ1,...,χ|I| ∈ K |I|×|Cl(G)| fulfils the admissibility conditions in Section (8.4), then

[πE ]−1 · Γχ1,...,χ|I| · [πG] =
1
n
· diag[k−1

i ] · (Φ · [πE ])T · X · [πG] · diag[|C|]

also is an admissible matrix. Hence Aut(IrrK(EK))×Aut(Irr1
K(G)) acts on the

set of admissible candidate cases F1 for the Fitting correspondence, and the
strategy described in Section (8.4) yields unions of orbits under this action.

The strategy described in Section (8.4) and Remark (8.6) is applied in Section
(11.3).

9 Condensation

In Section 9 we discuss aspects of practical computational applications of con-
densation functors. We keep the notation of Section 6.

(9.1) Let Θ be as in Section (2.1), let λ be a representation of ΘH, such that
the underlying ΘH-module Θλ is Θ-free of degree 1, and let ελ ∈ ΘH ⊆ ΘG
denote the corresponding idempotent. We have ελΘG ∼= λG as ΘG-modules.
Hence, using Definition (6.4) and Remark (6.5), for V ∈ mod-ΘG we have
V ελ = Cελ(V ) ∼= HomΘG(λG, V ) ∼= HomΘH(λ, VH) as Θ-modules. Hence, if Θ
is a field, then the underlying set of the condensed module V ελ ∈mod-ελΘGελ
is the isotypic component of VH belonging to λ.

From the computational point of view, for given V ∈ modΘ-ΘG, we have to
find a Θ-basis of V ελ, and subsequently, for given g ∈ G, we have to find the
action of ελgελ ∈ ελΘGελ on V ελ with respect to this basis. In practice, this
has to be done without having available explicit representing matrices for the
action of the elements of G on V , since typically rkΘ(V ) is so large that we
would not be able to deal computationally with these matrices.

If λ = 1, let ε := ε1. In this case we have V ε = FixH(V ), the set of the H-
fixed points in V . This particular condensation functor is called a fixed point
condensation functor. The latter have been applied to different types of FG-
modules over finite fields F . Historically, the first application [77] has been
to permutation modules. We give the corresponding condensation formula in
Proposition (9.5). An implementation is available as the ZKD program in the
MeatAxe. Originally, this program returns representing matrices for the action
of εgε on V ε, for g ∈ G. We have generalised it slightly to return, optionally,
orbit counting matrices C(g) having integral entries, see Definition (9.4).

Applying fixed point condensation functors to tensor product modules has been
sketched in [52], and has been worked out in [79, 48]; an implementation, with
a few improvements [58], is also available in the MeatAxe. Arbitrary induced
modules have been dealt with in [59], an implementation being available in GAP.
Great improvements for the permutation module case have been made by the
invention of the direct condense technique [67], which has subsequently been
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developed into a parallelised version in [45]; a modified version has been used
in [57] and we further elaborate on this technique in Section 10.

(9.2) Remark.
a) Let Θ ∈ {K,F} be as in Section (2.10), where in particular the characteristic
of F is coprime to |H|, and let χV ∈ ZIBrΘ(G) denote the Brauer character of
V ∈mod-ΘG. If Θ = F , then χV is a K-valued class function on the p′-classes
of G, which can be extended to a class function on G by letting χV (g) = χV (gp′),
where g = gp · gp′ ∈ G denote the p-part and the p′-part of g ∈ G, respectively.
If Θ = K, then χV is a K-valued class function on G anyway. Hence we have

dimΘ(V ελ) = 〈(χV )H , λ〉H = 〈χV , λG〉G,

where 〈·, ·〉G and 〈·, ·〉H denote the hermitian products on the K-valued class
functions on G and H, respectively. Hence the Θ-dimension of the condensed
module V ελ of V can be determined from purely character theoretic information
without actually applying the condensation functor.
b) Let k ∈ I and g ∈ HgkH, and let trV ελ and trV denote the Θ-valued trace
functions on V and V ελ, respectively. As in the proof of Proposition (3.20) we
have

trV ελ(ελgελ) = trV (ελgελ) =
1
|H|
·
∑

C∈Cl(G)

γk(C) · trV (C),

where γk(C) ∈ Θ is as in Definition (3.19). We have trV (C) = χV (C), if Θ = K,

and trV (C) = ˜χV (C), if Θ = F , respectively.

This has been applied to solve problems concerned with the determination of
decomposition numbers of algebraically conjugate ordinary characters, see [57,
65, 70].

(9.3) We proceed to prove the condensation formula, see Proposition (9.5),
to which fixed point condensation of permutation modules boils down.

Let λ = 1 and ε = ε1. Let U ≤ G be another subgroup and Ξ := U |G. Let
J := {1, . . . , r̃}, where r̃ ∈ N is the number of U -H-double cosets in G, and
let {˜̃gj ∈ G; j ∈ J } be a set of representatives of the U -H-double cosets in G,
where ˜̃g1 := 1G.

As in Section (5.2) we have

HomΘG(1GH , 1
G
U ) ∼= HomΘH(1, (1GU )H) ∼=

⊕
j∈J

HomΘH(1, (1
U

˜̃gj∩H)H).

(9.4) Definition.
a) For j ∈ J let Ξj := {U ˜̃gjh ∈ Ξ;h ∈ H} ⊆ Ξ and Ξ+

j :=
∑
ξ∈Ξj

ξ ∈ ΘΞ.
Hence Ξ+ := {Ξ+

j ; j ∈ J } is a Θ-basis of ΘΞ · ε.
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b) For g ∈ G and i, j ∈ J let the orbit counting numbers cij(g) ∈ N0 with
respect to Ξ =

∐
j∈J Ξj be defined by

cij(g) := |{ξ ∈ Ξi; ξg ∈ Ξj}| = |Ξig ∩ Ξj | = |Ξi ∩ (Ξjg−1)|.

Let the orbit counting matrix C(g) ∈ Nr̃×r̃0 with respect to Ξ =
∐
j∈J Ξj , be-

longing to g, be defined by C(g)ij := cij(g), for i, j ∈ J .

(9.5) Proposition. Let g ∈ G. Then the representing matrix for the action
of εgε ∈ εΘGε on ΘΞ · ε with respect to the Θ-basis Ξ+ is given as

[εgε]Ξ+ = C(g) · diag[|Ξj |−1; j ∈ J ] ∈ Θr̃×r̃.

Proof. We have Ξ+
i · εgε = 1

|H| ·
∑
j∈J |{ξ ∈ Ξi; ξg ∈ Ξj}| · |H||Ξj | · Ξ

+
j . ]

(9.6) Proposition. Let U = H, hence Ξ = Ω and J = I. Let g ∈ HglH ⊆
G for l ∈ I. Then for i, j ∈ I and the structure constants plij ∈ Θ, see Definition
(1.18), we have,

plij =
kl
kj
· cij(g) =

kl
kj
· |Ωi ∩ (Ωjg−1)| = kl

kj
· |Ωig ∩ Ωj | ∈ Θ,

independent of the particular choice of g ∈ HglH.

Proof. As in the proof of Proposition (2.2), we have

Ω+
i σ =

∑
i′∈{1,...,ki}

εgihii′ =
|H|
|Hi|

· εgiε = ki · εgiε ∈ εΘG.

We may without loss of generality assume that g = gl. Thus we have

(ki · εgiε) · εglε =
∑
j∈I

cij(gl)
kj

· (kj · εgjε).

Furthermore, by Proposition (2.2) we have (ki · εgiε) · (kl · εglε) =
∑
j∈I plij ·

(kj · εgjε). This yields the assertion. ]

(9.7) Remark. Let still U = H, hence Ξ = Ω and J = I.
a) If g ∈ G is given, the row of C(g) = [cij(g); i, j ∈ I] corresponding to i = 1 ∈
I has exactly one non-vanishing entry. If this is in the column corresponding
to k ∈ I, then by Definition (9.4) we have g ∈ HgkH. Furthermore, for the row
sums and column sums of C(g) we have

∑
j∈I cij(g) = ki and

∑
i∈I cij(g) = kj ,

for fixed i ∈ I and fixed j ∈ I, respectively.
b) If EK is commutative, we have plij = pilj , for i, j, l,∈ I. Hence by Proposi-
tion (9.6) we have

Pl = kl · C(gl) · diag[k−1
j ; j ∈ I] = kl · [εglε]Ω+ .
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(9.8) For the computation of orbit counting matrices, see Definition (9.4), for
the case Ξ = Ω, which is most interesting in the present work, we occasionally
use the following strategy, whose usefulness becomes clear in Section (10.3).

Let U ≤ H, let J := {1, . . . , r̃}, where r̃ ∈ N is the number of H-U -double cosets
in G, and let {g̃j ∈ G; j ∈ J } be a set of representatives of the H-U -double
cosets in G, where g̃1 := 1G. For j ∈ J let Ω̃j := {Hg̃ju ∈ Ω;u ∈ U} ⊆ Ω
Then, for each j ∈ J there is i ∈ I such that Ω̃j ⊆ Ωi. This defines a surjective
map αU,H :J → I.

Let c̃ij(g) := |{ω ∈ Ω̃i;ωg ∈ Ω̃j}| ∈ N0, for i, j ∈ J and g ∈ G, be the orbit
counting numbers with respect to Ω =

∐
j∈J Ω̃j . Furthermore, let cij(g) ∈ N0,

for i, j ∈ I and g ∈ G, be the orbit counting numbers with respect to Ω =∐
i∈I Ωi. Hence we have

cij(g) =
∑

ĩ∈α−1
U,H(i)

∑
j̃∈α−1

U,H(j)

c̃ĩj̃(g).

To determine the sets α−1
U,H(i) ⊆ J , for i ∈ I, we additionally compute orbit

counting matrices C̃(h) = [c̃ij(h); i, j ∈ J ] ∈ Nr̃×r̃0 , for h ∈ H, where H ⊆ H
is a set of generators of H. From these we compute the finest set partition
{Jk ⊆ J ; k ∈ {1, . . . , s}} of J , hence J =

∐s
k=1 Jk, such that we have j ∈ Jk,

whenever i ∈ Jk and j ∈ J such that c̃ij(h) 6= 0 for some h ∈ H. As 〈H〉 = H
and by the definition of the orbit counting numbers we conclude that s = r and
{α−1

U,H(i); i ∈ I} = {Jk; k ∈ {1, . . . , r}}.

(9.9) We return to the case of λ arbitrary. In practice we only compute
representing matrices for the action of a few elements {ελgελ; g ∈ G} ⊆ ελΘGελ,
for some subset G ⊆ G, on the module V ελ ∈ modΘ-ελΘGελ, where V ∈
modΘ-ΘG. Hence we only know the action of the Θ-subalgebra

CG := 〈ελgελ; g ∈ G〉Θ−algebra ⊆ ελΘGελ

on V ελ, which poses the problem to infer the structure of the ελΘGελ-module
V ελ from an explicit analysis of the CG-module structure of V ελ. Different
strategies to tackle this problem have been developed, see for example [26, 38,
59]. The following idea and the criterion in Proposition (9.11) might be helpful
as well, although for the time being they have not yet been applied to substantial
examples.

Let V ∈ modελ -FG be a trivial source FG-module; for example this holds for
V ∼= ελFG as FG-modules. By [39, Thm.II.12.4] we have dimF EndFG(V ) =
〈χV̂ , χV̂ 〉G, where V̂ ∈ modR-RG is the uniquely defined trivial source RG-

module such that ˜̂V ∼= V as FG-modules, and where 〈·, ·〉G is the hermi-
tian product on the K-valued class functions on G. Hence in this situation
dimF EndFG(V ) can be determined from purely character theoretic information,
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and as the assumptions of Remark (6.13) are fulfilled, dimF EndελFGελ(V ελ) is
also known.

If CG ⊆ ελFGελ is an F -subalgebra, and the restriction of V ελ to CG is given, we
can explicitly determine EndCG (V ελ), using the algorithms described in [74] to
compute endomorphism rings available in the MeatAxe. If dimF EndCG (V ελ) >
dimF EndελFGελ(V ελ), we compute representing matrices for the action of ad-
ditional elements ελgελ ∈ ελFGελ on V ελ, and thus enlarge the set G ⊆
G and the F -subalgebra CG ⊆ ελFGελ, until we have dimF EndCG (V ελ) =
dimF EndελFGελ(V ελ). Hence we have explicitly determined EndελFGελ(V ελ) =
EndCG (V ελ).

Knowing EndελFGελ(V ελ), we may for example determine a direct sum decom-
position of the ελFGελ-module V ελ into indecomposable summands and the
isomorphism types of the summands, using the relevant algorithms described in
[74], available in the MeatAxe. Furthermore we may infer the existence of certain
ελFGελ-modules, namely those which are images of ελFGελ-endomorphisms of
V ελ.

Letting DV ελ : ελFGελ → EndF (V ελ) denote the corresponding representation,
in general we might still have a proper inclusion DV ελ(CG) ⊂ DV ελ(ελFGελ), as
we might have a proper inclusion DV ελ(ελFGελ) ⊂ EndEndελFGελ (V ελ)(V ελ) =
EndEndCG (V ελ)(V ελ). To the knowledge of the author, the known general cri-
teria to ensure equality here, hence the double centralizer property, are quite
restrictive, see [14, Thm.VIII.59.6].

(9.10) Let H ′ ≤ H as well as λ and λ′ be as in Section (5.3). In particular, we
keep the condition that λG and (λ′H−λ)G have no KG-constituents in common,
and that the characteristic of F is coprime to |H|. Let Θ ∈ {K,R}. Then we
have λGελ′ ∼= HomΘG(λ′G, λG) as Θ-modules, and λ̃Gελ̃′

∼= HomFG(λ̃′G, λ̃G) as
F -vector spaces. Furthermore let Dλ′λ

Θ : (Eλ
′

Θ )◦ → EndΘHomΘG(λ′G, λG) denote
the corresponding representation of (Eλ

′

Θ )◦ ∼= ελ′ΘGελ′ , and let Dλ̃′λ̃
F : (Eλ̃′F )◦ →

EndFHomFG(λ̃′G, λ̃G) denote the analogous one of (Eλ̃′F )◦ ∼= ελ̃′FGελ̃′ . We
give an admittedly rather restrictive criterion to ensure the equality Dλ′λ

Θ (C) =
Dλ′λ

Θ (Eλ
′

Θ ), for a Θ-subalgebra C ⊆ Eλ′Θ , and an analogous statement for Eλ̃′F .

(9.11) Proposition. We keep the notation of Section (9.10).
a) Let αλ

′λ
1 ∈ HomΘG(λ′G, λG) be as in Remark (5.7) and let C ⊆ Eλ

′

Θ be a
Θ-subalgebra. Then we have

Eλ
′

Θ · αλ
′λ

1 = HomΘG(λ′G, λG),

and Dλ′λ
Θ (C) = Dλ′λ

Θ (Eλ
′

Θ ) holds if and only if C · αλ′λ1 = Eλ
′

Θ · αλ
′λ

1 .
b) Let αλ̃′λ̃1 ∈ HomFG(λ̃′G, λ̃G) be as in Remark (5.7) and let C ⊆ Eλ̃

′
F be an

F -subalgebra. Then we have

Eλ̃
′

F · αλ̃
′λ̃

1 = HomFG(λ̃′G, λ̃G),



73

and Dλ̃′λ̃
F (C) = Dλ̃′λ̃

F (Eλ̃′F ) holds if and only if C · αλ̃′λ̃1 = Eλ̃
′

F · αλ̃
′λ̃

1 .

Proof. Let i′ ∈ Iλ′ and αλ
′

i′ ∈ Aλ′ . Then by Section (1.7) and Definition (5.6)
we have

αλ
′

i′ · αλ
′λ

1 :ω′1 7→
∑

j′∈{1,...,k′
i′}

λ′(h′−1
i′j′ ) · λ(h′′i′j′) · ωij ,

where i = αH′,H(i′), and j ∈ {1, . . . , ki} depends on j′. For i ∈ Iλ, by Corollary
(5.11), we have α−1

H′,H(i) ⊆ Iλ′ . Hence from g′i′h
′
i′j′ = h′′i′j′gihij and g′i′ =

h′′i′gihij1 for some j1 ∈ {1, . . . , ki}, see Definition (5.6), we obtain

g−1
i h′′i′gi · hij1 · h′i′j′ = g−1

i h′′i′j′gi · hij

and thus λ′(h′−1
i′j′ ) ·λ(h′′i′j′) = ζ ′i′ ·λ(h−1

ij ). Hence, by Proposition (5.4), for i ∈ Iλ
and i′ ∈ α−1

H′,H(i) we have

αλ
′

i′ · αλ
′λ

1 =
k′i′

ki
· ζ ′i′ · αλ

′λ
i ∈ HomΘG(λ′G, λG).

This shows the first assertion in a). By Remark (5.9) the quotient k′
i′
ki
∈ N is

coprime to p. Hence an analogous argument shows the first assertion in b).

For the second assertion in a), we only have to show sufficiency. Let α ∈ Eλ′Θ .
Because of C ·αλ′λ1 = HomΘG(λ′G, λG) there is β ∈ C such that β ·αλ′λ1 = α·αλ′λ1 .
By Proposition (5.4) for i ∈ Iλ we have αλ

′λ
i = αλ

′λ
1 · αλi . Hence we have

(α−β) ·αλ′λi = (α−β) ·αλ′λ1 ·αλi = 0. Thus Dλ′λ
Θ (α) = Dλ′λ

Θ (β). An analogous
argument shows the second assertion in b). ]

(9.12) For the special case H = H ′ and λ = λ′ = 1, the representations
Dλλ

Θ and Dλ̃λ̃
F are the left regular representations of EΘ and EF , respectively.

These hence are faithful representations. We have αλλ1 = αλ1 = idΘλΩ and
αλ̃λ̃1 = αλ̃1 = idFλ̃Ω, and the criteria in Proposition (9.11) boil down to the
trivial statements that C = EΘ if and only if C · idΘΩ = EΘ · idΘΩ, and C = EF
if and only if C · idFΩ = EF · idFΩ, respectively.

This special case has found practical applications, for example see [46] and also
Section (19.2). Another generalisation of this special case different from the one
given in Proposition (9.11) has been derived in [79, 46].

We conclude Section 9 with an observation concerning symmetric algebras,
which proves useful in Section (19.2).

(9.13) Proposition. Let Θ be a perfect field, and let A be a symmetric
finite-dimensional Θ-algebra. For ϕ ∈ IrrΘ(A) let Sϕ ∈mod-A be the simple A-
module affording ϕ, let dϕ := dimΘ(Sϕ) ∈ N0 and fϕ := dimΘ EndA(Sϕ) ∈ N0,
and let Pϕ ∈mod-A be the projective cover of Sϕ.
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a) Then the multiplicity of the constituent Sϕ in an A-module composition
series of the regular A-module A equals 1

fϕ
· dimΘ(Pϕ).

b) The simple A-module Sϕ is a projective A-module if and only if the above
multiplicity of Sϕ equals dϕ

fϕ
, otherwise the multiplicity is at least 2 · dϕfϕ .

Proof. For ψ ∈ IrrΘ(A) let the Cartan number cϕψ ∈ N0 be the multiplicity
of the constituent Sψ in an A-module composition series of Pϕ. Hence we have

dimΘ(Pϕ) =
∑

ψ∈IrrΘ(A)

cϕψ · dψ.

Let eψ ∈ A be a primitive idempotent such that eψA/rad(eψA) ∼= Sψ as A-
modules. By Remark (6.5) we have, as Θ-vector spaces,

Sψeψ ∼= HomA(eψA,Sψ) ∼= HomA(eψA/rad(eψA), Sψ) ∼= EndA(Sψ),

and hence fψ = dimΘ(Sψeψ). Furthermore, by Propositions (6.6) and (6.7) we
have dimΘ(eϕA · eψ) = dimΘ(Pϕ · eψ) = cϕψ · fψ. By [18, La.I.16.6] we have
dimΘ(eϕAeψ) = dimΘ(eψAeϕ). Hence we conclude cϕψ · fψ = cψϕ · fϕ.

As A ∼=
⊕

ϕ∈IrrΘ(A)

(⊕ dϕ
fϕ

i=1 Pϕ

)
as A-modules, the multiplicity of Sϕ in the

regular A-module A is equal to∑
ψ∈IrrΘ(A)

dψ
fψ
·cψϕ =

∑
ψ∈IrrΘ(A)

dψ
fϕ
·cϕψ =

1
fϕ
·

∑
ψ∈IrrΘ(A)

dψ ·cϕψ =
1
fϕ
·dimΘ(Pϕ).

This proves the assertion in a), the assertion in b) is clear. ]

(9.14) Remark. Proposition (9.13) can be applied to the regular module
of the Θ-algebra A := εΘGε, where ε = ε1 ∈ ΘH ⊆ ΘG, hence the situation
of Section (9.12). If Θ is a finite field, then the MeatAxe finds the simple
A-modules Sϕ, for ϕ ∈ IrrΘ(A), the Θ-dimensions dϕ, the Θ-dimensions fϕ,
and the multiplicities of the Sϕ as constituents in an A-module composition
series of the regular A-module. Hence from these standard MeatAxe results the
projective simple A-modules can be determined, as well as the Θ-dimensions
of the projective indecomposable A-modules, without actually decomposing the
regular A-module into indecomposable summands. For such an application, see
Section (19.2)

10 Enumeration of long orbits

In Section 10 we describe strategies to enumerate long and ultra-long orbits.
Different variants of these are the main workhorses to collect the data neces-
sary to compute structure constants matrices. We elaborate on the basic idea
invented in [45], where the exposition given here is inspired by [57].
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(10.1) Let U ≤ G, let r̃ ∈ N be the number of H-U -double cosets in G and
J := {1, . . . , r̃}, and let {g̃j ∈ G; j ∈ J } be a set of representatives of the H-U -
double cosets in G, where g̃1 := 1G. For j ∈ J let Ω̃j := {Hg̃ju ∈ Ω;u ∈ U} ⊆ Ω
and ω̃j := Hg̃j ∈ Ω̃j ⊆ Ω, where Ω still is the set H|G of right cosets of H in
G. Note that in Section (9.8) we have assumed additionally that U ≤ H holds,
which we do not do here. In the sequel of Section 10 we do not distinguish
between the G-set Ω = H|G and other G-sets isomorphic to Ω, such as sets of
vectors.

Let G ⊂ G be a set of generators of G, and let U ⊆ U be a set of generators of
U . We use a modification of the standard breadth-first orbit algorithm using G
to enumerate the G-orbit Ω. Namely, whenever we compute an element ω ∈ Ω
which has not been encountered earlier in the orbit enumeration, then we first
compute its whole U -orbit ω ·U ⊆ Ω, using U , which hence is one of the Ω̃j , for
j ∈ J , and then proceed with the general orbit algorithm. Thus the G-orbit
Ω is enumerated piecewise, U -orbit by U -orbit. For each U -orbit ω · U ⊆ Ω we
encounter, we store a word in the set of generators G of G mapping the start
point ω1 ∈ Ω to ω ∈ Ω. To actually enumerate long and ultra-long orbits we
cannot afford to store all elements of Ω. Instead we only store a certain subset
of Ω, which is done as follows.

We choose a subgroup U1 ≤ U ≤ G, small enough such that the elements of U1

can be enumerated explicitly, and objects representing the action of all of these
elements on Ω can be stored; these objects could be permutations, or matrices
if Ω is a set of vectors. Furthermore we choose a U1-set Ξ1, such that there is a
homomorphism q: ΩU1 → Ξ1 of U1-sets, where ΩU1 denotes the U1-set Ω defined
by restricting the G-action to U1. We do not assume that q is surjective, nor
that U1 acts transitively on Ξ1, but we assume that |Ξ1| is small enough such
that the elements of Ξ1 can be enumerated explicitly, and all of them can be
stored.

For each U1-orbit ξ · U1 ⊆ Ξ1 we choose an element ξ0 ∈ ξ · U1 ⊆ Ξ1, which
is called the strongly minimal element of ξ · U1. For ξ0 6= ξ′ ∈ ξ · U1 ⊆ Ξ1

we store an element of U1 mapping ξ′ to ξ; in practice this means a pointer to
that element of U1. For the strongly minimal element ξ0 we store the elements
of StabU1(ξ0) ≤ U1; in practice this again means pointers to the elements of
StabU1(ξ0).

For a U1-orbit ω · U1 ⊆ Ω let ξ0 ∈ q(ω · U1) = q(ω) · U1 ∈ Ξ1 be the strongly
minimal element of the U1-orbit q(ω) · U1. Then the set q−1(ξ0) ⊆ ω · U1 ⊆ Ω
is called the set of weakly minimal elements of the U1-orbit ω · U1. The weakly
minimal elements of ω · U1 are given as ω · u · StabU1(ξ0) ⊆ Ω, where u ∈ U1 is
the element stored with q(ω) ∈ Ξ1 if q(ω) ∈ Ξ1 is not strongly minimal, or u = 1
if q(ω) ∈ Ξ1 is strongly minimal, while StabU1(ξ0) is stored with the strongly
minimal element ξ0 ∈ Ξ1 belonging to q(ω) · U1.

To enumerate Ω piecewise, U -orbit by U -orbit, we have to enumerate all the U -
orbits Ω̃j ⊆ Ω, for j ∈ J , in turn. The latter again are enumerated piecewise,
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U1-orbit by U1-orbit. We store exactly the weakly minimal elements of the
U1-orbits in Ω, together with the information to which of the U -orbits Ω̃j , for
j ∈ J , they belong.

Hence, during the enumeration of Ω, for ω ∈ Ω we have to decide whether we
already have encountered the U1-orbit ω ·U1 ⊆ Ω earlier. To do this we compute
ω · u ∈ Ω, where u ∈ U1 is the element stored with q(ω) ∈ Ξ1 if q(ω) ∈ Ξ1 is
not strongly minimal, or u = 1 if q(ω) ∈ Ξ1 is strongly minimal. If ω · u ∈ Ω is
already stored, then we have encountered ω · U1 earlier. If ω · u ∈ Ω is not yet
stored, then we store all the weakly minimal elements of ω · U1 ⊆ Ω.

(10.2) A few comments on this general strategy are in order.

a) As we also store the information to which of the U -orbits Ω̃j , for j ∈ J , the
weakly minimal elements belong, this is sufficient to compute orbit counting
numbers with respect to Ω =

∐
j∈J Ω̃j , see Definition (9.4).

b) To avoid to store too many elements of Ω, the proportion of weakly min-
imal elements of Ω should be small. Hence there is a tendency of choosing
U1 such that the U1-orbits in Ξ1 are long, at least on average; this makes the
proportion of strongly minimal elements of Ξ1 small. Furthermore, the sets
ω · u · StabU1(ξ0) ⊆ Ω of weakly minimal elements of Ω tend to be smaller, if
the stabilizers StabU1(ξ0) ≤ U1 are small. Hence at best we have some large
subgroup U1 ≤ U and some large set Ξ1, having a tendency to contain mostly
regular U1-orbits. Contrary to this, as we require both the elements of U1 and
of Ξ1 to be explicitly enumerable, this poses upper bounds on how large U1 and
Ξ1 might possibly be chosen.

c) If Ω is a set of vectors in an FG-module V , where F is a finite field, then
a standard choice of the U1-set Ξ1 is as follows. Let q̂:VU1 → V1 be a ho-
momorphism of FU1-modules, let Ξ1 = V1 be the set of vectors in V1 and let
q := q̂Ω: ΩU1 → Ξ1. Note that one possible pitfall here is that the zero vector
0 ∈ Ξ1 = V1 is a strongly minimal element of Ξ1 and we have StabU1(0) = U1,
hence all elements of q−1(0) ∩Ω are weakly minimal elements of Ω and have to
be stored.

d) To store and recover elements quickly we use a hashing technique. If the
elements of Ω are vectors over some finite field F , one technique to find a
suitable hash function is to view the entries of a vector as the coefficients of
the |F |-adic expansion of an integer, and to take the latter as hash value. If
this yields a hash function whose range is too large, compared to the expected
number of weakly minimal elements of Ω, then we are content with only using
part of the entries of the vectors to compute the hash function. Hash functions
of that type have indeed proven to be suitable for the kind of computations done
in the present work, although no attempt of a formal analysis has been made.

e) Depending on the example being under consideration, different amounts of
memory to store an element of Ω are needed. Hence we have to make choices, ful-
filling the requirements described above, such that we obtain a sufficiently small
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number of weakly minimal elements of Ω, which actually have to be stored. We
do not go into a detailed analysis of memory requirements here; some numer-
ical considerations of these issues are given in [57] for the example examined
there, where in particular the problem, that the zero vector has a relatively
large stabilizer, cannot be neglected.

(10.3) We briefly discuss implementational details.

a) The strategy described in Sections (10.1) and (10.2) has been implemented,
for Ω being a set of vectors in a vector space V over a finite field, in the pro-
grams described in [45]. These are also parallelised in the sense that the different
suborbits Ω̃j ⊆ Ω are treated in parallel. To use the full strength of this par-
allelisation, we have to ensure that |J | is large compared to the number of
processors we want to use.

b) We also make use of modified versions of these programs [56], for Ω being a
set of subspaces of a vector space V over a finite field F , where we both allow
for 1-dimensional and higher dimensional F -subspaces. In the former case, the
necessary modifications of the programs are straightforward.

In the latter case, let Ω ⊆ V consist of F -subspaces of V of F -dimension d ∈ N.
Then a standard choice of the U1-set Ξ1 is as follows. Let again q̂:VU1 → V1 be
a homomorphism of FU1-modules. One possible choice of Ξ1 is the set of all
F -subspaces of V1. But it turns out that typically these sets are too large to
be enumerated explicitly. Instead we assume dimF im (q̂) ≥ d+ 1 and let Ξ1 be
the set of all F -subspaces of V1 of F -dimension d. Still we have to ensure that
the elements of Ξ1 can be enumerated explicitly. Thus we only have a map of
U1-sets q̃ := q̂Ω̃: Ω̃U1 → Ξ1, where Ω̃ := {ω ∈ Ω; q̂(ω) ∈ Ξ1} ⊆ Ω, which might
be a proper subset of Ω. Hence this only allows to treat the ω ∈ Ω̃ as described
above, while all ω ∈ Ω \ Ω̃ are simply defined to be weakly minimal and hence
have to be stored.

To remedy this, we proceed as follows. Let q̂i:VU1 → V i1 , for i ∈ {1, . . . , k} and
k ∈ N, be homomorphisms of FU1-modules, such that dimF im (q̂i) ≥ d+ 1, for
i ∈ {1, . . . , k}. As becomes clear below, the different FU1-homomorphisms q̂i
should be as independent from each other as possible. Hence we additionally
require that

codimF (
⋂

i∈{1,...,k}

ker q̂i) =
∑

i∈{1,...,k}

codimF ker(q̂i).

Let again Ξi1 be the set of all F -subspaces of V i1 of F -dimension d, and Ω̃i :=
{ω ∈ Ω; q̂i(ω) ∈ Ξi1} ⊆ Ω, as well as q̃i := (q̂i)Ω̃i : (Ω̃i)U1 → Ξi1, for i ∈ {1, . . . , k}.
An element ω ∈ Ω is processed as follows. If ω ∈ Ω̃1 then we may and do use
q̃1 as described above. If ω 6∈ Ω̃1, but ω ∈ Ω̃2, then we may and do use q̃2, and
so on. Hence only the elements ω ∈ Ω \ (

⋃
i∈{1,...,k} Ω̃i), cannot be treated this

way, and are simply defined to be weakly minimal and hence have to be stored.
Thus we have to choose k big enough such that we can afford to do so. A more
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detailed description of this idea, together with some numerical considerations
for the example examined there, is given in [57].

(10.4) For ultra-long orbits Ω the assumptions in Section (10.1) on the ex-
plicit enumerability of the subgroup U1 < U and the U1-set Ξ1 turn out to be
too strict. We still follow the strategy to enumerate Ω piecewise, U -orbit by
U -orbit, but instead of one subgroup U1 < U we use a whole chain of subgroups
iteratively.

Let {1} := U0 < U1 < U2 < . . . < Uk < Uk+1 =: U be a chain of subgroups,
for some k ∈ N, given by sets of generators Ui, respectively. Hence Section
(10.1) deals with the case k = 1. For all i ∈ {1, . . . , k} let Ξi be a Ui-set,
such that there are homomorphisms qi,i−1: (Ξi)Ui−1 → Ξi−1 of Ui−1-sets, for
i ∈ {1, . . . , k + 1}, where we let Ξk+1 := Ω and Ξ0 is the trivial U0-set with
|Ξ0| = 1.

For i ∈ {1, . . . , k} let Ti ⊆ Ui be a set of representatives of the left cosets Ui|Ui−1

of Ui−1 in Ui. Thus u ∈ Uk can be written as u = tk(u) · tk−1(u) · · · · · t1(u),
where ti(u) ∈ Ti, for i ∈ {1, . . . , k}. We assume that the sets Ti ⊆ Ui can be
enumerated explicitly, but we do not assume that this can be done for the left
cosets U |Uk of U = Uk+1 in Uk.

For i ∈ {0, . . . , k + 1} we by induction define certain distinguished elements of
the Ui-orbits in Ξi. For i ∈ {0, . . . , k} we define strongly minimal elements such
that each Ui-orbit in Ξi contains exactly one strongly minimal element, while
for i ∈ {1, . . . , k + 1} we define weakly minimal elements of the Ui-orbits in Ξi,
where each Ui-orbit in Ξi contains at least one, but possibly more than one,
weakly minimal element. For i = 0 the U0-set Ξ0 is a U0-orbit and Ξ0 is the set
of strongly minimal elements of Ξ0.

Let i ∈ {1, . . . , k}. By induction we may assume that we have already defined
the strongly minimal elements of Ξi−1. Let ξ ∈ Ξi. Using the set of coset
representatives Ti we obtain ξ · Ui =

∐
t∈T ′i

ξ · t · Ui−1 ⊆ Ξi, where t runs

through a suitable subset T ′i ⊆ Ti. For t ∈ T ′i let ξ̃t,0 ∈ Ξi−1 be the strongly
minimal element of the Ui−1-orbit qi,i−1(ξ · t ·Ui−1) = qi,i−1(ξ · t) ·Ui−1 ⊆ Ξi−1.
The set of weakly minimal elements of ξ ·Ui is defined as q−1

i,i−1({ξ̃t,0; t ∈ T ′i }) ⊆
ξ · Ui ⊆ Ξi. In particular, for i = 1 this means that all elements of Ξ1 are
weakly minimal. We choose one of the weakly minimal elements of ξ · Ui ⊆ Ξi
as the strongly minimal element ξ0 ∈ ξ ·Ui, and for each weakly minimal element
ξ0 6= ξ′ ∈ ξ ·Ui ⊆ Ξi we store an element of Ui, as a word in the set of generators
Ui, mapping ξ′ to ξ0, while for the strongly minimal element ξ0 we store a set
of generators of StabUi(ξ0), again as a set of words in the set of generators Ui.
Let finally i = k+1, hence we have Uk+1 = U and Ξk+1 = Ω. The set of weakly
minimal elements of a Uk-orbit ξ·Uk ⊆ Ξk+1 is defined as the set q−1(ξ̃0) ⊆ ξ·Uk,
where ξ̃0 ∈ qk+1,k(ξ · Uk) = qk+1,k(ξ) · Uk ⊆ Ξk is the strongly minimal element
of the Uk-orbit qk+1,k(ξ) · Uk ⊆ Ξk. The set of weakly minimal elements of a
Uk+1-orbit ξ ·Uk+1 ⊆ Ξk+1 is defined as the union of the sets of weakly minimal
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elements of the Uk-orbits contained in ξ · Uk+1.

By induction, for i ∈ {1, . . . , k+ 1}, each Ui-orbit in Ξi encountered is enumer-
ated piecewise, Ui−1-orbit by Ui−1-orbit. Exactly the weakly minimal elements
are stored, where for i ∈ {1, . . . , k} we store the additional information as de-
scribed above, while for i = k+1 we additionally store the information to which
of the U -orbits Ω̃j , for j ∈ J , the weakly minimal elements belong. Finally, we
store elements of G mapping the start point ω1 ∈ Ω to ω̃j ∈ Ω̃j ⊆ Ω, for j ∈ J ,
as well as elements of U mapping ω̃j ∈ Ω̃j to representatives of the Uk-orbits
in Ω̃j . These elements are stored as words in the sets of generators G and U ,
respectively.

During the enumeration of Ω, for ω ∈ Ω we have to decide whether we have
already encountered the Uk-orbit ω · Uk ⊆ Ω earlier. To do this, as in Section
(10.1), we compute ω·u ∈ Ω, where u ∈ Uk is the element stored with qk+1,k(ω) ∈
Ξk if qk+1,k(ω) ∈ Ξk is not strongly minimal, or u = 1 if qk+1,k(ω) ∈ Ξk is
strongly minimal. If ω ·u ∈ Ω is already stored, then we have encountered ω ·Uk
earlier. If ω · u ∈ Ω is not yet stored, then we store all the weakly minimal
elements of ω · Uk ⊆ Ω, which are again given as ω · u · StabUk(ξ0) ⊆ Ω, where
StabUk(ξ0) is stored with the strongly minimal element ξ0 ∈ Ξk belonging to
qk+1,k(ω) · Uk ⊆ Ξk.

(10.5) Again, a few comments on this general strategy are in order.

a) Let i ∈ {1, . . . , k}. Deviating from the strategy described in Section (10.1),
we do not store the weakly minimal elements in Ξi in advance, and we even
do not store all of them. We only store those weakly minimal elements which
actually belong to qi+1,i ◦ · · · ◦ qk,k−1 ◦ qk+1,k(ΩUi). Such an element is stored
if a preimage of it is encountered during the enumeration of Ω.

b) To find the sets Ti of representatives of the left cosets Ui|Ui−1 of Ui−1 in
Ui, for i ∈ {1, . . . , k}, as a set of words in the set of generators Ui, we proceed
as follows. Let Ξ′i be the regular transitive Ui-set, hence we have Ξ′i ∼= Ui as
Ui-sets. For i = 1 we use a standard breadth-first orbit algorithm using U1 to
enumerate the elements of Ξ′1 ∼= U1 =: T1.

Let by induction i ≥ 2. We enumerate Ξ′i piecewise, Ui−1-orbit by Ui−1-orbit,
but using a left orbit algorithm. Let ξ1 ∈ Ξ′i be fixed. Using the isomorphism
Ξ′i ∼= Ui of Ui-sets, the element ξ1 ∈ Ξ′i corresponds to 1 ∈ Ui. Whenever we
compute an element ξ ∈ Ξ′i, whose Ui−1-orbit ξ · Ui−1 ⊆ Ξ′i has not been en-
countered before, we store an element uξ ∈ Ui, as a word in the set of generators
Ui, mapping ξ1 to ξ, where we let uξ1 := 1, and then enumerate the Ui−1-orbit
ξ ·Ui−1 ⊆ Ξ′i. Thus we obtain a sequence {uξ1 , uξ2 , . . .} ⊆ Ui, and the left orbit
algorithm is now performed by running through this list, multiplying from the
left with the elements of Ui, hence forming successively the products u · uξj , for
u ∈ Ui, and computing the Ui−1-orbits ξ1 · u · uξj ·Ui−1 ⊆ Ξ′i. As Ξ′i ∼= Ui as Ui-
sets, on termination the set Ti := {uξ1 , uξ2 , . . .} ⊆ Ui is a set of representatives
of the left cosets Ui|Ui−1 of Ui−1 in Ui.
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To actually do these orbit enumerations we in turn may use the strategies de-
scribed in Section (10.1) or in Section (10.4), for the truncated subgroup chain
U0 < U1 < . . . < Ui−1 < Ui. Having built up the Ui−1-orbit structure on Ξ′i,
for i ∈ {1, . . . , k}, this can be used to compute in Uk, hence multiply or invert
elements of Uk, and writing the results again as a product of elements of the Ti.
c) Let ξ0 ∈ Ξi be a strongly minimal element. A set of generators of StabUi(ξ0)
is found as follows. We may assume ξ0 · Ui =

∐
t∈T ′i

ξ0 · t · Ui−1 ⊆ Ξi, where
T ′i ⊆ Ti is a suitable subset as in Section (10.4). If t · u ∈ StabUi(ξ0), where
t ∈ Ti and u ∈ Ui−1, then ξ0 · t ∈ ξ0 ·Ui−1 ⊆ Ξi. Hence we only have to consider
the coset representatives t ∈ T ′′i := {t ∈ Ti; ξ0 · t ∈ ξ0 · Ui−1}. Conversely, for
t ∈ T ′′i there is a ut ∈ Ui−1 such that ξ0 · t · ut = ξ0, and we have StabUi(ξ0) ∩
(t · Ui−1) = t · ut · StabUi−1(ξ0). Hence we have to find the sets T ′′i ⊆ Ti,
the elements ut ∈ Ui−1, and a set of generators of StabUi−1(ξ0), where we have
StabUi−1(ξ0) ≤ StabUi−1(qi,i−1(ξ0)), and the latter group is known by induction.

d) As we do not assume that a set of representatives of the left cosets Uk+1|Uk
of Uk in Uk+1 = U can be enumerated explicitly, the machinery using regular
transitive sets described above cannot immediately be extended to U . Occasion-
ally, we use another U -set Ξ′k+1, which we choose to be faithful, together with
randomised Schreier-Sims techniques, to obtain results on certain subgroups of
U , such as stabilizers StabU (ω), for ω ∈ Ω. This tends to be helpful to find
break conditions, where some U -orbit ω · U ⊆ Ω is too long to be enumerated
completely, but where it suffices to know some substantial part of it, see Section
(17.8).

e) If Ω is a set of vectors in an FG-module V , where F is a finite field, then again
a standard choice of the Ui-sets Ξi, for i ∈ {1, . . . , k}, is as follows. Let Vk+1 :=
V , and let q̂i+1,i: (Vi+1)Ui → Vi be homomorphisms of FUi-modules, let Ξi = Vi
be the set of the vectors in Vi, and let qi+1,i := (q̂i+1,i)Ξi+1 : (Ξi+1)Ui → Ξi.
Furthermore, a standard choice of the regular transitive set Ξ′i, for i ∈ {1, . . . , k},
is a regular Ui-orbit in the FUi-module (Vj)Ui , for some j ∈ {i, . . . , k + 1}.

(10.6) The strategy described in Sections (10.4) and (10.5) has been imple-
mented in GAP, for Ω being a set of vectors in an FG-module V , where F is
a finite field. We make heavy use of the fast arithmetic for vectors over finite
fields, available in GAP, which employs the techniques also used in the MeatAxe.
Altogether, the relevant GAP code implementing the hashing techniques, com-
putations in Uk using the regular transitive Ui-sets, for i ∈ {1, . . . , k}, the differ-
ent necessary orbit enumeration algorithms and the randomised Schreier-Sims
algorithms, keeping track of transversals and subgroup generators as words in
the given sets of generators, amounts to some 2000 lines of GAP code. A more
detailed description of this, including some numerical considerations of memory
requirements and running times, will be given elsewhere [54].
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III Explicit results

For all of Part III, let λ = 1 be the trivial character of the subgroup H ≤ G
under consideration, and let K be as in Section 3, depending on the group under
consideration. We keep the notation of Sections 1 and 3. Occasionally we need
another subgroup H ′ ≤ H, where we keep the notation of Section 5 and let
λ′ = 1 as well.

11 The database

(11.1) We have compiled a database containing the character tables of the
endomorphism rings of the multiplicity-free permutation representations of the
sporadic simple groups, their automorphism groups and their Schur covering
groups, see [7]. Up to now, there still is a single exceptional case, where the
character table is not known, namely for G := 2.B and H := Fi23. As some
partial information is already known, see Section (17.11), there is hope that
this case will be successfully treated completely in the near future, see Section
(17.12). Furthermore, an examination of the multiplicity-free permutation rep-
resentations of the bicyclic extensions of the sporadic simple groups currently
is under way [7].

In the present work we provide proofs for the cases for the sporadic simple
groups, their automorphism groups and their Schur covering groups where n =
|Ω| ≥ 107, see Table 7. In Sections 12–17 we deal with the different groups G
and subgroups H as indicated in Table 7. But before doing so, in the remaining
parts of Section (11.1) we comment on the smaller cases, on earlier results used
and on the explicit determination of the Fitting correspondence.

a) The multiplicity-free permutation representations of the sporadic simple
groups, their automorphism groups, their Schur covering groups and their bi-
cyclic extensions have been classified in [6, 43, 5].

b) The work of systematically computing structure constants matrices related
to the sporadic simple groups and their automorphism groups has been begun in
[68]. In the thesis [32], which the author has had the opportunity to co-supervise,
these and other earlier results, scattered in the literature, have been collected.
Furthermore, the remaining cases of multiplicity-free permutation actions of the
sporadic simple groups and their automorphism groups for n = |Ω| ≤ 107 have
been dealt with. We comment briefly on the methods used in [32], which we
refer to for more details.

For the sporadic simple groups up to group order 109, hence the largest one being
McL, and a few of their automorphism groups, the tables of marks are known
and available in GAP. Together with the corresponding table of marks, GAP
provides the smallest faithful permutation representation of the corresponding
group, given in terms of a set of standard generators in the sense of [81], and
for each conjugacy class of subgroups a set of generators of a representative
of this class is given as words in the set of standard generators. Using this
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information, and the programs dealing with permutation groups available in
GAP, it is straightforward to compute the necessary permutation representations
and sufficiently many of the related structure constants matrices. Thus by the
technique described in Section (8.2) the character tables of the corresponding
endomorphism rings can be determined.

For quite a few of these cases, this strategy is not sufficient. Instead we have to
apply other standard techniques from the MeatAxe to construct the necessary
permutation representations, such as finding orbits of vectors, as is implemented
in the ZVP program of the MeatAxe. Here we use the database [83] as a source
of explicitly given representations for the sporadic simple groups and related
groups, where these as well are given in terms of sets of standard generators
in the sense of [81], and as a source of words describing sets of generators of
maximal subgroups.

c) For the Schur covering groups of the sporadic simple groups, the correspond-
ing permutation representations have been constructed in [43], with the ex-
ception of the cases G := 3.F i′24 and H := O−10(2) as well as G := 2.B and
H := Fi23, and sufficiently many of the related structure constants matrices
have been computed [41]. For the case G := 3.F i′24 and H := O−10(2) see
Section (12.2), for the case G := 2.B and H := Fi23 see Section (17.11).

(11.2) We briefly comment on the cases in Table 7 related to Fi22, to Fi23, to
Co1 and to M . Here, either explicit permutations are known, and hence all the
structure constants matrices can be computed using Remark (1.19), or part of
the structure constants matrices have been computed elsewhere. In all of these
cases the character tables of the endomorphism rings can be computed using
the technique described in Section (8.2), since the known structure constants
matrices are sufficient to get 1-dimensional eigenspaces.

a) Let G := 3.F i22 and H := 2F4(2)′. By [43], explicit permutations are known,
as well as the character table of the endomorphism ring [41].

b) Let G := Fi23 and H := S8(2). The index parameters and the structure
constants matrices for the two smallest non-trivial suborbits Ω2 and Ω3 with
k2 = 2295 and k3 = 13056 have been computed in [42].

c) Let G := Fi23 and H := 211.M23. The index parameters and the structure
constants matrix for the smallest non-trivial suborbit Ω2 with k2 = 506 have
been computed in [42].

d) Let G := Co1 and H := 21+8
+ .O+

8 (2). The index parameters and the structure
constants matrix for the smallest non-trivial suborbit Ω2 with k2 = 270 have
been computed in [34].

e) Let G := 2.Co1 and H := Co3. By [43], explicit permutations are known, as
well as the character table of the endomorphism ring [41].

f) LetG := M andH := 2.B. The index parameters and the structure constants
matrix for the smallest non-trivial suborbit Ω2 with k2 = 27 143 910 000 have
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Table 7: Large multiplicity-free permutation representations.

G H n r Section
3.F i22

2F4(2)′ 10 777 536 25 (11.2)
HN A11 13 680 000 19 (13.2)
HN U3(8).31 16 500 000 19 (13.4)
HN.2 S11 13 680 000 17 (13.1)
HN.2 U3(8).6 16 500 000 15 (13.3)
Ly 3.McL 19 212 250 8 (14.1)
Th 3D4(2).3 143 127 000 11 (15.1)
Th 25.L5(2) 283 599 225 11 (15.2)
Fi23 S8(2) 86 316 516 13 (11.2)
Fi23 211.M23 195 747 435 16 (11.2)
Co1 21+8

+ .O+
8 (2) 46 621 575 11 (11.2)

2.Co1 Co3 16 773 120 12 (11.2)
J4 211:M24 173 067 389 7 (16.1)
J4 211:M23 4 153 617 336 11 (16.2)
Fi′24 O−10(2) 50 177 360 142 17 (12.1)
Fi′24 37.O7(3) 125 168 046 080 18 (12.4)
Fi′24.2 O−10(2).2 50 177 360 142 17 (12.1)
Fi′24.2 O−10(2) 100 354 720 284 34 (12.1)
Fi′24.2 37.O7(3).2 125 168 046 080 17 (12.3)
3.F i′24 O−10(2) 150 532 080 426 43 (12.2)
B 2.2E6(2).2 13 571 955 000 5 (17.1)
B 2.2E6(2) 27 143 910 000 8 (17.1)
B 21+22.Co2 11 707 448 673 375 10 (17.2) ff.
B Fi23 1 015 970 529 280 000 23 (17.6) ff.
2.B F i23 2 031 941 058 560 000 34 (17.11) f.
M 2.B 97 239 461 142 009 186 000 9 (11.2)
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been computed in [64].

(11.3) The character tables of endomorphism rings EK contained in the
database, and in particular the indicated Fitting correspondence from the char-
acters ϕ ∈ Irr(EK) to the irreducible characters χϕ ∈ Irr1

K(G) of the corre-
sponding group G, have been compiled taking the following point of view into
account.

If a set G ⊆ G of standard generators of G in the sense of [81] is given, then
the conjugacy classes Cl(G) can be defined by giving representatives as words
in the set G of generators. Such sets of standard generators and definitions
of the conjugacy classes are available for the sporadic simple groups, their au-
tomorphism groups and their Schur covering groups in [83]. This hence also
defines the irreducible characters IrrK(G) uniquely. Note that the character
table X of IrrK(G) alone leaves ambiguities which are described by the group
Aut(IrrK(G)) of table automorphisms of IrrK(G), see Definition (8.5).

To determine the Fitting correspondence, we hence first find all the admissible
candidate cases F = F1 using the technique described in Section (8.4). The set
F is a union of orbits under the action of Aut(IrrK(EK)) × Aut(Irr1

K(G)), see
Remark (8.6), hence also is a union of orbits under the action of the possibly
strictly smaller group Aut(IrrK(EK)). To obey the point of view introduced
above, we have to determine which of the Aut(IrrK(EK))-orbits in F gives the
Fitting correspondence, but then we are allowed to choose freely within this
orbit. In particular, we are done if F consists of exactly one such orbit.

Actually, for a few of the cases dealt with the determination of the Fitting cor-
respondence in the above sense would pose rather hard problems. Hence we
loosen our assumptions as follows. Let {H1, . . . ,Hk}, for some k ∈ N, be a
set of representatives of the conjugacy classes of proper subgroups affording a
multiplicity-free permutation character 1GHi . Furthermore, let Aut(Irr1Hi

K (G))

and Aut(IrrK(E1Hi
K )), for i ∈ {1, . . . , k}, be the corresponding table automor-

phism groups of Irr1Hi
K (G) and IrrK(E1Hi

K ), respectively, see Definition (8.5). We
consider the sets F i of admissible candidate cases for the Fitting correspondence
for the subgroups Hi, for i ∈ {1, . . . , k}, at the same time. Namely,(

k∏
i=1

Aut(IrrK(E1Hi
K ))

)
×

(
k⋂
i=1

Aut(Irr1Hi
K (G))

)

acts on
∏k
i=1 F i, where the first direct factor acts componentwise, while the

second one acts diagonally. Still, we have to determine which of the orbits
in
∏k
i=1 F i under the action of the above group gives the k-tuple of Fitting

correspondences, but then we are allowed to choose freely within this orbit. In
particular, we are done if

∏k
i=1 F i consists of exactly one such orbit.

(11.4) We comment on the computations involved in the explicit determina-
tion of the Fitting correspondence. The most complicated case is dealt with in
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Section (11.5).

a) Actually, for the cases dealt with the technique described in Section (8.4),
applied to a fixed subgroupH, rather often yields a set F of admissible candidate
cases consisting of a single Aut(IrrK(EK))-orbit, or F even consists of a unique
solution. In particular, the latter case occurs if the degrees χ(1) for χ ∈ Irr1

K(G)
are pairwise different. Furthermore, Corollary (5.13) and Remarks (5.15), (5.16)
and (5.18) can be applied to delete inadmissible orbits.

b) For the remaining cases of those groups G whose tables of marks are known,
see Section (11.1), we use one of the faithful permutation representations of G
and the programs dealing with permutation groups available in GAP to find
representatives of the conjugacy classes Cl(G), and to find the matrices Γ :=
[|C ∩Hgi|; i ∈ I, C ∈ Cl(G)] ∈ Z|I|×|Cl(G)|, see Definition (3.19), explicitly. The
only general technique known to the author to find the numbers |C ∩Hgi| ∈ N0

is to fix C ∈ Cl(G) and i ∈ I, to run through the elements of h ∈ H explicitly
and to find out to which conjugacy class C ∈ Cl(G) the element hgi belongs,
using conjugacy tests in G. This admittedly not too clever strategy turns out
to be doable for the present cases.

This also works for G := HS.2, as the relevant subgroups turn out to be H1 :=
51+2

+ : [25] and H2 := M11. Hence we have |H1| = 4000 and r1 = 15 as well as
|H2| = 7920 and r2 = 17. The transitive permutation representation of G on
100 points is available in [83], in terms of a set of standard generators of G in the
sense of [81]. Using the programs dealing with permutation groups available in
GAP, we find the subgroups H1 and H2, representatives of the conjugacy classes
Cl(G), and the matrices Γ ∈ Z|I|×|Cl(G)|.

The same strategy works for 3.M22 and 6.M22, where we use the table of marks
of M22 available in GAP and the permutation representations available in [83].

c) Let G := Ru and H := (22×Sz(8)): 3. By the technique described in Section
(8.4), we find 2 admissible candidate cases for the Fitting correspondence. They
differ in the preimages of 34944a/b. For each of the other subgroups H̃ of G
affording multiplicity-free permutation characters, namely 2F4(2)′.2 and 2F4(2)′

the technique described in Section (8.4) yields a set F H̃ of admissible candidate
cases for the Fitting correspondence, which is exactly one orbit under the ac-
tion of the corresponding table automorphism group Aut(IrrK(E1H̃

K )). Hence we
are allowed to use the action of the full group Aut(Irr1

K(G)) of table automor-
phisms on the set of admissible candidate cases for the Fitting correspondence
for EK . Using GAP we find that the image of the action of Aut(Irr1

K(G)) on the
characters in Irr1

K(G) is generated by the element (34944a, 34944b). Hence we
are allowed to choose freely from the set of admissible candidate cases for the
subgroup H.

d) Let G := ON and H := L3(7).2, as well as H ′ := L3(7). For both cases,
by the technique described in Section (8.4), we find 4 admissible candidate
cases each for the Fitting correspondence. They differ in the preimages of
26752a±, 52668a± ∈ IrrK(E1H

K ) ⊆ IrrK(E1H′
K ). Hence, as the assumptions of
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Section (5.15) are fulfilled, the Fitting correspondence for E1H′
K is determined

by the one for E1H
K . As H and H ′ are the only subgroups of G affording

multiplicity-free permutation characters, we are allowed to use the action of
the full group Aut(Irr1H

K (G)) of table automorphisms on the set of admissible
candidate cases for the Fitting correspondence for E1H

K . Using GAP we find
that the image of the action of Aut(Irr1H

K (G)) on the characters in Irr1H
K (G) is

generated by the elements (26752a+, 26752a−) and (52668a+, 52668a−). Hence
we are allowed to choose freely from the set of admissible candidate cases for
the subgroup H.

(11.5) Let G := HN and H := U3(8).31, see Section (13.4) and in particular
Table 17. By the technique described in Section (8.4) we find 16 admissible
candidate cases for the Fitting correspondence. These are given by

{ϕ5′ , ϕ5′′} → {35112a, 35112b}
{ϕ8′ , ϕ8′′} → {374528a, 374528b}
{ϕ12′ , ϕ12′′} → {656250a, 656250b}
{ϕ13′ , ϕ13′′} → {1361920b, 1361920c}

while for the other characters in Irr(EK), their Fitting correspondent is uniquely
determined and as shown in Table 17.

The group Aut(IrrK(EK)) of table automorphisms of IrrK(EK), being defined
by its action on the columns of the character table Φ, is generated by the
set {(5′, 5′′), (8′, 8′′), (12′, 12′′), (13′, 13′′)}. Hence we have |Aut(IrrK(EK))| =
16. The image of the action of Aut(IrrK(EK)) on the characters in Irr(EK)
is generated by {(ϕ5′ , ϕ5′′)(ϕ8′ , ϕ8′′), (ϕ9′ , ϕ9′′)(ϕ12′ , ϕ12′′)}, thus the image has
order 4.

For each of the other subgroups H̃ of G affording multiplicity-free permutation
characters, namely A12 and A11 as well as 2.HS.2, the technique described
in Section (8.4) yields a set F H̃ of admissible candidate cases for the Fitting
correspondence, which is exactly one orbit under the action of the corresponding
table automorphism group Aut(IrrK(E1H̃

K )). Hence we are allowed to use the
action of the full group Aut(Irr1

K(G)) of table automorphisms on the set of
admissible candidate cases for the Fitting correspondence for EK . Using GAP
we find that the image of the action of Aut(Irr1

K(G)) on the characters in Irr1
K(G)

is generated by {π1, π2, π3}, where π1 := (35112a, 35112b)(374528a, 374528b) as
well as π2 := (656250a, 656250b) and π3 := (1361920b, 1361920c).

Hence we may choose the Fitting correspondence, using Aut(IrrK(EK)), to be
ϕ5′ 7→ 35112a and ϕ5′′ 7→ 35112b, and using Aut(Irr1

K(G)) we may furthermore
choose ϕ12′ 7→ 656250a and ϕ12′′ 7→ 656250b as well as ϕ13′ 7→ 1361920b and
ϕ13′′ 7→ 1361920c. Hence we have to decide whether ϕ8′ 7→ 374528a or ϕ8′ 7→
374528b.

Using Proposition (4.6), see also Section (8.1) and in particular Table 6, we find
the Krein parameter q2,5′,8′ = 1

4400000 6= 0. Furthermore, using GAP we find
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that the tensor product 760a · 35112a of irreducible characters of G decomposes
in IrrK(G) as

760a · 35112a = 3344a+ 2 · 35112b+ 267520a+ 270864a+ 374528a+

1185030a+ 1361920a+ 1575936a+ 4561920a+ . . . ,

where we only give the constituents belonging to Irr1
K(G). From this we conclude

by Proposition (4.8) that we have ϕ8′ 7→ 374528a and ϕ8′′ 7→ 374528b.

12 The Fischer group Fi′24

(12.1) Let G := Fi′24.2 and H := O−10(2).2, as well as G′ := Fi′24 and
H ′ := O−10(2). We have r = 17 and r′ = 34. The conditions of Remark (5.16)
are fulfilled.

The index parameters and the structure constants matrices for the two smallest
non-trivial suborbits Ω2 and Ω3 of Ω := H|G with k2 = 25245 and k3 = 104448
have been computed in [42]. Using the technique described in Section (8.2),
where these structure constants matrices are sufficient to get eigenspaces of
dimension 1, we obtain the character table of EK = E

1GH
K as given in Table 8.

By Remark (5.16), E1G
′

H′
K and EK have the same character table. The Fitting

correspondents for E1G
′

H′
K are given as the restrictions (χϕ)G′ . Again by Remark

(5.16), the character table of E1H′
K = E

1G
H′
K is determined by the character table

of EK . As the general pattern of this is shown in Example (5.17), the character
table of E1H′

K is not shown here.

(12.2) Let G := 3.F i′24 and H ′ := O−10(2), as well as H := Z(G) × H ′ =
3×O−10(2). We have r′ = 43. Let λ′ = 1 and let λ3 ∈ Irr1H′

K (H) be as in Remark
(5.18).

The splitting of the suborbits i ∈ I, the index parameters and the structure
constants matrices for the non-trivial suborbits Ω′1′′ , Ω′1′′′ as well as Ω′2′ and
Ω′3′ , Ω′3′′ , Ω′3′′′ on Ω′ := H ′|G, where 1, 3 ∈ Iλ3 but 2 6∈ Iλ3 , with k′1′ = 1,
k′2′ = 75735 and k′3′ = 104448, have been computed in [41], using a technique
similar to the one employed in [42]. Using the technique described in Section
(8.2), and these structure constants matrices, we obtain a splitting of K1×r′

into 39 eigenspaces of dimension 1, and two eigenspaces of dimension 2. One
of the latter is contained in the K-span of IrrK(Eλ3

K ) ⊆ IrrK(E1H′
K ), while the

other one is contained in the K-span of IrrK(Eλ
−1
3

K ) ⊆ IrrK(E1H′
K ). Employing a

technique similar to the one described in more detail for an analogous situation
in Section (12.3), we also find the splitting of the eigenspaces of dimension 2.

By Remark (5.18), to describe the character table of E1H′
K , it is sufficient to

give the character table of E1H
K , see Table 8, and the character table of Eλ3

K , see
Table 9. In the latter character table we have made the following choice for the
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Table 8: The character table for G := Fi′24.2 and H := O−10(2).2.

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

9
1

1a
+

1
25

24
5

10
44

48
15

70
80

0
12

77
33

76
45

95
71

20
67

85
85

60
10

72
33

28
0

19
38

81
60

0
2

86
71
a
−

1
−

50
49
−

13
05

6
15

70
80

79
83

36
20

10
62

4
−

33
92

92
8
−

13
40

41
6

48
47

04
0

3
57

47
7a

+
1

17
55

16
75

2
14

57
40

14
51

52
−

14
59

20
19

55
01

6
41

02
78

4
16

39
44

0
4

24
94

58
a

+
1

31
95

56
64

27
30

0
−

26
61

12
79

87
20

−
30

24
00

54
65

60
23

11
20

0
5

55
56

11
a
−

1
−

14
85

85
44

56
10

0
−

57
02

4
33

79
20

17
82

00
11

68
64

0
−

17
82

00
0

6
16

66
83

3a
+

1
20

79
−

22
56

26
40

0
−

14
25

6
48

99
84

28
51

2
−

25
69

60
−

71
28

00
7

35
87

31
45
a

+
1

81
9

17
76

10
02

0
55

29
6

26
30

4
12

98
16

−
75

52
0

17
92

80
8

48
89

37
68
a
−

1
−

18
9
−

26
88

19
38

0
16

84
8

−
37

05
6
−

13
28

40
−

65
15

2
64

80
9

79
45

23
73
a

+
1

−
45

30
72

14
34

0
−

17
28

−
30

72
0

26
13

6
11

11
04

−
21

60
10

41
50

98
11

2a
−

1
−

63
9

−
70

8
27

30
−

16
63

2
34

94
4

15
12

0
−

68
32

57
78

0
11

12
64

01
50

25
a

+
1

17
1

91
2

15
96

−
69

12
−

65
28

−
21

81
6

−
29

44
23

76
0

12
15

40
15

36
92
a

+
1

27
9

−
81

6
30

00
−

56
16

38
4

47
52

22
40

−
21

60
0

13
23

46
90

08
64
a
−

1
−

31
5

58
8

11
10

47
52

10
32

0
−

43
20

−
10

72
0

−
19

98
0

14
32

08
65

35
25
a

+
1

38
7

48
−

78
0

34
56

12
48

0
−

75
60

74
24

30
24

15
10

16
99

03
74

4a
−

1
−

99
−

27
6

30
34

56
−

17
76

−
17

28
74

24
59

40
16

13
90

41
65

27
5a

+
1

63
48

19
2

−
43

2
−

30
72

60
48

−
81

28
−

86
4

17
17

16
17

12
56

8a
+

1
−

45
48

−
78

0
−

17
28

−
48

0
−

10
80

22
40

−
21

60

10
11

12
13

14
15

16
17

26
32

08
96

0
57

90
59

71
2

10
85

73
69

60
51

47
19

74
40

54
28

68
48

00
72

38
24

64
00

12
63

40
30

08
0

17
37

17
91

36
0

−
32

90
11

2
−

18
09

56
16

27
14

34
24

80
42

49
60

−
67

85
85

60
−

90
47

80
80

−
39

48
13

44
10

85
73

69
6

−
19

83
74

4
23

70
81

6
16

28
42

40
−

10
73

04
96

30
11

90
40

−
71

97
12

0
−

44
70

68
16

79
83

36
0

24
19

20
0

21
61

15
2

−
39

31
20

−
53

76
00

0
54

43
20

0
−

22
37

76
00

21
28

89
60

−
62

89
92

0
14

68
80

0
−

32
69

37
6

15
68

16
0

59
13

60
0

14
25

60
0

19
00

80
0

70
50

24
0

−
15

96
67

20
−

12
37

24
8

23
18

97
6

10
12

17
6

34
80

57
6

−
49

89
60

−
66

52
80

20
73

60
0

−
60

44
54

4
26

26
56

16
18

56
20

30
4

56
14

08
−

54
43

20
66

52
80

−
58

75
20

−
86

74
56

69
12

0
22

46
4

45
61

92
−

65
28

00
−

14
90

40
50

11
20

45
61

92
−

50
80

32
−

10
02

24
66

81
6

−
12

09
60

−
31

64
16

−
85

53
60

17
28

0
63

59
04

55
29

60
−

30
24

0
−

67
53

6
−

98
28

−
84

00
0

−
68

04
0

27
97

20
−

66
52

8
−

39
31

2
−

69
12

11
52

−
34

12
8

16
74

24
12

44
16

63
93

6
−

15
20

64
−

15
20

64
24

19
2

14
97

6
−

54
86

4
36

09
6

19
44

0
−

60
48

0
−

17
28

00
21

08
16

86
40

−
27

36
−

25
38

0
−

58
08

0
77

76
0

−
50

76
0

−
82

08
0

15
12

00
−

69
12

−
17

85
6

−
56

16
−

74
49

6
−

15
55

2
63

93
6

−
69

12
44

92
8

−
69

12
15

84
−

20
19

6
36

96
0

19
44

0
−

11
88

0
16

41
6

−
48

38
4

−
69

12
−

12
67

2
99

36
−

12
28

8
19

44
0

−
29

37
6

55
29

6
−

17
28

0
86

40
12

38
4

15
12

0
−

19
20

−
38

88
0

17
28

0
−

17
28

0
86

40
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i′ ∈ α−1
H′,H(i), for i ∈ Iλ3 . As we have i∗ = i, for i ∈ I, see Section (12.1), we

conclude that the pairing ∗: I ′ → I ′ leaves the sets α−1
H′,H(i) invariant, for i ∈ I.

Hence for each i ∈ Iλ3 we may without loss of generality choose i′ ∈ α−1
H′,H(i)

such that i′∗ = i′ and i′′∗ = i′′′.

(12.3) Let G := Fi′24.2 and H := 37.O7(3).2. We have r = 17.

The index parameters and the structure constants matrices for the two smallest
non-trivial suborbits Ω2 and Ω3 of Ω := H|G with k2 = 1120 and k3 = 49140
have been computed in [42]. Using the technique described in Section (8.2)
and the structure constants matrix P3, we obtain a splitting of K1×r into 15
eigenspaces of dimension 1, and an eigenspace of dimension 2. The struc-
ture constants matrix P2 does not give a further splitting. As the charac-
ters in Irr1

K(G) have pairwise different degrees, the Fitting correspondents of
the characters in the 1-dimensional eigenspaces can be determined by Section
(8.1). From this we conclude that we have found the irreducible characters
{ϕ1, . . . , ϕ5, ϕ7, . . . , ϕ15, ϕ17} ⊆ IrrK(EK), see Table 10.

A K-basis for the 2-dimensional eigenspace is given by {ψ1, ψ2}, see also Table
10. As we have ϕ6(α1) = ϕ16(α1) = 1, the missing characters are given by ϕ6 =
ψ1 + aψ2 and ϕ16 = ψ1 + bψ2, for a, b ∈ K. As all values of χϕ6 = 79 452 373a+

and χϕ16 = 17 161 712 568a+ are rational integers, by Proposition (3.20) we have
a, b ∈ Q. By the first orthogonality relations, see Proposition (3.8), we obtain

∑
i∈I

((ψ1 + aψ2)(αi))2

ki
=

n

χϕ6(1)
.

This leads to a quadratic equation for a, with coefficients in Q, which turns out
to have the solutions a = 2916 and a′ = − 96228

31 . As a′ leads to a character whose
values are not all integers, by Proposition (3.10) we have ϕ6 = ψ1 + 2916 · ψ2.
An analogous argument for ϕ16 yields b = −108 and b′ = − 2484

31 , and thus
ϕ16 = ψ1 − 108 · ψ2. The characters ϕ6 and ϕ16 are also given in Table 10.

(12.4) Let still G := Fi′24.2 and H := 37.O7(3).2, as well as G′ := Fi′24 and
H ′ := 37.O7(3). We have r′ = 18 and r = 17.

Note that the condition on the KG-constituents of 1GH and (1−)GH in Remark
(5.16) are not fulfilled. We may identify H ′|G′ with Ω := H|G. As the ranks
of the G′-action and of the G-action on Ω are r′ = 18 and r = 17, respectively,
the G′-suborbits and the G-suborbits on Ω coincide, except exactly one G-
suborbit which is the union of two G′-suborbits. It was shown in [42] that the
G-suborbit Ω15 splits into G′-suborbits as Ω15 = Ω15′

.
∪ Ω15′′ . As H ′ EH, the

group H interchanges the H ′-orbits Ω15′ and Ω15′′ , and for the index numbers we
hence have k15′ = k15′′ = k15

2 = 9 183 300 480. Using the above identification,

analogous to Remark (5.16), we have an embedding EK = E
1GH
K → E

1G
′

H′
K of
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Table 9: The character table for G := 3.F i′24 and H := 3 × O−10(2), where
λ = λ3.

ϕ
χ
ϕ

1′
3′

4′
5′

6′
7′

8′

1
78

3a
1

35
90

4
39

27
00
−

79
83

36
28

72
32

0
84

82
32

0
16

75
52

00
2

64
58

4a
1
−

81
60

89
76

0
−

41
34

24
93

35
04
−

13
32

93
6
−

69
41

44
3

30
61

53
a

1
11

20
8

84
00

0
90

72
0

49
92

0
70

30
80

19
37

60
0

4
67

24
80

9a
1
−

39
84

32
34

0
.

14
78

4
−

29
93

76
−

14
29

12
5

19
03

47
30
a

1
44

40
24

24
0
−

23
32

8
−

42
24

0
91

36
8

26
14

40
6

43
77

98
79
a

1
−

11
04

78
60

67
39

2
10

69
44

32
40

0
−

53
05

6
7

19
50

19
46

1a
1

17
04

48
00

14
68

8
49

92
0

−
57

24
0

36
80

0
8

20
38

43
87

1a
1

33
6

42
60

−
23

32
8

49
34

4
58

32
0

−
70

33
6

9
10

50
71

70
96
a

1
−

11
04

53
40

−
21

60
−

14
01

6
−

99
36

−
46

72
10

18
18

54
88

20
a

1
91

2
25

68
86

4
−

99
84

66
96

−
16

76
8

11
10

72
60

70
35

5a
1

19
2

−
49

2
−

34
56

15
36

−
73

44
51

2
12

15
01

64
98

49
7a

1
−

24
0

−
60

−
86

4
32

64
30

24
56

96
13

21
09

67
51

10
4a

1
30

−
33

0
23

76
−

26
76

14
04

−
24

04

10
′

12
′

13
′

14
′

15
′

17
′

−
82

25
28

0
10

17
87

84
0
−

16
08

49
92

0
33

92
92

80
0
−

22
61

95
20

0
54

28
68

48
0

44
65

15
2

10
17

87
84

−
36

76
56

96
−

20
59

99
20

35
54

49
60

19
38

81
60

66
52

80
51

03
00

0
13

00
99

20
58

96
80

0
18

29
52

00
−

83
46

24
0

−
49

59
36

14
96

88
0

21
88

03
2

−
19

95
84

0
−

16
63

20
0

11
97

50
4

17
28

68
04

0
−

10
26

04
8
−

14
12

64
0

−
17

40
96

0
−

20
21

76
0

29
20

32
81

64
8

21
58

08
−

51
84

0
−

83
37

60
−

46
13

76
−

95
04

0
−

17
17

20
−

16
89

60
19

44
00

23
76

00
17

28
0

−
70

84
8

42
76

8
−

37
63

2
14

25
60

73
44

0
−

51
32

16
13

82
4

−
45

36
0

−
58

36
8

17
49

60
43

20
0

−
15

89
76

13
82

4
−

27
21

6
70

65
6

−
33

69
6

43
20

0
32

48
64

13
82

4
51

84
24

57
6

31
10

4
−

34
56

0
−

55
29

6
−

17
28

−
14

25
6

17
66

4
−

38
88

0
43

20
95

04
0

−
65

88
12

47
4

−
26

61
6

48
60

91
80

−
52

38
0
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Table 10: The character table for G := Fi′24.2 and H := 37.O7(3).2.

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

9
10

1
1a

+
1

11
20

49
14

0
27

55
62

81
64

80
21

22
84

80
57

31
68

96
62

17
85

97
28

65
84

48
0

42
98

76
72

0
2

57
47

7a
+

1
−

40
39

00
31

26
6
−

29
16

0
56

16
0

16
17

40
8

28
14

66
9

−
46

33
20

48
01

68
0

3
24

94
58
a

+
1

39
2

76
44

20
03

4
76

10
4

81
24

48
47

17
44

85
29

3
57

98
52

0
22

40
78

4
4

35
87

31
45
a

+
1

20
0

22
20

23
22

13
32

0
64

80
0

−
53

56
8

73
62

9
10

47
60

34
34

40
5

40
53

69
25
a

+
1

22
4

27
72

34
02

18
14

4
10

88
64

54
43

2
−

37
17

9
27

21
60

81
64

8
7

11
21

68
05

6a
+

1
32

−
63

6
38

34
37

44
−

29
95

2
12

18
24

11
44

53
21

60
0

−
36

41
76

8
28

13
80

73
6a

+
1

15
2

12
24

11
34

62
64

60
48

−
20

73
6

−
16

76
7

32
40

−
24

10
56

9
10

69
55

11
75
a

+
1
−

64
46

8
−

17
82

17
28

−
22

46
4

33
69

6
94

77
67

39
2

50
54

4
10

12
64

01
50

25
a

+
1
−

40
73

2
27

54
−

38
16

54
72

20
73

6
−

80
19

−
71

28
11

66
4

11
32

08
65

35
25
a

+
1

10
4

58
8

−
27

0
93

6
−

31
68

51
84

36
45

−
53

35
2

22
03

2
12

32
83

49
09

25
a

+
1

56
−

84
88

2
50

4
−

14
11

2
−

24
19

2
36

45
35

78
4

30
24

13
57

75
27

80
80
a

+
1

14
−

29
4

11
34

88
2

−
55

44
90

72
−

16
76

7
−

79
38

27
21

6
14

21
55

31
71

20
0

1
−

28
.
−

37
8

75
6

.
.

−
31

59
−

98
28

.
15

17
06

83
69

92
0a

+
1

44
36

−
48

6
−

11
88

21
6

25
92

−
21

87
10

69
2

−
19

44
17

54
23

40
85

49
1a

+
1

.
−

14
0

42
.

22
40

−
22

4
29

17
.

−
16

80
6

79
45

23
73
a

+
1
−

40
30

0
31

86
−

36
0

−
14

40
−

41
47

2
19

02
69

−
11

77
20

26
56

80
16

17
16

17
12

56
8a

+
1
−

40
30

0
16

2
−

36
0

−
14

40
−

51
84

−
24

3
32

40
−

64
80

ψ
1

1
−

40
30

0
27

0
−

36
0

−
14

40
−

64
80

65
61

−
10

80
32

40
ψ

2
.

.
.

1
.

.
−

12
63

−
40

90

11
12

13
14

15
16

17
29

01
66

78
60

51
58

52
06

40
69

64
00

28
64

15
47

55
61

92
0

18
36

66
00

96
0

23
21

33
42

88
0

52
23

00
21

48
0

32
41

13
40

−
30

32
64

00
77

78
72

16
40

94
06

40
−

81
88

12
80

−
37

52
89

20
−

10
23

51
60

15
12

52
92

28
30

46
40

−
95

52
81

6
−

19
10

56
32

−
30

65
29

92
11

14
49

52
−

47
76

40
8

−
81

16
20

−
12

44
16

0
12

71
37

6
−

28
38

24
0

69
98

40
49

08
60

0
−

25
36

92
0

−
59

19
48

−
32

65
92

−
24

49
44

35
92

51
2

16
79

61
6

−
27

76
03

2
−

18
37

08
0

−
14

48
28

38
88

00
12

83
04

37
32

48
37

32
48

12
20

83
2

−
22

10
32

8
19

05
12

−
15

55
20

30
32

64
−

10
65

31
2

13
99

68
−

84
95

28
16

97
11

2
−

63
18

0
−

20
21

76
−

15
16

32
−

20
21

76
.

−
20

21
76

68
23

44
16

42
68

−
21

77
28

−
22

16
16

−
11

66
40

23
32

80
10

69
20

29
16

0
48

60
62

20
8

−
12

83
04

11
66

40
−

23
32

80
12

63
60

75
81

6
74

84
4

−
72

57
6

−
81

64
8

16
32

96
46

65
6

68
04

0
−

20
41

20
−

44
22

6
68

04
0

10
20

60
−

81
64

8
58

32
−

78
24

6
20

41
2

58
96

8
.

.
.

10
10

88
29

48
4

−
17

69
04

−
29

16
19

44
0

58
32

0
−

33
04

8
93

31
2

−
32

07
6

−
11

08
08

−
10

22
0

−
20

16
0

−
27

21
6

22
40

−
46

08
0

.
98

28
0

43
74

0
77

76
00

10
49

76
−

10
49

76
0

20
99

52
0

−
25

36
92

0
26

24
40

−
46

98
0

51
84

0
50

54
4

38
88

0
−

77
76

0
32

40
−

97
20

−
43

74
0

77
76

0
52

48
8

.
.

−
87

48
0

.
30

24
0

18
−

36
0

72
0

−
84

0
90
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K-algebras given by, for j ∈ I,

αj 7→

 α
1G
′

H′
j , if j 6= 15,

α
1G
′

H′
15′ + α

1G
′

H′
15′′ , if j = 15.

Furthermore, we have (χϕi)G′ ∈ Irr1G
′

H′
K (G′) for i 6= 14, while χϕ14 splits under

restriction to G′ as (χϕ14)G′ = 10 776 585 600a + 10 776 585 600b. Using the
Fitting correspondence, see Proposition (2.7), for KG and EK as well as for

KG′ and E
1G
′

H′
K , we obtain IrrK(E1G

′
H′
K ) = {ϕ′i; i ∈ I, i 6= 14}

.
∪ {ϕ′14′ , ϕ

′
14′′},

where for i ∈ I \{14} and j ∈ I \{15} we have ϕ′i(α
1G
′

H′
j ) = ϕi(αj). Furthermore

we have, for j 6= 15,

ϕ′14′(α
1G
′

H′
j ) = ϕ′14′′(α

1G
′

H′
j ) = ϕ14(αj),

and using the first orthogonality relations, see Proposition (3.8), with respect
to ϕ′1 we obtain, for i 6= 14,

ϕ′i(α
1G
′

H′
15′ ) = ϕ′i(α

1G
′

H′
15′′ ) =

ϕi(α15)
2

.

Finally, we have

ϕ′14′(α
1G
′

H′
15′ + α

1G
′

H′
15′′ ) = ϕ′14′′(α

1G
′

H′
15′ + α

1G
′

H′
15′′ ) = ϕ14(α15) = 101088.

Again using the first orthogonality relations with respect to ϕ′1, where now
χϕ′

14′
(1) = χϕ′

14′′
(1) = χϕ14 (1)

2 , we obtain a system of two linear equations for

ϕ′14′(α
1G
′

H′
15′ ) and ϕ′14′′(α

1G
′

H′
15′ ), which leads to

{ϕ′14′(α
1G
′

H′
15′ ), ϕ′14′′(α

1G
′

H′
15′ )} = {−112752, 213840}.

This determines the values of the characters in IrrK(E1G
′

H′
K ) completely. The

character table of E1G
′

H′
K is shown in Table 11, where the latter character values

are indicated in bold type.

13 The Harada-Norton group HN

(13.1) Let G := HN.2 and H := S11, as well as G′ := HN and H ′ := A11.
We have r = 17.

Let Ω := H|G. As n = |Ω| = 13 680 000 is small enough, using GAP, we
construct explicit permutations for the action of G on Ω. Let additionally
H̃ := S12, where we have H < H̃ < G and [H̃:H] = 12. Let Ω̃ := H̃|G, where
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Table 11: The character table for G′ := Fi′24 and H ′ := 37.O7(3).

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

9
10

1
1a

1
11

20
49

14
0

27
55

62
81

64
80

21
22

84
80

57
31

68
96

62
17

85
97

28
65

84
48

0
42

98
76

72
0

2
57

47
7a

1
−

40
39

00
31

26
6
−

29
16

0
56

16
0

16
17

40
8

28
14

66
9

−
46

33
20

48
01

68
0

3
24

94
58
a

1
39

2
76

44
20

03
4

76
10

4
81

24
48

47
17

44
85

29
3

57
98

52
0

22
40

78
4

4
35

87
31

45
a

1
20

0
22

20
23

22
13

32
0

64
80

0
−

53
56

8
73

62
9

10
47

60
34

34
40

5
40

53
69

25
a

1
22

4
27

72
34

02
18

14
4

10
88

64
54

43
2

−
37

17
9

27
21

60
81

64
8

6
79

45
23

73
a

1
−

40
30

0
31

86
−

36
0

−
14

40
−

41
47

2
19

02
69

−
11

77
20

26
56

80
7

11
21

68
05

6a
1

32
−

63
6

38
34

37
44

−
29

95
2

12
18

24
11

44
53

21
60

0
−

36
41

76
8

28
13

80
73

6a
1

15
2

12
24

11
34

62
64

60
48

−
20

73
6

−
16

76
7

32
40

−
24

10
56

9
10

69
55

11
75
a

1
−

64
46

8
−

17
82

17
28

−
22

46
4

33
69

6
94

77
67

39
2

50
54

4
10

12
64

01
50

25
a

1
−

40
73

2
27

54
−

38
16

54
72

20
73

6
−

80
19

−
71

28
11

66
4

11
32

08
65

35
25
a

1
10

4
58

8
−

27
0

93
6

−
31

68
51

84
36

45
−

53
35

2
22

03
2

12
32

83
49

09
25
a

1
56

−
84

88
2

50
4

−
14

11
2

−
24

19
2

36
45

35
78

4
30

24
13

57
75

27
80

80
a

1
14

−
29

4
11

34
88

2
−

55
44

90
72

−
16

76
7

−
79

38
27

21
6

14
′

10
77

65
85

60
0a

1
−

28
.
−

37
8

75
6

.
.

−
31

59
−

98
28

.
14
′′

10
77

65
85

60
0b

1
−

28
.
−

37
8

75
6

.
.

−
31

59
−

98
28

.
15

17
06

83
69

92
0a

1
44

36
−

48
6
−

11
88

21
6

25
92

−
21

87
10

69
2

−
19

44
16

17
16

17
12

56
8a

1
−

40
30

0
16

2
−

36
0

−
14

40
−

51
84

−
24

3
32

40
−

64
80

17
54

23
40

85
49

1a
1

.
−

14
0

42
.

22
40

−
22

4
29

17
.

−
16

80

11
12

13
14

15
′

15
′′

16
17

29
01

66
78

60
51

58
52

06
40

69
64

00
28

64
15

47
55

61
92

0
91

83
30

04
80

91
83

30
04

80
23

21
33

42
88

0
52

23
00

21
48

0
32

41
13

40
−

30
32

64
00

77
78

72
16

40
94

06
40

−
40

94
06

40
−

40
94

06
40

−
37

52
89

20
−

10
23

51
60

15
12

52
92

28
30

46
40

−
95

52
81

6
−

19
10

56
32

−
15

32
64

96
−

15
32

64
96

11
14

49
52

−
47

76
40

8
−

81
16

20
−

12
44

16
0

12
71

37
6

−
28

38
24

0
34

99
20

34
99

20
49

08
60

0
−

25
36

92
0

−
59

19
48

−
32

65
92

−
24

49
44

35
92

51
2

83
98

08
83

98
08

−
27

76
03

2
−

18
37

08
0

43
74

0
77

76
00

10
49

76
−

10
49

76
0

10
49

76
0

10
49

76
0

−
25

36
92

0
26

24
40

−
14

48
28

38
88

00
12

83
04

37
32

48
18

66
24

18
66

24
12

20
83

2
−

22
10

32
8

19
05

12
−

15
55

20
30

32
64

−
10

65
31

2
69

98
4

69
98

4
−

84
95

28
16

97
11

2
−

63
18

0
−

20
21

76
−

15
16

32
−

20
21

76
.

.
−

20
21

76
68

23
44

16
42

68
−

21
77

28
−

22
16

16
−

11
66

40
11

66
40

11
66

40
10

69
20

29
16

0
48

60
62

20
8

−
12

83
04

11
66

40
−

11
66

40
−

11
66

40
12

63
60

75
81

6
74

84
4

−
72

57
6

−
81

64
8

16
32

96
23

32
8

23
32

8
68

04
0

−
20

41
20

−
44

22
6

68
04

0
10

20
60

−
81

64
8

29
16

29
16

−
78

24
6

20
41

2
58

96
8

.
.

.
−

11
27

52
21

38
40

29
48

4
−

17
69

04
58

96
8

.
.

.
21

38
40

−
11

27
52

29
48

4
−

17
69

04
−

29
16

19
44

0
58

32
0

−
33

04
8

46
65

6
46

65
6

−
32

07
6

−
11

08
08

−
46

98
0

51
84

0
50

54
4

38
88

0
−

38
88

0
−

38
88

0
32

40
−

97
20

−
10

22
0

−
20

16
0

−
27

21
6

22
40

−
23

04
0

−
23

04
0

.
98

28
0
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Table 12: The character table for G := HN.2 and H̃ := S12.

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

9
10

1
1a

+
1

46
2

50
40

10
39

5
16

63
2

30
80

0
69

30
0

31
18

50
33

26
40

36
28

80
2

26
6

1
−

19
8

.
24

75
79

2
44

00
−

99
00
−

14
85

0
.

17
28

0
3

76
0a

+
1

13
2
−

10
80

14
85
−

11
88

11
00

49
50

.
−

11
88

0
64

80
4

33
44
a

+
1

12
24

0
49

5
13

32
−

22
00

30
0

−
90

0
−

21
60

28
80

5
89

10
a

+
1

82
48

0
51

5
−

88
40

0
90

0
−

16
50

12
80

−
19

20
6

16
92

9a
+

1
62

−
24

0
15

5
63

2
40

0
−

30
0

10
50

16
0
−

19
20

7
70

22
4

1
−

48
.

22
5
−

10
8
−

10
0
−

15
0

90
0

.
−

72
0

8
26

75
20
a

+
1

12
60

−
45

−
18

50
−

15
0

45
0

−
54

0
18

0
9

36
57

50
a

+
1
−

18
.
−

45
72

80
18

0
−

27
0

.
.

10
40

62
96
a

+
1

12
−

40
5

−
68

−
10

0
−

50
−

20
0

36
0

80
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ñ = 1 140 000. The character table of E
1G
H̃

K as is contained in the database, see
Section (11.1), is given in Table 12.

Let G ⊆ G be a set of standard generators of G in the sense of [81]. We start
with explicitly known permutations for the action of the elements of G on Ω̃
available in [83]. Using the randomised Schreier-Sims algorithm implemented
in GAP, keeping track of transversals and subgroup generators as words in the
given set of generators, see Section (10.6), we obtain a Schreier subgroup chain
of G and a set H̃ of generators of H̃, given explicitly as words in G. Restricting
to the smallest non-trivial suborbit Ω̃2, where k̃2 = 462, we obtain a faithful
permutation action of H̃. By a random search we find a subset of H̃, again
explicitly as words in the set of generators of H̃, generating a subgroup of order
39 916 800 = 11!, which we hence may choose as H ∼= S11. Using the programs
implemented in GAP dealing with permutation groups, explicit permutations
for the action of H̃ on the set of right cosets Ξ := H|H̃ of H in H̃ can be
determined.

Let {g̃i; i ∈ {1, . . . , ñ}} be a set of representatives of the right cosets H̃|G of H̃
in G, where g̃1 := 1. Let {h̃j ; j ∈ {1, . . . , [H̃:H]}} be a set of representatives
of the right cosets H|H̃ of H in H̃, where h̃1 := 1. Hence we obtain a set
of representatives {h̃j g̃i; j ∈ {1, . . . , [H̃:H]}, i ∈ {1, . . . , ñ}} of the right cosets
H|G of H in G. Let πΩ̃:G → Sñ as well as πΞ: H̃ → S[H̃:H] and πΩ:G → Sn
denote the group homomorphisms defined by the action of G on Ω̃, by the
action of H̃ on Ξ and by the action of G on Ω, respectively. As noted above
both πΩ̃ and πΞ are given in terms of the sets G and H̃ of generators of G and
H̃, respectively. Explicit permutations for the action of G and of H̃ on Ω are
obtained as follows.

For g ∈ G as well as i ∈ {1, . . . , ñ} and j ∈ {1, . . . , [H̃:H]}, let i′ := i · πΩ̃(g)
and j′ := j · πΞ(g̃i · g · g̃−1

i′ ). Hence we have h̃j g̃i · g = h · h̃j′ g̃i′ , for some
h ∈ H. Thus πΩ(g) can be determined from πΩ̃(g) and πΞ, where we have to
write g̃i · g · g̃−1

i′ ∈ H̃ as a word in the given set H̃ of generators of H̃. This
can be done in GAP using the Schreier subgroup chain of G obtained above,
containing the transversals and subgroup generators as words in the given set
H̃ of generators.

Hence we are prepared to apply the ZKD program in the MeatAxe, see Section
(9.1), to some arbitrarily chosen elements of G. Using Proposition (9.6) and
Remark (9.7) we obtain some of the structure constants matrices Pk, for some
k ∈ I. Using the technique described in Section (8.2) and sufficiently many of
the Pk, we obtain the character table of EK as shown in Table 13. Rows and
columns have been reordered and column indexing has been adjusted to exhibit
the phenomena described in Section 5, see Example (5.14), where the character

table of E
1G
H̃

K is given in Table 12.



96

Table 13: The character table for G := HN.2 and H := S11.

ϕ
χ
ϕ

1′
1′
′

2′
2′
′

3′
4′

4′
′

5′
5′
′

5′
′′

1
1a

+
1

11
27

72
27

72
60

48
0

20
79

0
10

39
50

16
63

2
83

16
0

99
79

2
2

26
6

1
11
−

11
88
−

11
88

.
49

50
24

75
0

79
2

39
60

47
52

3
76

0a
+

1
11

79
2

79
2
−

12
96

0
29

70
14

85
0
−

11
88
−

59
40
−

71
28

4
33

44
a

+
1

11
72

72
28

80
99

0
49

50
13

32
66

60
79

92
5

89
10
a

+
1

11
49

2
49

2
57

60
10

30
51

50
−

88
−

44
0
−

52
8

6
16

92
9a

+
1

11
37

2
37

2
−

28
80

31
0

15
50

63
2

31
60

37
92

7
70

22
4

1
11

−
28

8
−

28
8

.
45

0
22

50
−

10
8
−

54
0
−

64
8

8
26

75
20
a

+
1

11
72

72
72

0
−

90
−

45
0

−
18

−
90

−
10

8
9

36
57

50
a

+
1

11
−

10
8
−

10
8

.
−

90
−

45
0

72
36

0
43

2
10

40
62

96
a

+
1

11
72

72
−

48
0

10
50

−
68

−
34

0
−

40
8

11
94

05
a

+
1
−

1
−

16
8

16
8

.
10

50
−

10
50

14
28

21
00

−
35

28
12

65
31

25
a

+
1
−

1
−

72
72

.
90

−
90

18
0

46
8

−
64

8
13

11
85

03
0a

+
1
−

1
72

−
72

.
25

0
−

25
0

68
10

0
−

16
8

14
20

31
48

0a
+

1
−

1
12

−
12

.
−

50
50

20
8

−
40

0
19

2
15

23
75

00
0a

+
1
−

1
36

−
36

.
−

18
18

−
14

4
14

4
.

16
24

07
68

0a
+

1
−

1
−

48
48

.
15

0
−

15
0
−

10
2
−

15
0

25
2

17
38

78
28

0a
+

1
−

1
−

8
8

.
−

15
0

15
0

−
12

10
0

−
88

6′
7′

8′
8′
′

9′
10
′

10
′′

36
96

00
83

16
00

12
47

40
0

24
94

80
0

39
91

68
0

36
28

80
39

91
68

0
52

80
0
−

11
88

00
−

59
40

0
−

11
88

00
.

17
28

0
19

00
80

13
20

0
59

40
0

.
.
−

14
25

60
64

80
71

28
0

−
26

40
0

36
00

−
36

00
−

72
00

−
25

92
0

28
80

31
68

0
48

00
10

80
0

−
66

00
−

13
20

0
15

36
0
−

19
20

−
21

12
0

48
00

−
36

00
42

00
84

00
19

20
−

19
20

−
21

12
0

−
12

00
−

18
00

36
00

72
00

.
−

72
0

−
79

20
60

0
−

18
00

18
00

36
00

−
64

80
18

0
19

80
96

0
21

60
−

10
80

−
21

60
.

.
.

−
12

00
−

60
0

−
80

0
−

16
00

43
20

80
88

0
.

.
25

20
0
−

25
20

0
.
−

10
08

0
10

08
0

.
.

−
72

0
72

0
.

14
40

−
14

40
.

.
−

12
00

12
00

.
−

48
0

48
0

.
.

40
0

−
40

0
.

32
0

−
32

0
.

.
10

08
−

10
08

.
57

6
−

57
6

.
.

.
.

.
−

18
0

18
0

.
.

−
40

0
40

0
.

−
48

0
48

0
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(13.2) Let still G := HN.2 and H := S11, as well as G′ := HN and H ′ :=
A11, and H̃ := S12. We have r′ = 19.

A H ′|G′ can be identified with Ω := H|G, to determine the character table

of E1G
′

H′
K we also use the explicit permutations for G obtained above. Sets of

generators of G′ < G as well as of A12
∼= H̃ ′ := H̃ ∩ G′ < G′ and of H ′ < H̃ ′,

given as words in G, are available in [83]. Hence the same technique as used

for the character table of EK yields the character table of E1G
′

H′
K . It is shown in

Table 14, where r5 :=
√

5 ∈ R.

Alternatively, we could also apply the technique used in Section (12.4), for which
we need to know which suborbits of Ω split. As we have [H:H ′] = 2 as well as
r = 17 and r′ = 19, there are exactly two of the suborbits of the G-action on Ω
which each split into two suborbits of the G′-action. To find out, which suborbits

split, we also identify H̃ ′|G′ with Ω̃, and compare the character tables of E
1G
H̃

K ,

see Table 12, and E
1G
′

H̃′
K , which is contained in the database, see Section (11.1),

and has originally been computed in [63]. We find that the suborbits Ω̃3 and Ω̃9

split, see Table 12. Hence we conclude that the suborbits Ω3′ and Ω9′ split, see
Table 13. The relevant character values are obtained as in Section (12.4) and are
indicated in Table 14 in bold type. In Table 14, rows and columns have been
reordered and column indexing has been adjusted to exhibit the phenomena
described in Section 5.

(13.3) Let G := HN.2 and H := U3(8).6, as well as G′ := HN and H ′ :=
U3(8).31. We have r = 15.

Let G ⊆ G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible F2G-module V of F2-dimension 760 available in [83]. The subgroup
H < G is a maximal subgroup of G, and H ′ < G′ is a maximal subgroup of
G′. A set of generators H of H and a set of generators G′ of G′, both given as
words in G, is available in [83] as well. Using the MeatAxe, a set of generators
of H ′, again as words in the set of generators H of H, can be found.

Using the MeatAxe, we find that VH′ has a uniquely determined trivial F2H
′-

submodule. Hence, if we pick the vector 0 6= vH′ ∈ VH′ in this submodule we
conclude that there is a G-set isomorphism between the G-set vH′ ·G ⊆ V and
Ω := H|G, where the latter can also be identified with H ′|G′.
We apply the technique described in Section (10.3) for U = H ′, where U1 < U
is a cyclic subgroup of order 21. The F2U1-epimorphic image V1 is chosen to be
isomorphic to V1

∼= 6a⊕ 6a, where 6a is one of the irreducible F2U1-modules of
F2-dimension 6. We find the orbit counting numbers for the elements of G′ with
respect to Ω =

∐
j∈J Ω̃j first, using the notation of Section (9.8), and using

the set of generators H of H yields the orbit counting numbers with respect to
Ω =

∐
i∈I Ωi.
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Table 14: The character table for G′ := HN and H ′ := A11.

ϕ
χ
ϕ

1′
1′
′

2′
2′
′

3′ 1
3′ 2

4′
4′
′

5′
5′
′

5′
′′

1
1a

+
1

11
27

72
27

72
30

24
0

30
24

0
20

79
0

10
39

50
16

63
2

83
16

0
99

79
2

2′
13

3a
1

11
−

11
88
−

11
88
−

43
20

r 5
43

20
r 5

49
50

24
75

0
79

2
39

60
47

52
2′
′

13
3b

1
11
−

11
88
−

11
88

43
20

r 5
−

43
20

r 5
49

50
24

75
0

79
2

39
60

47
52

3
76

0a
+

1
11

79
2

79
2

−
64

80
−

64
80

29
70

14
85

0
−

11
88
−

59
40
−

71
28

4
33

44
a

+
1

11
72

72
14

40
14

40
99

0
49

50
13

32
66

60
79

92
5

89
10
a

+
1

11
49

2
49

2
28

80
28

80
10

30
51

50
−

88
−

44
0
−

52
8

6
16

92
9a

+
1

11
37

2
37

2
−

14
40

−
14

40
31

0
15

50
63

2
31

60
37

92
7′

35
12

2a
1

11
−

28
8
−

28
8

−
72

0r
5

72
0r

5
45

0
22

50
−

10
8
−

54
0
−

64
8

7′
′

35
12

2b
1

11
−

28
8
−

28
8

72
0r

5
−

72
0r

5
45

0
22

50
−

10
8
−

54
0
−

64
8

8
26

75
20
a

+
1

11
72

72
36

0
36

0
−

90
−

45
0

−
18

−
90

−
10

8
9

36
57

50
a

+
1

11
−

10
8
−

10
8

.
.

−
90

−
45

0
72

36
0

43
2

10
40

62
96
a

+
1

11
72

72
−

24
0

−
24

0
10

50
−

68
−

34
0
−

40
8

11
94

05
a

+
1
−

1
−

16
8

16
8

.
.

10
50

−
10

50
14

28
21

00
−

35
28

12
65

31
25
a

+
1
−

1
−

72
72

.
.

90
−

90
18

0
46

8
−

64
8

13
11

85
03

0a
+

1
−

1
72

−
72

.
.

25
0

−
25

0
68

10
0

−
16

8
14

20
31

48
0a

+
1
−

1
12

−
12

.
.

−
50

50
20

8
−

40
0

19
2

15
23

75
00

0a
+

1
−

1
36

−
36

.
.

−
18

18
−

14
4

14
4

.
16

24
07

68
0a

+
1
−

1
−

48
48

.
.

15
0

−
15

0
−

10
2
−

15
0

25
2

17
38

78
28

0a
+

1
−

1
−

8
8

.
.
−

15
0

15
0

−
12

10
0

−
88

6′
7′

8′
8′
′

9′ 1
9′ 2

10
′

10
′′

36
96

00
83

16
00

12
47

40
0

24
94

80
0

19
95

84
0

19
95

84
0

36
28

80
39

91
68

0
52

80
0
−

11
88

00
−

59
40

0
−

11
88

00
−

95
04

0r
5

95
04

0r
5

17
28

0
19

00
80

52
80

0
−

11
88

00
−

59
40

0
−

11
88

00
95

04
0r

5
−

95
04

0r
5

17
28

0
19

00
80

13
20

0
59

40
0

.
.

−
71

28
0

−
71

28
0

64
80

71
28

0
−

26
40

0
36

00
−

36
00

−
72

00
−

12
96

0
−

12
96

0
28

80
31

68
0

48
00

10
80

0
−

66
00

−
13

20
0

76
80

76
80

−
19

20
−

21
12

0
48

00
−

36
00

42
00

84
00

96
0

96
0
−

19
20

−
21

12
0

−
12

00
−

18
00

36
00

72
00

21
60

r 5
−

21
60

r 5
−

72
0

−
79

20
−

12
00

−
18

00
36

00
72

00
−

21
60

r 5
21

60
r 5

−
72

0
−

79
20

60
0

−
18

00
18

00
36

00
−

32
40

−
32

40
18

0
19

80
96

0
21

60
−

10
80

−
21

60
.

.
.

.
−

12
00

−
60

0
−

80
0

−
16

00
21

60
21

60
80

88
0

.
.

25
20

0
−

25
20

0
.

.
−

10
08

0
10

08
0

.
.

−
72

0
72

0
.

.
14

40
−

14
40

.
.
−

12
00

12
00

.
.

−
48

0
48

0
.

.
40

0
−

40
0

.
.

32
0

−
32

0
.

.
10

08
−

10
08

.
.

57
6

−
57

6
.

.
.

.
.

.
−

18
0

18
0

.
.

−
40

0
40

0
.

.
−

48
0

48
0
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Using Remark (9.7), we obtain some of the structure constants matrices for EK ,
such that using the technique described in Section (8.2) we obtain a splitting of
K1×r into eigenspaces of dimension 1. The character table of EK is shown in
Table 15.

(13.4) Let still G := HN.2 and H := U3(8).6, as well as G′ := HN and
H ′ := U3(8).31. We have r′ = 19.

The splitting of the suborbits Ωi, for i ∈ I, into the suborbits Ω̃j , for j ∈ J ,
is known by [34], but can also be deduced from the results on orbit counting
numbers in Section (13.3). The split suborbits are {5, 8, 12, 13}. As [H:H ′] = 2,
a split suborbit of G splits into two suborbits of G′ of equal length.

Using the orbit counting matrices with respect to Ω =
∐
j∈J Ω̃j found for G′ in

Section (13.3), and the technique described in Section (8.2), we obtain a splitting
of K1×r′ into 11 eigenspaces of dimension 1, and 4 eigenspaces of dimension 2,
where K-bases {ψ1, ψ2, }, . . . , {ψ7, ψ8} of the latter are given in Table 16.

Using the character table of EK = E
1GH
K given in Table 15, we conclude that

we have found {ϕ1, . . . , ϕ4, ϕ6, ϕ7, ϕ10, ϕ11, ϕ13, . . . , ϕ15} ⊆ Irr(E1G
′

H′
K ), see Table

17. Furthermore, the Fitting correspondents of ϕ5′ , ϕ5′′ are 35112ab, and we
have ϕ5′ , ϕ5′′ ∈ 〈ψ1, ψ2〉K . Analogously, ϕ8′ , ϕ8′′ correspond to 374528ab and
ϕ8′ , ϕ8′′ ∈ 〈ψ3, ψ4〉K , while ϕ9′ , ϕ9′′ correspond to 656250ab and ϕ9′ , ϕ9′′ ∈
〈ψ5, ψ6〉K , and finally ϕ12′ , ϕ12′′ correspond to 1361920bc and ϕ12′ , ϕ12′′ ∈
〈ψ7, ψ8〉K . Using GAP we find that χϕi(G) ⊆ Q(

√
5) ⊆ R, for i ∈ {5′, 5′′, 8′, 8′′},

while χϕi(G) ⊆ Q(
√
−19) 6⊆ R, for i ∈ {9′, 9′′}, and χϕi(G) ⊆ Q(

√
−10) 6⊆ R,

for i ∈ {12′, 12′′}, where all of the latter irreducible characters are non-rational.

From this we obtain ϕ5′ , ϕ5′′ , ϕ8′ , ϕ8′′ , using the same technique as in Section
(12.3). By Remark (3.21), the values of the characters ϕ9′ , ϕ9′′ , ϕ12′ , ϕ12′′ on
the Schur basis elements are not all real, and using the same technique as in
Section (12.4) we conclude

ϕ9′(α
1G
′

H′
5′ + α

1G
′

H′
5′ ) = ϕ9′(α

1G
′

H′
5′ ) + ϕ9′(α

1G
′

H′
5′ ) = ϕ9(α1GH

5 ) = 288,

ϕ12′(α
1G
′

H′
5′ + α

1G
′

H′
5′ ) = ϕ12′(α

1G
′

H′
5′ ) + ϕ12′(α

1G
′

H′
5′ ) = ϕ12(α1GH

5 ) = −108,

where is the involutory field automorphism of K as defined in Section 3.

As in Section (12.3) we let ϕ9′ = ψ5 + aψ6 and ϕ12′ = ψ7 + bψ8, for a, b ∈ K.
The above equations already determine the real parts a+a

2 and b+b
2 of a and b,

respectively. As we know the degrees χϕ(1) of the Fitting correspondents of ϕ9′

and ϕ12′ , the orthogonality relations, see Proposition (3.8), lead to quadratic
equations for the imaginary parts a−a

2i and b−b
2i of a and b, respectively. This

yields ϕ9′ and ϕ12′ , as well as ϕ9′′ = ϕ9′ and ϕ12′′ = ϕ12′ .

The character table of E1G
′

H′
K is shown in Table 17, where again we indicate the

relevant character values in bold type, and where r5 :=
√

5 ∈ R as well as
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Table 15: The character table for G := HN.2 and H := U3(8).6.

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

1
1a

+
1

15
39

14
36

4
25

53
6

51
07

2
68

09
6

13
13

28
45

96
48

2
76

0a
+

1
−

81
30

24
−

47
04
−

26
88

76
16

17
28
−

24
19

2
3

33
44
a

+
1
−

26
1

17
64

24
36

67
2

89
6

53
28

60
48

4
94

05
a

+
1

99
92

4
20

16
−

26
88

89
6
−

30
72

26
88

5
70

22
4

1
99

68
4
−

14
4
−

12
48

−
64

17
28

−
43

2
6

26
75

20
a

+
1

9
41

4
36

6
67

2
71

6
−

72
−

43
2

7
27

08
64
a

+
1

19
36

4
−

64
4

67
2
−

22
4
−

10
72

−
67

2
8

74
90

56
1
−

81
−

36
−

14
4

72
−

42
4

−
72

−
97

2
9

13
12

50
0

1
−

45
−

18
0

48
28

8
32

0
.

57
6

10
11

85
03

0a
+

1
19

44
17

6
19

2
−

70
4

12
8

76
8

11
13

61
92

0a
+

1
54

9
12

6
25

2
11

6
15

3
−

70
2

12
27

23
84

0
1

54
−

81
−

84
−

10
8

56
−

29
7

37
8

13
15

75
93

6a
+

1
−

26
10

9
−

19
4

−
48

13
6

35
3

12
18

14
24

07
68

0a
+

1
9

−
66

−
54

−
48

−
4

52
8

−
67

2
15

45
61

92
0a

+
1
−

26
29

86
−

16
8

16
−

24
7

−
22

2

9
10

11
12

13
14

15
68

94
72

78
79

68
78

79
68

12
25

72
8

12
25

72
8

55
15

77
6

55
15

77
6

54
43

2
−

67
39

2
36

28
8
−

24
19

2
56

44
8
−

10
88

64
72

57
6

15
37

2
17

56
8

24
76

8
−

51
07

2
−

17
47

2
22

17
6
−

28
22

4
14

11
2

10
36

8
−

11
52

16
12

8
16

12
8

−
80

64
−

48
38

4
−

10
08

−
11

52
46

08
74

88
−

88
32

−
23

04
57

6
−

55
8

19
08

−
16

92
40

8
−

55
2

−
75

24
63

36
16

52
12

8
−

67
2

44
8

−
17

92
53

76
−

35
84

−
64

8
17

28
17

28
64

8
10

08
−

30
24

21
6

72
0

−
57

6
57

6
11

52
−

11
52

−
57

6
−

11
52

59
2

−
83

2
−

19
2

12
8

12
8

−
13

44
89

6
−

10
53

−
56

7
91

8
10

8
10

98
19

71
−

24
84

27
51

3
37

8
−

43
2

−
16

2
−

12
69

10
26

−
73

3
−

12
7

−
34

2
−

21
2

11
18

−
12

9
−

11
24

70
2

46
8

−
97

2
−

72
−

72
39

6
−

14
4

−
17

3
−

36
7

−
22

2
−

29
2

−
20

2
11

91
59

6
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Table 16: 2-dimensional eigenspaces for G′ := HN and H ′ := U3(8).31.

1′
2′

3′
4′

5′
5′
′

6′
7′

8′
8′
′

ψ
1

35
11

2
1

99
68

4
−

14
4
−

62
4
−

62
4
−

64
17

28
.
−

43
2

ψ
2

.
.

.
.

.
.

.
.

3
−

3
ψ

3
37

45
28

1
−

81
−

36
−

14
4

36
36

−
42

4
−

72
.
−

97
2

ψ
4

.
.

.
.

.
.

.
.

1
−

1
ψ

5
65

62
50

1
−

45
−

18
0

48
.

28
8

32
0

.
28

8
28

8
ψ

6
.

.
.

.
1

−
1

.
.

.
.

ψ
7

13
61

92
0

1
54

−
81

−
84

.
−

10
8

56
−

29
7

18
9

18
9

ψ
8

.
.

.
.

1
−

1
.

.
.

.

9′
10
′

11
′

12
′

12
′′

13
′

13
′′

14
′

15
′

−
10

08
−

11
52

46
08

34
56

40
32

−
44

16
−

44
16
−

23
04

57
6

.
.

.
−

4
4

.
.

.
.

−
64

8
17

28
17

28
12

96
−

64
8

50
4

50
4
−

30
24

21
6

.
.

.
2

−
2

.
.

.
.

72
0
−

57
6

57
6

57
6

57
6

57
6
−

17
28

−
57

6
−

11
52

.
.

.
.

.
−

8
8

.
.

27
51

3
37

8
−

21
6
−

21
6

81
−

24
3
−

12
69

10
26

.
.

.
.

.
3

−
3

.
.
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i10 := i ·
√

10 ∈ C and i19 := i ·
√

19 ∈ C. The Fitting correspondence is
determined in Section (11.5).

14 The Lyons group Ly

(14.1) Let G := Ly and H ′ := 3.McL, as well as H := 3.McL.2. We have
r′ = 8 and r = 5.

Let G ⊆ G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible F5G-module V of F5-dimension 517 available in [83]. The subgroup
H < G is a maximal subgroup of G, and a set of generators of H, given as
words in G, is available in [83] as well. Using the MeatAxe, a set of generators
H′ of H ′, again as words in the set of generators of H, can be found.

Using the algorithms to compute submodule lattices described in [47] available
in the MeatAxe, we find that VH′ ∼= 1a⊕ 210a⊕ 306a as F5H

′-modules, where
1a, 210a and 306a are the absolutely irreducible F5H

′-modules of the respective
dimensions, see [37]. Hence all F5H

′-submodules of VH′ are also invariant under
the action of F5H and using the MeatAxe we find that the trivial F5H

′-module
1a extends to the non-trivial linear F5H-module 1a−. Hence, if we pick a vector
0 6= vH′ ∈ 1a ≤ VH′ , we conclude that there is a G-set isomorphism between
the G-orbit vH′ ·G ⊆ V and Ω′ := H ′|G.

To use the strategy described in Section (10.3) efficiently, we proceed as de-
scribed in Section (9.8). We choose a subgroup U < H ′, and compute the
orbit counting numbers with respect to Ω′ =

∐
j∈J Ω̃′j first. From these the

orbit counting numbers with respect to Ω′ =
∐
i∈I′ Ω

′
i are found. We choose

U := 3 ×M11 < 3.McL = H ′, which is a maximal subgroup of H ′. A set of
generators of U , given as words in H′, is available in [83] as well. We have
|U | = 23760 and using GAP we find 〈1GH′ , 1GU 〉G = 837, thus we have |J | = 837,
while |I ′| = r′ = 8. Furthermore, we choose U1 < U to be a subgroup of order
11. Using the MeatAxe we find VU1

∼= 47 · 1a ⊕ 47 · 5a ⊕ 47 · 5b, where 1a,
5a and 5b are the irreducible F5U1-modules of the respective dimensions. As
F5U1-epimorphic image V1 we choose one of the irreducible quotients V1

∼= 5a.

We compute the orbit counting numbers for the elements in G and those in H′,
and applying Section (9.8) and Remark (9.7) we obtain two of the structure
constants matrices Pk1 and Pk2 , for k1, k2 ∈ I ′. Using the technique described
in Section (8.2), we obtain a splitting of K1×r′ , into 6 eigenspaces of dimension
1, and an eigenspace of dimension 2, where a K-basis {ψ1, ψ2} of the latter is
shown in Table 18. As the degrees of the characters in Irr1

K(G) are pairwise
different, we conclude that we have found {ϕ1, . . . , ϕ5, ϕ8}, while ϕ6 and ϕ7 are
missing.

We could compute more of the structure constants matrices, until these yield
only eigenspaces of dimension 1. But proceeding as in Section (12.3), we let
ϕ6 = ψ1 + aψ2 and ϕ7 = ψ1 + bψ2, for a, b ∈ K. This yields a ∈ {±1800} and
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Table 17: The character table for G′ := HN and H ′ := U3(8).31.

ϕ
χ
ϕ

1′
2′

3′
4′

5′
5′
′

6′
7′

8′
8′
′

1
1a

1
15

39
14

36
4

25
53

6
25

53
6

25
53

6
68

09
6

13
13

28
22

98
24

22
98

24
2

76
0a

1
−

81
30

24
−

47
04

−
13

44
−

13
44

76
16

17
28

−
12

09
6

−
12

09
6

3
33

44
a

1
−

26
1

17
64

24
36

33
6

33
6

89
6

53
28

30
24

30
24

4
94

05
a

1
99

92
4

20
16

−
13

44
−

13
44

89
6
−

30
72

13
44

13
44

5′
35

11
2a

1
99

68
4
−

14
4

−
62

4
−

62
4

−
64

17
28
−

21
6

+
18

00
r 5
−

21
6
−

18
00

r 5
5′
′

35
11

2b
1

99
68

4
−

14
4

−
62

4
−

62
4

−
64

17
28
−

21
6
−

18
00

r 5
−

21
6

+
18

00
r 5

6
26

75
20
a

1
9

41
4

36
6

33
6

33
6

71
6

−
72

−
21

6
−

21
6

7
27

08
64
a

1
19

36
4
−

64
4

33
6

33
6
−

22
4
−

10
72

−
33

6
−

33
6

8′
37

45
28
a

1
−

81
−

36
−

14
4

36
36

−
42

4
−

72
−

48
6
−

45
0r

5
−

48
6

+
45

0r
5

8′
′

37
45

28
b

1
−

81
−

36
−

14
4

36
36

−
42

4
−

72
−

48
6

+
45

0r
5
−

48
6
−

45
0r

5

9′
65

62
50
a

1
−

45
−

18
0

48
14

4
+

48
i 1

9
14

4
−

48
i 1

9
32

0
.

28
8

28
8

9′
′

65
62

50
b

1
−

45
−

18
0

48
14

4
−

48
i 1

9
14

4
+

48
i 1

9
32

0
.

28
8

28
8

10
11

85
03

0a
1

19
44

17
6

96
96

−
70

4
12

8
38

4
38

4
11

13
61

92
0a

1
54

9
12

6
12

6
12

6
11

6
15

3
−

35
1

−
35

1
12
′

13
61

92
0b

1
54

−
81

−
84
−

54
+

75
i 1

0
−

54
−

75
i 1

0
56

−
29

7
18

9
18

9
12
′′

13
61

92
0c

1
54

−
81

−
84
−

54
−

75
i 1

0
−

54
+

75
i 1

0
56

−
29

7
18

9
18

9
13

15
75

93
6a

1
−

26
10

9
−

19
4

−
24

−
24

13
6

35
3

60
9

60
9

14
24

07
68

0a
1

9
−

66
−

54
−

24
−

24
−

4
52

8
−

33
6

−
33

6
15

45
61

92
0a

1
−

26
29

86
−

84
−

84
16

−
24

7
−

11
1

−
11

1

9′
10
′

11
′

12
′

12
′′

13
′

13
′′

14
′

15
′

68
94

72
78

79
68

78
79

68
61

28
64

61
28

64
61

28
64

61
28

64
55

15
77

6
55

15
77

6
54

43
2
−

67
39

2
36

28
8

−
12

09
6

−
12

09
6

28
22

4
28

22
4
−

10
88

64
72

57
6

15
37

2
17

56
8

24
76

8
−

25
53

6
−

25
53

6
−

87
36

−
87

36
22

17
6
−

28
22

4
14

11
2

10
36

8
−

11
52

80
64

80
64

80
64

80
64

−
80

64
−

48
38

4
−

10
08

−
11

52
46

08
37

44
−

24
00

r 5
37

44
+

24
00

r 5
−

44
16

−
44

16
−

23
04

57
6

−
10

08
−

11
52

46
08

37
44

+
24

00
r 5

37
44
−

24
00

r 5
−

44
16

−
44

16
−

23
04

57
6

−
55

8
19

08
−

16
92

20
4

20
4

−
27

6
−

27
6

−
75

24
63

36
16

52
12

8
−

67
2

22
4

22
4

−
89

6
−

89
6

53
76

−
35

84
−

64
8

17
28

17
28

32
4
−

90
0r

5
32

4
+

90
0r

5
50

4
50

4
−

30
24

21
6

−
64

8
17

28
17

28
32

4
+

90
0r

5
32

4
−

90
0r

5
50

4
50

4
−

30
24

21
6

72
0

−
57

6
57

6
57

6
57

6
−

57
6
−

38
4i

1
9
−

57
6

+
38

4i
1
9

−
57

6
−

11
52

72
0

−
57

6
57

6
57

6
57

6
−

57
6

+
38

4i
1
9
−

57
6
−

38
4i

1
9

−
57

6
−

11
52

59
2

−
83

2
−

19
2

64
64

64
64

−
13

44
89

6
−

10
53

−
56

7
91

8
54

54
54

9
54

9
19

71
−

24
84

27
51

3
37

8
−

21
6

−
21

6
−

81
+

22
5i

1
0
−

81
−

22
5i

1
0

−
12

69
10

26
27

51
3

37
8

−
21

6
−

21
6
−

81
−

22
5i

1
0
−

81
+

22
5i

1
0

−
12

69
10

26
−

73
3

−
12

7
−

34
2

−
10

6
−

10
6

55
9

55
9

−
12

9
−

11
24

70
2

46
8

−
97

2
−

36
−

36
−

36
−

36
39

6
−

14
4

−
17

3
−

36
7

−
22

2
−

14
6

−
14

6
−

10
1

−
10

1
11

91
59

6
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b ∈ {±675}. The orthogonality relations, see Proposition (3.8), imply a · b < 0.
This determines the character table of E1H′

K up to a table automorphism of
Irr(E1H′

K ), see Definition (8.5).

The character table of E1H′
K is shown in Table 18. Rows and column have been

reordered and column indexing has been adjusted to exhibit the phenomena
described in Section 5, where the character table of EK = E1H

K is contained in
the database, see Section (11.1).

(14.2) Remark. Let C3A ∈ Cl(G) denote the 3A-conjugacy class of G, see
[13]. Then G acts on C3A by conjugation, and as H ′ = CG(3a), where 3a ∈ C3A

is a suitable representative of the 3A-conjugacy class, the G-sets Ω′ and C3A

are isomorphic. Using GAP, we compute the class multiplication coefficients

m3A,3A,C := |{(x, y) ∈ G×G;x, y ∈ C3A, xy = z0 ∈ C}| ∈ N0,

where C ∈ Cl(G) and z0 ∈ C is a fixed element. We find m3A,3A,C 6= 0 for the
conjugacy classes C ∈ {C1A, C3A, C3B , C4A, C5B , C6A, C10A, C15A}. Hence we
have a bijection between these conjugacy classes and the orbitals O′i ⊆ Ω′ ×Ω′,
for i ∈ I ′. Furthermore, the corresponding index parameters k′i are given as
k′C = |C|·m3A,3A,C

|C3A| . Using the character table of EK = E1H
K , this determines the

splitting of the suborbits Ωi of Ω, for i ∈ I, into those of Ω′. The split suborbits
are i ∈ {1, 3, 5}.

C k′C i

1A 1 1
3A 1 1
3B 30800 2
4A 534600 3
5B 7185024 5
6A 534600 3

10A 3742200 4
15A 7185024 5

15 The Thompson group Th

(15.1) Let G := Th and H := 3D4(2).3. We have r = 11.

Let G ⊆ G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible F2G-module of F2-dimension 248 available in [83]. Tensoring with
F4 over F2 yields an F4G-module V .

The subgroup H < G is a maximal subgroup of G, and a set of generators of
H, given as words in G, is available in [83] as well. Using the algorithms to
compute submodule lattices described in [47] available in the MeatAxe, we find
that VH has exactly two H-invariant 1-dimensional F4-subspaces. We choose
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Table 18: The character table for G := Ly and H ′ := 3.McL.
ϕ

χ
ϕ

1′
1′
′

2′
3′

3′
′

4′
5′

5′
′

1
1a

1
1

30
80

0
53

46
00

53
46

00
37

42
20

0
71

85
02

4
71

85
02

4
2

45
69

4a
1

1
−

65
0

10
12

5
10

12
5

−
40

50
−

77
76

−
77

76
3

15
34

50
0a

1
1

−
20

−
60

−
60

56
10

−
27

36
−

27
36

4
30

28
26

6a
1

1
35

0
12

5
12

5
−

10
50

22
4

22
4

5
49

97
66

4a
1

1
−

20
0

−
15

0
−

15
0

−
10

50
77

4
77

4
6

11
52

73
5a

1
−

1
.

18
00

−
18

00
.

30
24

−
30

24
7

30
73

96
0a

1
−

1
.
−

67
5

67
5

.
30

24
−

30
24

8
53

79
43

0a
1
−

1
.

.
.

.
−

23
76

23
76

ψ
1

1
−

1
.

.
.

.
30

24
−

30
24

ψ
2

.
.

.
1

−
1

.
.

.
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one of them, 〈vH〉F4 ≤ V say, and as H < G is a maximal subgroup of G, we
conclude that there is a G-set isomorphism between the G-orbit 〈vH〉F4 · G of
1-dimensional F4-subspaces of V and Ω := H|G.

To use the strategy described in Section (10.1) efficiently, we proceed as de-
scribed in Section (9.8). We choose a subgroup U < H, and compute the
orbit counting numbers with respect to Ω =

∐
j∈J Ω̃j first. From these the

orbit counting numbers with respect to Ω =
∐
i∈I Ωi are found. We choose

U := 21+8
+ :L2(8): 3 = NH(2a) < H, where C2A ∈ Cl(H) denotes the 2A-

conjugacy class of H, and 2a ∈ C2A. The subgroup U < H is a maximal
subgroup of H. A set of generators of U , given as words in the set of gener-
ators of H, is found using a standard MeatAxe technique, exploiting the fact
that the subgroup U is the centralizer in H of an element of order 2. We have
|U | = 774144, and using GAP we find 〈1GH , 1GU 〉G = 241, thus we have |J | = 241,
while |I| = r = 11. Furthermore, we choose U1 := 9: 6 < U to be a subgroup
of order 54. Using the MeatAxe we find that VU1 has an absolutely irreducible
F4U1-epimorphic image V1 of F4-dimension 6. Hence U1 acts faithfully on V1.

We compute the orbit counting numbers for the elements in G. Applying Section
(9.8), Remark (9.7) and using the technique described in Section (8.2), we obtain
a splitting of K1×r into eigenspaces of dimension 1. The character table of EK
is shown in Table 19, where the index parameters have also been found in [51],
see also [34].

(15.2) Let G := Th and H := 25.L5(2). We have r = 11.

We apply the same strategy as described in Section (15.1). Let G ⊆ G be as
in Section (15.1), and let V be the absolutely irreducible F2G-module of F2-
dimension 248. Again, the subgroup H < G is a maximal subgroup of G, and
a set of generators of H, given as words in G, is available in [83] as well. Using
the algorithms to compute submodule lattices described in [47] available in the
MeatAxe, we find that VH has exactly one 5-dimensional absolutely irreducible
F2H-submodule W . As H < G is a maximal subgroup of G, we conclude
that there is a G-set isomorphism between the G-orbit W ·G of 5-dimensional
F2-subspaces of V and Ω := H|G.

We choose U := (2×24).L4(2) < 25.(24:L4(2)) < H, hence U is a preimage of a
Levi subgroup of a maximal, maximal parabolic subgroup of L5(2), with respect
to the natural group epimorphism H → L5(2). We have |U | = 645120, and using
GAP we find 〈1GH , 1GU 〉G = 482, thus we have |J | = 482, while |I| = r = 11.
Applying a few standard MeatAxe techniques we find a set of generators of U
as words in the set of generators of H.

We choose U1 := (7: 3)×2 < A7 < L4(2) < U to be a subgroup of order 42; note
that L4(2) ∼= A8. Again applying a few standard MeatAxe techniques, we find
a set of generators of U1 as words on the set of generators of U . Furthermore,
using the algorithms to compute submodule lattices described in [47] available
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Table 19: The character table for G := Th and H := 3D4(2).3.

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

9
10

11
1

1a
1

17
19

9
45

86
4

17
97

12
13

04
57

6
22

01
47

2
50

31
93

6
81

28
51

2
88

05
88

8
11

74
11

84
10

56
70

65
6

2
41

23
a

1
−

24
57

65
52

.
46

59
2

.
−

17
97

12
−

29
03

04
.

41
93

28
.

3
30

87
5a

1
45

9
23

40
−

77
76

−
78

40
−

34
99

2
76

89
6

12
96

0
10

10
88

90
14

4
−

23
32

80
4

61
25

6a
1

13
23

27
72

−
43

20
16

35
2

15
12

0
60

48
72

57
6
−

75
60

0
56

44
8

−
90

72
0

5
24

50
24

0a
1
−

44
1

50
4

−
28

8
42

56
40

32
70

56
−

60
48

10
08

−
70

56
−

30
24

6
33

76
73

7a
1
−

11
7

61
2

14
40

−
92

8
−

50
40

31
68

−
86

4
−

72
00

28
8

86
40

7
48

81
38

4a
1

40
3

49
2

96
0

11
2

26
40

−
13

92
−

14
4

60
00

−
20

32
−

70
40

8
11

57
73

84
a

1
99

−
36

−
28

8
−

22
24

18
72

27
36

−
38

88
−

33
12

15
84

34
56

9
28

86
10

00
a

1
−

11
7

18
0

−
28

8
−

92
8

14
4

−
20

16
17

28
10

08
−

57
6

86
4

10
40

19
92

50
a

1
99

−
36

−
28

8
80

0
−

11
52

−
28

8
−

86
4

−
28

8
−

14
40

34
56

11
51

68
47

50
a

1
−

45
−

18
0

28
8

22
4

28
8

28
8

86
4

28
8

14
40

−
34

56
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in the MeatAxe, we find that VU1 has an F2U1-epimorphic image isomorphic to

V0 :=
5⊕
k=1

[
3a
3a

]
,

where the summands are pairwise isomorphic uniserial F2U1-modules with com-
position series as indicated, and where 3a is one of the absolutely irreducible
F2U1-modules of F2-dimension 3. Hence we obtain F2U1-epimorphisms q̂k, for
k ∈ {1, . . . , 5}, given by concatenating the natural projection onto V0 with ei-
ther of the projections onto the indecomposable summands of V0. We have
dimF2 im (q̂k) = 6, for k ∈ {1, . . . , 5}.
We compute the orbit counting numbers for the elements in G, applying Section
(9.8), Remark (9.7) and using the technique described in Section (8.2), we obtain
a splitting of K1×r into 7 eigenspaces of dimension 1 and two eigenspaces of
dimension 2, where K-bases {ψ1, ψ2} and {ψ3, ψ4} of the latter are shown in
Table 20. Using the degrees of the characters in Irr1

K(G) we conclude that we
have found {ϕ1, ϕ2, ϕ5, ϕ6, ϕ8, ϕ10, ϕ11}, while ϕ3, ϕ4, ϕ7 and ϕ9 are missing.

As χϕ3 , χϕ4 ∈ Irr1
K(G) are a pair of complex conjugate characters, by Remark

(3.21) this also holds for ϕ3, ϕ4 ∈ IrrK(EK). Hence, by Proposition (3.1), there
is at least one pair of non-self-paired orbitals. Hence we conclude that there
is exactly one such pair, namely the orbitals {4, 5}. Thus we have ϕ3, ϕ4 ∈
〈ψ1, ψ2〉K , and ϕ7, ϕ9 ∈ 〈ψ3, ψ4〉K . As ϕ7, ϕ9 are real-valued, we obtain these
characters using the technique described in (12.3). From ϕ3(α5) = ϕ3(α4) we

find the real part ϕ3(α4)+ϕ3(α4)
2 = −1008 of ϕ3(α4). From this ϕ3 and ϕ4 are

determined, using the technique described in Section (13.4).

The character table of EK is shown in Table 20, where i6 := i ·
√

6 ∈ C, and
where the index parameters have also been found in [34].

16 The Janko group J4

(16.1) Let G := J4 and H := 211:M24. We have r = 7.

The index parameters and the structure constants matrix for the smallest non-
trivial suborbit Ω2 with k2 = 15180 have been computed in [35]. Using the
technique described in Section (8.2), where this structure constants matrix is
sufficient to get eigenspaces of dimension 1, we obtain the character table of EK
as given in Table 21, where r33 :=

√
33 ∈ R.

(16.2) Let still G := J4 and H := 211:M24, as well as H ′ := 211:M23. We
have r′ = 10. Let Ω := H|G and Ω′ := H ′|G, hence we have |Ω

′|
|Ω| = [H:H ′] = 24.

Let G ⊆ G be a set of standard generators of G in the sense of [81]. We start with
explicitly known matrices for the action of the elements of G on the absolutely
irreducible F2G-module V of F2-dimension 112 available in [83]. The subgroup
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Table 20: The character table for G := Th and H := 25.L5(2).

ϕ
χ
ϕ

1
2

3
4

5
6

1
1a

1
24

8
59

52
0

20
64

38
4

20
64

38
4

25
39

52
0

2
61

25
6a

1
59

28
20

−
31

24
8

−
31

24
8

44
72

0
5

48
81

38
4a

1
39

10
00

23
52

23
52

56
80

6
11

57
73

84
a

1
23

12
0

15
84

15
84

15
20

8
30

50
70

08
a

1
14

−
15

0
15

57
15

57
−

17
20

10
72

92
55

15
a

1
−

17
16

0
22

4
22

4
−

48
0

11
91

17
18

99
a

1
−

1
−

24
0

−
28

8
−

28
8

80
0

3
17

07
26

4a
1
−

31
93

0
−

10
08

+
37

80
i 6
−

10
08
−

37
80
i 6

−
49

60
4

17
07

26
4b

1
−

31
93

0
−

10
08
−

37
80
i 6
−

10
08

+
37

80
i 6

−
49

60
7

28
86

10
00
a

1
−

13
12

−
14

4
−

14
4

15
20

9
40

19
92

50
a

1
23

12
0

−
14

40
−

14
40

−
15

04
ψ

1
1
−

31
93

0
.

−
20

16
−

49
60

ψ
2

.
.

.
1

−
1

.
ψ

3
1

.
51

−
61

2
−

61
2

42
8

ψ
4

.
1

3
−

36
−

36
−

84

7
8

9
10

11
66

66
24

0
35

55
32

80
63

99
59

04
63

99
59

04
10

66
59

84
0

−
16

80
20

27
20

−
16

12
8

17
43

84
−

34
44

00
56

00
−

56
00

−
22

84
8

−
36

96
15

12
0

−
81

60
−

75
20

16
70

4
59

04
−

11
76

0
75

0
98

50
−

43
83

−
17

1
−

73
05

16
80

−
22

40
35

84
24

64
−

56
00

−
24

0
−

22
40

−
46

08
37

44
33

60
−

13
02

0
86

80
−

31
24

8
15

62
4

26
04

0
−

13
02

0
86

80
−

31
24

8
15

62
4

26
04

0
−

16
80

68
80

46
08

−
17

42
4

63
84

91
2

−
14

72
46

08
−

31
68

33
60

−
13

02
0

86
80

−
31

24
8

15
62

4
26

04
0

.
.

.
.

.
−

74
4

38
64

46
08

−
12

27
6

52
92

72
−

23
2

.
39

6
−

84
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Table 21: The character table for G := J4 and H := 211:M24.

ϕ
χ
ϕ

1
2

3
4

5
6

7
1

1a
1

15
18

0
28

33
6

34
00

32
0

32
64

30
72

54
40

51
20

82
57

53
60

2
88

91
11
a

1
82

5
11

66
14

52
0

19
00

8
10

56
0

−
46

08
0

3
17

76
88

8a
1

51
7

−
99

0
−

14
96

32
56

0
−

23
93

6
−

66
56

4
42

90
92

7a
1

−
25

3
.

70
84

.
−

28
33

6
21

50
4

5
35

41
11

45
a

1
66
−

17
r 3

3
99

+
19
r 3

3
−

11
66
−

15
4r

3
3
−

10
56

+
99

2r
3
3
−

25
52
−

32
8r

3
3

46
08
−

51
2r

3
3

6
35

41
11

45
b

1
66

+
17
r 3

3
99
−

19
r 3

3
−

11
66

+
15

4r
3
3
−

10
56
−

99
2r

3
3
−

25
52

+
32

8r
3
3

46
08

+
51

2r
3
3

7
95

28
81

72
a

1
−

55
−

66
44

0
.

35
20

−
38

40
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H < G is a maximal subgroup of G, and a set of generators of H, given as words
in G, is available in [83] as well.

Using the MeatAxe and the absolutely irreducible F2H-module 11a, on which
the normal 2-subgroup 211 E H hence acts trivially, by a random search we
find a set of standard generators of H/211 ∼= M24. Using V , it turns out that
this set indeed generates a subgroup isomorphic to M24 in H. Furthermore, by
a random search we find an element of H contained in the normal subgroup
211EH. As M24 acts non-trivially on the normal subgroup 211, the latter is an
absolutely irreducible F2M24-module. Altogether this yields a set of generators
of H, which is a preimage of a set of standard generators of the epimorphic
image M24

∼= H/211 of H. A set of generators of M23, given as words in a set of
standard generators of M24, is available in [83] as well. Hence this can be used
to find a set of generators H′ of H ′ as words in the set of generators of H found
above, and to find a set of standard generators of a subgroup M23 = H ′∩M24 <
H. Note that M23 acts non-trivially on the normal subgroup 211 E H ′, hence
the latter is an absolutely irreducible F2M23-module, see [37].

Using the algorithms to compute submodule lattices described in [47] available
in the MeatAxe, we find that

VH ∼=


1a
11b
44b
44a
11a
1a

 ,

a uniserial F2H-module with composition series as indicated, where the con-
stituents are absolutely irreducible F2H-modules of the respective dimensions,
see [37], and 11a/b and 44a/b are pairs of mutually contragredient F2H-modules.
Furthermore, we find that VH′ is a uniserial F2H

′-module, where the F2H-
constituents of VH restrict to pairwise non-isomorphic absolutely irreducible
F2H

′-modules. Let V ′ ≤ VH be the uniquely determined F2H-submodule of

F2-dimension 12, being isomorphic to V ′ ∼=
[

11a
1a

]
as F2H-modules. Hence

the G-orbit V ′ ·G of 12-dimensional F2-subspaces of V is as a G-set isomorphic
to Ω. While enumerating the G-orbit V ′ ·G, we collect a set {gi ∈ G; i ∈ I} of
representatives of the right cosets H|G of H in G, as words in the set G. From
that we find the G-action on Ω′ as follows.

We use the strategy which has also been used in Section (13.1). Let Ξ := H ′|H
be the set of right cosets of H ′ in H. Let {hj ; j ∈ {1, . . . , [H:H ′]}} be a set
of representatives of the right cosets H ′|H of H ′ in H, where h1 := 1. Hence
we obtain a set of representatives {hjgi; j ∈ {1, . . . , [H:H ′]}, i ∈ I} of the
right cosets H ′|G of H in G. Let πΩ:G → Sn as well as πΞ:H → S[H:H′]

and πΩ′ :G → Sn′ denote the group homomorphisms defined by the action of
G on Ω, by the action of H on Ξ, and by the action of G on Ω′, respectively.
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For g ∈ G as well as i ∈ I and j ∈ {1, . . . , [H:H ′]}, let i′ := i · πΩ(g) and
j′ := j · πΞ(gi · g · g−1

i′ ). Hence we have hjgi · g = h · hj′gi′ , for some h ∈ H.
Thus πΩ′(g) can be determined from πΩ(g) and πΞ, where we have to determine
πΞ(gi · g · g̃−1

i′ ) explicitly. This is achieved as follows.

Let V ′∗ := HomF2H(V ′,F2) denote the F2H-module contragredient to V ′. Hence

we have V ′∗ ∼=
[

1a
11b

]
as F2H-modules. It turns out that there is v∗ ∈ V ′∗

such that the H-orbit v∗ · H ⊆ V ′∗ is as an H-set isomorphic to the exterior
square Ξ ∧ Ξ of Ξ, hence we have |Ξ ∧ Ξ| = 276. Using the H ′-action on Ξ ∧ Ξ,
the elements of v∗ ·H ⊆ V ′∗ can be identified with the subsets of cardinality 2 of
Ξ. Given gi ·g ·g−1

i′ ∈ H = StabG(V ′), using the MeatAxe, we compute matrices
representing its action on V ′ and on V ′∗. From that its action on Ξ∧Ξ is found,
and using the identification with subsets of cardinality 2 of Ξ, the permutation
πΞ(gi · g · g̃−1

i′ ) ∈ S[H:H′] can be determined.

To use the strategy described in Section (10.1) efficiently, we proceed as de-
scribed in Section (9.8). We choose U1 := L2(11) < U := M22 < M23 =
H ′ ∩ M24 < H, where a set of standard generators of M22, given as words
in a set of standard generators of M23, and a set of standard generators of
L2(11), given as words in a set of standard generators of M22, are available
in [83]. We have |U | = 443520, and using GAP we find 〈1GH , 1GU 〉G = 582 and
〈1GH′ , 1GU 〉G = 9609. Furthermore, using the algorithms to compute submodule
lattices described in [47] available in the MeatAxe, we find that

VU1
∼=
[

10a
1a

]
⊕
[

1a
10a

]
⊕

2⊕
i=1

1a⊕
4⊕
i=1

10b⊕
2⊕
i=1

24a,

as F2U1-modules, where the constituents 1a and 10a are absolutely irreducible
F2U1-modules of the respective dimensions, and 10b and 24a are irreducible
F2U1-modules having splitting field F4, see [37]. As F2U1-epimorphic image V1

we choose an F2U1-direct summand of VU1 isomorphic to
[

10a
1a

]
⊕10b, together

with the corresponding F2U1-projection. Hence we have dimF2 V1 = 21.

Using the technique described in Sections (10.3) and (9.8) we compute the orbit
counting numbers for the elements in G and H′. Using Remark (9.7) and the
technique described in Section (8.2), it turns out that that the resulting structure
constants matrices are sufficient to obtain a splitting of K1×r′ into eigenspaces
of dimension 1. The character table of E1H′

K is given in Table 22. Rows and
column have been reordered and column indexing has been adjusted to exhibit
the phenomena described in Section 5, see Example (5.14), where the character
table of EK is given in Table 21, and r33 :=

√
33 ∈ R.

17 The Baby Monster B

(17.1) Let G := B and H := 2.2E6(2).2, as well as H ′ := 2.2E6(2) and
λ′ = 1, hence we have Irr1

K(H) = {1, 1−}, see Remark (5.15). We have r = 5
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Table 22: The character table for G := J4 and H ′ := 211:M23.

ϕ
χ
ϕ

1′
1′
′

2′
2′
′

3′
4′

1
1a

1
23

12
14

40
24

28
80

68
00

64
81

60
76

80
2

88
91

11
a

1
23

66
00

13
20

0
27

98
4

34
84

80
3

17
76

88
8a

1
23

41
36

82
72

−
23

76
0

−
35

90
4

4
42

90
92

7a
1

23
−

20
24

−
40

48
.

17
00

16
5

35
41

11
45
a

1
23

52
8
−

13
6r

3
3

10
56
−

27
2r

3
3

23
76

+
45

6r
3
3
−

27
98

4
−

36
96
r 3

3

6
35

41
11

45
b

1
23

52
8

+
13

6r
3
3

10
56

+
27

2r
3
3

23
76
−

45
6r

3
3
−

27
98

4
+

36
96
r 3

3

7
95

28
81

72
a

1
23

−
44

0
−

88
0

−
15

84
10

56
0

8
46

05
59

49
8a

1
−

1
52

8
−

52
8

.
.

9
49

34
56

60
5a

1
−

1
35

2
−

35
2

.
.

10
11

84
29

58
52
a

1
−

1
−

35
2

35
2

.
.

11
18

42
23

79
92
a

1
−

1
.

.
.

.

5′
5′
′

6′
7′

7′
′

13
05

72
28

8
65

28
61

44
0

13
05

72
28

80
82

57
53

60
18

99
23

32
80

76
03

2
38

01
60

25
34

40
−

46
08

0
−

10
59

84
0

13
02

40
65

12
00

−
57

44
64

−
66

56
−

15
30

88
.

.
−

68
00

64
21

50
4

49
45

92
−

42
24

+
39

68
r 3

3
−

21
12

0
+

19
84

0r
3
3
−

61
24

8
−

78
72
r 3

3
46

08
−

51
2r

3
3

10
59

84
−

11
77

6r
3
3

−
42

24
−

39
68
r 3

3
−

21
12

0
−

19
84

0r
3
3
−

61
24

8
+

78
72
r 3

3
46

08
+

51
2r

3
3

10
59

84
+

11
77

6r
3
3

.
.

84
48

0
−

38
40

−
88

32
0

16
89

6
−

16
89

6
.

−
12

28
8

12
28

8
.

.
.

21
50

4
−

21
50

4
98

56
−

98
56

.
17

92
−

17
92

−
10

56
0

10
56

0
.

−
38

40
38

40
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and the split suborbits are I1− = {1, 2, 4}, as is shown in [29], where also the
character tables of EK and E1−

K are given. Using Remark (5.15), from this the
character table of E1H′

K can be determined. The character tables of EK and
E1−

K as well as E1H′
K are given in Table 23.

(17.2) Let G := B and H := 21+22.Co2. We have r = 10.

The index parameters ki, for i ∈ I have been determined in [34], but no explicit
proof is given there. Unfortunately, the values for the index parameters given
there do not sum up to n = [G:H]. Hence we compute the index parameters
anew, by applying the same strategy as in Remark (14.2).

Let C2B ∈ Cl(G) denote the 2B-conjugacy class of G, see [13]. Then G acts
on C2B by conjugation, and as H = CG(2b), where 2b ∈ C2B is a suitable
representative of the 2B-conjugacy class, the G-sets Ω and C2B are isomorphic.
For C ∈ Cl(G) let (C2B)C := {g ∈ C2B ; (2b) · g ∈ C} ⊆ C2B , which are unions
of H-orbits. Letting kC := |(C2B)C | ∈ N0, we have kC = |C|·m2B,2B,C

|C2B | , where
m2B,2B,C ∈ N0 is the corresponding class multiplication coefficient. Using GAP
we compute the class multiplication coefficients m2B,2B,C ∈ N0 and find kC 6= 0
for the conjugacy classes

C ∈ {C1A, C2B , C2D, C3A, C4B , C4E , C4G, C5A, C6C},

and the cardinalities kC as given in Table 24.

As we have r = 10, but only find 9 conjugacy classes C ∈ Cl(G) such that kC 6=
0, we conclude that precisely one of the corresponding subsets (C2B)C ⊆ C2B

consists of two H-orbits, while the others consist of one H-orbit. As k2B is
the only of these cardinalities which is not a divisor of |H|, we conclude that
(C2B)2B splits. The lengths of the two suborbits contained in (C2B)2B are
determined in Section (17.4). Sorting the suborbits with respect to increasing
lengths gives the indexing with i ∈ I also indicated in Table 24.

After all, it turns out that in [34] the value of k7 = k4G is falsely stated as
4 700 602 368, obviously a misprint.

(17.3) Let G ⊆ G be a set of standard generators of G in the sense of [81].
We start with explicitly known matrices for the action of the elements of G on
the absolutely irreducible F2G-module V of F2-dimension 4370 available in [83].
The subgroup H < G is a maximal subgroup of G, and a set of generators of
H, given as words in G, is available in [83] as well. Using a random search
and the MeatAxe, we find a set of generators H of H being a preimage of a set
of standard generators of Co2 with respect to the natural group epimorphism
H → Co2. Using the MeatAxe we find that VH has a uniquely determined trivial
submodule 1a ≤ VH , and if we pick 0 6= vH ∈ 1a ≤ V we conclude that the
G-orbit vH ·G ⊆ V is as a G-set isomorphic to Ω.
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Table 23: The character tables for G := B and H := 2.2E6(2).2, where λ = 1
and λ = 1−, as well as for H ′ := 2.2E6(2).

ϕ
χ
ϕ

1
2

3
4

5
1

1a
1

39
68

05
5

23
11

37
28

23
70

83
03

36
11

17
40

42
88

0
2

96
25

5a
1

22
87

35
−

70
96

32
14

48
34

56
−

14
00

25
60

3
94

58
75

0a
1

50
89

5
13

30
56

12
49

28
−

30
88

80
4

42
75

36
25

20
a

1
19

35
−

40
32

−
31

74
4

33
84

0
5

92
87

03
74

74
a

1
−

94
5

17
28

14
33

6
−

15
12

0

ϕ
χ
ϕ

1
2

4
1

43
71
a

1
56

68
65

84
67

25
12

2
63

53
24

85
a

1
28

66
5
−

11
46

88
3

13
50

84
18

14
4a

1
−

13
5

51
2

ϕ
χ
ϕ

1′
1′
′

2′
2′
′

3′
4′

4′
′

5′

1
1a

1
1

39
68

05
5

39
68

05
5

46
22

74
56

23
70

83
03

36
23

70
83

03
36

22
34

80
85

76
0

2
96

25
5a

1
1

22
87

35
22

87
35

−
14

19
26

4
14

48
34

56
14

48
34

56
−

28
00

51
20

3
94

58
75

0a
1

1
50

89
5

50
89

5
26

61
12

12
49

28
12

49
28

−
61

77
60

4
42

75
36

25
20
a

1
1

19
35

19
35

−
80

64
−

31
74

4
−

31
74

4
67

68
0

5
92

87
03

74
74
a

1
1

−
94

5
−

94
5

34
56

14
33

6
14

33
6

−
30

24
0

6
43

71
a

1
−

1
56

68
65
−

56
68

65
.

84
67

25
12

−
84

67
25

12
.

7
63

53
24

85
a

1
−

1
28

66
5
−

28
66

5
.

−
11

46
88

11
46

88
.

8
13

50
84

18
14

4a
1
−

1
−

13
5

13
5

.
51

2
−

51
2

.
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Table 24: Conjugacy classes and suborbits.

i C kC splits into dimF2 FixV (·)
1 1A 1

2, 3 2B 7 379 550 93 150 + 7 286 400 2322
4 2D 262 310 400 2202
6 3A 9 646 899 200
5 4B 4 196 966 400 1256
8 4E 537 211 699 200 1114
7 4G 470 060 236 800 1166
9 5A 4 000 762 036 224

10 6C 6 685 301 145 600

We apply the strategy described in Section (10.6), and we choose the following
chain of subgroups

G = B > U4 := U := H = 21+22.Co2 > 21+22.M23

> U3 := 211.M22

> U2 := 2.M22

> U1 := L2(11),

where we have the following group orders

|B| = 4 154 781 481 226 426 191 177 580 544 000 000 ∼ 4 · 1033,
|21+22.Co2| = 354 883 595 661 213 696 000 ∼ 4 · 1020,
|211.M22| = 908 328 960 ∼ 9 · 108,
|2.M22| = 887 040 ∼ 9 · 105,
|L2(11)| = 660 ∼ 7 · 102.

Words in the set of standard generators of Co2 giving a set of standard genera-
tors of the maximal subgroup M23 < Co2 are available in [83]. We apply these
to the set of generators H of H, which indeed yields a set of generators of the
maximal subgroup 21+22.M23 < H, as an analysis using the MeatAxe shows.
Furthermore, words in the set of standard generators of M23 giving a set of
standard generators of the maximal subgroup M22 < M23 are also available in
[83]. An application of these yields a subgroup 21+22.M22 < H, as the MeatAxe
shows.

Let 21+22 ∼= N E H be the maximal normal 2-subgroup of H, which is an
extraspecial group, such that Co2 acts absolutely irreducibly on the F2-vector
space N/Z(N) of F2-dimension 22, see [13, 37]. The MeatAxe shows that the
F2M22-module (N/Z(N))M22 , for the subgroup M22 < M23 < Co2, has the
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structure

(N/Z(N))M22
∼=


1a
10b
10a
1a

 ,
a uniserial F2M22-module with composition series as indicated, where the con-
stituents are absolutely irreducible F2M22-modules of the respective dimensions,
and 10a, b are a pair of mutually contragredient F2M22-modules, see [37].

Going over to an F2H-epimorphic image W of VH of an F2-dimension small
enough to do random searches using the MeatAxe quickly and on which Z(H) =
Z(N) acts trivially, we proceed as follows. The group acting on W21+22.M22 is
isomorphic to 222.M22, and by a random search we find an element of N/Z(N) ∼=
222 which under the conjugation action of M22 generates the F2M22-submodule
of (N/Z(N))M22 of F2-dimension 11. By a random search using the MeatAxe,
where we modify the given generators of 222.M22 by multiplying with elements
of this F2M22-submodule, we find a set of generators of a subgroup 211.M22,
as words in the given generators of 21+22.M22. Applying these to 21+22.M22

acting on VH , we obtain a subgroup 2×211.M22, as the MeatAxe shows, and we
straightforwardly find a subgroup 211.M22 < 2× 211.M22 in there.

We already know that the normal subgroup 211E 211.M22 as an F2M22-module
is uniserial having the trivial F2M22-module 1a as its socle. Using the above
strategy again, we find a subgroup 2.M22 < 211.M22, which is a non-split central
extension of M22 by a cyclic group of order 2. As the set of generators we have
obtained is a preimage of a set of standard generators of M22, we use the words
giving a maximal subgroup L2(11) < M22 available in [83], to find a subgroup
2 × L2(11) < 2.M22 and straightforwardly a subgroup L2(11) < 2 × L2(11) <
2.M22 in there.

To specify the F2Ui-modules Vi and the maps q̂i+1,i: (Vi+1)Ui → Vi of F2Ui-
modules, for i ∈ {1, . . . , 3}, as in Section (10.5), we proceed as follows. Let
V4 := VH = (4370a)H . Using the programs to determine socle series described
in [49] available in the MeatAxe, we compute a few layers of the socle series of
the F2U3-module V ∗U3

contragredient to VU3 , which amounts to computing a few
layers of the radical series of VU3 . Going over to VU3/rad5(VU3), by a random
search using the MeatAxe we look for a suitable F2U3-epimorphic image. The
most restrictive of the conditions required for an application of the strategy
described in Section (10.6) turns out to be the one, that the regular transitive
Ui-sets Ξ′i, for i ∈ {1, . . . , 3}, are assumed to be realizable as a regular Ui-orbit of
vectors in one of the quotient modules (Vj)Ui , for i ≤ j ∈ {1, . . . , 4}, see Section
(10.5). Using the MeatAxe and a random search, we find a suitable quotient
module V3 of VU3/rad5(VU3) of F2-dimension 78, and let q̂4,3: (V4)U3 = VU3 → V3

denote the corresponding natural F2U3-epimorphism. Furthermore, using the
algorithms to compute submodule lattices described in [47] available in the
MeatAxe, we find a suitable quotient module V2 of (V3)U2 of F2-dimension 31
with corresponding natural F2U2-epimorphism q̂3,2: (V3)U2 → V2, and a suitable
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quotient module V1 of (V2)U1 of F2-dimension 21 with corresponding natural
F2U1-epimorphism q̂2,1: (V2)U1 → V1. Hence the chosen quotient modules have
the following F2-dimensions.

i Ui dimF2 Vi

B 4370
4 21+22.Co2 4370
3 211.M22 78
2 2.M22 31
1 L2(11) 21

(17.4) Let ω1 = vH ∈ V . To find representatives ωi ∈ Ωi ⊆ vH · G ⊆ V
and elements gi ∈ G such that ωi = ω1gi, for 1 6= i ∈ I, we use the G-
set C2B isomorphic to Ω, see Section (17.2). By a random search using the
MeatAxe we compute the action on V of few elements g ∈ G, given as words
in G, and check to which conjugacy class of G the commutator [(2b), g] :=
(2b) · (g−1 · (2b) · g) ∈ G belongs. This is done by computing the order of
[(2b), g] ∈ G and dimF2 FixV ([(2b), g]), where the F2-dimensions of the fixed
spaces of representatives of the relevant conjugacy classes of G are as given
in Table 24. This yields representatives of the suborbits i ∈ {1, 4, 6, . . . , 10}.
Summing up the ki for i ∈ {1, 4, 6, . . . , 10} and dividing by |Ω|, we obtain a
fraction of ∼ 0.9996. Hence it seems to be rather improbable to find further
suborbits using a random search.

To proceed we concentrate on Ω2. If we had indeed k2 = 93150, we would
be tempted to conjecture that there is an element 2b′ ∈ N E H such that
2b′ ∈ C2B and (2b) · (2b′) ∈ C2B as well as CH(2b′) = 21+21.(210:M22: 2), where
210:M22: 2 < Co2 is a maximal subgroup and CH(2b′) ∩N = 21+21. Words in
the set of standard generators of Co2 giving a set of standard generators of the
maximal subgroup 210:M22: 2 < Co2 are available in [83], and the MeatAxe in-
deed shows that the F2(210:M22: 2)-module (N/Z(N))210:M22:2 is uniserial with
structure

(N/Z(N))210:M22:2
∼=


1a
10b
10a
1a

 ,
using the notation from Section (17.3). Applying these words to the set of
generators H of H, an analysis using the MeatAxe indeed yields a set of gen-
erators of a subgroup 21+21.(210:M22: 2) < H, where the normal subgroup
21+21 < 21+21.(210:M22: 2) necessarily is a preimage of the F2(210:M22: 2)-
submodule of F2-dimension 21 with respect to the natural group epimorphism
N → N/Z(N). Computing FixV (21+21.(210:M22: 2)) we find a fixed vector ω2 ∈
Ω of 21+21.(210:M22: 2), different from ω1, and as [H : (21+21.(210:M22: 2))] =
93150 we have thus proved that k2 = 93150 and k3 = 7 286 400, see Section
(17.2). By applying the strategy described in Section (10.6), we enumerate a
substantial part of suborbit Ω9, say, and by checking randomly a few elements
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in the G-orbit of ω2 ∈ Ω we find an element in Ω9, and thus an element g2 ∈ G,
as a word in the set of generators G, such that ω1g2 = ω2. Furthermore, it is
straightforward to enumerate Ω2 completely by a standard breadth-first orbit
algorithm.

We are also tempted to conjecture that the set Ω2 · g2 ⊆ Ω contains elements of
Ω3 and Ω5, which are the two suborbits of which we not yet have representatives.
This indeed turns out to be true, by checking a few elements of Ω2 ·g2 using the
same strategy as was used above for the longer suborbits.

(17.5) We are now able, by applying the strategy described in Section (10.6),
to enumerate substantial parts of the suborbits i ∈ {5, . . . , 10}. A problem
arises for the suborbits i ∈ {3, 4}, since it turns out that in these cases the order
|StabU3(q̂4,3(ωi))| is large, which contradicts the assumptions made in Section
(10.5) and causes the programs to become ineffective; we circumvent this.

We determine the structure constants matrix P2 = [pi,2,k; i, k ∈ I] ∈ Zr×r
for the smallest non-trivial suborbit Ω2, with k2 = 93150. For i, k ∈ I, by
Proposition (9.6) we have

pi,2,k =
ki
kk
· c2,k(gi) =

ki
kk
· |Ω2gi ∩ Ωk|,

where the c2,k(gi) ∈ N0 are the orbit counting numbers with respect to Ω =∐
i∈I Ωi, see Definition (9.4). Hence the remaining task is to apply successively

the elements gi ∈ G, for i ∈ I, to all elements of Ω2 ⊆ Ω ⊆ V explicitly, and
find the cardinalities |Ω2gi ∩ Ωk| ∈ N0, for k ∈ I.

Given ω ∈ Ω2gi and k ∈ I, we have to check whether ω ∈ Ωk holds. For
k 6∈ {3, 4}, as we have enumerated only a part of Ωk explicitly, again it is not
sufficient to check ω ∈ Ω2gi ⊆ V itself, but a few other elements of ω ·H ⊆ V
have to be checked as well. Still, this method only allows to prove membership,
but not to disprove it. Hence, in a first run over k ∈ I we only test very few
elements of ω ·H ⊆ V , at most 5 say, for membership in Ωk. If ω ∈ Ω2gi cannot
be proven to belong to a particular suborbit, we start a second run over k ∈ I,
where we now test some more elements of ω ·H ⊆ V , at most 1000 say.

We could repeat this until all of Ω2gi is treated. But actually after the second
run, only a very few elements have not been proven to belong to a particular
suborbit. Hence we have found lower bounds for the c2,k(gi) ∈ N0, where by
Remark (9.7) we have

∑
k∈I c2,k(gi) = ki, for i ∈ I. Furthermore, we have the

following numerical conditions on the c2,k(gi) ∈ N0. As all the index parameters
ki, for i ∈ I, are pairwise different, we conclude that all suborbits are self-paired.
Hence by Proposition (3.17) we have, for i, k ∈ I,

c2,k(gi) =
kk
ki
· pi,2,k =

kk
ki
· pi,2∗,k =

kk
ki
· ki
kk
· pk,2,i = pk,2,i =

kk
ki
· c2,i(gk) ∈ Z,

which hence is an integrality condition. In particular, we have c2,k(gi) = 0 if and
only if c2,i(gk) = 0. It turns out that these conditions are sufficient to find all
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the numbers c2,k(gi) ∈ N0, for i, k ∈ I, where (i, k) 6∈ {(3, 3), (3, 4), (4, 3), (4, 4)}.
Using these numerical conditions, there are only finitely many possibilities for
the matrix entries c2,k(gi) ∈ N0, for i, k ∈ {3, 4}, left. It turns out that the
number of candidate matrices is small enough to check the following additional
necessary condition for all of them.

By Proposition (1.19) the structure constants matrix P2 ∈ Zr×r is diagonalisable
over an algebraic closure of Q. As all characters in Irr1

K(G) are rational-valued,
by Propositions (3.10) and (3.20) we have Φ ∈ Zr×r. Thus the characteristic
polynomial of P2 splits into linear factors over the rationals. It turns out that the
latter condition is fulfilled by precisely one of the candidate structure constants
matrices obtained by Remark (9.7) from the above candidate orbit counting
matrices. This determines the structure constants matrix P2 ∈ Zr×r as is shown
in Table 25.

Using the technique described in Section (8.2), and the matrix P2 we obtain
a splitting of K1×r into 8 eigenspaces of dimension 1 and an eigenspace of
dimension 2. Using the degrees of the characters in Irr1

K(G), see Section (8.1),
we conclude that we have found the characters {ϕ1, ϕ3, ϕ5, . . . , ϕ10}, while ϕ2

and ϕ4 are missing. These are found using the technique described in Section
(12.3). The character table of EK is shown in Table 26.

(17.6) Let G := B and H := Fi23, which is a maximal subgroup of G. We
have r = 23.

First of all we construct an FG-module, for a suitable finite field F , containing
a vector being H-invariant, but not G-invariant. Let 4370a be the absolutely
irreducible F2G-module of F2-dimension 4370. Representing matrices for a set
of standard generators {a, b} ⊆ G in the sense of [81] are available in [83]; the
elements a and b have order 2 and 3, respectively. Words in the set of standard
generators giving a set of standard generators of H are also available in [83]. The
F2H-module (4370a)H turns out to have the constituents 782a and 3588a, where
the latter are absolutely irreducible F2H-modules of the respective dimensions;
hence 4370a would not serve our purposes.

Let R ⊂ K and F be as in Section (2.10). Let V̂ ∈ modR-RG be an R-free
RG-module such that V̂ ⊗R K is an irreducible KG-module of K-dimension
4371. By [13], V̂ ⊗R K is absolutely irreducible and uniquely determined up
to equivalence. All the character values of V̂ ⊗R K are rational integers. As
V̂ ⊗RK occurs as a constituent of multiplicity 1 in a rational representation of
G, namely the permutation representation 1G2E6(2), see Section (17.1), we by [18,

La.IV.9.1] conclude that the rational Schur index of V̂ ⊗RK is equal to 1. Hence
for our constructive purposes we may choose K := Q and, as we construct a
module in characteristic 2, let R := Z(2), the localisation of Z ⊆ Q at the prime
ideal (2)C Z, hence we have F = F2.

As the 2-modular reduction V := ˜̂
V ∈ mod-F2G of V̂ has the F2G-module

4370a and the trivial F2G-module 1a as its constituents, we conclude by [39,
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Table 25: Structure constants matrix P2 for G := B and H := 21+22.Co2.

i
k
i

1
2

3
4

5
6

7
8

9
10

1
1

.
1

.
.

.
.

.
.

.
.

2
93

15
0

93
15

0
92

5
63

15
1

.
.

.
.

.
3

72
86

40
0

.
49

28
63

12
0

42
.

1
.

.
.

4
26

23
10

40
0

.
42

24
0

43
20

18
15

42
0

.
30

15
.

.
5

41
96

96
64

00
.

45
05

6
24

19
2

67
20

18
07

89
1

27
2

12
0

.
27

6
96

46
89

92
00

.
.

.
.

20
48

89
1

51
2

.
10

0
36

7
47

00
60

23
68

00
.

.
64

51
2

53
76

0
30

46
4

24
94

8
10

28
7

50
40

38
50

30
60

8
53

72
11

69
92

00
.

.
.

30
72

0
15

36
0

.
57

60
34

95
41

25
43

20
9

40
00

76
20

36
22

4
.

.
.

.
.

41
47

2
32

76
8

30
72

0
31

17
5

32
25

6
10

66
85

30
11

45
60

0
.

.
.

.
43

00
8

24
94

8
43

52
0

53
76

0
53

90
0

53
45

1
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Table 26: The character table for G := B and H := 21+22.Co2.
ϕ

χ
ϕ

1
2

3
4

5
6

1
1
a

1
9
3
1
5
0

7
2
8
6
4
0
0

2
6
2
3
1
0
4
0
0

4
1
9
6
9
6
6
4
0
0

9
6
4
6
8
9
9
2
0
0

2
9
6
2
5
5
a

1
−

2
0
2
5

7
7
2
2
0
0
−

5
7
0
2
4
0
0

4
2
7
6
8
0
0
0

2
9
0
8
1
6
0
0
0

3
9
4
5
8
7
5
0
a

1
1
0
2
8
7

2
1
5
4
2
4

3
7
7
7
8
4
0

2
5
9
7
4
4
3
2

3
5
5
1
4
3
6
8

4
3
4
7
6
4
3
1
1
4
a

1
−

2
0
2
5

9
9
0
0
0

3
5
6
4
0
0

−
5
7
0
2
4
0
0

8
8
0
6
4
0
0

5
4
2
7
5
3
6
2
5
2
0
a

1
4
9
5

4
8
9
6
0

−
3
3
4
8
0
0

1
6
3
1
5
2
0

2
7
6
9
9
2
0

6
9
2
8
7
0
3
7
4
7
4
a

1
3
3
7
5

2
8
8
0
0

3
5
6
4
0
0

1
0
1
5
2
0
0

−
8
7
0
4
0
0

7
5
3
6
1
0
5
7
9
4
4
5
5
a

1
1
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Cor.I.17.5] that V̂ can be chosen such that

V ∼=
[

1a
4370a

]
is a uniserial F2G-module with composition series as indicated. Furthermore, by
[13], we have (V̂ ⊗RK)H ∼= 1̂a⊕ 7̂82a⊕ 3̂588a as KH-modules, where the latter
are absolutely irreducible KH-modules of the respective dimensions. Hence we

conclude that the 2-modular reductions ˜7̂82a and ˜3̂588a are irreducible F2H-

modules, where we have ˜7̂82a ∼= 782a and ˜3̂588a ∼= 3588a. As V , and hence VH
as well, are 2-modular reductions of R-free modules, we conclude by [39, I.17.3]
that, as F2H-modules,

VH = ( ˜̂V )H = ˜(V̂H) ∼= 1a⊕ 782a⊕ 3588a.

Let 0 6= vH ∈ VH such that 1a = 〈vH〉F2 ≤ VH . Hence the G-orbit vH ·G ⊆ V
is isomorphic to Ω := H|G as G-sets.

We construct the F2G-module V explicitly, using the F2G-module 4370a and a
variant of the randomised technique to compute an upper bound on the dimen-
sion dimF2 Ext1

F2G(1a, 4370a) described in [46], of which we have a new GAP
implementation, using the fast arithmetic for vectors over finite fields. We use
the interpretation of Ext1

F2G(1a, 4370a) as group cohomology

Ext1
F2G(1a, 4370a) ∼= H1

F2
(G, 4370a) := Z1

F2
(G, 4370a)/B1

F2
(G, 4370a),

where Z1 := Z1
F2

(G, 4370a) and B1 := B1
F2

(G, 4370a) ≤ Z1 are the group
of 1-cocyles and 1-coboundaries of G with values in 4370a, respectively. Let
Z1
b := {ζ ∈ Z1; ζ(b) = 0} ≤ Z1 and B1

b := Z1
b ∩ B1 ≤ B1, where b ∈ G is the

standard generator of G of order 3. Using the restriction map

resG,〈b〉:H1
F2

(G, 4370a)→ H1
F2

(〈b〉, (4370a)〈b〉)

to the cyclic subgroup 〈b〉 < G, see [3, Ch.3.6], as well as the semisimplicity of
the group algebra F2〈b〉, we obtain

H1
F2

(G, 4370a) = Z1
F2

(G, 4370a)/B1
F2

(G, 4370a) ∼= Z1
b /B

1
b .

The elements of Z1 are maps from G to 4370a fulfilling the cocyle relations,
hence ζ ∈ Z1

b is determined if ζ(a) is known, where a ∈ G is the standard
generator of G of order 2. Hence we have a F2-linear embedding νa:Z1

b →
V : ζ 7→ ζ(a). If w(A,B) is an abstract word in the letters {A,B}, such that
w(a, b) = 1 ∈ G, then using the cocyle and coboundary relations this translates
into F2-linear equations to be fulfilled by the elements of νa(Z1

b ) and νa(B1
b ). We

choose some abstract words as above, where we simply use the orders of some
elements in G, and finally end up with F2-subspaces νa(B1

b ) ≤ νa(Z1
b ) ≤ V such

that dim νa(B1
b )+1 = dim νa(Z1

b ). As we already know that there is a non-split
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extension of 1a with 4370a, by [3, Cor.2.5.4] we have Ext1
F2G(1a, 4370a) 6= {0}.

Hence we have shown that dimF2 Ext1
F2G(1a, 4370a) = 1.

Using the interpretation in [3, Prop.3.7.2] an element in νa(Z1
b )\νa(B1

b ) describes
the matrix entries in a representing matrix for the action of a ∈ G on a non-split
extension V of 1a with 4370a. Furthermore, as |Ext1

F2G(1a, 4370a) \ {0}| = 1
the F2G-module V is uniquely determined up to isomorphism.

(17.7) To apply the strategy described in Section (10.6), we choose the fol-
lowing chain of subgroups

G = B > U4 := U := H = Fi23 > U3 := S8(2) > U2 := 210:A8 > U1 := A7,

where we have the following group orders

|B| = 4 154 781 481 226 426 191 177 580 544 000 000 ∼ 4 · 1033,
|Fi23| = 4 089 470 473 293 004 800 ∼ 4 · 1018,
|S8(2)| = 47 377 612 800 ∼ 4 · 1010,
|210:A8| = 20 643 840 ∼ 2 · 107,
|A7| = 2 520 ∼ 2 · 103.

Words in the set of standard generators of H giving a set of non-standard gener-
ators of the maximal subgroup S8(2) < H, are available in [83]. Using standard
MeatAxe techniques, using the constituents of VS8(2), we derive a suitable small
faithful permutation representation of S8(2). Then running through some ran-
domly chosen elements of S8(2), we find a set of standard generators in the sense
of [81].

The subgroup 210:A8 < S8(2) is a maximal subgroup of index 2295. To find a set
of generators of 210:A8, we first compute the uniquely determined transitive per-
mutation representation of S8(2) on 2295 points, again using standard MeatAxe
techniques and the constituents of VS8(2). From this, using the Schreier-Sims
algorithm, a set of generators of the point stabilizer 210:A8 is found. Running
through some randomly chosen elements of 210:A8, we find a set of generators
of a complement A8 of the normal subgroup 210 E 210:A8, and finally a set of
generators of A7 < A8.

We specify the F2Ui-modules Vi and the maps q̂i+1,i: (Vi+1)Ui → Vi of F2Ui-
modules, for i ∈ {1, . . . , 3}, as in Section (10.5). Let V4 := 782a be as in Section
(17.6), and let q̂:VH → V4 be the natural F2H-projection of VH onto its F2H-
direct summand isomorphic to V4. Using the algorithms to compute submodule
lattices described in [47] available in the MeatAxe, we find that (V4)U3 has a
uniquely determined F2U3-quotient module isomorphic to

V3
∼=
[

16a
26a

]
,

a uniserial F2U3-module with composition series as indicated, where the con-
stituents are the absolutely irreducible F2U3-modules of the respective dimen-
sions, see [37]. Let q̂4,3: (V4)U3 → V3 be the natural F2U3-epimorphism. Analysis
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of the F2U2-module (V3)U2 shows that (V3)U2 has a uniquely determined F2U2-
submodule of F2-dimension 11. The F2U2-quotient module V2 with respect to
this submodule has the structure

V2
∼=


1a
4a

6a⊕ 6a
14a

 ,
where the diagram indicates the radical and socle series, and the constituents
are absolutely irreducible F2U2-modules of the respective dimensions, see [37].
Let q̂3,2: (V3)U2 → V2 be the natural F2U2-epimorphism. Finally, the F2U1-
module (V2)U1 turns out to have a uniquely determined F2U1-quotient module
isomorphic to

V1
∼= 4a⊕ 14a,

where the constituents are absolutely irreducible F2U1-modules of the respec-
tive dimensions, see [37], obtained as the restrictions of the absolutely irre-
ducible F2U2-modules of these dimensions. Let q̂2,1: (V2)U1 → V1 be the natural
F2U1-epimorphism. Hence the chosen quotient modules have the following F2-
dimensions.

i Ui dimF2 Vi

B 4371
4 Fi23 782
3 S8(2) 42
2 210:A8 31
1 A7 18

(17.8) We do not describe the partition Ω =
∐
i∈I Ωi into the G-suborbits

Ωi directly, but instead find the H-orbits q̂(Ωi) ⊆ V4, for i ∈ I. This is done
using the strategy described in Section (10.6), applied to the group H = U =
U4 and the chain of subgroups U3 > U2 > U1. In turn, to describe an H-
orbit q̂(Ωi) = ω̃i · H ⊆ V4, for ω̃i := q̂(ωi) ∈ q̂(Ωi), we do not enumerate
ω̃i · H completely, but while enumerating ω̃i · H use a randomised Schreier-
Sims technique to find subgroups of StabH(ω̃i). To do this, we use the smallest
faithful permutation representation of H on 31671 points, which in terms of a
set of standard generators of H is available in [83].

We terminate the enumeration of ω̃i ·H if the product of the number of elements
of ω̃i · H found and the order of the subgroup of StabH(ω̃i) found exceeds
|H|
2 . Then we know the orbit length |ω̃i ·H| and have even obtained StabH(ω̃i)

explicitly as a permutation group, where we additionally find a set of generators
of StabH(ω̃i) as words in the set of standard generators of H. Hence we may
compute ωi · StabH(ω̃i) ⊆ Ω ⊆ V , provided |ωi · StabH(ω̃i)| is small enough to
do so. In this case, as we have

|StabH(ωi)| · |ωi · StabH(ω̃i)| = |StabH(ω̃i)|,
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we are able to find |Ωi| = |H|
|StabH(ωi)|

, and obtain Hi = StabH(ωi) explicitly
as a permutation group. Hence, using the algorithms dealing with permutation
groups available in GAP, we are also able to find the structure of the subgroup
Hi ≤ H. The cases for which |ωi · StabH(ω̃i)| is too large to proceed as just
described, have to be dealt with separately, which is commented on below.

It turns out that there are suborbits Ωi, for i ∈ I, apart from the trivial suborbit
Ω1, for which q̂(ωi) = {0} ⊆ V4 and hence StabH(ω̃i) = H holds. To find
Hi = StabH(ωi) for these i ∈ I, these suborbits have to be dealt with separately,
which also is commented on below. Furthermore, it might happen that q̂(Ωi) =
q̂(Ωj), for i 6= j ∈ I. In this case we would have to distinguish Ωi and Ωj by
other means. But it turns out that, apart from the cases where q̂(ωi) = {0},
even the orbit lengths |q̂(Ωi)|, for i ∈ I, are pairwise different.

To find some of the representatives ωi ∈ Ω, for i ∈ I, we begin with ω1 = vH ∈
Ω ⊆ V , apply a few random elements of G, and for the elements ω ∈ Ω thus
obtained enumerate q̂(ω) ·H ⊆ V4, as was described above. This random search
yields 14 of the suborbits Ωi, namely for i ∈ {1, 7, 11, 13, . . . , 23}, see Table 27,
where the suborbits Ωi are sorted with respect to increasing index parameters
ki = |Ωi|. Summing up the ki for i ∈ {1, 7, 11, 13, . . . , 23}, and dividing by |Ω|,
we obtain a fraction of ∼ 0.998. Hence it seems to be rather improbable to
find further suborbits using a random search. To proceed, using the facts we
already know, we are tempted to look for candidate subgroups H̃ ≤ H which
might occur as stabilizers StabH(ωi) = Hi. Indeed, the author has been hinted
to the right guesses for the remaining 9 subgroups StabH(ωi) ≤ H, namely for
i ∈ {2, . . . , 6, 8, . . . , 10, 12}, by [82].

Given a candidate H̃ ≤ H, we apply the usual strategy of combining sets of
generators of subgroups given in [83] with standard MeatAxe techniques to find a
set of generators of H̃ as words in the set of standard generators of H. Using the
MeatAxe, we find the F2-subspace FixV (H̃) ≤ V , and for each 0 6= v ∈ FixV (H̃)
we proceed as follows. We compute a few elements v′ ∈ v · G ⊆ V , and check
whether q̂(v′) ∈ V4 is an element of an H-orbit q̂(Ωi) ⊆ V4, for some i ∈ I,
encountered earlier. As we have enumerated only a part of q̂(Ωi) explicitly, it is
not sufficient to check q̂(v′) itself, but depending on the proportion of elements
of q̂(Ωi) enumerated explicitly, we check a few other elements of q̂(v′) ·H ⊆ V4

as well. If we succeed in proving q̂(v′) ∈ q̂(Ωi), then the technique described
in Section (10.6) also yields an element of h ∈ H, given as a word in the set
of standard generators of H, mapping q̂(v′) to ω̃i ∈ q̂(Ωi). It is then checked
whether v′h = ωi ∈ Ω holds, which proves that indeed v ∈ Ω. Thus the cases
i ∈ {2, 5, 10} are dealt with straightforwardly. We briefly comment on the other
cases, including those for which |ωi · StabH(ω̃i)| is large.

a) We have q̂(ωi) = 0 ∈ V4 for i ∈ {3, 4}, and, by construction, StabH(ω3) ≥
S8(2) and StabH(ω4) ≥ 211.M23. As both candidate subgroups S8(2) < H and
211.M23 < H are maximal subgroups, we conclude that equality holds.

b) For i = 8 we have 2 × 2F4(2)′ < NH(2a) ∼= 2.F i22 < H, where for 1 6=
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Table 27: Suborbits of G := B and H := Fi23.
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2a ∈ Z(2 × 2F4(2)′) we have 2a ∈ C2A ∈ Cl(H), where the latter in turn
denotes the 2A-conjugacy class of H. Using the ordinary character tables of
2×2F4(2)′ and of all the maximal subgroups of H, as well as the programs using
ordinary character tables to find candidates for the natural maps between the
conjugacy classes of a candidate subgroup and those of a given group, available
in GAP, we find that 2.F i22

∼= NH(2a) < H is the only maximal subgroup
of H containing 2 × 2F4(2)′. Furthermore, 2 × 2F4(2)′ < NH(2a) in turn is
a maximal subgroup. As by construction StabH(ω8) ≥ 2 × 2F4(2)′, we only
have to check that StabH(ω8) < NH(2a), and that q̂(ω8) 6= 0 ∈ V4 as well as
StabH(q̂(ω8)) ≥ NH(2a) holds.

c) For i = 9 we have S3 × G2(3) < NH(3a) ∼= S3 × O7(3) < H, where 3a ∈
S3 E S3 × G2(3) is an element of order 3, which turns out to be an element of
C3A ∈ Cl(H), where the latter in turn denotes the 3A-conjugacy class of H. It
turns out that S3×O7(3) contains two conjugacy classes of subgroups isomorphic
to S3×G2(3), and indeed exactly one of them yields a fixed vector in V belonging
to Ω, different from ω1 = vH ∈ V . Proceeding as in the case i = 7, for the correct
subgroup S3×G2(3), we find that S3×O7(3) ∼= NH(3a) < H is the only maximal
subgroup of H containing S3 × G2(3). Furthermore, S3 × O7(3) < NH(3a) in
turn is a maximal subgroup. As by construction StabH(ω9) ≥ S3 × G2(3), we
only have to check that StabH(ω9) < NH(3a), and that q̂(ω9) 6= 0 ∈ V4 as well
as StabH(q̂(ω9)) ≥ NH(3a) holds.

d) For i = 12 we have (2 × 2.M22).2 < NH(2b) ∼= 22.U6(2).2 < H, where for
1 6= 2b ∈ Z((2 × 2.M22).2) we have 2b ∈ C2B ∈ Cl(H), where the latter in
turn denotes the 2B-conjugacy class of H. It turns out that 22.U6(2).2 contains
three conjugacy classes of subgroups isomorphic to (2 × 2.M22).2, and indeed
exactly one of them yields a fixed vector in V belonging to Ω, different from
ω1 = vH ∈ V .

e) For the last remaining case i = 6 we may assume that all the other 22
suborbits have already been found. We find that H has exactly three conjugacy
classes of maximal subgroups which contain a subgroup isomorphic to O+

8 (2),
namely subgroups isomorphic to S8(2), to O+

8 (3):S3 and to 2.F i22, respectively.
It turns out that a subgroup O+

8 (2) < S8(2) yields fixed vectors in V belonging
to Ω, different from ω1 = vH ∈ Ω and ω3 ∈ Ω.

(17.9) For later use, see Section (17.11), we collect the following facts about
some of the groups Hi, using the programs dealing with permutation groups
available in GAP.
a) For i = 4 the subgroup M23 < 211.M23 = H4 acts irreducibly on the el-
ementary abelian normal subgroup 211 E 211.M23, hence 211.M23 is a perfect
group.
b) For i = 10 the subgroup M11 < 210.M11 = H10 acts irreducibly on the
elementary abelian normal subgroup 210 E 210.M11, hence 210.M11 is a perfect
group.
c) For i = 13 the group H13 = 27.A8 is not 2-perfect, since the normal sub-
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group 27 E 27.A8 is elementary abelian, but as an F2A8-module is isomorphic

to
[

1a
6a

]
, a uniserial F2A8-module with composition series as indicated, where

the constituents are absolutely irreducible F2A8-modules of the respective di-
mensions, see [37].
d) For i = 14 the group H14 = 27.U3(3) is a perfect group, since the normal
subgroup 27 E 27.U3(3) is elementary abelian, and as an F2U3(3)-module is

isomorphic to
[

6a
1a

]
, a uniserial F2U3(3)-module with composition series as

indicated, where the constituents are absolutely irreducible F2U3(3)-modules of
the respective dimensions, see [37].

(17.10) We compute the structure constants matrix P2 = [pi,2,k; i, k ∈ I] ∈
Z
r×r for the smallest non-trivial suborbit Ω2, with k2 = 412896, using the strat-

egy described in Section (17.5). Hence again the remaining task is to enumerate
Ω2 ⊆ V explicitly, to apply successively the elements gi ∈ G, for i ∈ I, to all
elements of Ω2 ⊆ Ω ⊆ V , and to find the cardinalities c2,k(gi) = |Ω2gi∩Ωk| ∈ N0

by checking for membership in Ωk, for k ∈ I. As we have not enumerated the
G-suborbits directly, but the H-orbits q̂(Ωi) ⊆ V4, for i ∈ I, instead, see Section
(17.8), the membership test is done by checking whether q̂(ω) ∈ q̂(Ωk) holds,
for ω ∈ Ω2gi and k 6∈ {3, 4}. As we have enumerated only a part of q̂(Ωk)
explicitly, again it is not sufficient to check q̂(ω) itself, but a few other elements
of q̂(ω) ·H ⊆ V have to be checked as well. For the exceptional cases k ∈ {3, 4}
we cannot check at all whether q̂(ω) ∈ q̂(Ωk) holds. But it turns out that the
numerical conditions given in Section (17.5) are sufficient to find all the matrix
entries c2,k(gi) ∈ N0, for i, k ∈ I, in particular those for k ∈ {3, 4}.
The structure constants matrix P2 ∈ Zr×r can be determined using Remark
(9.7), it is shown in Tables 28 and 29. Using the technique described in Section
(8.2), the structure constants matrix P2 turns out to be sufficient to obtain a
splitting of K1×r into eigenspaces of dimension 1. The character table of EK is
given in Tables 30, 31 and 32.

(17.11) Let G := 2.B and H ′ := Fi23 as well as H := Z(G)×H ′ ∼= 2×Fi23.
The assumptions of Remark (5.15) are fulfilled. We have r = 23 and r′ = 34,
where Ω := H|G and Ω′ := H ′|G. We determine the 11 split and 12 non-split
suborbits.

Let i ∈ I such that Ωi is a non-split suborbit. Hence by Remark (5.15) we have
[(H ′ ∩Hgi): (H ′ ∩H ′gi)] = 2, and thus we have H ′ ∩Hgi ≤ H ′ but H ′ ∩Hgi 6≤
H ′gi . Furthermore, by Corollary (5.5) we have [H ′: (H ′ ∩Hgi)] = ki = [H:Hi]
anyway, and thus [Hi: (H ′ ∩Hgi)] = [H:H ′] = 2. Hence H ′ ∩Hgi is a normal
subgroup in Hi of index 2, and in turn H ′ ∩ Hgi has H ′ ∩ H ′gi as a normal
subgroup of index 2.

The structure of the subgroups Hi ≤ H is indicated in Table 27, see also Section
(17.9), where the subgroups Hi ≤ H considered here are split central extensions
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Table 28: Structure constants matrix P2 for G := B and H := Fi23.

i
k
i

1
2

3
4

5
6

7
8

9
10

1
1

.
1

.
.

.
.

.
.

.
.

2
41

28
96

41
28

96
2

13
6

.
.

1
4

.
.

.
3

86
31

65
16

.
28

43
1

.
.

46
2

1
.

.
.

.
4

19
57

47
43

5
.

.
.

.
.

13
5

.
.

.
.

5
85

37
48

81
28

.
.

45
69

6
.

.
.

38
88

.
.

10
56

6
23

47
80

92
35

2
.

56
86

2
27

2
16

19
2

.
13

6
.

.
.

.
7

33
81

61
82

40
0

.
32

76
00

.
.

15
40

0
.

8
.

36
4

.
8

11
37

78
44

75
52

.
.

.
.

.
.

.
32

00
11

34
.

9
16

05
33

96
48

00
.

.
.

.
.

.
17

28
16

00
72

8
.

10
50

42
45

39
25

60
.

.
.

.
62

37
0

.
.

.
.

.
11

10
44

08
45

77
53

6
.

.
.

.
.

12
09

6
.

.
.

.
12

11
52

56
08

97
28

0
.

.
.

12
95

36
.

.
.

.
.

17
60

13
15

84
77

12
33

76
0

.
.

27
54

00
80

96
.

16
33

5
78

73
2

.
.

33
44

0
14

52
82

57
07

79
20

0
.

.
.

.
.

16
20

0
.

.
21

06
.

15
78

88
63

90
30

27
2

.
.

91
39

2
.

92
4

79
29

6
23

32
8

.
.

37
31

2
16

12
67

81
69

87
00

80
.

.
.

.
17

82
00

.
.

.
37

90
8

.
17

21
51

44
70

08
25

60
.

.
.

.
.

.
13

99
68

12
48

0
.

10
13

76
18

43
02

89
40

16
51

20
.

.
.

.
.

.
.

24
96

0
58

96
8

.
19

50
71

26
79

48
03

20
.

.
.

25
90

72
12

47
40

.
.

.
.

21
12

20
13

31
20

78
36

35
84

0
.

.
.

.
.

22
68

00
15

74
64

.
.

13
51

68
21

19
01

72
54

80
51

20
0

.
.

.
.

.
16

20
0

.
28

08
00

75
81

6
10

56
0

22
26

29
54

63
43

42
40

0
.

.
.

.
30

80
0

33
60

0
77

76
.

23
58

72
.

23
28

39
91

00
50

89
79

2
.

.
.

.
.

12
09

6
.

89
85

6
.

90
11

2
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Table 29: Structure constants matrix P2 for G := B and H := Fi23, continued.
11

12
13

14
15

16
17

18
19

20
21

22
23

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

15
.

1
.

.
.

.
.

.
.

.
.

22
1

.
.

.
.

.
1

.
.

.
.

.
.

.
.

1
12

0
.

.
21

.
.

1
.

27
2

.
24

2
72

23
6

.
.

.
.

40
2

3
1

.
.

16
80

.
10

0
.

22
0

.
.

40
.

1
.

.
.

.
.

.
.

66
66

.
.

16
8

.
36

.
.

.
64

.
48

0
.

22
0

.
.

64
14

4
.

.
77

0
10

64
0

.
23

85
.

23
76

.
21

51
2

28
.

16
0

13
60

12
32

.
.

36
11

2
.

19
80

70
0

.
67

2
48

6
17

6
13

60
.

.
43

20
15

75
14

00
.

.
21

1
49

6
12

8
56

7
60

0
.

.
30

23
76

.
96

32
.

39
6

34
20

40
30

94
5

17
5

.
19

80
0

79
20

12
8

13
50

.
62

70
99

0
23

70
25

60
84

4
15

12
33

00
27

2
10

78
0

.
20

16
62

6
15

12
0

79
2

36
96

12
86

6
48

0
10

08
45

96
25

46
13

60
15

40
0

77
05

6
.

24
30

0
24

0
29

70
0

39
6

42
0

13
05

6
30

88
13

50
54

00
.

.
.

25
53

6
21

60
50

40
0

44
0

69
96

28
56

0
17

92
31

36
13

82
4

63
60

81
60

0
.

10
75

2
80

64
20

16
0

13
44

13
99

2
21

03
2

33
60

24
06

4
30

01
6

11
23

2
14

76
0

34
00

0
92

84
10

94
40

22
75

2
82

71
0

16
80

67
32

0
39

60
55

42
41

66
4

16
01

6
98

28
24

11
0

.
57

28
8

33
60

64
51

2
81

00
13

70
88

11
08

8
74

44
8

10
93

68
23

67
2

38
97

6
76

70
7

45
60

0
12

24
00

21
12

0
36

00
30

38
4

24
30

0
46

32
0

27
72

0
13

26
60

60
06

0
55

68
0

10
86

08
81

97
2

64
80

0
12

24
00

12
93

60
15

68
00

75
26

4
15

32
00

28
00

0
16

89
60

68
64

0
50

96
0

15
15

20
11

33
44

81
64

0
11

86
00

47
87

2
14

78
40

31
36

0
17

74
08

91
65

6
12

09
60

83
95

2
97

41
6

13
50

16
97

28
0

96
76

8
12

80
88

12
62

72
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Table 30: The character table for G := B and H := Fi23.

ϕ
χ
ϕ

1
2

3
4

5
6

7
8

1
1

1
4
1
2
8
9
6

8
6
3
1
6
5
1
6

1
9
5
7
4
7
4
3
5

8
5
3
7
4
8
8
1
2
8

2
3
4
7
8
0
9
2
3
5
2

3
3
8
1
6
1
8
2
4
0
0

1
1
3
7
7
8
4
4
7
5
5
2

2
4
3
7
1

1
−

1
3
7
6
3
2

1
8
1
1
5
8
1
2
−

1
0
4
7
2
0
8
5
−

1
1
5
9
4
1
1
9
6
8

1
4
4
9
2
6
4
9
6
0

3
7
5
7
3
5
3
6
0
0

1
4
0
4
6
7
2
1
9
2

3
9
6
2
5
5

1
8
2
0
1
6

8
8
9
0
5
9
6

5
7
0
1
9
9
5

4
5
7
0
3
7
5
6
8

3
2
7
7
4
2
2
7
2

1
2
9
7
2
9
6
0
0
0
−

1
7
8
8
6
7
1
8
0
8

4
9
4
5
8
7
5
0

1
4
1
8
8
8

3
2
3
2
5
4
8

−
4
3
6
0
5

1
2
3
0
2
6
6
8
8

5
7
8
4
1
3
4
4

3
1
4
1
6
0
0
0
0

1
8
3
2
1
8
1
1
2

5
6
3
5
3
2
4
8
5

1
−

3
2
0
3
2

2
2
7
5
8
1
2

4
1
4
3
1
5

−
7
7
2
2
3
1
6
8

−
2
3
1
2
6
4
0

1
7
9
6
2
5
6
0
0

−
3
2
3
3
2
6
0
8

6
3
4
7
6
4
3
1
1
4

1
1
0
2
0
8

7
0
4
4
8
4

1
5
8
9
3
5
5

1
0
6
7
9
0
4
0

4
6
3
9
8
5
2
8

−
9
6
0
9
6
0
0

5
7
0
8
1
0
2
4

7
3
5
6
0
5
4
3
7
5

1
−

1
7
2
4
8

9
0
0
9
0
0

−
1
5
0
8
9
4
9

−
2
0
0
9
7
7
9
2

4
3
9
0
2
1
4
4

3
2
6
7
2
6
4
0

−
2
1
1
5
5
9
0
4

8
4
2
2
1
3
8
0
6
7
0

1
−

3
2
3
2

3
2
4
3
2
4

1
0
3
2
7
5

−
2
4
5
3
7
6
0

1
5
1
2
1
7
2
8

−
1
2
2
9
7
6
0
0

−
1
5
4
9
4
9
7
6

9
4
2
7
5
3
6
2
5
2
0

1
1
4
8
1
6

7
2
5
7
9
6

−
4
3
6
0
5

1
6
7
4
3
1
6
8

−
7
3
1
6
9
2
8

3
1
9
2
0
0
0
0

1
4
8
4
1
7
9
2

1
0

9
2
8
7
0
3
7
4
7
4

1
6
8
9
6

1
3
2
5
1
6

6
9
9
4
3
5

7
3
6
1
2
8

1
1
0
9
6
3
5
2

4
5
0
2
4
0
0

−
3
8
8
6
4
4
4
8

1
1

1
3
5
0
8
4
1
8
1
4
4

1
−

1
1
6
3
2

4
7
5
8
1
2

1
1
1
9
1
5

−
9
2
8
3
9
6
8

−
4
9
1
0
4
0

1
7
6
7
3
6
0
0

7
5
8
4
1
9
2

1
2

1
0
8
3
4
8
7
7
0
5
3
0

1
7
3
2
8

2
4
6
5
6
4

−
4
3
6
0
5

3
4
2
1
4
4
0

1
7
2
9
7
2
8

4
5
0
2
4
0
0

−
1
1
8
6
6
1
7
6

1
3

3
0
9
7
2
0
8
6
4
3
7
5

1
−

1
1
2
0

8
9
8
9
2

−
1
8
1
8
4
5

−
1
7
2
8
0
0

3
1
7
2
0
3
2

−
3
6
3
8
4
0
0

6
9
3
4
4
6
4

1
4

6
3
5
9
6
6
2
3
3
0
5
6

1
3
4
0
8

6
9
2
8
4

1
4
7
7
5
5

2
9
5
0
4
0

2
4
5
0
5
2
8

−
1
6
9
6
0
0

6
6
8
1
0
2
4

1
5

1
0
9
5
9
3
5
3
6
6
2
5
0

1
−

4
5
7
6

1
2
6
7
5
6

2
4
7
5

−
1
3
2
4
8
0
0

−
9
4
9
8
2
4

1
0
6
1
7
6
0

−
2
5
4
0
1
6

1
6

6
1
4
5
8
3
3
6
2
2
5
0
0

1
2
8
6
4

5
1
8
7
6

−
2
6
3
2
5

3
1
6
8
0
0

−
5
0
7
7
4
4

3
0
9
1
2
0

1
1
9
7
5
0
4

1
7

6
6
1
9
1
2
4
8
9
0
5
6
0

1
1
0
8
8

3
9
2
0
4

2
5
5
1
5

1
3
8
2
4
0

−
3
0
0
6
7
2

−
1
0
6
5
6
0
0

−
1
4
9
8
1
7
6

1
8

1
2
9
2
7
9
7
8
3
0
1
8
7
5

1
−

2
1
2
8

1
9
6
2
0

−
4
0
1
4
9

6
7
9
6
8

7
0
6
4
6
4

1
8
6
2
4
0

−
6
2
7
2
6
4

1
9

3
8
3
4
8
9
7
0
3
3
5
8
2
0

1
−

1
2
3
2

1
5
5
2
4

3
7
6
7
5

1
9
8
4
0

−
6
9
4
7
2

−
2
3
3
6
0
0

−
5
7
6

2
0

8
9
6
2
6
7
4
0
3
2
8
1
2
5

1
9
4
4

1
1
8
8

1
5
1
4
7

−
7
9
4
8
8

6
1
3
4
4

6
3
3
6
0

3
6
2
8
8

2
1

2
1
1
0
6
9
0
3
3
5
0
0
0
0
0

1
5
6
0

1
1
8
8

−
1
2
5
0
1

−
5
1
8
4
0

1
2
9
6
0

−
6
8
7
3
6

−
1
2
9
6
0
0

2
2

2
8
4
4
1
5
5
2
2
6
4
1
2
5
0

1
−

1
6

−
5
7
2
4

8
2
3
5

1
7
2
8
0

5
0
9
7
6

7
8
7
2
0

−
4
6
6
5
6

2
3

3
6
4
6
3
5
2
8
5
4
3
7
5
0
0

1
−

4
0
0

−
1
1
1
6

−
5
5
8
9

2
6
4
9
6

−
7
1
1
3
6

−
7
2
9
6

1
1
9
2
3
2
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Table 31: The character table for G := B and H := Fi23, continued.
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
6
0
5
3
3
9
6
4
8
0
0

5
0
4
2
4
5
3
9
2
5
6
0

1
0
4
4
0
8
4
5
7
7
5
3
6

1
1
5
2
5
6
0
8
9
7
2
8
0

1
5
8
4
7
7
1
2
3
3
7
6
0

5
2
8
2
5
7
0
7
7
9
2
0
0

7
8
8
8
6
3
9
0
3
0
2
7
2

1
2
6
7
8
1
6
9
8
7
0
0
8
0

−
5
9
4
5
7
0
2
4
0
0

3
9
4
2
6
5
9
4
4
8
0
−

2
1
4
8
3
2
2
1
7
6
0
−

4
7
4
3
0
4
8
9
6
0
−

1
1
0
8
6
8
7
6
9
4
4
0

6
5
2
1
6
9
2
3
2
0
0
−

2
9
2
1
7
1
8
1
5
9
3
6

5
7
3
9
0
8
9
2
4
1
6
0

−
5
1
1
9
4
8
8
0
0

1
2
0
2
7
7
0
2
9
6
0
−

9
5
2
7
3
4
1
8
2
4

6
9
6
6
9
8
4
9
6
0

3
0
4
8
4
6
0
2
7
2
0

2
8
4
4
7
8
4
8
0
0
0

5
8
0
9
1
1
8
5
1
5
2

1
1
8
4
4
6
8
3
1
3
6
0

2
5
8
5
0
8
8
0
0

1
9
9
1
2
8
8
8
8
0

1
2
5
2
3
2
3
0
7
2
−

1
0
2
1
6
9
7
2
8
0

4
9
0
6
0
1
2
3
2
0
−

3
5
1
4
1
0
4
0
0
0

3
7
2
7
6
9
6
8
9
6

1
2
8
0
2
6
4
8
3
2
0

3
5
4
8
1
6
0
0

1
0
8
4
6
9
3
6
8
0

5
5
0
8
5
1
8
4
0

−
4
3
2
0
3
4
5
6
0
−

2
4
0
0
5
6
7
8
4
0

1
2
3
5
9
9
5
2
0
0

−
3
0
0
1
7
4
3
3
6

4
7
1
8
1
6
5
7
6
0

−
1
6
7
2
7
0
4
0
0

2
2
4
4
2
6
1
6
0

5
3
3
8
2
0
6
7
2

2
7
1
6
0
7
0
4
0

−
9
7
4
1
6
0
0

9
1
6
6
6
0
8
0
0

2
0
6
7
1
5
8
0
1
6

−
1
6
5
6
3
5
7
1
2
0

6
3
8
6
6
8
8
0

1
8
5
9
8
5
0
7
2

−
1
8
6
8
1
0
6
2
4

7
7
8
2
4
2
8
1
6

−
2
5
9
8
2
9
8
5
6
−

2
1
0
9
0
3
2
6
4
0

−
1
9
0
9
6
1
9
7
1
2

−
6
4
3
4
5
8
8
1
6

7
4
1
8
8
8
0
0

8
7
4
9
9
4
4
0

−
2
1
9
0
3
4
3
6
8

−
1
4
2
1
4
5
2
8
0

2
9
1
2
1
1
2
0

4
9
9
8
6
7
2
0
0

−
2
7
4
6
2
7
5
8
4

−
5
4
4
6
3
1
0
4
0

4
1
4
7
2
0
0

1
1
0
1
1
8
9
6
0

−
6
1
0
1
2
2
2
4

6
2
5
8
8
1
6
0

1
9
8
0
3
3
1
2
0

1
9
7
6
4
0
0
0
0

−
3
6
6
3
6
3
6
4
8

5
2
1
8
5
6
0

2
0
0
4
4
8
0
0

−
2
1
7
2
7
4
4
0

1
1
5
1
0
5
5
3
6

1
7
1
9
5
3
2
8
0

3
2
3
1
5
7
6
0

2
1
7
3
3
9
2
0
0

−
1
1
8
1
5
3
7
2
8

1
2
2
4
4
6
0
8
0

−
1
8
6
6
2
4
0
0

3
2
9
4
6
4
8
0

−
6
1
2
0
5
7
6
0

−
2
2
5
8
4
9
6
0

−
7
4
3
2
3
4
4
0

−
1
0
7
5
6
8
0
0

2
0
0
6
0
0
0
6
4

−
3
4
1
7
9
8
4
0

−
6
9
1
2
0
0
0

5
6
0
9
5
2
0

−
1
7
9
0
2
0
8

−
2
8
8
5
7
6
0
0

−
1
2
6
5
7
6
0

−
8
0
2
2
2
4
0
0

3
5
0
3
0
0
1
6

−
9
6
8
0
2
5
6
0

−
6
9
1
2
0
0
0

1
2
7
9
8
0
0
0

1
9
5
5
4
0
4
8

−
7
5
6
8
6
4
0

3
7
4
5
4
4
0

−
4
3
2
0
0

−
4
8
3
5
6
3
5
2

−
1
7
7
2
9
2
8
0

5
9
1
3
6
0
0

−
1
9
0
0
2
4
0

−
8
6
5
6
1
2
8

8
9
9
2
6
4
0

−
2
3
8
5
2
0
0

−
1
5
2
1
1
2
0
0

3
6
2
4
6
0
1
6

7
2
2
0
4
8
0

1
9
3
5
3
6
0

−
8
4
1
6
8
0

6
9
8
3
4
2
4

3
1
6
8
0
0
0

1
0
7
5
5
3
6
0

2
7
2
1
6
0
0

1
7
4
1
8
2
4

−
3
1
9
2
1
9
2
0

6
9
1
2
0
0

−
2
8
5
7
6
8
0

2
4
6
7
5
8
4

−
7
7
7
6
0
0

−
4
8
7
9
4
4
0

5
4
1
7
2
8
0

−
5
5
1
5
7
7
6

5
1
8
4
0
0

−
4
6
0
8
0
0

2
4
3
0
0
0
0

−
1
9
2
8
4
4
8

3
7
3
2
4
8
0

−
3
8
1
0
2
4
0

6
4
8
0
0
0

5
3
0
8
4
1
6

9
3
3
1
2
0

−
4
1
4
7
2
0

−
2
3
3
2
3
6
8

−
1
2
9
2
5
4
4

−
3
0
7
5
8
4

−
9
4
3
0
5
6

2
9
2
8
9
6
0

7
8
7
9
6
8

6
2
6
9
1
8
4

7
6
8
0
0

−
2
9
2
5
6
0

4
7
2
8
3
2

−
1
6
6
8
4
8
0

5
8
8
7
2
0

−
1
9
2
4
8
0
0

−
2
0
2
5
9
8
4

4
3
4
8
1
6
0

−
7
0
9
6
3
2

−
4
5
2
3
0
4

−
8
5
0
1
7
6

1
3
4
7
8
4

8
5
4
0
6
4

9
3
8
3
0
4

−
1
8
6
6
2
4
0

5
1
8
4
0
0

2
4
8
8
3
2

7
3
0
0
8

2
0
0
4
4
8

−
3
3
5
2
3
2

5
1
8
8
3
2

−
7
2
0
5
7
6

8
9
8
5
6
0

1
2
3
7
2
4
8

1
3
8
2
4
0

1
1
4
4
8
0

5
3
2
2
2
4

−
2
9
3
7
6
0

−
4
8
1
6
8
0

2
5
9
2
0

−
2
6
2
6
5
6

−
1
4
1
6
9
6
0

−
8
2
9
4
4

8
6
8
3
2

−
3
5
2
5
1
2

5
0
8
0
3
2

−
4
2
7
6
8

1
9
1
8
0
8

2
9
0
3
0
4

−
3
1
1
0
4
0
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Table 32: The character table for G := B and H := Fi23, continued.

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
1
5
1
4
4
7
0
0
8
2
5
6
0

4
3
0
2
8
9
4
0
1
6
5
1
2
0

5
0
7
1
2
6
7
9
4
8
0
3
2
0

1
3
3
1
2
0
7
8
3
6
3
5
8
4
0

1
9
0
1
7
2
5
4
8
0
5
1
2
0
0

2
6
2
9
5
4
6
3
4
3
4
2
4
0
0

2
8
3
9
9
1
0
0
5
0
8
9
7
9
2

−
7
9
6
8
3
2
2
2
5
2
8
0

5
3
1
2
2
1
4
8
3
5
2
0

1
4
6
0
8
5
9
0
7
9
6
8
0
−

2
7
3
9
1
1
0
7
7
4
4
0
0
−

7
8
2
6
0
3
0
7
8
4
0
0

3
2
4
6
3
5
3
5
1
0
4
0
0
−

1
1
6
8
6
8
7
2
6
3
7
4
4

1
5
8
4
3
0
5
0
4
9
6
0
−

2
2
2
3
6
1
2
5
1
8
4
0

2
3
9
6
5
1
3
4
3
3
6
0

1
9
0
0
7
9
8
0
9
9
2
0
−

8
5
7
3
2
7
3
2
8
0
0
0

2
8
5
9
8
1
6
9
6
0
0

2
1
8
1
9
4
8
0
8
8
3
2

1
0
1
6
6
4
4
6
0
8
0

2
0
3
3
2
8
9
2
1
6
0

7
9
3
6
2
2
0
1
6
0

8
2
1
0
8
8
5
7
6
0

4
7
7
9
1
8
1
4
4
0
0

−
2
5
3
3
3
8
6
2
4
0
0

−
9
0
1
8
8
5
5
0
1
4
4

−
4
5
3
4
5
4
8
4
8
0

−
8
5
1
1
7
1
3
2
8
0

−
1
0
5
3
8
0
3
5
2
0

1
2
7
5
3
4
1
7
6
0
0

1
0
8
2
8
8
5
7
6
0
0

−
1
7
9
5
3
6
8
9
6
0
0

3
9
0
8
6
5
3
0
5
6

−
6
7
9
3
1
1
3
6
0

1
8
9
2
7
8
2
0
8
0

3
9
9
4
7
2
1
2
8
0

−
5
8
9
5
7
1
1
3
6
0

1
5
6
8
1
6
0
0
0
0

−
1
0
0
0
5
8
1
1
2
0
0

6
8
3
8
0
1
3
9
5
2

1
6
7
5
6
3
4
6
8
8

1
1
7
7
4
7
3
0
2
4

3
2
3
8
0
5
0
8
1
6

−
1
5
5
6
7
5
5
2
0

−
4
4
4
7
8
7
2
0

−
6
8
2
6
6
5
9
8
4
0

4
9
8
1
6
1
6
6
4
0

−
5
8
0
6
0
8
0

5
9
2
2
2
0
1
6
0

7
2
2
8
5
6
9
6
0

8
1
3
2
1
4
0
8
0

−
1
3
9
9
6
8
0
0

−
1
0
2
5
7
4
0
8
0
0

−
5
7
8
2
8
5
5
6
8

−
7
5
4
7
9
0
4
0

−
4
5
2
8
7
4
2
4
0

−
1
2
3
3
2
3
9
0
4
0

−
1
7
7
8
4
7
4
8
8
0

6
6
6
1
4
4
0
0
0

1
4
8
3
7
7
6
0
0

2
5
1
8
2
9
0
4
3
2

−
3
2
2
2
3
7
4
4
0

6
6
1
8
9
3
1
2
0

−
4
8
9
9
9
1
6
8
0

9
5
9
0
9
1
8
4
0

−
1
0
2
0
9
8
8
8
0
0

1
7
4
1
8
2
4
0
0

−
4
7
9
5
8
2
2
0
8

2
6
9
9
8
2
7
2
0

8
3
6
0
7
5
5
2
0

−
6
6
4
3
1
2
3
2
0

−
1
8
3
2
5
4
4
0
0

−
1
0
0
4
9
1
8
4
0
0

5
9
3
5
1
0
4
0
0

1
2
5
0
2
4
2
5
6

−
1
4
5
1
5
2
0
0
0

−
1
1
6
1
2
1
6
0

8
3
0
8
2
2
4
0

2
6
8
1
6
8
3
2
0

−
1
7
0
5
5
3
6
0
0

2
1
2
8
8
9
6
0
0

−
5
9
6
0
9
0
8
8

1
8
5
2
4
1
6
0

−
1
6
0
3
5
8
4
0

−
6
1
7
9
3
2
8
0

9
8
1
3
3
1
2
0

−
1
1
6
6
4
0
0
0
0

1
9
0
7
7
1
2
0
0

−
7
4
6
4
9
6
0
0

−
3
9
7
9
7
7
6
0

−
4
1
6
5
6
3
2
0

−
2
2
7
2
5
1
2
0

1
6
7
1
7
4
4
0

9
2
6
4
0
0
0

8
0
0
7
6
8
0
0

−
4
1
5
7
6
4
4
8

−
5
8
0
6
0
8
0

−
5
8
0
6
0
8
0
0

3
6
4
4
9
2
8
0

−
1
8
2
6
4
9
6
0

4
1
6
4
4
8
0
0

9
4
1
8
7
5
2
0

−
8
3
3
4
9
5
0
4

1
4
5
1
5
2
0
0

1
1
6
1
2
1
6
0

1
5
1
3
7
2
8
0

9
7
9
7
7
6
0

−
1
5
0
8
5
4
4
0

−
2
1
9
3
4
0
8
0

−
1
0
4
5
0
9
4
4

1
4
1
0
0
4
8
0

−
9
9
5
3
2
8
0

−
9
9
5
3
2
8
0

−
1
8
1
9
5
8
4
0

2
7
9
9
3
6
0
0

2
7
6
4
8
0
0
0

−
3
5
8
3
1
8
0
8

7
2
1
6
1
2
8

−
6
9
6
7
2
9
6

−
2
2
2
5
6
6
4

−
1
6
7
4
4
3
2
0

2
2
6
5
4
0
8
0

−
8
6
6
3
0
4
0

−
2
7
6
4
8
0

−
1
5
8
2
0
8
0

5
4
6
8
1
6
0

−
9
1
9
0
4
0

−
1
5
3
7
9
2
0

−
7
0
3
6
8
0
0

−
1
7
1
0
0
8
0
0

2
3
3
6
5
6
3
2

−
7
4
6
4
9
6

−
1
6
5
8
8
8
0

2
1
9
8
0
1
6

3
8
2
5
7
9
2

6
0
6
5
2
8
0

−
4
5
3
4
2
7
2

−
3
8
1
5
4
2
4

−
1
4
1
0
0
4
8

9
9
5
3
2
8

−
1
8
9
3
8
8
8

−
4
0
5
3
8
8
8

−
1
3
1
6
7
3
6

−
2
7
6
4
8
0
0

8
5
7
0
8
8
0

2
9
0
3
0
4
0

−
1
6
5
8
8
8
0

−
6
9
1
2
0

−
3
0
5
8
5
6
0

5
1
8
4
0

6
0
8
2
5
6
0

−
2
7
0
9
5
0
4

−
1
7
4
1
8
2
4

9
9
5
3
2
8

7
0
5
0
2
4

4
5
7
2
2
8
8

−
1
0
2
6
4
3
2

−
7
0
0
4
1
6

−
3
1
5
1
8
7
2
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of the subgroups given in Table 27 by the central subgroup Z(G) of order 2.
Hence we conclude that for i ∈ {1, 3, 4, 6, 10, 14, 18} the subgroup Hi ≤ H has
only 2-perfect subgroups of index 2, and thus these are 7 of the split suborbits,
as is indicated in the last column of Table 27. Note that by Section (17.9) the
above condition on the subgroup structure does not hold for H13.

We have a closer look at the embedding of the subgroups Hi into G. As all
characters in Irr1H′

K (G) are rational-valued, by Propositions (3.20) and (3.1) and
the orthogonality relations, see Proposition (3.8) we conclude that all suborbits
of Ω′ are self-paired. Hence we may without loss of generality choose the set of
representatives {gi; i ∈ I} of the H-H-double cosets in G such that g2

i ∈ H ′.
We still assume that i ∈ I such that Ωi is a non-split suborbit. Let H̃ ′ ≤ H ′

be a subgroup such that H ′ ∩Hgi ≤ H̃ ′, and let H̃ := Z(G)× H̃ ′ ≤ H. Hence
we have Hi ≤ H̃. Since H ′ ∩Hgi 6≤ H ′gi , we also have H ′ ∩Hgi 6≤ H̃ ′gi , but we
have H ′ ∩Hgi ≤ Hi = Hgi

i ≤ H̃gi .

Let fH̃ : Cl(H̃) → Cl(G) denote the natural map between the conjugacy classes
of H̃ and those of G, and let fH̃′,H̃ : Cl(H̃ ′) → Cl(H̃) denote the natural map
between the conjugacy classes of H̃ ′ and those of H̃. Let fgi : Cl(H̃)→ Cl(H̃gi)
be the natural bijection between the conjugacy classes of H̃ and those of H̃gi ,
induced by conjugation with gi ∈ G; its restriction to Cl(H̃ ′) also is denoted by
fgi . Hence the natural map between the conjugacy classes of H̃gi and those of
G is fH̃ ◦ f−1

gi : Cl(H̃gi) → Cl(G), and the natural map between the conjugacy
classes of H̃ ′gi and those of H̃gi is fgi ◦ fH̃′,H̃ ◦ f−1

gi : Cl(H̃ ′gi)→ Cl(H̃gi).

For the natural maps

f ′: Cl(H ′ ∩Hgi)→ Cl(H̃ ′) and f ′′: Cl(H ′ ∩Hgi)→ Cl(H̃gi)

we hence have

f ′′(Cl(H ′∩Hgi)) 6⊆ fgi ◦fH̃′,H̃ ◦f
−1
gi (Cl(H̃ ′gi)) and fH̃ ◦fH̃′,H̃ ◦f

′ = fH̃ ◦f
−1
gi ◦f

′′.

We use the programs using ordinary character tables to find candidates for
the natural maps between the conjugacy classes of a candidate subgroup and
those of a given group available in GAP, to check whether such maps f ′ and
f ′′ exist for the index 2 subgroups H ′′ of the groups Hi not yet dealt with.
Given H ′′, we compute the candidates for the natural map Cl(H ′′) → Cl(H̃),
and check whether we can find candidate maps f1 and f2, such that f1 factors
through some f ′: Cl(H ′′) → Cl(H̃ ′) as f1 = fH̃′,H̃ ◦ f ′, where f ′ and f ′′ :=
fgi ◦ f2: Cl(H ′′)→ Cl(H̃gi) fulfil the above conditions, which amount to

f2(Cl(H ′′)) 6⊆ fH̃′,H̃(Cl(H̃ ′)) and fH̃ ◦ f1 = fH̃ ◦ f2.

We specify H̃ ′ := H ′, hence H̃ = H. The ordinary character tables of G as well
as H and H ′ are available in GAP. It turns out that there are 4 candidates for the
natural map fH : Cl(H) → Cl(G), which are exactly one orbit under the action
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of the group of table automorphisms of G, hence we may choose one of them,
and keep it fixed. The map fH′,H : Cl(H ′)→ Cl(H) is uniquely determined.

Let i = 8, hence we have H8 = 22 × 2F4(2)′. Thus all its index 2 subgroups are
isomorphic to 2× 2F4(2)′, whose ordinary character table is available in GAP. It
turns out that no pair of maps f1,2: Cl(2× 2F4(2)′)→ Cl(H) fulfilling the above
conditions exists.

Let i = 15, hence we have H15 = 2 × (A6 × A6): 22. As we are looking for
maps f1 factoring through fH′,H , we may restrict ourselves to the direct factor
(A6 × A6): 22 of index 2. Its ordinary character table can be determined using
the Dixon-Schneider algorithm available in GAP. It turns out that no pair of
maps f1,2: Cl((A6 ×A6): 22)→ Cl(H) fulfilling the above conditions exists.

Let i = 19, hence we have H19 = 2×2.L3(4).22. Again we may restrict ourselves
to the direct factor 2.L3(4).22 of index 2, whose ordinary character table is
available in GAP. It turns out that no pair of maps f1,2: Cl(2.L3(4).22)→ Cl(H)
fulfilling the above conditions exists.

Let i = 23, hence we have H23 = 2 × (A5 × A5): 22. Again we may restrict
ourselves to the direct factor (A5×A5): 22 of index 2, whose ordinary character
table can be determined using the Dixon-Schneider algorithm available in GAP.
But it turns out that it would be too time-consuming to compute the candidates
for the natural map Cl((A5×A5): 22)→ Cl(H). Using GAP and the permutation
representations of (A5×A5): 22 ∼= H23/Z(G) and of (A6×A6): 22 ∼= H15/Z(G) as
subgroups of Fi23 = H/Z(G), we find that (A5 ×A5): 22 is Fi23-conjugate to a
subgroup of (A6×A6): 22. Hence we may assume (A5×A5): 22 < (A6×A6): 22 <
H ′. Thus we specify H̃ ′ := (A6×A6): 22. We use the candidates for the natural
map Cl(H̃ ′) → Cl(H) already found above, and as we keep fH : Cl(H) → Cl(G)
fixed, we find that the natural map Cl(H̃) → Cl(G) is uniquely determined.
Finally, it turns out that no pair of maps f1,2: Cl((A5×A5): 22)→ Cl(H̃) fulfilling
the above conditions exists.

Hence we have found the remaining 4 split suborbits to be i ∈ {8, 15, 19, 23}, as
is indicated in Table 27.

(17.12) Unfortunately, up to now it has not been possible to compute the
character table of E1H′

K , apart from the relations between the character values
given in Remark (5.15). There are serious obstacles we are faced with.

It turns out that no suitable faithful representation of G is available to be
used for a computational approach analogous to the one which has been used
for Ω = H|G, see Section (17.6). Furthermore, only the second smallest non-
trivial suborbit i = 3, where k3 = 86 316 516, is a split suborbit. To find the
character table of E1H′

K , by Remark (5.15), we have to determine IrrK(E1−

K ),
where I1− ⊂ I is the set of split suborbits. Applying a technique as was used
in Section (17.10) would imply to run explicitly through the k3 = 86 316 516
elements of Ω3, instead of the k2 = 412896 elements of Ω2.
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We mention some more indirect ideas, which might be helpful, but still have to
be elaborated further.

a) We could try to use a technique which was used in [29] for the groups B
and 2.2E6(2).2 as well as 2.2E6(2). For the present case this involves finding
the 1−-weights ζ ∈ {±1} of the triangles in Tijk ⊆ Ω × Ω × Ω, for j, k ∈ I1− ,
and some fixed i ∈ I1− , see Definition (1.15). This can be reduced to the sets
Ω1−,ζ
ijk ⊆ Ωi, see Remark (1.16), which in turn are unions of Hk-orbits. We are

tempted to choose i = 3, the smallest non-trivial split suborbit, but still we are
faced with k3 = 86 316 516 elements, and the sets Ω1−,ζ

3,j,k ⊆ Ω3 in most cases
seem to be far away from being single Hk-orbits.

b) By Remark (3.24), the matrix Γ1 ∈ ZI×|Cl(G)| can be determined, see Defi-
nition (3.19). To find the character table of E1−

K , it is sufficient, by Proposition
(3.20), to find the matrix Γ1− ∈ ZI1−×|Cl(G)|. The matrix entries of Γ1 and
Γ1− as well as Γ1H′ ∈ Z

I′×|Cl(G)| are related, where the relations can be made
precise. Furthermore, the rows of Γ1− form an orthogonal K-basis of the K-
subspace of KI1−×|Cl(G)| they span, where the latter can also be described in
terms of values of the characters in Irr1−

K (G), see Remark (3.24).

18 The Thompson-Smith lattice

In Section 18 we give another application of the technique described in Section
(10.6), to a problem related to the still open question of determining the min-
imum of the so-called Thompson-Smith lattice. We begin by fixing the setting
and stating the problem we solve computationally.

(18.1) Let G := Th and G ⊆ G be a set of standard generators of G in the
sense of [81]. Let V be the absolutely irreducible, even, unimodular ZG-lattice of
Z-rank 248, the so-called Thompson-Smith lattice. Matrices for the action of the
elements of G and the Gram matrix of the scalar product 〈·, ·〉V on V are known,
see [62]. Let the minimum of V be defined as minV := min{〈v, v〉V ; 0 6= v ∈ V }.
By [40] we have minV ≥ 10.

Let H := 3 × G2(3) < NG(H) = (3 × G2(3)): 2 < G, where NG(H) < G is
a maximal subgroup. It turns out that FixH(V ) = 〈vH〉Z for some vH ∈ V ,
while vH · NG(H) = {±vH}. As NG(H) < G is a maximal subgroup, there is
a G-set isomorphism between the G-orbit vH · G ⊆ V and Ω := H|G, where
n = |Ω| = 7 124 544 000, and using GAP we find |I| = r = 778. Note that the
G-orbit vH ·G ⊆ V is a symmetric orbit, hence we have −v ∈ vH ·G whenever
v ∈ vH ·G.

It turns out that 〈vH , vH〉V = 12. Hence we have minV ∈ {10, 12}. It is
conjectured and still an open problem that minV = 12. Related to this problem,
it has been conjectured [61] that

{〈v, vH〉V ; v ∈ vH ·G ⊆ V, v 6= ±vH} = {0,±1,±2,±3,±4,±6}.
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We prove the latter conjecture, see Table 33.

(18.2) Let Ṽ be the absolutely irreducible F3G-module obtained from V by
3-modular reduction. Using the MeatAxe, we find that ṼH has a uniquely de-
termined trivial F3H-submodule. We pick one of the vectors 0 6= ṽH ∈ VH in
this submodule, and it turns out that ṽH ·NG(H) = {±ṽH}. Hence we conclude
that there is a G-set isomorphism between the G-orbit ṽH ·G ⊆ Ṽ and Ω.

We enumerate the G-orbit Ω ∼= ṽH ·G piecewise, H-orbit by H-orbit, using the
technique described in Section (10.6). As G acts by lattice automorphisms on
V , and H = StabG(vH), we have 〈v, vH〉V = 〈v · h, vH〉V for v ∈ V and h ∈ H.
Hence the level sets

(vH ·G)c := {v ∈ vH ·G ⊆ V ; 〈v, vH〉V = c},

for c ∈ {−12, . . . , 12}, are unions of H-orbits. Hence to find out for which of
these levels we have (vH ·G)c 6= ∅, we only have to compute 〈vi, vH〉V for a set
of representatives vi ∈ V , for i ∈ I, for the H-orbits in vH · G ∼= Ω, where we
have |I| = r = 778. This even yields further information, namely how the level
sets decompose into H-orbits.

We choose the chain of subgroups

U1 := U3(3): 2 < U2 := G2(3) < U3 = U := H = 3×G2(3),

where U1 < U2 is a maximal subgroup. A set of generators of NG(H) = (3 ×
G2(3)): 2, given as words in G, is available in [83]. Using the MeatAxe, we find a
set of generators of H as well as a set of standard generators of U2, in the sense
of [81], as words in G, and again a set of generators of U1 as words in the set of
standard generators of U2 is available in [83].

Using the 3-modular Brauer character table of G2(3): 2, see [37], and GAP we
find that ṼNG(H) has the following constituents with multiplicities: 1a, 2 · 1b,
7 · 14a, 49a, 2 · 49b, where these are absolutely irreducible F3NG(H)-modules
of the indicated F3-dimensions, and the ordering is as in the 3-modular Brauer
character table of G2(3): 2. Using the algorithms to compute submodule lattices
described in [47] available in the MeatAxe, we find that ṼNG(H) has a unique

epimorphic image Ṽ2 of F3-dimension 63. We have Ṽ2
∼=
[

14a
49b

]
as F3NG(H)-

modules, a uniserial F3NG(H)-module where the diagram indicates the radical

and socle series of Ṽ2. Furthermore, we have (Ṽ2)U2
∼=
[

7a⊕ 7b
49a

]
as F3U2-

modules, where again the constituents are absolutely irreducible F3U2-modules,
and the the diagram indicates the radical and socle series. Using the 3-modular
Brauer character table of U1 = U3(3): 2, see [37], and GAP we find that (Ṽ2)U1

has the following absolutely irreducible constituents: 1b, 6a, 7a, 7b, 12a, 30a, all
with multiplicity 1. Again using the MeatAxe we find that (Ṽ2)U1 has a unique
epimorphic image Ṽ1

∼= 6a ⊕ 7b as F3U1-modules, hence Ṽ1 has F3-dimension
13.
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Table 33: Level sets and H-orbits.

c |(vH ·G)c| |Ic|
0 3 712 825 584 380
1 1 587 081 600 158
2 117 615 888 32
3 1 106 560 4
4 53 703 2
5 . .
6 1 456 2
7 . .
8 . .
9 . .

10 . .
11 . .
12 1 1

c H-orbit lengths
6 728, 728
4 9477, 44226
3 5824, 157248, 471744, 471744

(18.3) We enumerate the orbit ṽH ·G, using the technique described in Section
(10.6), and find the H-orbits in ṽH · G, where there are r = 778 of them.
Additionally, for each such H-orbit (ṽH · G)i ∼= Ωi, for i ∈ I, we compute an
element gi ∈ G, as a word in the set of generators G, mapping ṽH to an element
of (ṽH · G)i. As we have ṽH · G ∼= Ω ∼= vH · G as G-sets, we apply the gi ∈ G,
for i ∈ I, to vH , and collect the data on the scalar products 〈vHgi, vH〉V and
the suborbit lengths |vHgi ·H| = |Ωi| = |ṽHgi ·H|.
The result is shown in Table 33, where for each level c ∈ {0, . . . , 12} we give the
cardinality |(vH ·G)c| and the number |Ic| of H-orbits comprising the level set
(vH ·G)c. For c ∈ {−12, . . . ,−1} we have |(vH ·G)c| = |(vH ·G)−c| and |Ic| =
|I−c|. In particular, the non-empty level sets are as stated in the conjecture
in Section (18.1). For given c ∈ {−12, . . . , 12} the lengths of the H-orbits
comprising the level set (vH ·G)c are also known. This seems to be particularly
interesting for c ∈ {3, 4, 6}, where the lengths of the H-orbits comprising these
level sets are also given in Table 33.

19 The Harada-Norton group HN in characteristic 3

In Section 19 we present by example a new technique to use condensation results
to determine decomposition numbers for finite groups. Historically, finding de-
composition numbers was the very problem condensation techniques have been
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invented for, see [77]. Since then, these techniques have been applied by various
people, see for example [26, 38, 57, 59].

Keeping the notation of Section 9, and letting λ = 1 and ε = ε1 ∈ A := FG,
we consider V := εA, which is a projective A-module. Hence the criterion in
Section (9.12) is applicable as well as Proposition (9.13), see Remark (9.14). The
information thus obtained is used to find projective indecomposable characters.
We need some preparations first.

(19.1) Let G := HN and p := 3. Let K, R and F be as in Section (2.10),
whereK is a splitting field ofKG and F is a splitting field of FG of characteristic
p = 3. Let 51+4: 21+4.5.4 ∼= H := NG(5b) < G, where 5b ∈ C5B ∈ Cl(G), where
the latter in turn denotes the 5B-conjugacy class of G; the ordinary character
table of H is available in GAP.

Using GAP we find the following data on the 3-modular blocks Bi of G, where
dBi ∈ N0 denotes the defect of Bi, while kBi := |IrrK(Bi)| ∈ N and lBi :=
|IrrF (Bi)| = |IBrF (Bi)| ∈ N denote the number of irreducible ordinary and
irreducible 3-modular Brauer characters of Bi, respectively. The last column
corresponds to the union of the blocks of defect 0.

i 1 2 3
dBi 6 2 1 0
kBi 33 9 3 9
lBi 20 7 2 9

Nothing has to be done for block B3 of defect 1. We partly analyse block B2 of
defect 2. This is part of a full analysis of block B2 and the principal block B1

currently being work in progress [31]. We assume the reader familiar with the
notion of basic sets, see [30].

Using GAP we find that the set

BS := {8910a, 16929a, 270864a, 1185030a, 1354320a, 1575936a, 4561920a}

of irreducible ordinary characters in B2 is a basic set of Brauer characters in
B2, as is indicated by the underlined entries in the first column in Table 34.
We also give there a basic set PS := {Ψ1, . . . ,Ψ7} ⊆ ZIrrK(B2) of projec-
tive characters in ZIrrK(B2), decomposed into the irreducible ordinary char-
acters B2, and indicate the origin of the Ψi, for i ∈ {1, . . . , 7}. The charac-
ters {69255a, 1066527a, 3878280a} ⊆ IrrK(G) are ordinary characters of defect
0. Since |H| is not divisible by 3, all the irreducible ordinary characters in
IrrK(H) are projective characters, where 1−, λ ∈ IrrK(H) denote linear charac-
ters of order 2 and 4, respectively, and 5b ∈ IrrK(H) is one of the rational-valued
characters of degree 5. It turns out that 〈 12 · (5b)

G, χ〉 ∈ Z, for all χ ∈ BS, hence
the B2-component of 1

2 · (5b)
G is a projective character in B2.

Thus Ψ7 is a projective indecomposable character. We consider the possible pro-
jective summands of Ψ6. These are sums of a multiple of Ψ7 and the characters
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Table 34: Basic set PS of projective characters in B2 for G := HN and p := 3.

i χi Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 1G Ψ1
6 Ψ2

6 Ψ3
6

8 8910a 1 . . . . . . 2 . . .
10 16929a . 1 . . . . . 1 . . .
19 270864a . . 1 . . . . . . . .
32 1185030a 1 1 . 1 3 1 . 4 1 . .
33 1354320a 2 2 . 2 2 1 . 2 . 1 .
37 1575936a 1 2 1 1 2 1 . . . . 1
43 2784375a 2 2 1 3 5 2 . 3 1 1 .
49 4561920a 1 2 2 6 9 4 1 2 a b c
50 4809375a 1 3 3 5 9 4 1 3 a b− 1 c+ 1

1G in PS 2 1 . . 5 −14 9

Ψi origin

1 (1−)G

2 1066527a · 133b
3 λG

4 1
2 · (5b)

G

5 3878280a · 133a
6 69255a · 3344a
7 69255a · 760a
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Table 35: Basic set PS′ of projective characters in B2.

i χi Ψ′1 Ψ′2 Ψ′3 Ψ′4 Ψ′5 Ψ′6 Ψ′7
8 8910a 1 . . . . . .

10 16929a . 1 . . . . .
19 270864a . . 1 . . . .
32 1185030a 1 1 . 1 1 . .
33 1354320a 1 . . 2 . 1 .
37 1575936a . . 1 1 . 1 .
43 2784375a 1 . 1 3 1 1 .
49 4561920a 1 2 2 6 3 1 1
50 4809375a 1 3 3 5 3 1 1

1G in PS′ 2 1 . . 1 . −5
(1−)G in PS′ 1 . . . . 1 −1

Ψ1,2,3
6 shown in Table 34, where a+ b+ c ≤ 4. Using the decomposition of the

B2-component of the projective character 1G, where 1 ∈ IrrK(H) is the trivial
character, into the basic set PS of projective characters, as is also shown in
Table 34, we conclude that the projective indecomposable summand of Ψ6 con-
taining Ψ1

6 is a 3-fold summand of Ψ5. Hence Ψ1
6 is a projective indecomposable

character, and we have a ∈ {0, . . . , 3}. Furthermore, both the projective inde-
composable summands of Ψ6 containing Ψ2

6 and Ψ3
6, respectively, are summands

of Ψ1. Hence we have b+ c ≤ 1. From that we conclude that both Ψ1−Ψ2
6−Ψ3

6

and Ψ2 − 2 · Ψ2
6 − 2 · Ψ3

6 are projective characters. Hence we obtain the ba-
sic set PS′ of projective characters as shown in Table 35, where Ψ′i = Ψi, for
i ∈ {1, 2, 3, 4, 7}, as well as Ψ′5 := Ψ5−2·Ψ6+2·Ψ7 and Ψ′6 := 3·Ψ6−Ψ5−2·Ψ7,
while Ψ′1 := Ψ1 −Ψ′6 + Ψ7 and Ψ′2 := Ψ2 − 2 ·Ψ′6 + 2 ·Ψ7.

In Table 35 we also show the decomposition of the B2-component of the pro-
jective characters 1G and (1−)G into the basic set PS′ of projective characters.
From this it follows that Ψ′′5 := Ψ′5−Ψ′7 is a projective character, and we obtain
the basic set PS′′ of projective characters as shown in Table 36, where Ψ′′i = Ψ′i,
for i ∈ {1, 2, 3, 4, 6, 7}. In Table 36 we also show the decomposition of the B2-
components of the projective characters 1G and (1−)G into the basic set PS′′
of projective characters.

(19.2) We are prepared to apply the technique described in Section (10.3) to
Ω := H|G and U := H, yielding the action of εF3Gε on F3Ωε, where the latter
εF3Gε-module is isomorphic to the regular εF3Gε-module εF3Gε.

Using the decomposition of 1G into IrrK(G) shown in Table 37, where the dis-
tribution of IrrK(G) into the blocks B1, B2, B3 and the characters of defect 0
is indicated as well, we obtain 〈1G, 1G〉G = 127, while 〈1G · εB1 , 1

G〉G = 62 as
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Table 36: Basic set PS′′ of projective characters in B2.

i χi Ψ′′1 Ψ′′2 Ψ′′3 Ψ′′4 Ψ′′5 Ψ′′6 Ψ′′7 1G

8 8910a 1 . . . . . . 2
10 16929a . 1 . . . . . 1
19 270864a . . 1 . . . . .
32 1185030a 1 1 . 1 1 . . 4
33 1354320a 1 . . 2 . 1 . 2
37 1575936a . . 1 1 . 1 . .
43 2784375a 1 . 1 3 1 1 . 3
49 4561920a 1 2 2 6 2 1 1 2
50 4809375a 1 3 3 5 2 1 1 3

1G in PS′′ 2 1 . . 1 . −4
(1−)G in PS′′ 1 . . . . 1 −1

well as 〈1G · εB2 , 1
G〉G = 47 and 〈1G · εB3 , 1

G〉G = 2, where εBi ∈ KG denote
the central block idempotents of KG, for i ∈ {1, 2, 3}, see Remark (9.2).

We choose

V ∼=
[

1a
132a

]
,

a uniserial F4G-module with composition series as indicated, where the con-
stituents are absolutely irreducible F4G-modules of the respective dimensions,
which is the 2-modular reduction of an absolutely irreducible Q(

√
5)G-module.

Representing matrices for the action of a set of standard generators of G, in the
sense of [81], are available in [83]. Furthermore, a generating set of H given as
words in the set of standard generators of G is also available there. We find
VH ∼= 1a⊕32a⊕100a as F4H-modules, where the summands are absolutely irre-
ducible F4H-modules of the respective dimensions. Choosing 0 6= v ∈ 1a ≤ VH ,
as H < G is a maximal subgroup, we obtain that Ω is as a G-set isomorphic to
the G-orbit 〈v〉F4 ·G of 1-dimensional F4-subspaces of V . Furthermore we choose
C25
∼= U1 ≤ H. As U1 is a cyclic group, the centrally primitive idempotents

of F4U1 are straightforwardly determined. This yields the decomposition of the
semisimple F4U1-module VU1 into its F4U1-isotypic components. A standard
MeatAxe technique then allows to find an irreducible F4U1-epimorphic image V1

of VU1 of F4-dimension 10.

This yields the orbit counting numbers with respect to Ω =
∐
i∈I Ωi. By Propo-

sition (9.5) we obtain representing matrices for the action of a few randomly
chosen elements {εg̃kε ∈ εF3Gε; k ∈ {1, 2, . . .}}, on F3Ωε, where the above set
is chosen such the criterion in Section (9.12) is fulfilled. Using the MeatAxe we
find the constituents of the εF3Gε-module F3Ωε, their multiplicities, and the
F3-dimensions of the endomorphism algebras of the simple εF3Gε-modules as
follows, see Remark (9.14).
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Table 37: Characters 1G and (1−)G decomposed into IrrK(G).

i χi 1 1−

1 1a 1 .
2 133a . 1
3 133b . 1
4 760a . .
5 3344a . .
6 8778a . .
7 8778b . .
9 9405a . 2

11 35112a . .
12 35112b . .
13 65835a 1 .
14 65835b 1 .
17 214016a 1 .
18 267520a 1 1
20 365750a 2 3
21 374528a . .
22 374528b . .
24 653125a 2 1

i χi 1 1−

25 656250a 1 .
26 656250b 1 .
27 718200a 1 2
28 718200b 1 2
29 1053360a . .
34 1361920a 1 1
35 1361920b . .
36 1361920c . .
40 2375000a 3 3
41 2407680a 2 2
42 2661120a 4 4
45 3200000a 1 2
46 3424256a 3 3
48 4156250a 1 .
54 5878125a 2 2
8 8910a 2 1

10 16929a 1 .
19 270864a . .

i χi 1 1−

32 1185030a 4 1
33 1354320a 2 2
37 1575936a . 1
43 2784375a 3 2
49 4561920a 2 1
50 4809375a 3 1
23 406296a . .
38 1625184a 1 1
39 2031480a 1 1
15 69255a 1 .
16 69255b 1 .
30 1066527a . 1
31 1066527b . 1
44 2985984a 2 2
47 3878280a 2 4
51 5103000a 1 1
52 5103000b 1 1
53 5332635a 2 4
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1a 1b 1c 1d 1e 1f 1g 1h 2a 2b 2c 2d 2e
12 8 5 1 2 22 40 1 2 2 2 1 11
1 1 1 1 1 1 1 1 1 1 1 2 1

Let χ ∈ IrrK(G) be a character of defect 0, and let Ŝχ be an R-free RG-

module affording χ. Then the 3-modular reduction ˜̂
Sχ of Ŝχ is a projective

simple FG-module. If ˜̂Sχ · ε 6= {0}, then by Propositions (6.7) and (6.15) the

εFGε-module ˜̂Sχ · ε is a projective simple εFGε-module. Using Table 37 we
conclude by Proposition (9.13) that in this sense {69255a, 69255b} correspond
to {1d, 1h}, that {2985984a, 3878280a, 5332635a} correspond to {2a, 2b, 2c}, and
that {5103000a, 5103000b} correspond to 2d, where the 3-modular character field
of the characters 5103000a, b is F9, yielding a projective simple F3G-module S
such that EndF3G(S) ∼= F9. By Corollary (6.12) we conclude that Sε is a
projective simple εF3Gε-module such that EndεF3Gε(Sε) ∼= F9.

As the block B3 is of defect 1, using the Brauer-Dade theory of blocks of
cyclic defect, see [18, Ch.VII], we find from Table 37 that the B3-component
of the F3G-module 1G is a projective indecomposable F3G-module P . As
〈1G · εB3 , 1

G〉G = 2, using Propositions (6.19) and (9.13) we conclude that P
corresponds to 1e.

Using Table 36 we find that the B2-component of the F3G-module 1G has at
least three different projective indecomposable F3G-summands, where at least
one of them occurs with multiplicity 2. Again by Proposition (9.13) we conclude
that 2e corresponds to a projective indecomposable F3G-module in B2. From
〈1G · εB2 , 1

G〉G = 47 we conclude that {1a, 1b, 1c} also correspond to projective
indecomposable F3G-modules in B2, while {1f, 1g} correspond to projective
indecomposable F3G-modules in B1.

Using Proposition (6.19) again, we find 〈Ψ′′1 , 1G〉G = 16 and 〈Ψ′′2 , 1G〉G = 18 as
well as 〈Ψ′′5 , 1G〉G = 17 and 〈Ψ′′7 , 1G〉G = 5. As was shown in Section (19.1),
the character Ψ′′7 is projective indecomposable, and the character Ψ′′5 − a ·Ψ′′7 is
a projective indecomposable character for some a ∈ {0, 1, 2}. Hence by Propo-
sition (9.13) we conclude that the projective indecomposable F3G-module af-
fording Ψ′′7 corresponds to 1c, and that Ψ′′′5 := Ψ′′5 − Ψ′′7 is a projective in-
decomposable character afforded by a projective indecomposable F3G-module
corresponding to 1a. Hence from Table 36 we obtain the projective characters
Ψ′′′1 := Ψ′′1 − Ψ′′7 and Ψ′′2 − Ψ′′7 . As Ψ′′′1 occurs with multiplicity 2 in 1G and
〈Ψ′′′1 , 1G〉G = 11, we conclude that Ψ′′′1 is a projective indecomposable charac-
ter, being afforded by a projective indecomposable F3G-module corresponding
to 2e. As 〈Ψ′′2 −Ψ′′7 , 1

G〉G = 13, the character Ψ′′2 −Ψ′′7 is not a projective inde-
composable character. A consideration of the possible projective summands of
Ψ′′2−Ψ′′7 shows that Ψ′′′2 := Ψ′′2−2 ·Ψ′′7 is a projective indecomposable character,
being afforded by a projective indecomposable F3G-module corresponding to 1b.
Hence we obtain the basic set PS′′′ of projective characters as shown in Table
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Table 38: Basic set PS′′′ of projective characters in B2.

i χi Ψ′′′1 Ψ′′′2 Ψ′′′3 Ψ′′′4 Ψ′′′5 Ψ′′′6 Ψ′′′7 1 1−

8 8910a 1 . . . . . . 2 1
10 16929a . 1 . . . . . 1 .
19 270864a . . 1 . . . . . .
32 1185030a 1 1 . 1 1 . . 4 1
33 1354320a 1 . . 2 . 1 . 2 2
37 1575936a . . 1 1 . 1 . . 1
43 2784375a 1 . 1 3 1 1 . 3 2
49 4561920a . . 2 6 1 1 1 2 1
50 4809375a . 1 3 5 1 1 1 3 1

1G in PS′′′ 2 1 . . 1 . 1
(1−)G in PS′′′ 1 . . . . 1 .

38, where Ψ′′′i = Ψ′′i , for i ∈ {3, 4, 6, 7}.

(19.3) Let H ′ < H be the unique subgroup of index 2. We apply the tech-
nique described in Section (10.3) to Ω := H ′|G and U := H ′, yielding the
action of ε′F3Gε

′ on F3Ω′ε′, where ε′ ∈ F3H
′ ⊆ F3G is the centrally primitive

idempotent belonging to 1H′ . Using the decomposition of 1GH′ = 1G + (1−)G

into IrrK(G) shown in Table 37, we obtain 〈1GH′ , 1GH′〉G = 460, as well as
〈1GH′ · εB1 , 1

G
H′〉G = 250 and 〈1GH′ · εB2 , 1

G
H′〉G = 102 and 〈1GH′ · εB3 , 1

G
H′〉G = 8.

We choose as V one of the absolutely irreducible F9G-modules of F9-dimension
133; it is the 3-modular reduction of an absolutely irreducible Q(

√
5)G-module.

Representing matrices for the action of a set of standard generators of G on
V are available in [83]. A generating set of H ′ as words in the generating set
of H is found by a standard application of the MeatAxe. Using this we find
VH′ ∼= 1a⊕ 32a⊕ 100a as F9H

′-modules, where the constituents are absolutely
irreducible F9H

′-modules of the respective dimensions. Furthermore, all the
F9H

′-submodules of VH′ are invariant under the action of H on V , where 1a
extends to a linear F9-representation of F9H of order 2. Hence choosing 0 6=
v ∈ 1a ≤ VH′ we obtain that Ω′ is as a G-set isomorphic to the G-orbit ∼=
v · G ⊂ V . Furthermore, by a random search, we choose 52:D8

∼= U1 ≤ H ′. A
standard MeatAxe technique yields an epimorphic image V1 of the semisimple
F9U1-module VU ′ of F9-dimension 4.

Proceeding as in Section (19.2), we find the constituents of the ε′F3Gε
′-module

F3Ω′ε′, their multiplicities and the F3-dimensions of the endomorphism algebras
of the simple ε′F3Gε

′-modules as follows.



147

1a 1b 1c 1d 1e 1f 2a 2b 2c 2d 2e 3a 4a 4b 6a 6b
17 10 10 1 74 1 1 4 7 42 46 17 2 4 6 6
1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1

Using Table 37, and proceeding as in Section (19.2), we conclude that the con-
stituents {1d, 1f, 2a, 4a, 4b, 6a, 6b} correspond to the irreducible ordinary char-
acters of defect 0 occurring in 1GH′ . Furthermore, the B3-component of the F3G-
module 1GH′ is the direct sum P ⊕ P , where P is the projective indecomposable
F3G-module as in Section (19.2). Hence 2b corresponds to P . As all irreducible
ordinary characters in IrrK(B2) are rational-valued, we conclude that F3 is the
character field of all irreducible characters in IrrF (B2), hence F3 is a splitting
field for all simple FG-modules affording a character in IrrF (B2). From this and
Table 38 we conclude that all projective indecomposable ε′F3Gε

′-submodules of
F3Ω′ε′ · εB2 have an F3-dimension at most 17. Hence {1a, 1b, 1c, 2c, 3a} are
the constituents of F3Ω′ε′ corresponding to projective indecomposable F3G-
summands of 1GH′ · εB2 .

We have already shown that the characters Ψ′′′1 and Ψ′′′2 as well as Ψ′′′5 and
Ψ′′′7 are projective indecomposable, see Table 38. As 〈Ψ′′′1 , 1GH′〉G = 17 and
〈Ψ′′′2 , 1GH′〉G = 10 as well as 〈Ψ′′′5 , 1GH′〉G = 17 and 〈Ψ′′′6 , 1GH′〉G = 17, while
〈Ψ′′′7 , 1GH′〉G = 7, we conclude that 3a corresponds to a projective indecom-
posable F3G-module affording Ψ′′′1 , one of {1b, 1c} corresponds to Ψ′′′2 , while
1a corresponds to Ψ′′′5 , and 2c corresponds to Ψ′′′7 . Hence we conclude that
Ψ′′′′6 := Ψ′′′6 − Ψ′′′7 is a projective indecomposable character, being afforded by
a projective indecomposable F3G-module corresponding to the other one of
{1b, 1c}.
Note that we could determine which of {1b, 1c} corresponds to Ψ′′′2 and which to
Ψ′′′′6 by an analysis of the submodule structure of the ε′F3Gε

′-modules F3Ω′ε′,
using the algorithms to compute submodule lattices described in [47] available
in the MeatAxe. Anyway, we obtain the basic set PS′′′′ of projective characters
as shown in Table 39, where Ψ′′′′i = Ψ′′′i , for i ∈ {1, 2, 3, 4, 5, 7}.
Hence for block B2 it remains to find the projective indecomposable summands
of Ψ′′′′3 and Ψ′′′′4 . This requires different tools as well and will be done elsewhere,
together with an analysis of the principal block B1 [31].
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[40] W. Lempken, B. Schröder, P. Tiep: Symmetric squares, spherical
designs, and lattice minima, J. Algebra 240, 2001, 185–208.

[41] S. Linton: Private communication.

[42] S. Linton, K. Lux, L. Soicher: The primitive distance-transitive rep-
resentations of the Fischer groups, Experiment. Math. 4, 1995, 235–253.

[43] S. Linton, Z. Mpono: Multiplicity-free permutation characters of cover-
ing groups of sporadic simple groups, Preprint, 2001.

[44] A. Lubotzky: Discrete groups, expanding graphs and invariant measures,
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