On Endomorphism Rings And Character Tables

Von der Fakultät für
Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule genehmigte Habilitationsschrift zur Erlangung der Venia legendi

vorgelegt von
Dr. rer. nat. Jürgen Müller aus Lüdinghausen.

Contents

0 Introduction 1
I Endomorphism rings and character tables 6
1 Endomorphisms of monomial representations 6
2 Fitting correspondence 13
3 Characters of endomorphism rings 17
4 Krein parameters 28
5 Coverings 32
6 Condensation functors 42
7 Orbital graphs 52
II Computational techniques 59
8 Intersection numbers and character tables 59
9 Condensation 68
10 Enumeration of long orbits 74
III Explicit results 80
11 The database 81
12 The Fischer group $F i_{24}^{\prime}$ 87
13 The Harada-Norton group $H N$ 92
14 The Lyons group Ly 102
15 The Thompson group Th 104
16 The Janko group J_{4} 108
17 The Baby Monster B 112
18 The Thompson-Smith lattice 137
19 The Harada-Norton group $H N$ in characteristic 3 139
IV References 147

Wenn es die Verwirklichung von Urträumen ist, fliegen zu können und mit den Fischen zu reisen, sich unter den Leibern von Bergriesen durchzubohren, mit göttlichen Geschwindigkeiten Botschaften zu senden, das Unsichtbare und Ferne zu sehen und sprechen zu hören, Tote sprechen zu hören, sich in wundertätigen Genesungsschlaf versenken zu lassen, mit lebenden Augen erblicken zu können, wie man zwanzig Jahre nach seinem Tode aussehen wird, in flimmernden Nächten tausend Dinge über und unter dieser Welt zu wissen, die früher niemand gewußt hat, wenn Licht, Wärme, Kraft, Genuß, Bequemlichkeit Urträume der Menschheit sind, - dann ist die heutige Forschung nicht nur Wissenschaft, sondern ein Zauber, eine Zeremonie von höchster Herzens- und Hirnkraft, vor der Gott eine Falte seines Mantels nach der anderen öffnet, eine Religion, deren Dogmatik von der harten, mutigen, beweglichen, messerkühlen und -scharfen Denklehre der Mathematik durchdrungen und getragen wird.

Allerdings, es ist nicht zu leugnen, daß alle diese Urträume nach Meinung der Nichtmathematiker mit einemmal in einer ganz anderen Weise verwirklicht waren, als man sich das ursprünglich vorgestellt hatte. Münchhausens Posthorn war schöner als die fabriksmäßige Stimmkonserve, der Siebenmeilenstiefel schöner als ein Kraftwagen, Laurins Reich schöner als ein Eisenbahntunnel, die Zauberwurzel schöner als ein Bildtelegramm, vom Herz seiner Mutter zu essen und die Vögel zu verstehen schöner als eine tierpsychologische Studie über die Ausdrucksbewegungen der Vogelstimme. Man hat Wirklichkeit gewonnen und Traum verloren. [...]
Man braucht wirklich nicht viel darüber zu reden, es ist den meisten Menschen heute ohnehin klar, daß die Mathematik wie ein Dämon in alle Anwendungen unseres Leben gefahren ist. Vielleicht glauben nicht alle diese Menschen an die Geschichte vom Teufel, dem man seine Seele verkaufen kann; aber alle Leute, die von der Seele etwas verstehen müssen, weil sie als Geistliche, Historiker oder Künstler gute Einkünfte daraus beziehen, bezeugen es, daß sie von der Mathematik ruiniert worden sei und daß die Mathematik die Quelle eines bösen Verstandes bilde, der den Menschen zwar zum Herrn der Erde, aber zum Sklaven der Maschine mache.
[...]
In Unkenntnis dieser Gefahren lebten eigentlich nur die Mathematiker selbst und ihre Schüler, die Naturforscher, die von alledem so wenig in ihrer Seele verspürten wie Rennfahrer, die fleißig darauf los treten und nichts in der Welt bemerken wie das Hinterrad ihres Vordermanns.

$$
[60, p p .39-40]
$$

0 Introduction

(0.1) Graphs which are related to finite groups are of interest in both algebraic graph theory and group theory. From the group theoretical point of view, graphs on which a given group acts might yield new insights into the structure of the group; a few of the sporadic simple groups have even been discovered as automorphism groups of certain graphs, see [11, Ch.16.3]. From the point of view of algebraic graph theory, the automorphism group of a graph reflects the internal symmetry of the graph. In the present work, we shed some light on two aspects of this interplay between graphs and groups, namely so-called distance-transitive graphs and more generally distance-regular graphs, and socalled Ramanujan graphs; we give the appropriate definitions in Section 7.
Distance-transitivity is a rather strong graph theoretical condition, and in fact
intimately relates the graph and its automorphism group. In particular, a distance-transitive graph can be realized as an orbital graph arising from the permutation action of its automorphism group on the vertex set of the graph, where additionally this permutation action turns out to be multiplicity-free. In particular the sporadic simple groups have been used in the construction of certain distance-transitive graphs. In recent years much progress has been made in the attempt to classify the distance-transitive and the distance-regular graphs, see [8]; but for the time being these classification problems are still open. Related to these graph theoretical classification problems is the group theoretical problem of classifying the multiplicity-free permutation actions of finite groups. Much work has been done on this classification problem as well, see the comments in [34], but currently this also is still open.

Ramanujan graphs are characterised by a certain property of their spectrum. Different constructions of series of Ramanujan graphs are known, and in all of them groups play a certain role, see [44, Ch.1,Ch.4.5]. One of these constructions realizes Ramanujan graphs as orbital graphs arising from a multiplicity-free permutation action of a certain finite general linear group, see [76, Ch.II.19]. It seems natural to consider the multiplicity-free permutation actions of other groups as well, in particular those of the sporadic simple groups, and to look for Ramanujan graphs amongst the arising orbital graphs. For the smaller sporadic simple groups such considerations have been made in the thesis [32], which the author has had the opportunity to co-supervise.

It seemed worth-while to compile a database containing as many as possible explicit results concerning the orbital graphs arising from permutation actions of the sporadic simple groups. As far as a multiplicity-free permutation action is concerned, the spectra of the arising orbital graphs are completely determined by, and indeed straightforwardly derived from, the character table of the endomorphism ring of the underlying permutation module. Thus the kind of information to be stored in a database is the character tables of these endomorphism rings. The database [7] is available electronically in GAP-readable format, in
http://www.math.rwth-aachen.de/~Juergen.Mueller/mferctbl/mferctbl.html.
The multiplicity-free permutation actions of the sporadic simple groups, their automorphism groups, their Schur covering groups and their bicyclic extensions have been classified in $[6,43,5]$. The work of systematically computing the character tables of the corresponding endomorphism rings, and related information, has been begun in [68]. In the thesis [32] these and other earlier results, scattered in the literature, have been collected and the remaining cases of multiplicity-free permutation actions of the sporadic simple groups and their automorphism groups on up to 10^{7} points have been dealt with. We have now been able to compute the character tables for all but one (currently) of the cases of multiplicity-free permutation actions of the sporadic simple groups, their automorphism groups and their Schur covering groups on more than 10^{7}
points; these are listed in Section (11.1), see Table 7. An examination of the multiplicity-free permutation actions of the bicyclic extensions of the sporadic simple groups currently is under way.
The techniques used to compute the character tables of the endomorphism rings have been derived from methods of computational representation theory, socalled condensation techniques, which in the first place have been developed to determine decomposition numbers, in particular for the sporadic simple groups and related groups. It has turned out that suitable modifications of these methods can be used as computational workhorses for the present tasks. In particular, we have developed new efficient techniques to deal computationally with transitive group actions on large sets, and thus to enumerate long orbits or at least substantial parts thereof.
(0.2) The overall outline of the present work is as follows.

Part I deals with the more theoretical aspects. We take a slightly more general point of view as would be necessary to consider only permutation actions, inasmuch as we consider monomial representations of finite groups. In Section 1 we introduce the first main actor, the endomorphism ring of a transitive monomial representation of a finite group. We state the basic theorem revealing its structure, Schur's Theorem, and we introduce the notions necessary to describe its structural properties, in particular its regular representation. In Section 2 the representation theory of the endomorphism ring is related to the representation theory of the underlying group, the relevant notion being the Fitting correspondence. In Section 3 we introduce the second main actor, the character table of an endomorphism ring. We discuss its structural properties as well as its relation to the character table of the underlying group. In Section 4 we introduce another structure an endomorphism ring of a permutation module is endowed with, the Hadamard product. It is related to the tensor product structure on the characters of the underlying group. The material in Sections 1-4 is inspired by different expositions existing in the literature, where usually only the case of permutation representations is treated. But it seems worth-while to treat the slightly more general case of monomial representations in detail; in particular, we make use of the description of the general situation later on.

In Section 5 we consider the case where we have two transitive monomial representations such that there is an epimorphism from one of these to the other. This causes relations between the character values of the two corresponding endomorphism rings. The exposition is inspired by observations the author has made while compiling the above-mentioned database, where cases of two permutation actions being related as above indeed occur. In turn the theoretical description of this situation helps to compute a few of the character tables in the database. In Section 6 we take a more general point of view by considering arbitrary condensation functors. Condensation techniques, which are explicit computational applications of so-called condensation functors, have proven to be efficient workhorses for different tasks of computational representation theory,
including the tasks we are faced with in the present work. It seems worth-while to know as much as possible about the general properties of condensation functors, formulated in terms of suitable module categories. In Section 7 we show how the information collected in the database indeed can be used to describe properties of the corresponding orbital graphs. We introduce the necessary notions from algebraic graph theory, such as the notions of distance-transitive and distance-regular graphs as well as Ramanujan graphs, and we indicate how the relevant properties can be checked using the database. In particular, we provide complete lists of imprimitive distance-transitive orbital graphs as well as non-distance-transitive but distance-regular orbital graphs arising from multiplicityfree permutation actions of the sporadic simple groups, their automorphism groups and their Schur covering groups, up to the above-mentioned exception. While the case of primitive distance-transitive orbital graphs for these groups has been dealt with in [34], the imprimitive case has been open so far, up to the knowledge of the author. Finally, we comment on Ramanujan orbital graphs.

Part II is concerned with the computational techniques which have been used to actually compute the character table of an endomorphism ring, where we restrict ourselves to the commutative case. In Section 8 we describe a technique, related to the Dixon-Schneider technique for the group algebra case, to compute the character table of an endomorphism ring if enough information on its regular representation is known. Furthermore, we introduce the notion of table automorphisms, and indicate how this is related to the problem of determining the Fitting correspondence for an explicitly given example. In Section 9 we consider practical aspects of condensation techniques. In particular we place the regular representation of an endomorphism ring into this context. We address the problem, arising in many practical applications of condensation methods, that we usually are not able to compute the full algebra acting on a condensed module, and present new ideas to circumvent this. In Section 10 we describe the ideas which have led to a new efficient technique to enumerate long orbits and discuss a few of the technical details. In particular, under certain circumstances this technique not only allows to enumerate an orbit, but also uses Schreier-Sims techniques to collect group theoretic information, for example on the point stabilizer. An implementation of this method has been used to deal with two of the largest examples in the database.

Part III gives the details of the computations necessary to compile the abovementioned database, and gives two other applications of the techniques described in the present work. In Section 11 we present more details on the design of the database. In particular, we give references to earlier work used, and indicate the list of cases we are concerned with subsequently. Furthermore, we discuss the necessary computations to determine the Fitting correspondence explicitly, where we have to take care of the fact that there might be several multiplicity-free permutation actions for a fixed group to be considered at the same time. To determine the Fitting correspondence for one of these cases, the results on Krein parameters turn out to be helpful. In Sections 12-17 we case-by-case discuss the multiplicity-free permutation actions which are not covered
by earlier results. In particular, in Section 17 we deal conclusively with the permutation action of the sporadic simple Baby Monster group B on the cosets of a maximal subgroup isomorphic to the sporadic simple Fischer group $F i_{23}$. For this action not even the lengths of the suborbits have been known before. Besides the character table of the corresponding endomorphism ring, we are able to find faithful permutation representations of the two-point stabilizers, which determines the isomorphism types of these subgroups. Furthermore, we deal with the exceptional case mentioned above, which is the permutation action of the double cover 2.B of the Baby Monster on the cosets of a subgroup isomorphic to the Fischer group $F i_{23}$. This is a covering of the permutation action of the Baby Monster group B on the cosets of the Fischer group $F i_{23}$ considered above. Here we are able to determine the suborbit lengths and the isomorphism types of the two-point stabilizers, but the character table of the corresponding endomorphism ring (as yet) remains unknown.

Finally, we give two other applications of the techniques described earlier. In Section 18 we present an application of the new technique to enumerate long orbits to solve a problem concerning the so-called Thompson-Smith lattice, whose lattice automorphism group is a split central extension $2 \times T h$ of the sporadic simple Thompson group Th. This problem is related to the still open problem to determine the minimum of the Thompson-Smith lattice. In Section 19 we present, by way of an example, a new idea to interpret condensation results, which works for the case where the condensed module is precisely the regular representation of the condensation algebra. The example dealt with is the problem of determining the 3 -modular decomposition numbers for the sporadic simple Harada-Norton group $H N$; we present partial results for the non-principal block of defect 2 .
(0.3) We assume the reader to be familiar with the ordinary and modular representation theory of finite groups, as general references see [3, 14, 15, 16, 18, 39], and occasionally with other prerequisites as well, which are mentioned on location. The standard methods from computational representation theory, in particular MeatAxe techniques, are also assumed to be known. We use the MeatAxe implementation [69], which is referred to as the MeatAxe. Furthermore, the standard methods from computational group theory, in particular the techniques dealing with permutation groups, are assumed to be known. We also use the computer algebra system GAP [22]; we assume the reader to be familiar with the techniques to access the information in its libraries, such as character tables or tables of marks, and to actually apply the algorithms implemented there, in particular those dealing with permutation groups, to explicitly given examples.

As parts of the exhibition are technical in nature, we have tried to fix the notation as early as possible and to keep it fixed throughout the whole of the present work. Most of the pieces are introduced in Sections 1 and 3 as well as 5 . In later sections we have tried to give suitable backward references to enhance legibility. For groups we use the notation introduced in [13], indicating
the normal subgroup structure. For groups dealt with in [13] we also use the notation used there to refer to conjugacy classes or irreducible characters. For an extension of a group G by an outer automorphism of order 2, we denote the extensions of a G-invariant irreducible character χ by $\chi^{ \pm}$, where for groups dealt with in [13] the character χ^{+}refers to the character actually printed there. We use the notation $\operatorname{Irr} .(\cdot)$ for the set of irreducible characters of an algebra, where the subscript indicates the ground field.
(0.4) The author gratefully acknowledges enthusiastic and helpful discussions with Robert Wilson, Max Neunhöffer, Gerhard Hiss and Thomas Breuer on the topics of the present work. Furthermore, the present work could not have been written without the possibility to make very heavy use of the computing facilities at Lehrstuhl D für Mathematik, which quite a few of the other users indeed have suffered from.

Finally, the author thanks Gerhard Hiss, Gunter Malle and Cheryl Praeger for their willingness to act as referees for the present work, and for making valuable comments and suggestions, which have been incorporated into the current version.

I Endomorphism rings and character tables

1 Endomorphisms of monomial representations

We begin by fixing the basic notation and definitions which will be in force throughout the whole of the present work. The exposition of Section 1 is inspired by [39, Ch.II.12].
(1.1) Let G be a finite group, and $H \leq G$ be a subgroup of index $n:=[G: H]$. Let $\mathcal{I}:=\{1, \ldots, r\}$, where $r \in \mathbb{N}$ is the number of H - H-double cosets in G, and let $\left\{g_{i} \in G ; i \in \mathcal{I}\right\}$ be a set of representatives of the H - H-double cosets in G. Hence we have $G=\coprod_{i \in \mathcal{I}} H g_{i} H$. Without loss of generality let $g_{1}:=1_{G}$.
For $i \in \mathcal{I}$ let $H_{i}:=H^{g_{i}} \cap H \leq H$, and $\left\{h_{i j} \in H ; j \in\left\{1, \ldots, k_{i}\right\}\right\}$ be a set of representatives of the right cosets of H_{i} in H, where $k_{i}:=\left[H: H_{i}\right]$. Hence $H g_{i} H$ decomposes into right H-cosets as $H g_{i} H=\coprod_{j=1}^{k_{i}} H g_{i} h_{i j} \subseteq G$. Without loss of generality let $h_{i 1}:=1_{H}$.
Hence we have $G=\coprod_{i \in \mathcal{I}} \coprod_{j=1}^{k_{i}} H g_{i} h_{i j}$. Let $\Omega:=H \mid G$ be the set of right cosets of H in G, let $\omega_{i j}:=H g_{i} h_{i j}$, for $i \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$, and for short $\omega_{i}:=\omega_{i 1}=\omega_{1} g_{i}$, as well as $\Omega_{i}:=\left\{\omega_{i j} \in \Omega ; j \in\left\{1, \ldots, k_{i}\right\}\right\}$. Then $\Omega=\coprod_{i \in \mathcal{I}} \Omega_{i}$ is the partition of Ω into H-orbits, where $H_{i}:=\operatorname{Stab}_{H}\left(\omega_{i}\right)$ and $k_{i}=\left|\Omega_{i}\right|$. In particular we have $\Omega_{1}=\left\{\omega_{1}\right\}$ and $k_{1}=1$.

Let $\pi_{\Omega}: G \rightarrow \mathcal{S}_{\Omega}$ denote the group homomorphism from G to the symmetric group \mathcal{S}_{Ω} on Ω defined by the transitive right action of G on Ω.
(1.2) Definition. Let $i \in \mathcal{I}$.
a) The number r is called the rank of H in G.
b) The number k_{i} is called the i-th index parameter of H in G. The set Ω_{i} is called the i-th suborbit of G. The suborbit Ω_{1} is called the trivial suborbit.
c) The G-orbit $\mathcal{O}_{i}:=\left(\omega_{1}, \omega_{i}\right) \cdot G \subseteq \Omega \times \Omega$ of $\left(\omega_{1}, \omega_{i}\right) \in \Omega \times \Omega$ is called the i-th orbital of G.
d) The orbital $\mathcal{O}_{i^{*}}:=\left\{\left(\omega^{\prime}, \omega\right) \in \Omega \times \Omega ;\left(\omega, \omega^{\prime}\right) \in \mathcal{O}_{i}\right\}$ is called the orbital paired to \mathcal{O}_{i}, thus defining an involution $*: \mathcal{I} \rightarrow \mathcal{I}$. If $i=i^{*}$, then \mathcal{O}_{i} is called self-paired.
Hence $\Omega \times \Omega=\coprod_{i \in \mathcal{I}} \mathcal{O}_{i}$ is the partition of $\Omega \times \Omega$ into G-orbits, and we have $\left|\mathcal{O}_{i}\right|=n \cdot k_{i}$ and $\mathcal{O}_{i} \cap\left(\Omega_{1} \times \Omega\right)=\Omega_{1} \times \Omega_{i}$, as well as $k_{i^{*}}=k_{i}$ and $\omega_{1} g_{i}^{-1} \in \Omega_{i^{*}}$.
(1.3) Let Θ be an integral domain. Let λ be a representation of ΘH, such that the underlying ΘH-module is Θ-free of degree 1. The ΘH-module endowed with the ΘH-action given by λ is denoted by Θ_{λ}. Let λ^{G} be the induced representation of ΘG obtained from λ. Its underlying ΘG-module is given as $\Theta_{\lambda} \otimes_{\Theta H} \Theta G=\bigoplus_{i \in \mathcal{I}} \bigoplus_{j=1}^{k_{i}} \Theta_{\lambda} \otimes g_{i} h_{i j} \cong \Theta_{\lambda} \Omega$, where $\Theta_{\lambda} \Omega$ is the free Θ-module with Θ-basis Ω, the subscript still indicating the underlying ΘH-action, and where the isomorphism is given by $1 \otimes g_{i} h_{i j} \mapsto \omega_{i j}$. Hence we may identify $\Theta_{\lambda} \otimes_{\Theta H} \Theta G$ and $\Theta_{\lambda} \Omega$ using this ΘG-isomorphism. The action of G on $\Theta_{\lambda} \Omega$ is described as follows.
(1.4) Definition. Let $g \in G$. For $i \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$ let $g_{i} h_{i j} \cdot g=$ $h \cdot g_{i^{\prime}} h_{i^{\prime} j^{\prime}}$, where $\omega_{i^{\prime} j^{\prime}}=\omega_{i j} \cdot \pi_{\Omega}(g)$ and $h \in H$. Let

$$
\lambda_{\omega_{i j}}(g):=\lambda(h) \in \lambda(H) \subseteq \Theta
$$

Thus we have $\lambda^{G}(g): \omega \mapsto \lambda_{\omega}(g) \cdot\left(\omega \cdot \pi_{\Omega}(g)\right)$, for $\omega \in \Omega$.
(1.5) We introduce the first main actor of the present work. Let

$$
E_{\Theta}^{\lambda}:=\operatorname{End}_{\Theta G}\left(\Theta_{\lambda} \otimes_{\Theta H} \Theta G\right)
$$

be the ΘG-endomorphism ring of the induced ΘG-module $\Theta_{\lambda} \otimes_{\Theta H} \Theta G$, where E_{Θ}^{λ} also acts from the right. Hence $\Theta_{\lambda} \otimes_{\Theta H} \Theta G$ is endowed with a $\left(\Theta G \otimes_{\Theta} E_{\Theta}^{\lambda}\right)$ right module structure.

By the Frobenius-Nakayama relations and Mackey's Theorem, see [3, Ch.3.3], we have as Θ-modules

$$
\begin{aligned}
E_{\Theta}^{\lambda} & \stackrel{(1)}{\cong} \operatorname{Hom}_{\Theta H}\left(\lambda,\left(\lambda^{G}\right)_{H}\right) \\
& \stackrel{(2)}{\cong} \bigoplus_{i \in \mathcal{I}} \operatorname{Hom}_{\Theta H}\left(\lambda,\left(\lambda_{H_{i}}^{g_{i}}\right)^{H}\right) \\
& \stackrel{(3)}{\cong} \bigoplus_{i \in \mathcal{I}} \operatorname{Hom}_{\Theta H_{i}}\left(\lambda_{H_{i}}, \lambda_{H_{i}}^{g_{i}}\right)
\end{aligned}
$$

where the representation $\lambda^{g_{i}}$ of $\Theta H^{g_{i}}$ is defined as $\lambda^{g_{i}}(h):=\lambda\left(g_{i} h g_{i}^{-1}\right)$, for $h \in H^{g_{i}}$. As λ is of degree 1, we have $\operatorname{Hom}_{\Theta H_{i}}\left(\lambda_{H_{i}}, \lambda_{H_{i}}^{g_{i}}\right) \neq\{0\}$ if and only if $\lambda_{H_{i}}=\lambda_{H_{i}}^{g_{i}}$, in which case we have $\operatorname{Hom}_{\Theta H_{i}}\left(\lambda_{H_{i}}, \lambda_{H_{i}}^{g_{i}}\right) \cong \Theta$.
(1.6) Definition. Let $\mathcal{I}_{\lambda}:=\left\{i \in \mathcal{I} ; \lambda_{H_{i}}=\lambda_{H_{i}}^{g_{i}}\right\}$.

We have $1 \in \mathcal{I}_{\lambda}$, and since $\lambda_{H_{i}}=\lambda_{H_{i}}^{g_{i}}$ implies $\lambda_{H \cap H^{g_{i}^{-1}}}^{g_{i}^{-1}}=\lambda_{H \cap H^{g_{i}^{-1}}}$, we have $i^{*} \in \mathcal{I}_{\lambda}$ whenever $i \in \mathcal{I}_{\lambda}$. For the case $\lambda=1$, the trivial representation of ΘH, we have $\mathcal{I}_{1}=\mathcal{I}$.
(1.7) By the explicit formulation of the Θ-isomorphisms (1), (2) and (3) in Section (1.5), we obtain an explicit basis of E_{Θ}^{λ} as follows. Let $i \in \mathcal{I}_{\lambda}$, and let $\alpha_{i}^{\prime \prime} \in \operatorname{Hom}_{\Theta H_{i}}\left(\lambda_{H_{i}}, \lambda_{H_{i}}^{g_{i}}\right)$ be defined by $\alpha_{i}^{\prime \prime}: \Theta_{\lambda} \rightarrow \Theta_{\lambda} \otimes g_{i}: 1 \mapsto 1 \otimes g_{i}$, where the underlying ΘH_{i}-module of $\lambda_{H_{i}}^{g_{i}}$ is denoted by $\Theta_{\lambda} \otimes g_{i}$. Indeed, for $h \in H_{i}$ we have $\alpha_{i}^{\prime \prime} \cdot \lambda^{g_{i}}(h)=\lambda(h) \cdot \alpha_{i}^{\prime \prime}: 1 \mapsto \lambda(h) \otimes g_{i}$.
The Θ-isomorphism (3) is given by the exterior trace map, which yields $\alpha_{i}^{\prime} \in$ $\operatorname{Hom}_{\Theta H}\left(\lambda,\left(\lambda_{H_{i}}^{g_{i}}\right)^{H}\right)$ given by $\alpha_{i}^{\prime}: 1 \mapsto \sum_{j=1}^{k_{i}} \lambda\left(h_{i j}^{-1}\right) \otimes g_{i} h_{i j}$, where using Θ isomorphism (2) the underlying ΘH-module of $\left(\lambda_{H_{i}}^{g_{i}}\right)^{H}$ is $\bigoplus_{j=1}^{k_{i}} \Theta_{\lambda} \otimes g_{i} h_{i j} \leq$ $\Theta_{\lambda} \otimes_{\Theta H} \Theta G$. Finally using Θ-isomorphism (1), which is the restriction map $\left.\alpha \mapsto \alpha\right|_{\Theta_{\lambda}}$, this gives $\alpha_{i}^{\lambda} \in E_{\Theta}^{\lambda}$ defined by

$$
\begin{aligned}
\alpha_{i}^{\lambda}: 1 \otimes g_{i^{\prime}} h_{i^{\prime} j^{\prime}} & \mapsto\left(\sum_{j=1}^{k_{i}} \lambda\left(h_{i j}^{-1}\right) \otimes g_{i} h_{i j}\right) \cdot g_{i^{\prime}} h_{i^{\prime} j^{\prime}} \\
& =\sum_{j=1}^{k_{i}} \lambda\left(h_{i j}^{-1}\right) \lambda_{\omega_{i j}}\left(g_{i^{\prime}} h_{i^{\prime} j^{\prime}}\right) \cdot\left(\omega_{i j} \cdot \pi_{\Omega}\left(g_{i^{\prime}} h_{i^{\prime} j^{\prime}}\right)\right)
\end{aligned}
$$

for $i^{\prime} \in \mathcal{I}$ and $j^{\prime} \in\left\{1, \ldots, k_{i^{\prime}}\right\}$, where the last equality uses the identification of Section (1.3).
Let $\mathcal{A}_{\lambda}:=\left\{\alpha_{i}^{\lambda} ; i \in \mathcal{I}_{\lambda}\right\}$. In particular, as $\lambda_{\omega_{1}}\left(g_{i^{\prime}} h_{i^{\prime} j^{\prime}}\right)=1$, we have $\alpha_{1}^{\lambda}=\operatorname{id}_{\Theta_{\lambda} \Omega}$. For the case $\lambda=1$ let $\alpha_{i}:=\alpha_{i}^{1}$, for $i \in \mathcal{I}$, and $\mathcal{A}:=\mathcal{A}_{1}$.

Hence we have shown the following theorem, which for the case $\lambda=1$ first appeared in [72], see also [39, Ch.II.12], and which is the basic theorem of the present work.
(1.8) Theorem. $\quad E_{\Theta}^{\lambda}$ is a free module over $\Theta \cdot \operatorname{id}_{\Theta_{\lambda} \Omega} \cong \Theta$ of Θ-rank $\left|\mathcal{I}_{\lambda}\right|$ and \mathcal{A}_{λ} is a Θ-basis, the Schur basis, of E_{Θ}^{λ}.
(1.9) We collect a few facts on the Schur basis elements $\alpha_{i}^{\lambda} \in \mathcal{A}_{\lambda}$, for $i \in \mathcal{I}_{\lambda}$. For $\alpha \in \operatorname{End}_{\Theta}\left(\Theta_{\lambda} \Omega\right)$ let $[\alpha]=[\alpha]_{\Omega} \in \Theta^{n \times n}$ be the representing matrix with respect to the Θ-basis Ω of $\Theta_{\lambda} \Omega$. The matrix entries of $[\alpha]$ are denoted by $[\alpha]_{\omega \omega^{\prime}} \in \Theta$, for $\omega, \omega^{\prime} \in \Omega$.
For $g \in G$ we let $\operatorname{diag}\left[\lambda_{\omega}(g) ; \omega \in \Omega\right]$ denote the diagonal matrix with entries $\left(\operatorname{diag}\left[\lambda_{\omega}(g) ; \omega \in \Omega\right]\right)_{\omega^{\prime}, \omega^{\prime \prime}}=\delta_{\omega^{\prime}, \omega^{\prime \prime}} \cdot \lambda_{\omega^{\prime}}(g)$, for $\omega^{\prime}, \omega^{\prime \prime} \in \Omega$. Hence we obtain

$$
\left[\lambda^{G}(g)\right]=\operatorname{diag}\left[\lambda_{\omega}(g) ; \omega \in \Omega\right] \cdot\left[\pi_{\Omega}(g)\right]
$$

Thus we have

$$
\left[\lambda^{G}(g)\right]^{-1}=\left[\pi_{\Omega}(g)\right]^{T} \cdot \operatorname{diag}\left[\lambda_{\omega}(g)^{-1} ; \omega \in \Omega\right]=\left[\lambda^{G}(g)\right]^{T} \cdot \operatorname{diag}\left[\lambda_{\omega}(g)^{-2} ; \omega \in \Omega\right] .
$$

(1.10) Proposition. Let $i \in \mathcal{I}_{\lambda}$. Then $\left[\alpha_{i}^{\lambda}\right]_{\omega \omega^{\prime}}=0$ unless $\left(\omega, \omega^{\prime}\right) \in \mathcal{O}_{i}$, in which case we have $\left[\alpha_{i}^{\lambda}\right]_{\omega \omega^{\prime}} \in \lambda(H) \subseteq \Theta$. For $i^{\prime} \in \mathcal{I}$ and $j^{\prime} \in\left\{1, \ldots, k_{i^{\prime}}\right\}$ we have

$$
\left[\alpha_{i}^{\lambda}\right]_{\omega_{1}, \omega_{i^{\prime} j^{\prime}}}=\left\{\begin{aligned}
0, & \text { if } i^{\prime} \neq i \\
\lambda\left(h_{i^{\prime} j^{\prime}}^{-1}\right), & \text { if } i^{\prime}=i
\end{aligned}\right.
$$

If $\left(\tilde{\omega}, \tilde{\omega}^{\prime}\right)=\left(\omega, \omega^{\prime}\right) \cdot g$ for some $g \in G$, then we have

$$
\left[\alpha_{i}^{\lambda}\right]_{\tilde{\omega} \tilde{\omega}^{\prime}}=\left[\alpha_{i}^{\lambda}\right]_{\omega \omega^{\prime}} \cdot \frac{\lambda_{\omega^{\prime}}(g)}{\lambda_{\omega}(g)} .
$$

In particular, for the case $\lambda=1$ we have, for $i \in \mathcal{I}$,

$$
\left[\alpha_{i}\right]_{\omega, \omega^{\prime}}:= \begin{cases}1, & \text { if }\left(\omega, \omega^{\prime}\right) \in \mathcal{O}_{i} \\ 0, & \text { if }\left(\omega, \omega^{\prime}\right) \notin \mathcal{O}_{i}\end{cases}
$$

Proof. By Section (1.7) it only remains to prove the statement involving $\left[\alpha_{i}^{\lambda}\right]_{\tilde{\omega} \tilde{\omega}^{\prime}}$. Let $\operatorname{diag}\left[\lambda_{\omega}(g)\right]:=\operatorname{diag}\left[\lambda_{\omega}(g) ; \omega \in \Omega\right]$ for short. Then we have

$$
\begin{align*}
{\left[\alpha_{i}^{\lambda}\right]_{\tilde{\omega} \tilde{\omega}^{\prime}} } & =\left(\left[\pi_{\Omega}(g)\right]^{-T} \cdot\left[\alpha_{i}^{\lambda}\right] \cdot\left[\pi_{\Omega}(g)\right]^{-1}\right)_{\omega \omega^{\prime}} \\
& =\left(\operatorname{diag}\left[\lambda_{\omega}(g)\right] \cdot\left[\lambda^{G}(g)\right]^{-T} \cdot\left[\alpha_{i}^{\lambda}\right] \cdot\left[\lambda^{G}(g)\right]^{-1} \cdot \operatorname{diag}\left[\lambda_{\omega}(g)\right]\right)_{\omega \omega^{\prime}} \\
& =\left(\operatorname{diag}\left[\lambda_{\omega}(g)^{-1}\right] \cdot\left[\alpha_{i}^{\lambda}\right] \cdot \operatorname{diag}\left[\lambda_{\omega}(g)\right]\right)_{\omega \omega^{\prime}} \\
& =\left[\alpha_{i}^{\lambda}\right]_{\omega \omega^{\prime}} \cdot \frac{\lambda_{\omega^{\prime}}(g)}{\lambda_{\omega}(g)}
\end{align*}
$$

We introduce a further structure on modules acted on monomially and their endomorphism rings. For technical reasons we have to adjust the base ring appropriately.
(1.11) Definition. Let $K:=\operatorname{Quot}(\Theta)$ be the field of fractions of Θ and $K^{\prime} \subseteq K$ be the subfield generated by $\lambda(H)$ over the prime field of K. As $\lambda(H)$ consists of roots of unity, there is an involutory field automorphism ${ }^{-}: K^{\prime} \rightarrow K^{\prime}$ defined by $\lambda(h) \mapsto \lambda(h)^{-1}$ for $h \in H$. Let $K^{\prime \prime}:=\operatorname{Fix}_{K^{\prime}}\left(^{-}\right) \subseteq K^{\prime}$.
Let $\langle\cdot, \cdot\rangle_{\Omega}$ be the non-degenerate hermitian form on $K_{\lambda}^{\prime} \Omega$, with respect to the field automorphism ${ }^{-}$, defined by $\langle\cdot, \cdot\rangle_{\Omega}: K_{\lambda}^{\prime} \Omega \times K_{\lambda}^{\prime} \Omega \rightarrow K^{\prime}:\left(\omega, \omega^{\prime}\right) \mapsto \delta_{\omega, \omega^{\prime}}$.
Since for $g \in G$ we have $\omega g=\lambda_{\omega}(g) \cdot \omega \pi_{\Omega}(g)$, the form $\langle\cdot, \cdot\rangle_{\Omega}$ is G-invariant.
(1.12) Definition. For $i \in \mathcal{I}_{\lambda}$ let $i^{-} \in\left\{1, \ldots, k_{i^{*}}\right\}$ and $\eta_{i} \in H$ such that $g_{i}^{-1}=\eta_{i} \cdot g_{i^{*}} \cdot h_{i^{*} i^{-}}$. Furthermore let

$$
\zeta_{i}:=\frac{\lambda\left(\eta_{i}\right)}{\lambda\left(h_{i^{*} i^{-}}\right)} \in \lambda(H)
$$

(1.13) Proposition. For $i \in \mathcal{I}_{\lambda}$, the adjoint map $\left(\alpha_{i}^{\lambda}\right)^{\sharp} \in \operatorname{End}_{K^{\prime}}\left(K_{\lambda}^{\prime} \Omega\right)$ of α_{i}^{λ} with respect to the form $\langle\cdot, \cdot\rangle_{\Omega}$ is given by $\left(\alpha_{i}^{\lambda}\right)^{\sharp}=\frac{1}{\zeta_{i}} \cdot \alpha_{i^{*}}^{\lambda}$. Thus we have an involutory $K^{\prime \prime}$-algebra antiautomorphism of $E_{K^{\prime}}^{\lambda}$ given by

$$
\sharp: E_{K^{\prime}}^{\lambda} \rightarrow E_{K^{\prime}}^{\lambda}: \alpha_{i}^{\lambda} \mapsto \frac{1}{\zeta_{i}} \cdot \alpha_{i^{*}}^{\lambda} .
$$

Proof. For $i \in \mathcal{I}_{\lambda}$, as $\left[\alpha_{i}^{\lambda}\right] \cdot\left[\lambda^{G}(g)\right]=\left[\lambda^{G}(g)\right] \cdot\left[\alpha_{i}^{\lambda}\right]$, we have

$$
\left[\pi_{\Omega}(g)\right]^{T} \cdot \operatorname{diag}\left[\overline{\lambda_{\omega}(g)} ; \omega \in \Omega\right] \cdot \overline{\left[\alpha_{i}^{\lambda}\right]^{T}}=\overline{\left[\alpha_{i}^{\lambda}\right]^{T}} \cdot\left[\pi_{\Omega}(g)\right]^{T} \cdot \operatorname{diag}\left[\overline{\lambda_{\omega}(g)} ; \omega \in \Omega\right]
$$

Since $\left[\pi_{\Omega}(g)\right]^{T} \cdot \operatorname{diag}\left[\overline{\lambda_{\omega}(g)} ; \omega \in \Omega\right]=\left[\pi_{\Omega}\left(g^{-1}\right)\right]$, we conclude that $\overline{\left[\alpha_{i}^{\lambda}\right]^{T}}$ is a scalar multiple of $\left[\alpha_{i^{*}}^{\lambda}\right]$. Since $\left(\omega_{1}, \omega_{i}\right) \cdot g_{i}^{-1}=\left(\omega_{1} g_{i}^{-1}, \omega_{1}\right)$ and $\lambda_{\omega_{i}}\left(g_{i}^{-1}\right)=1$ we have

$$
\left[\alpha_{i}^{\lambda}\right]_{\omega_{1} g_{i}^{-1}, \omega_{1}}=\left[\alpha_{i}^{\lambda}\right]_{\omega_{1}, \omega_{i}} \cdot \frac{\lambda_{\omega_{i}}\left(g_{i}^{-1}\right)}{\lambda_{\omega_{1}}\left(g_{i}^{-1}\right)}=\frac{1}{\lambda_{\omega_{1}}\left(g_{i}^{-1}\right)}=\frac{1}{\lambda\left(\eta_{i}\right)}
$$

Because of $\left[\alpha_{i^{*}}^{\lambda}\right]_{\omega_{1}, \omega_{1} g_{i}^{-1}}=\lambda\left(h_{i^{*} i^{-}}\right)^{-1}$, we have $\zeta_{i} \cdot \overline{\left[\alpha_{i}^{\lambda}\right]^{T}}=\left[\alpha_{i^{*}}^{\lambda}\right]$.
(1.14) Corollary. Let $i, j \in \mathcal{I}_{\lambda}$.
a) For the case $\lambda=1$ we have $\alpha_{i}^{\sharp}=\alpha_{i^{*}}$ and thus $\left[\alpha_{i}\right]^{T}=\left[\alpha_{i^{*}}\right]$, for $i \in \mathcal{I}=\mathcal{I}_{\lambda}$.
b) Since $\alpha_{i}^{\lambda}=\left(\alpha_{i}^{\lambda}\right)^{\sharp \#}=\zeta_{i} \cdot\left(\alpha_{i^{*}}^{\lambda}\right)^{\sharp}=\frac{\zeta_{i}}{\zeta_{i^{*}}} \cdot \alpha_{i}^{\lambda}$, we have $\zeta_{i^{*}}=\zeta_{i}$.
c) If $i=i^{*}$, then we have $\zeta_{i} \cdot\left(\alpha_{i}^{\lambda}\right)^{\#}=\alpha_{i}^{\lambda}$, while if $j \neq j^{*}$, then we have $\zeta_{j} \cdot\left(\alpha_{j}^{\lambda} \pm \alpha_{j^{*}}^{\lambda}\right)^{\#}=\alpha_{j^{*}}^{\lambda} \pm \alpha_{j}^{\lambda}$. Hence α_{i}^{λ} and $\alpha_{j}^{\lambda} \pm \alpha_{j^{*}}^{\lambda}$ commute with their respective adjoint maps, and thus α_{i}^{λ} and $\alpha_{j}^{\lambda} \pm \alpha_{j^{*}}^{\lambda}$ are diagonalisable over an algebraic closure of K^{\prime}.

The following notions first appeared in [28]. Their intention is to exhibit a finer structure of the suborbits $\Omega_{i} \subseteq \Omega$, for $i \in \mathcal{I}_{\lambda}$.
(1.15) Definition. a) For $i, j, k \in \mathcal{I}$, a triple $\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right) \in \Omega \times \Omega \times \Omega$ such that $\left(\omega, \omega^{\prime}\right) \in \mathcal{O}_{i},\left(\omega^{\prime}, \omega^{\prime \prime}\right) \in \mathcal{O}_{j}$, and $\left(\omega, \omega^{\prime \prime}\right) \in \mathcal{O}_{k}$ is called triangle of type (i, j, k). Let $\mathcal{T}_{i j k} \subseteq \Omega \times \Omega \times \Omega$ be the set of triangles of type (i, j, k).
b) For $i, j, k \in \mathcal{I}_{\lambda}$, the λ-weight of the triangle $\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right) \in \mathcal{T}_{i j k}$ is defined as

$$
\lambda\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right):=\left[\alpha_{i}^{\lambda}\right]_{\omega \omega^{\prime}} \cdot\left[\alpha_{j}^{\lambda}\right]_{\omega^{\prime} \omega^{\prime \prime}} \cdot\left(\left[\alpha_{k}^{\lambda}\right]_{\omega \omega^{\prime \prime}}\right)^{-1} \in \lambda(H) \subseteq \Theta
$$

For $\zeta \in \lambda(H)$ let

$$
\mathcal{T}_{i j k}^{\lambda, \zeta}:=\left\{\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right) \in \mathcal{T}_{i j k} ; \lambda\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right)=\zeta\right\}
$$

be the set of triangles of type (i, j, k) and λ-weight ζ.
c) For $i, j, k \in \mathcal{I}_{\lambda}$ and $\zeta \in \lambda(H)$ let

$$
\Omega_{i j k}^{\lambda, \zeta}:=\left\{\omega \in \Omega ;\left(\omega_{1}, \omega, \omega_{k}\right) \in \mathcal{T}_{i j k}^{\lambda, \zeta}\right\} \subseteq \Omega_{i}
$$

Let $S:=\left\{s \in\left\{1, \ldots, k_{i}\right\} ; \omega_{i s} \in \Omega_{i j k}^{\lambda, \zeta}\right\}$ and $p_{i j k}^{\lambda, \zeta}:=\left|\Omega_{i j k}^{\lambda, \zeta}\right|=|S| \in \mathbb{N}_{0}$.
(1.16) Remark. As the $\mathcal{O}_{i} \subseteq \Omega \times \Omega$ are invariant under diagonal G-action, the sets $\mathcal{T}_{i j k}$, for $i, j, k \in \mathcal{I}$, are invariant under diagonal action of G on $\Omega \times \Omega \times \Omega$ as well. For $i, j, k \in \mathcal{I}_{\lambda}$ and $\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right) \in \mathcal{I}_{i j k}$ as well as $g \in G$ we have

$$
\begin{aligned}
\lambda\left(\omega g, \omega^{\prime} g, \omega^{\prime \prime} g\right) & =\left[\alpha_{i}^{\lambda}\right]_{\omega g, \omega^{\prime} g} \cdot\left[\alpha_{j}^{\lambda}\right]_{\omega^{\prime} g, \omega^{\prime \prime} g} \cdot\left(\left[\alpha_{k}^{\lambda}\right]_{\omega g, \omega^{\prime \prime} g}\right)^{-1} \\
& =\left[\alpha_{i}^{\lambda}\right]_{\omega \omega^{\prime}} \cdot\left[\alpha_{j}^{\lambda}\right]_{\omega^{\prime} \omega^{\prime \prime}} \cdot\left(\left[\alpha_{k}^{\lambda}\right]_{\omega \omega^{\prime \prime}}\right)^{-1} \cdot \frac{\lambda_{\omega^{\prime}}(g)}{\lambda_{\omega}(g)} \cdot \frac{\lambda_{\omega^{\prime \prime}}(g)}{\lambda_{\omega^{\prime}}(g)} \cdot \frac{\lambda_{\omega}(g)}{\lambda_{\omega^{\prime \prime}}(g)} \\
& =\lambda\left(\omega, \omega^{\prime}, \omega^{\prime \prime}\right) .
\end{aligned}
$$

Hence the sets $\mathcal{T}_{i j k}^{\lambda, \zeta}$ for a fixed λ-weight $\zeta \in \lambda(H)$ are unions of G-orbits as well. These are, as $\mathcal{O}_{k} \subseteq \Omega \times \Omega$ is a single G-orbit, in natural bijection with the set of H_{k}-orbits on $\Omega_{i j k}^{\lambda, \zeta}$.
As $\Omega_{i}=\left\{\omega_{i s} ; s \in\left\{1, \ldots, k_{i}\right\}\right\}$ is as an H-set isomorphic to the set $H_{i} \mid H$ of right cosets of H_{i} in H, it follows that $\Omega_{\omega_{1}, i, \omega_{k}}^{\lambda, \zeta}$ is as an H_{k}-set isomorphic to $\coprod_{s \in S^{\prime}}\left(H_{i}^{h_{i s}} \cap H_{k}\right) \mid H_{k}$, where $S^{\prime} \subseteq S$ is chosen such that $\left\{h_{i s} ; s \in S^{\prime}\right\}$ is a set of representatives of the union $\bigcup_{s \in S} H_{i} \cdot h_{i s} \cdot H_{k}$ of $H_{i}-H_{k}$-double cosets in H. Hence we have

$$
p_{i j k}^{\lambda, \zeta}=\sum_{s \in S^{\prime}}\left[H_{k}:\left(H_{k} \cap H_{i}^{h_{i s}}\right)\right]
$$

(1.17) Proposition. For $i, j, k \in \mathcal{I}_{\lambda}$ let $\left(\omega_{1}, \omega_{i s}, \omega_{k}\right) \in \mathcal{T}_{i j k}^{\lambda}$, for some $s \in$ $\left\{1, \ldots, k_{i}\right\}$. Let $g_{i} h_{i s} \cdot g_{k}^{-1}=h_{s} \cdot g_{j^{*}} h_{j^{*} t}$ for some $t \in\left\{1, \ldots, k_{j^{*}}\right\}$ and $h_{s} \in H$. Then we have

$$
\lambda\left(\omega_{1}, \omega_{i s}, \omega_{k}\right)=\zeta_{j} \cdot \lambda\left(h_{s}\right) \cdot \frac{\lambda\left(h_{j^{*} t}\right)}{\lambda\left(h_{i s}\right)}
$$

Proof. We have $\left[\alpha_{k}^{\lambda}\right]_{\omega_{1}, \omega_{k}}=1$ and $\left[\alpha_{i}^{\lambda}\right]_{\omega_{1}, \omega_{i s}}=\lambda\left(h_{i s}^{-1}\right)$, as well as

$$
\left[\alpha_{j}^{\lambda}\right]_{\omega_{i s}, \omega_{k}}=\left[\alpha_{j}^{\lambda}\right]_{\omega_{i s} g_{k}^{-1}, \omega_{1}} \cdot \frac{\lambda_{\omega_{1}}\left(g_{k}\right)}{\lambda_{\omega_{i s} g_{k}^{-1}}\left(g_{k}\right)}=\left[\alpha_{j}^{\lambda}\right]_{\omega_{i s} g_{k}^{-1}, \omega_{1}} \cdot \lambda\left(h_{s}\right),
$$

since $\lambda_{\omega_{1}}\left(g_{k}\right)=1$ and $\lambda_{\omega_{i s} g_{k}^{-1}}\left(g_{k}\right)=\lambda\left(h_{s}^{-1}\right)$. Using Proposition (1.13), we have $\left.\left[\alpha_{j}^{\lambda}\right]_{\omega_{i s} g_{k}^{-1}, \omega_{1}}=\overline{\left[\alpha_{j^{*}}^{\lambda}\right.}\right]_{\omega_{1}, \omega_{i s} g_{k}^{-1}} \cdot \zeta_{j}$. As $\left[\alpha_{j^{*}}^{\lambda}\right]_{\omega_{1}, \omega_{i s} g_{k}^{-1}}=\lambda\left(h_{j^{*} t}^{-1}\right)$, the assertion follows.

The regular representation of the endomorphism ring E_{Θ}^{λ} plays a central role in the present work. The aim of the following definition is to facilitate a description of the regular representation.

(1.18) Definition.

a) For $i, j \in \mathcal{I}_{\lambda}$, by Theorem (1.8), we have $\alpha_{i}^{\lambda} \cdot \alpha_{j}^{\lambda}=\sum_{k \in \mathcal{I}_{\lambda}} p_{i j k}^{\lambda} \alpha_{k}^{\lambda}$, for the structure constants $p_{i j k}^{\lambda} \in \Theta$. For the case $\lambda=1$ let $p_{i j k}:=p_{i j k}^{1}$.
b) For $j \in \mathcal{I}_{\lambda}$, the representing matrix $\left[\alpha_{j}^{\lambda}\right]_{\mathcal{A}_{\lambda}}$ of the right regular action of α_{j}^{λ} on E_{Θ}^{λ}, with respect to the Schur basis \mathcal{A}_{λ}, is given by the j-th structure constants matrix

$$
\left[\alpha_{j}^{\lambda}\right]_{\mathcal{A}_{\lambda}}=P_{j}^{\lambda}:=\left[p_{i j k}^{\lambda} ; i, k \in \mathcal{I}_{\lambda}\right] \in \Theta^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}
$$

with row index i and column index k. For the case $\lambda=1$ let $P_{j}:=P_{j}^{1}$.
(1.19) Remark. Let $i, j, k \in \mathcal{I}_{\lambda}$.
a) By considering the matrix entry $\left[\alpha_{i}^{\lambda} \cdot \alpha_{j}^{\lambda}\right]_{\omega_{1}, \omega_{k}}$, where $\left[\alpha_{i}^{\lambda} \cdot \alpha_{j}^{\lambda}\right]$ still is the representing matrix of the natural action of $\alpha_{i}^{\lambda} \cdot \alpha_{j}^{\lambda}$ on $\Theta_{\lambda} \Omega$ with respect to the basis Ω, we obtain

$$
p_{i j k}^{\lambda}=\sum_{\zeta \in \lambda(H)} \zeta \cdot p_{i j k}^{\lambda, \zeta}
$$

Furthermore, we have

$$
p_{i j k}=\sum_{\zeta \in \lambda(H)} p_{i j k}^{\lambda, \zeta}
$$

Using the involutory $K^{\prime \prime}$-algebra antiautomorphism $\sharp: E_{K^{\prime}}^{\lambda} \rightarrow E_{K^{\prime}}^{\lambda}$, see Proposition (1.13), we obtain

$$
p_{j^{*} i^{*} k^{*}}^{\lambda}=\frac{\zeta_{i} \cdot \zeta_{j}}{\zeta_{k}} \cdot \overline{p_{i j k}^{\lambda}}
$$

b) For the special case $j=1$ we have $g_{j}=1$ and hence $\zeta_{j}=1$. Furthermore $S=\emptyset$ unless $i=k$, in which case we have $S \subseteq\{1\}$, and for $\omega_{i s}=\omega_{k, 1}=\omega_{k}$ we have $\lambda\left(h_{s}\right) \cdot \frac{\lambda\left(h_{j^{*} t}\right)}{\lambda\left(h_{i s}\right)}=1$. Thus $p_{i, 1, k}^{\lambda, \zeta}=\delta_{i, k} \delta_{\zeta, 1}$. Hence $p_{i, 1, k}^{\lambda}=\delta_{i, k}$, as expected. Analogously, for the special case $i=1$ we have $p_{1, j, k}^{\lambda}=\delta_{j, k}$.
For the special case $k=1$ we have $g_{k}=1$ and hence $S=\emptyset$ unless $j=i^{*}$, in which case we have $\lambda\left(h_{s}\right) \cdot \frac{\lambda\left(h_{j^{*} t}\right)}{\lambda\left(h_{i s}\right)}=1$. Hence $S=\emptyset$ unless $\zeta=\zeta_{j}$, in which case we have $S=\left\{1, \ldots, k_{i}\right\}$. Hence we conclude $p_{i, j, 1}^{\lambda, \zeta}=\delta_{i^{*}, j} \cdot \delta_{\zeta, \zeta_{i^{*}}} \cdot k_{i}$ and $p_{i, j, 1}^{\lambda}=\delta_{i^{*}, j} \cdot \zeta_{i^{*}} \cdot k_{i}$.
c) We have

$$
\begin{aligned}
p_{i j k} & =\left|\left\{\omega \in \Omega ;\left(\omega_{1}, \omega\right) \in \mathcal{O}_{i},\left(\omega, \omega_{k}\right) \in \mathcal{O}_{j}\right\}\right| \\
& =\left|\left\{\omega \in \Omega_{i} ;\left(\omega_{k}, \omega\right) \in \mathcal{O}_{j^{*}}\right\}\right| \\
& =\left|\left\{\omega \in \Omega_{i} ;\left(\omega_{1}, \omega g_{k}^{-1}\right) \in \mathcal{O}_{j^{*}}\right\}\right| \\
& =\left|\left\{\omega \in \Omega_{i} ; \omega g_{k}^{-1} \in \Omega_{j^{*}}\right\}\right| \\
& =\left|\Omega_{i} \cap\left(\Omega_{j^{*}} g_{k}\right)\right| \\
& =\left|\left(\Omega_{i} g_{k}^{-1}\right) \cap \Omega_{j^{*}}\right|
\end{aligned}
$$

Because of this the $p_{i j k} \in \mathbb{N}_{0}$ are also called intersection numbers, and the matrices P_{j} are also called intersection matrices.

For j and k fixed, the k-th column sum of P_{j} is

$$
\sum_{i \in \mathcal{I}}\left[P_{j}\right]_{i k}=\sum_{i \in \mathcal{I}} p_{i j k}=\sum_{i=1}^{r}\left|\Omega_{i} \cap\left(\Omega_{j^{*}} g_{k}\right)\right|=\left|\Omega_{j^{*}} g_{k}\right|=k_{j} .
$$

d) Let $K^{\prime} \subseteq \bar{K}$ be an algebraic closure of K^{\prime}, and let $i, j \in \mathcal{I}_{\lambda}$, where $i=i^{*}$ and $j \neq j^{*}$. By Corollary (1.14), the maps α_{i}^{λ} and $\alpha_{j}^{\lambda} \pm \alpha_{j^{*}}^{\lambda}$ are diagonalisable over \bar{K}, hence have square-free minimum polynomials over \bar{K}. As $E_{K^{\prime}}^{\lambda}$ acts faithfully on $K^{\prime} \Omega$, the minimum polynomials of the regular action of α_{i}^{λ} and of $\alpha_{j}^{\lambda} \pm \alpha_{j^{*}}^{\lambda}$ on $E \bar{K}=E_{K^{\prime}}^{\lambda} \otimes_{K^{\prime}} \bar{K}$ also are square-free. Hence the structure constants matrices P_{i}^{λ} and $P_{j}^{\lambda} \pm P_{j^{*}}^{\lambda}$ are diagonalisable over \bar{K} as well.

2 Fitting correspondence

The aim of Section 2 is to describe the connection of the representation theory of the endomorphism ring E_{Θ}^{λ} with the representation theory of the underlying group G. The exposition of Section 2 is inspired by [15, Ch.1.11.D].
(2.1) Let Θ be an integral domain such that the order $|H| \in \Theta$ of H is a unit in Θ. Let λ be a representation of ΘH of degree 1 with underlying ΘH-module Θ_{λ}. Let

$$
\epsilon_{\lambda}:=\frac{1}{|H|} \cdot \sum_{h \in H} \lambda\left(h^{-1}\right) \cdot h \in \Theta H \subseteq \Theta G
$$

be the centrally primitive idempotent of ΘH belonging to λ.
We have an isomorphism of ΘG-modules

$$
\sigma=\sigma_{\lambda}: \Theta_{\lambda} \Omega \rightarrow \epsilon_{\lambda} \Theta G: \omega_{i j} \mapsto \epsilon_{\lambda} g_{i} h_{i j}
$$

where $\Theta_{\lambda} \Omega \cong \Theta_{\lambda} \otimes_{\Theta H} \Theta G$ is the induced ΘG-module obtained from Θ_{λ}, see Section (1.3), and $i \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$. The map

$$
\tau=\tau_{\lambda}: \operatorname{End}_{\Theta G}\left(\epsilon_{\lambda} \Theta G\right) \rightarrow\left(\epsilon_{\lambda} \Theta G \epsilon_{\lambda}\right)^{\circ}: \alpha \mapsto \epsilon_{\lambda} \alpha
$$

is an isomorphism of Θ-algebras, where $\left(\epsilon_{\lambda} \Theta G \epsilon_{\lambda}\right)^{\circ}$ denotes the opposed ring with multiplication given by $x \circ y:=y \cdot x$, for $x, y \in \epsilon_{\lambda} \Theta G \epsilon_{\lambda}$. The inverse of τ is given by

$$
\tau^{-1}=\tau_{\lambda}^{-1}:\left(\epsilon_{\lambda} \Theta G \epsilon_{\lambda}\right)^{\circ} \rightarrow \operatorname{End}_{\Theta G}\left(\epsilon_{\lambda} \Theta G\right): \epsilon_{\lambda} g \epsilon_{\lambda} \mapsto\left(\epsilon_{\lambda} h \mapsto \epsilon_{\lambda} g \epsilon_{\lambda} h\right)
$$

for $g, h \in G$.
(2.2) Proposition. We have an isomorphism of Θ-algebras

$$
E_{\Theta}^{\lambda} \rightarrow\left(\epsilon_{\lambda} \Theta G \epsilon_{\lambda}\right)^{\circ}: \alpha \mapsto\left(\alpha^{\sigma}\right) \tau:=\left(\sigma^{-1} \cdot \alpha \cdot \sigma\right) \tau
$$

and for $i \in \mathcal{I}_{\lambda}$ we have $\left(\left(\alpha_{i}^{\lambda}\right)^{\sigma}\right) \tau=k_{i} \cdot \epsilon_{\lambda} g_{i} \epsilon_{\lambda}$. In particular, $\left\{\epsilon_{\lambda} g_{i} \epsilon_{\lambda} ; i \in \mathcal{I}_{\lambda}\right\}$ is a Θ-basis of $\left(\epsilon_{\lambda} \Theta G \epsilon_{\lambda}\right)^{\circ}$, and we have $\epsilon_{\lambda} g_{j} \epsilon_{\lambda}=0$ for $j \notin \mathcal{I}_{\lambda}$.

Proof. Using Section (1.7) we get

$$
\left(\left(\alpha_{i}^{\lambda}\right)^{\sigma}\right) \tau=\epsilon_{\lambda}\left(\alpha_{i}^{\lambda}\right)^{\sigma}=\epsilon_{\lambda} g_{i} \cdot\left(\sum_{j=1}^{k_{i}} \lambda\left(h_{i j}^{-1}\right) \cdot h_{i j}\right)
$$

Since $\lambda_{H_{i}}^{g_{i}}=\lambda_{H_{i}}$, for $h \in H_{i}$ we have $\lambda\left(h^{-1}\right) \cdot \epsilon_{\lambda} g_{i} h=\lambda\left(h^{-1}\right) \cdot \epsilon_{\lambda} \cdot h^{g_{i}^{-1}} \cdot g_{i}=$ $\lambda\left(h^{-1}\right) \cdot \lambda^{g_{i}}(h) \cdot \epsilon_{\lambda} g_{i}=\epsilon_{\lambda} g_{i}$. Hence we obtain $\left(\left(\alpha_{i}^{\lambda}\right)^{\sigma}\right) \tau=\frac{|H|}{\left|H_{i}\right|} \cdot \epsilon_{\lambda} g_{i} \epsilon_{\lambda}$. The last assertion follows from the fact that for $k \in \mathcal{I}$ the support of $\epsilon_{\lambda} g_{k} \epsilon_{\lambda} \in \Theta G$ with respect to the Θ-basis G of ΘG is contained in the H - H-double coset $H g_{k} H$. \sharp

Proposition (2.2) exhibits E_{Θ}^{λ} as a non-unitary Θ-subalgebra of $(\Theta G)^{\circ}$. From this we deduce the following additional structure on E_{Θ}^{λ}.

(2.3) Proposition.

a) E_{Θ}^{λ} is a symmetric Θ-algebra with respect to the symmetrising linear form

$$
t: E_{\Theta}^{\lambda} \rightarrow \Theta: \alpha_{i}^{\lambda} \mapsto \frac{1}{|H|} \cdot \delta_{i, 1}
$$

for $i \in \mathcal{I}_{\lambda}$.
b) For $i, j \in \mathcal{I}_{\lambda}$ we have $t\left(\alpha_{i}^{\lambda} \cdot \alpha_{j}^{\lambda}\right)=\delta_{i^{*}, j} \cdot \frac{\zeta_{i} \cdot k_{i}}{|H|}$.

Proof. The group algebra ΘG is a symmetric algebra with respect to the symmetrising linear form $t_{G}: \Theta G \rightarrow \Theta: \sum_{g \in G} c_{g} \cdot g \mapsto c_{1}$. Hence the Θ-algebra $\epsilon_{\lambda} \Theta G \epsilon_{\lambda} \subseteq \Theta G$ also is a symmetric algebra, with respect to the restriction of t_{G} to $\epsilon_{\lambda} \Theta G \epsilon_{\lambda}$. For $i \in \mathcal{I}_{\lambda}$ we have $t\left(k_{i} \cdot \epsilon_{\lambda} g_{i} \epsilon_{\lambda}\right)=\frac{1}{|H|} \cdot \delta_{i, 1}$. Hence the assertion in a) follows from Proposition (2.2), and the assertion in b) follows from Remark (1.19).
(2.4) Definition. For $i \in \mathcal{I}_{\lambda}$ let

$$
\hat{\alpha}_{i}^{\lambda}:=\frac{|H|}{k_{i} \cdot \zeta_{i^{*}}} \cdot \alpha_{i^{*}}^{\lambda} .
$$

Then $\hat{\mathcal{A}}_{\lambda}:=\left\{\hat{\alpha}_{i}^{\lambda} ; i \in \mathcal{I}_{\lambda}\right\}$ is called the dual Schur basis of E_{Θ}^{λ}. For the case $\lambda=1$ let $\hat{\alpha}_{i}:=\hat{\alpha}_{i}^{1}$, for $i \in \mathcal{I}$, and $\hat{\mathcal{A}}:=\hat{\mathcal{A}}_{1}$.
(2.5) Remark. For the moment we drop the assumption that $|H|$ is a unit in Θ, and let $\tilde{\epsilon}_{\lambda}:=\sum_{h \in H} \lambda\left(h^{-1}\right) \cdot h \in \Theta H \subseteq \Theta G$. Then we still have an isomorphism of ΘG-modules, $\tilde{\sigma}_{\lambda}: \Theta_{\lambda} \rightarrow \tilde{\epsilon}_{\lambda} \Theta G: \omega_{i j} \mapsto \tilde{\epsilon}_{\lambda} g_{i} h_{i j}$, for $i \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$, analogous to Section (2.1). But in general the assertions of Proposition (2.2) and Proposition (2.3) no longer hold, even if Θ is assumed to be a field. For a treatment of this general situation see [10].
(2.6) The non-unitary embedding of Θ-algebras in Proposition (2.2) also reveals the precise relationship between the representation theory of E_{Θ}^{λ} and the representation theory of G.

Let $K=\operatorname{Quot}(\Theta)$ be a field of characteristic coprime to $|H|$, which is a splitting field for E_{K}^{λ}. For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ let S_{φ} be the simple E_{K}^{λ}-module affording the character φ and $d_{\varphi}:=\varphi(1)=\operatorname{dim}_{K}\left(S_{\varphi}\right) \in \mathbb{N}$. Let $e_{\varphi} \in E_{K}^{\lambda}$ be some primitive idempotent such that $e_{\varphi} E_{K}^{\lambda} / \operatorname{rad}\left(e_{\varphi} E_{K}^{\lambda}\right) \cong S_{\varphi}$ as E_{K}^{λ}-modules, and let $S_{\varphi}^{*}:=\operatorname{Hom}_{K}\left(S_{\varphi}, K\right)$ be the $\left(E_{K}^{\lambda}\right)^{\circ}$-module dual to the E_{K}^{λ}-module S_{φ}. As E_{K}^{λ} is a symmetric K-algebra, we have $E_{K}^{\lambda} e_{\varphi} \cong\left(e_{\varphi} E_{K}^{\lambda}\right)^{*}$ as $\left(E_{K}^{\lambda}\right)^{\circ}$-modules, and thus $E_{K}^{\lambda} e_{\varphi} / \operatorname{rad}\left(E_{K}^{\lambda} e_{\varphi}\right) \cong S_{\varphi}^{*}$ as $\left(E_{K}^{\lambda}\right)^{\circ}$-modules.
Let $P_{\varphi}:=K_{\lambda} \Omega \cdot e_{\varphi}=K_{\lambda} \Omega \cdot E_{K}^{\lambda} e_{\varphi} \leq K_{\lambda} \Omega$ and $m_{\varphi}:=\operatorname{dim}_{K}\left(P_{\varphi}\right)$. As $K_{\lambda} \Omega \cong \epsilon_{\lambda} K G$ is a projective $K G$-module, P_{φ} is a projective indecomposable $K G$-module. Let $\chi_{\varphi} \in \operatorname{Irr}_{K}(G)$ be the irreducible character of $K G$, being afforded by the simple $K G$-module $S_{\chi_{\varphi}}$, such that $P_{\varphi} / \operatorname{rad}\left(P_{\varphi}\right) \cong S_{\chi_{\varphi}}$ as $K G$ modules.

Let P and P^{\prime} be projective indecomposable $K G$-summands of $K_{\lambda} \Omega$, occurring in a fixed direct sum decomposition of $K_{\lambda} \Omega$ into projective indecomposable $K G$-modules, and let $e, e^{\prime} \in E_{K}^{\lambda}$ be corresponding idempotents, such that $P=$ $K_{\lambda} \Omega \cdot e$ and $P^{\prime}=K_{\lambda} \Omega \cdot e^{\prime}$. Then $P \cong P^{\prime}$ as $K G$-modules if and only if there is an isomorphism $\alpha \in E_{K}^{\lambda}$ such that $P \alpha=P^{\prime} \leq K_{\lambda} \Omega$. Hence we have $e^{\prime}=\alpha^{-1} \cdot e \cdot \alpha \in E_{K}^{\lambda}$, and thus $e E_{K}^{\lambda} / \operatorname{rad}\left(e E_{K}^{\lambda}\right) \cong e^{\prime} E_{K}^{\lambda} / \operatorname{rad}\left(e^{\prime} E_{K}^{\lambda}\right)$ as E_{K}^{λ}-modules. Conversely, if the latter assertion holds, then by [15, Exc.0.6.14] there is an isomorphism $\alpha \in E_{K}^{\lambda}$ such that $e^{\prime}=\alpha^{-1} \cdot e \cdot \alpha \in E_{K}^{\lambda}$, and thus $P \alpha=P^{\prime} \leq K_{\lambda} \Omega$.
Let $\operatorname{Irr}_{K}^{\lambda}(G):=\left\{\chi_{\varphi} \in \operatorname{Irr}_{K}(G) ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right\}$. Let $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and let $K \subseteq L$ be a field extension. As K is a splitting field for E_{K}^{λ}, by [18, La.I.18.8] we conclude that $e_{\varphi} E_{K}^{\lambda} \otimes_{K} L$ is an indecomposable E_{L}^{λ}-module, where $E_{L}^{\lambda} \cong$ $E_{K}^{\lambda} \otimes_{K} L$. Thus $e_{\varphi} \in E_{K}^{\lambda} \subseteq E_{L}^{\lambda}$ is a primitive idempotent in E_{L}^{λ}, and hence $P_{\varphi} \otimes_{K} L$ is an indecomposable $L G$-module. Thus $S_{\chi_{\varphi}}$ is an absolutely irreducible $K G$-module, and hence K is a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda}(G)$.

Hence we have shown the following Proposition.
(2.7) Proposition. Let K be as in Section (2.6).
a) The map $\varphi \mapsto P_{\varphi}$ induces a bijection, the Fitting correspondence, between $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and the set of isomorphism types of projective indecomposable summands of the $K G$-module $K_{\lambda} \Omega$. Hence it induces a bijection between $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $\operatorname{Irr}_{K}^{\lambda}(G)$.
b) As $K G$-modules we have

$$
K_{\lambda} \Omega \cong \bigoplus_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)}\left(\bigoplus_{i=1}^{d_{\varphi}} P_{\varphi}\right)
$$

(2.8) If $K G$ is semisimple, then we can even be a bit more specific.

Let K be of characteristic coprime to $|G|$, such that it is a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda}(G)$. For $\chi \in \operatorname{Irr}_{K}(G)$ let S_{χ} be the simple $K G$-module affording the character χ, and let $\epsilon_{\chi} \in K G$ be the centrally primitive idempotent corresponding to χ. Hence we have $\operatorname{Irr}_{K}^{\lambda}(G)=$ $\left\{\chi \in \operatorname{Irr}_{K}(G) ; \epsilon_{\lambda} \epsilon_{\chi} \neq 0\right\}$, which is the set of the irreducible K-characters χ of G, such that S_{χ} is a constituent of λ^{G}, see also [15, Ch.1.11.D].
For $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$ let $\epsilon_{\lambda} \epsilon_{\chi}=\sum_{i=1}^{d_{\chi}} e_{\chi, i}$ be a decomposition of $\epsilon_{\lambda} \epsilon_{\chi}=\epsilon_{\chi} \epsilon_{\lambda}$ into pairwise orthogonal primitive idempotents $e_{\chi, i} \in K G$, with corresponding multiplicities $d_{\chi} \in \mathbb{N}$. Then we have a direct sum decomposition as $K G$-modules

$$
\epsilon_{\lambda} K G \cong \bigoplus_{\chi \in \operatorname{Irr}_{K}^{\lambda}(G)} \epsilon_{\lambda} \epsilon_{\chi} K G \cong \bigoplus_{\chi \in \operatorname{Irr}_{K}^{\lambda}(G)}\left(\bigoplus_{i=1}^{d_{\chi}} e_{\chi, i} K G\right)
$$

where $e_{\chi, i} K G \cong S_{\chi}$, for $i \in\left\{1, \ldots, d_{\chi}\right\}$. Hence in this case the Fitting correspondence is a bijection $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right) \rightarrow \operatorname{Irr}_{K}^{\lambda}(G): \varphi \mapsto \chi_{\varphi}$, and we have $S_{\chi_{\varphi}}=P_{\varphi}$ and $m_{\varphi}=\operatorname{dim}_{K}\left(S_{\chi_{\varphi}}\right)$ as well as $d_{\chi_{\varphi}}=d_{\varphi}=\operatorname{dim}_{K}\left(S_{\varphi}\right)$. Thus we have

$$
E_{K}^{\lambda} \cong \bigoplus_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} \operatorname{End}_{K G}\left(S_{\chi_{\varphi}}\right)^{d_{\varphi} \times d_{\varphi}} \cong \bigoplus_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} K^{d_{\varphi} \times d_{\varphi}}
$$

as K-algebras. In particular, E_{K}^{λ} is a semisimple K-algebra having K as a splitting field, and we have $\left|\mathcal{I}_{\lambda}\right|=\operatorname{dim}_{K}\left(E_{K}^{\lambda}\right)=\sum_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} d_{\varphi}^{2}$. Furthermore, for each $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, the K-algebra isomorphism τ_{λ}, see $\operatorname{Section}$ (2.1), restricts to an isomorphism, where $\chi=\chi_{\varphi}$,

$$
K^{d_{\varphi} \times d_{\varphi}} \rightarrow\left(\epsilon_{\lambda} \epsilon_{\chi} K G \epsilon_{\chi} \epsilon_{\lambda}\right)^{\circ}=\bigoplus_{i=1}^{d_{\varphi}} \bigoplus_{j=1}^{d_{\varphi}} e_{\chi, j} K G e_{\chi, i}: E_{i j} \mapsto e_{\chi, j} f_{j i} e_{\chi, i}
$$

for some $f_{j i} \in K G$, for $i, j \in\left\{1, \ldots, d_{\chi}\right\}$, and where $E_{i j} \in K^{d_{\varphi} \times d_{\varphi}}$ is the matrix unit given by $\left[E_{i j}\right]_{i^{\prime} j^{\prime}}=\delta_{i, i^{\prime}} \delta_{j, j^{\prime}}$, for $i^{\prime}, j^{\prime} \in\left\{1, \ldots, d_{\chi}\right\}$.
Hence as $\left(K G \otimes_{K} E_{K}^{\lambda}\right)$-modules we have

$$
K_{\lambda} \Omega \cong \bigoplus_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)}\left(S_{\chi_{\varphi}} \otimes_{K} S_{\varphi}\right)
$$

where the above summands are pairwise non-isomorphic absolutely irreducible $\left(K G \otimes_{K} E_{K}^{\lambda}\right)$-modules. We have $S_{\chi_{\varphi}} \otimes_{K} S_{\varphi} \cong \bigoplus_{i=1}^{d_{\varphi}} S_{\chi_{\varphi}}$ as $K G$-modules and $S_{\chi_{\varphi}} \otimes_{K} S_{\varphi} \cong \bigoplus_{i=1}^{m_{\varphi}} S_{\varphi}$ as E_{K}^{λ}-modules.
(2.9) Remark. Let K be of characteristic coprime to $|G|$ and a splitting field of E_{K}^{λ}. Then E_{K}^{λ} is commutative if and only if $d_{\varphi}=1$, for all $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, which holds if and only if $\left|\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right|=\operatorname{dim}_{K}\left(E_{K}^{\lambda}\right)=\left|\mathcal{I}_{\lambda}\right|$. In this case, $K_{\lambda} \Omega$ is called multiplicity-free.
(2.10) We conclude Section 2 by introducing the setting for decomposition theory, and we show how the decomposition maps of G and E^{λ} are related.

Let K be of characteristic 0 and a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda}(G)$. Hence K is a splitting field for E_{K}^{λ} as well. Without loss of generality we may assume that K is a cyclotomic field containing $\mathbb{Q}(\lambda(H))$. Let $R \subset K$ be a discrete valuation ring in K with maximal ideal $\wp \triangleleft R$ and finite residue class field $F:=R / \wp$ of characteristic $p>0$, where p is coprime to $|H|$. Let ${ }^{\sim}: R \rightarrow F$ denote the natural epimorphism.
By Theorem (1.8), E_{R}^{λ} is an R-order in E_{K}^{λ}. As $\lambda(H) \subseteq R$, let $\tilde{\lambda}:=\lambda \cdot{ }^{\sim} \in$ $\operatorname{Irr}_{F}(H)$. As the characteristic of F is coprime to $|H|$, we have $\lambda_{H_{i}}=\lambda_{H_{i}}^{g_{i}}$ if and only if $\tilde{\lambda}_{H_{i}}=\tilde{\lambda}_{H_{i}}^{g_{i}}$, for $i \in \mathcal{I}$. Thus $\mathcal{I}_{\lambda}=\mathcal{I}_{\tilde{\lambda}}$, and hence we have an R-algebra epimorphism $E_{R}^{\lambda} \rightarrow E_{F}^{\tilde{\lambda}}: \alpha_{i}^{\lambda} \mapsto \alpha_{i}^{\tilde{\lambda}}$, for $i \in \mathcal{I}_{\lambda}$. Without loss of generality we may assume that F is a splitting field for $E_{F}^{\tilde{\lambda}}$, and hence F is a splitting field for all simple $F G$-modules affording a character in $\operatorname{Irr}_{F}^{\tilde{\lambda}}(G)$ as well.
Hence we have a decomposition map $D_{G}: G(K G) \rightarrow G(F G)$, where $G(\cdot)$ denotes the corresponding Grothendieck groups, see [14, Ch.XII.82-83]. The considerations there generalise straightforwardly to the algebras E_{K}^{λ} and $E_{F}^{\tilde{\lambda}}$, hence we also have a decomposition map $D_{E}: G\left(E_{K}^{\lambda}\right) \rightarrow G\left(E_{F}^{\tilde{\lambda}}\right)$. For $\chi \in \operatorname{Irr}_{K}(G)$ and $\chi^{\prime} \in \operatorname{Irr}_{F}(G)$ let $d_{\chi \chi^{\prime}}^{G} \in \mathbb{N}_{0}$ denote the corresponding decomposition number with respect to D_{G}, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $\varphi^{\prime} \in \operatorname{Irr}_{F}\left(E_{F}^{\tilde{\lambda}}\right)$ let $d_{\varphi \varphi^{\prime}}^{E} \in \mathbb{N}_{0}$ denote the corresponding decomposition number with respect to D_{E}.
(2.11) Proposition. Let $\varphi^{\prime} \in \operatorname{Irr}_{F}\left(E_{F}^{\tilde{\lambda}}\right)$ and let $\chi^{\prime}=\chi_{\varphi^{\prime}} \in \operatorname{Irr}_{F}^{\tilde{\lambda}}(G)$ be its Fitting correspondent.
a) For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and its Fitting correspondent $\chi=\chi_{\varphi} \in \operatorname{Irr}_{K}^{\lambda}(G)$ we then have $d_{\chi \chi^{\prime}}^{G}=d_{\varphi \varphi^{\prime}}^{E}$.
b) If $\chi \in \operatorname{Irr}_{K}(G) \backslash \operatorname{Irr}_{K}^{\lambda}(G)$, then $d_{\chi \chi^{\prime}}^{G}=0$.

Proof. By [53, Thm.3.4.1], idempotents can be lifted from $F G$ to $R G$, respectively from $E_{F}^{\tilde{\lambda}}$ to E_{R}^{λ}. Hence the assertions follow from Brauer reciprocity, see [14, Thm.XII.83.9].

3 Characters of endomorphism rings

In Section 3 we discuss characters of endomorphism rings over fields of characteristic 0 . The exposition of Section 3 is inspired by [27]. We begin by relating the character values on Schur basis elements corresponding to paired orbitals, and then use the symmetrising form to exhibit the centrally primitive idempotents of the endomorphism ring.

Let K be a cyclotomic field containing $\mathbb{Q}(\lambda(H))$ and being a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda}(G)$. Let ${ }^{-}: K \rightarrow K$ denote
the involutory field automorphism defined by ${ }^{-}: \zeta \mapsto \zeta^{-1}$ for all roots of unity $\zeta \in K$, extending the field automorphism of $\mathbb{Q}(\lambda(H))$ defined in Section (1.11).
(3.1) Proposition. See also [39, Prop.II.12.12].

For $i \in \mathcal{I}_{\lambda}$ and $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ we have, where $\zeta_{i} \in K$ is as in Definition (1.12),

$$
\overline{\varphi\left(\alpha_{i}^{\lambda}\right)}=\frac{1}{\zeta_{i}} \cdot \varphi\left(\alpha_{i^{*}}^{\lambda}\right)
$$

Proof. As in Section (1.11) there is a G-invariant positive definite hermitian form $\langle\cdot, \cdot\rangle_{\Omega}$ on $K_{\lambda} \Omega$, thus the decomposition $K_{\lambda} \Omega \cong \bigoplus_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)}\left(S_{\chi_{\varphi}} \otimes_{K} S_{\varphi}\right)$ as $\left(K G \otimes E_{K}^{\lambda}\right)$-modules, see Section (2.8), is an orthogonal direct sum. Thus by Proposition (1.13) we have

$$
\overline{\varphi\left(\alpha_{i}^{\lambda}\right)}=\varphi\left(\left(\alpha_{i}^{\lambda}\right)^{\sharp}\right)=\frac{1}{m_{\varphi}} \cdot \operatorname{tr}_{\varphi}\left(\left(\alpha_{i}^{\lambda}\right)^{\sharp}\right)=\frac{1}{\zeta_{i} \cdot m_{\varphi}} \cdot \operatorname{tr}_{\varphi}\left(\alpha_{i^{*}}^{\lambda}\right)=\frac{1}{\zeta_{i}} \cdot \varphi\left(\alpha_{i^{*}}^{\lambda}\right),
$$

where $\operatorname{tr}_{\varphi}$ denotes the K-valued trace function on $S_{\chi_{\varphi}} \otimes_{K} S_{\varphi}$.

(3.2) Proposition.

a) The centrally primitive idempotent $\epsilon_{\varphi} \in E_{K}^{\lambda}$ corresponding to $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ is given as

$$
\epsilon_{\varphi}=\frac{|H|}{c_{\varphi}} \cdot \sum_{i \in \mathcal{I}_{\lambda}} \frac{1}{k_{i}} \cdot \overline{\varphi\left(\alpha_{i}^{\lambda}\right)} \cdot \alpha_{i}^{\lambda}
$$

where $c_{\varphi} \in K$ is the corresponding Schur element, see also [15, Ch.1.9.B].
b) For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ we have

$$
c_{\varphi}=\frac{|G|}{m_{\varphi}}=\frac{|G|}{\chi_{\varphi}(1)}=c_{\chi_{\varphi}}
$$

where $c_{\chi_{\varphi}} \in K$ is the Schur element belonging to $\chi_{\varphi} \in \operatorname{Irr}_{K}^{\lambda}(G)$ for the symmetric K-algebra $K G$ with symmetrising form t_{G}, see Proposition (2.3).

Proof. Using the symmetrising form t we have

$$
\epsilon_{\varphi}=\frac{1}{c_{\varphi}} \cdot \sum_{i \in \mathcal{I}_{\lambda}} \varphi\left(\hat{\alpha}_{i}^{\lambda}\right) \cdot \alpha_{i}^{\lambda}=\frac{|H|}{c_{\varphi}} \cdot \sum_{i \in \mathcal{I}_{\lambda}} \frac{1}{k_{i} \cdot \zeta_{i^{*}}} \cdot \varphi\left(\alpha_{i^{*}}^{\lambda}\right) \cdot \alpha_{i}^{\lambda}
$$

Hence the assertion in a) follows from Proposition (3.1) and Corollary (1.14).
For $i \in \mathcal{I}_{\lambda}$, the trace of the action of α_{i}^{λ} on $K_{\lambda} \Omega$ is given as $\operatorname{tr}_{K_{\lambda} \Omega}\left(\alpha_{i}^{\lambda}\right)=$ $\delta_{1, i} \cdot n$. Hence using a) we have $\operatorname{tr}_{K_{\lambda} \Omega}\left(\epsilon_{\varphi}\right)=\frac{|H|}{c_{\varphi}} \cdot d_{\varphi} \cdot n=\frac{|G| \cdot d_{\varphi}}{c_{\varphi}}$. Furthermore, the idempotent $\epsilon_{\varphi} \in E_{K}^{\lambda}$ acts as the identity on $S_{\chi_{\varphi}} \otimes_{K} S_{\varphi}$ and annihilates the other summands $S_{\chi_{\varphi^{\prime}}} \otimes_{K} S_{\varphi^{\prime}}$, for $\varphi \neq \varphi^{\prime} \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. Hence we have $\operatorname{tr}_{K_{\lambda} \Omega}\left(\epsilon_{\varphi}\right)=d_{\varphi} \cdot m_{\varphi}$.

We address the question of semisimplicity of the endomorphism ring $E_{F}^{\tilde{\lambda}}$ over a field F of positive characteristic.
(3.3) Remark. Let $\sim: R \rightarrow F$ and $\tilde{\lambda}$ be as in Section (2.10), where in particular the characteristic of F is coprime to $|H|$.
a) For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ let $D_{\varphi}: E_{K}^{\lambda} \rightarrow \operatorname{End}_{K}\left(S_{\varphi}\right)$ denote the corresponding representation. Then the Schur element $c_{\varphi} \in K$ is defined by the Frobenius-Schur relations $\sum_{i \in \mathcal{I}_{\lambda}} D_{\varphi}\left(\hat{\alpha}_{i}^{\lambda}\right) \cdot M \cdot D_{\varphi}\left(\alpha_{i}^{\lambda}\right)=c_{\varphi} \cdot \operatorname{tr}(M) \cdot \mathrm{id}_{S_{\varphi}}$, for $M \in \operatorname{End}_{K}\left(S_{\varphi}\right)$, where tr is the K-valued trace function on $\operatorname{End}_{K}\left(S_{\varphi}\right)$. Hence we have $c_{\varphi} \in R$, and $\widetilde{c_{\varphi}}$ is well-defined.
b) As $E_{F}^{\tilde{\lambda}}$ is a symmetric algebra, $\tilde{\varphi} \in \operatorname{Irr}_{F}\left(E_{F}^{\tilde{\lambda}}\right)$ is afforded by a projective simple E_{F}^{λ}-module if and only if $\tilde{\varphi}$ occurs with multiplicity $d_{\tilde{\varphi}}$ as a constituent of the regular $E_{F}^{\tilde{\lambda}}$-module $E_{F}^{\tilde{\lambda}}$, while for the non-projective simple $E_{F}^{\tilde{\lambda}}$-modules this multiplicity is at least $2 \cdot d_{\tilde{\varphi}}$.
(3.4) Proposition. See also Tits' Deformation Theorem [16, Thm.8.68.17], [23, Thm.1.3.8] and [19].
We keep the notation of Section (2.10), where in particular the characteristic of F is coprime to $|H|$. Then the decomposition map D_{E} induces a bijection

$$
\left\{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right) ; \widetilde{c_{\varphi}} \neq 0 \in F\right\} \rightarrow\left\{\tilde{\varphi} \in \operatorname{Irr}_{F}\left(E_{F}^{\tilde{\lambda}}\right) ; \tilde{\varphi} \text { projective }\right\} .
$$

In particular, $E_{F}^{\tilde{\lambda}}$ is semisimple if and only if $\widetilde{c_{\varphi}} \neq 0 \in F$ for all $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$.
Proof. If $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ such that $d_{\varphi \tilde{\varphi}}^{E} \neq 0$, then $\tilde{\varphi}$ occurs in the regular $E_{F}^{\tilde{\lambda}}$-module $E_{F}^{\tilde{\lambda}} \cong \widetilde{E_{K}^{\lambda}}$ at least with multiplicity $d_{\varphi} \cdot d_{\varphi \tilde{\varphi}}^{E}$. If $\tilde{\varphi}$ is projective, then by Remark (3.3) we conclude from $d_{\varphi} \geq d_{\tilde{\varphi}}$ that $d_{\varphi}=d_{\tilde{\varphi}}$ and $d_{\varphi \tilde{\varphi}}^{E}=1$. Hence $d_{\varphi \tilde{\varphi}^{\prime}}^{E}=0$, for $\tilde{\varphi} \neq \tilde{\varphi}^{\prime} \in \operatorname{Irr}_{F}\left(E_{F}^{\tilde{\lambda}}\right)$, and $d_{\varphi^{\prime} \tilde{\varphi}}^{E}=0$, for $\varphi \neq \varphi^{\prime} \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. Furthermore we have $\widetilde{c_{\varphi}}=c_{\tilde{\varphi}}$, and by the Gaschütz-Ikeda Theorem, see [14, Thm.IX.62.11], $S_{\tilde{\varphi}}$ is a projective $E_{F}^{\tilde{\lambda}}$-module if and only if $c_{\tilde{\varphi}} \neq 0 \in F$.
Conversely, if $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ such that $\widetilde{c_{\varphi}} \neq 0 \in F$, then $c_{\varphi} \in R$ is a unit. Let

$$
\epsilon_{\varphi, j}:=\frac{1}{c_{\varphi}} \cdot \sum_{i \in \mathcal{I}_{\lambda}}\left[D_{\varphi}\left(\hat{\alpha}_{i}^{\lambda}\right)\right]_{j j} \cdot \alpha_{i}^{\lambda} \in E_{R}^{\lambda} \subseteq E_{K}^{\lambda}
$$

for $j \in\left\{1, \ldots, d_{\varphi}\right\}$. Then $\epsilon_{\varphi}=\sum_{j=1}^{d_{\varphi}} \epsilon_{\varphi, j} \in E_{R}^{\lambda}$ is a decomposition of ϵ_{φ} into pairwise orthogonal primitive idempotents. Hence $\epsilon_{\varphi} E_{R}^{\lambda} \epsilon_{\varphi} \cong R^{d_{\varphi} \times d_{\varphi}}$ as R algebras, thus $\widetilde{\epsilon_{\varphi} E_{R}^{\lambda} \epsilon_{\varphi}} \cong F^{d_{\varphi} \times d_{\varphi}}$ as F-algebras. Hence $\widetilde{S_{\varphi}}$ is an irreducible $E_{F}^{\tilde{\lambda}}$-module, with corresponding Schur element $\widetilde{c_{\varphi}} \neq 0 \in F$.
(3.5) Remark. As $c_{\varphi_{\chi}}=c_{\chi}$, for $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$, we conclude that $E_{F}^{\bar{\lambda}}$ is semisimple if and only if all $K G$-constituents of λ^{G} are of p-defect 0 . Hence for $\lambda=1$, where the trivial $K G$-character is an element of $\operatorname{Irr}_{K}^{\lambda}(G)$, the F-algebra E_{F} is semisimple if and only if p does not divide the group order $|G|$. But for $\lambda \neq 1$ the F-algebra $E_{F}^{\bar{\lambda}}$ might be semisimple even if p divides $|G|$, as the following examples show.

(3.6) Example.

a) Let $F:=\mathbb{F}_{4}$ be the finite field of order 4 , let $G:=\mathcal{S}_{3}$ be the symmetric group on 3 letters and $H:=\mathcal{A}_{3}$ be the alternating group on 3 letters, and let $1 \neq \tilde{\lambda} \in \operatorname{Irr}_{F}\left(\mathcal{A}_{3}\right)$ be a non-trivial F-representation. Then $\tilde{\lambda}^{G}$ is an irreducible F-representation of \mathcal{S}_{3} of degree 2 , and we have $\tilde{\lambda}^{G} \cong \widetilde{\rho}$ as $F \mathcal{S}_{3}$-modules, where ρ is the reflection K-representation of \mathcal{S}_{3}, whose Schur element is $c_{\rho}=3 \in K$.
b) Let $G:=S L_{2}\left(\mathbb{F}_{q}\right)$ be the special linear group of degree 2 over \mathbb{F}_{q}, where q is a prime power $q \geq 4$, and let $H:=U \ltimes T<G$ be a split Borel subgroup with torus $T \cong C_{q-1}$. We have $|H|=q(q-1)$ and $|G|=q(q-1)(q+1)$. Let F be a finite field of characteristic coprime to $q(q-1)$ containing primitive $(q-1)$-st roots of unity. Hence B has exactly $q-1$ different F-representations $\tilde{\lambda} \in \operatorname{Irr}_{F}(H)$ of degree 1 , all of which are inflated from T. If $1 \neq \tilde{\lambda}^{2}$, then $\tilde{\lambda}^{G}$ is irreducible of degree $q+1$, and hence has Schur element $0 \neq q(q-1) \in F$. If $\tilde{\lambda} \neq 1$, but $\tilde{\lambda}^{2}=1$, then $\tilde{\lambda}^{G}$ has two non-isomorphic constituents of degree $\frac{q+1}{2}$, whose Schur elements hence are $0 \neq 2 q(q-1) \in F$.

We introduce the second main actor of the present work.
(3.7) Definition. The matrix

$$
\Phi_{\lambda}:=\left[\varphi\left(\alpha_{i}^{\lambda}\right) ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right), i \in \mathcal{I}_{\lambda}\right] \in K^{\left|\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right| \times\left|\mathcal{I}_{\lambda}\right|}
$$

with row index φ and column index i, is called the character table of E_{K}^{λ}. For $\lambda=1$ let $\Phi:=\Phi_{1}$.

Explicit examples of character tables are shown in Examples (3.12) and (4.10) as well as (5.17), and of course in Part III. In all the explicitly given tables we also indicate the Fitting correspondence $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right) \rightarrow \operatorname{Irr}_{K}^{\lambda}(G)$, see Proposition (2.7). We proceed to prove the most important structural feature of the character table of an endomorphism ring, the orthogonality relations.
(3.8) Proposition. Orthogonality relations.
a) We have the first orthogonality relations

$$
\overline{\Phi_{\lambda}} \cdot \operatorname{diag}\left[k_{i}^{-1} ; i \in \mathcal{I}_{\lambda}\right] \cdot \Phi_{\lambda}^{T}=n \cdot \operatorname{diag}\left[\frac{d_{\varphi}}{m_{\varphi}} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right]
$$

b) If E_{K}^{λ} is commutative, then we have the second orthogonality relations

$$
\Phi_{\lambda}^{T} \cdot \operatorname{diag}\left[m_{\varphi} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right] \cdot \overline{\Phi_{\lambda}}=n \cdot \operatorname{diag}\left[k_{i} ; i \in \mathcal{I}_{\lambda}\right] .
$$

Proof. Because of $\varphi\left(\epsilon_{\varphi^{\prime}}\right)=\delta_{\varphi, \varphi^{\prime}} \cdot d_{\varphi}$, for $\varphi, \varphi^{\prime} \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, by Proposition (3.2) we have $\sum_{i \in \mathcal{I}_{\lambda}} \frac{1}{k_{i}} \cdot \overline{\varphi\left(\alpha_{i}^{\lambda}\right)} \cdot \varphi^{\prime}\left(\alpha_{i}^{\lambda}\right)=\delta_{\varphi, \varphi^{\prime}} \cdot \frac{|G| \cdot d_{\varphi}}{|H| \cdot m_{\varphi}}=\delta_{\varphi, \varphi^{\prime}} \cdot \frac{n \cdot d_{\varphi}}{m_{\varphi}}$, which in terms of matrices is just the assertion in a).

If E_{K}^{λ} is commutative, then by Remark (2.9) we have $d_{\varphi}=1$ for all $\varphi \in$ $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $\left|\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right|=r$, hence Φ_{λ} is a square matrix. Because of the first orthogonality relations Φ_{λ} is invertible, and we have

$$
\Phi_{\lambda}^{-T} \cdot \operatorname{diag}\left[k_{i} ; i \in \mathcal{I}_{\lambda}\right] \cdot \overline{\Phi_{\lambda}^{-1}}=\frac{1}{n} \cdot \operatorname{diag}\left[m_{\varphi} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right]
$$

From this the assertion in b) follows.
(3.9) Remark. In particular, by the first orthogonality relations we obtain

$$
\frac{1}{m_{\varphi}}=\frac{1}{d_{\varphi} \cdot n} \cdot \sum_{i \in \mathcal{I}_{\lambda}} \frac{1}{k_{i}} \cdot \overline{\varphi\left(\alpha_{i}^{\lambda}\right)} \cdot \varphi\left(\alpha_{i}^{\lambda}\right)
$$

for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. As $d_{\varphi}=\varphi\left(\alpha_{1}^{\lambda}\right)$ is known from Φ_{λ} the degree $\chi_{\varphi}(1)=m_{\varphi}$ of the Fitting correspondent $\chi_{\varphi} \in \operatorname{Irr}_{K}^{\lambda}(G)$ of $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ can be read off from Φ_{λ} as soon as the k_{i}, for $i \in \mathcal{I}_{\lambda}$, are known; see also Remark (3.21).

As a direct consequence of the orthogonality relations we obtain the following notion, which for the case $\lambda=1$ first appeared in [20]. Part of the statements in c) of Proposition (3.10) have been proved in [21], see also [80, Thm.V.30.1].

(3.10) Proposition.

a) For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $i \in \mathcal{I}_{\lambda}$, the character value $\varphi\left(\alpha_{i}^{\lambda}\right) \in K$ is an algebraic integer. If E_{K}^{λ} is commutative, then $\operatorname{det} \Phi_{\lambda} \in K$ and $\operatorname{det} \overline{\Phi_{\lambda}} \in K$ are algebraic integers, and we have $\left(\operatorname{det} \Phi_{\lambda}\right)^{2} \in \mathbb{Q}(\lambda(H))$ and $\operatorname{det} \Phi_{\lambda} \cdot \operatorname{det} \overline{\Phi_{\lambda}} \in \mathbb{Q}$.
b) Let E_{K}^{λ} be commutative. Then the generalised Frame number

$$
N_{\lambda}:=n^{\left|\mathcal{I}_{\lambda}\right|} \cdot\left(\prod_{i \in \mathcal{I}_{\lambda}} k_{i}\right) \cdot\left(\prod_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} \frac{1}{m_{\varphi}}\right)
$$

is a rational integer.
c) Let $\lambda=1$ and E_{K} be commutative. Then the Frame number $N_{1} \in \mathbb{Z}$ is divisible by n^{2}. Furthermore, $N_{1} \in \mathbb{Z}$ is a square in \mathbb{Z}, if and only if either
i) $|\mathcal{I}|-\left|\left\{i \in \mathcal{I} ; i^{*}=i\right\}\right| \equiv 0 \bmod 4$ and $\operatorname{det} \Phi \in \mathbb{Z}$, or
ii) $|\mathcal{I}|-\left|\left\{i \in \mathcal{I} ; i^{*}=i\right\}\right| \equiv 2 \bmod 4$ and $\operatorname{det} \Phi \in i \mathbb{Z}$.

In particular, N_{1} is a square in \mathbb{Z}, if all characters in $\operatorname{Irr}_{K}^{1}(G)$ are rational-valued.
Proof. Let \mathcal{R} be the set of all discrete valuation rings in K, without any restriction to the characteristic of the residue class field of R. As the representation of E_{K}^{λ} affording φ can be realized over all rings $R \in \mathcal{R}$, see Section (2.10), we conclude that $\varphi\left(\alpha_{i}^{\lambda}\right) \in \bigcap_{R \in \mathcal{R}} R$, which by [15, Ch.I.4.C] is the ring of algebraic integers in K.
If E_{K}^{λ} is commutative, then from the second orthogonality relations, see Proposition (3.8), we obtain by taking determinants

$$
\operatorname{det} \Phi_{\lambda} \cdot \operatorname{det} \overline{\Phi_{\lambda}} \cdot\left(\prod_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} m_{\varphi}\right)=n^{\left|\mathcal{I}_{\lambda}\right|} \cdot\left(\prod_{i \in \mathcal{I}_{\lambda}} k_{i}\right)
$$

Thus $\operatorname{det} \Phi_{\lambda} \cdot \operatorname{det} \overline{\Phi_{\lambda}}=N_{\lambda} \in \mathbb{Q}$ is an algebraic integer. By Proposition (3.1), we have $\overline{\Phi_{\lambda}}=\Phi_{\lambda} \cdot Q_{\lambda} \cdot \operatorname{diag}\left[\zeta_{i}^{-1} ; i \in \mathcal{I}_{\lambda}\right]$, where $Q_{\lambda} \in \mathbb{Z}^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$ is the permutation matrix describing the permutation of the columns of Φ_{λ} induced by the pairing involution $*: \mathcal{I}_{\lambda} \rightarrow \mathcal{I}_{\lambda}$. Hence we have $\operatorname{det} Q_{\lambda}=(-1)^{\frac{\left|\mathcal{I}_{\lambda}\right|-\left|\left\{i \in \mathcal{I}_{\lambda} ; i^{*}=i\right\}\right|}{}}$. Thus we obtain

$$
N_{\lambda}=(-1)^{\frac{\left|\mathcal{I}_{\lambda}\right|-\left|\left\{i \in \mathcal{I}_{\lambda} ; i^{*}=i\right\}\right|}{2}} \cdot\left(\operatorname{det} \Phi_{\lambda}\right)^{2} \cdot \prod_{i \in \mathcal{I}_{\lambda}} \frac{1}{\zeta_{i}}
$$

Hence we have $\left(\operatorname{det} \Phi_{\lambda}\right)^{2} \in \mathbb{Q}(\lambda(H))$. This proves the assertions in a) and b).
For $\lambda=1$, we have $(\operatorname{det} \Phi)^{2} \in \mathbb{Q}$. Hence $\operatorname{det} \Phi \in \mathbb{R}$ or $\operatorname{det} \Phi \in i \mathbb{R}$. From this the characterisation of $N_{1} \in \mathbb{Z}$ being square in \mathbb{Z} follows. As is shown in Remark (3.21), we have $k_{i}=\varphi_{1}\left(\alpha_{i}\right)$ for $i \in \mathcal{I}$, where $\varphi_{1} \in \operatorname{Irr}_{K}\left(E_{K}\right)$ denotes the Fitting correspondent of the trivial $K G$-character. Hence using the first orthogonality relations, see Proposition (3.8), we obtain $\bar{\Phi} \cdot[1, \ldots, 1]^{T}=n \cdot[1,0, \ldots, 0]^{T}$. Hence det Φ is divisible by n in the ring of algebraic integers in K. If all characters in $\operatorname{Irr}_{K}^{1}(G)$ are rational-valued, by Remark (3.21) below, we have $\varphi\left(\alpha_{i}\right) \in \mathbb{Q}$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$ and $i \in \mathcal{I}$, hence $\operatorname{det} \Phi \in \mathbb{Z}$, and by Proposition (3.1) we have $i^{*}=i$ for all $i \in \mathcal{I}$. This proves the assertions in c).
(3.11) Remark. In general, it is not true that $N_{1} \in \mathbb{Z}$ is a square, if only $i^{*}=i$ holds for all $i \in \mathcal{I}$, but no further assumption on $\operatorname{det} \Phi$ is made, as the following example shows, thus disproving a conjecture in [20].
(3.12) Example. Let $G:=J_{1}$ and $H:=L_{2}(11)<G$ as well as $\lambda=1$. The character table Φ of the endomorphism ring E_{K} is contained in the database, see Section (11.1), and is given as follows, where $r_{5}:=\sqrt{5} \in \mathbb{R}$. According to Definition (3.7), the rows and columns of Φ are indexed by $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$ and $i \in \mathcal{I}=\{1, \ldots, 5\}$, respectively, and the entry of Φ in row φ and column i is the character value $\varphi\left(\alpha_{i}\right) \in K$, for the Schur basis element $\alpha_{i} \in \mathcal{A}$. Furthermore we indicate the Fitting correspondence $\operatorname{Irr}_{K}\left(E_{K}\right) \rightarrow \operatorname{Irr}_{K}^{1}(G): \varphi \mapsto \chi_{\varphi}$, see Proposition (2.7).

φ	χ_{φ}	1	2	3	4	5
1	$1 a$	1	11	12	110	132
2	$56 a$	1	$\frac{-7-r_{5}}{2}$	$\frac{-3+3 r_{5}}{2}$	$\frac{5+7 r_{5}}{2}$	$\frac{3-9 r_{5}}{2}$
3	$56 b$	1	$\frac{-7+r_{5}}{2}$	$\frac{-3-3 r_{5}}{2}$	$\frac{5-7 r_{5}}{2}$	$\frac{3+9 r_{5}}{2}$
4	$76 a$	1	4	-2	5	-8
5	$77 a$	1	1	4	-10	4

As is shown in Remark (3.21), we have $k_{i}=\varphi_{1}\left(\alpha_{i}\right)$ for $i \in \mathcal{I}=\{1, \ldots, 5\}$. Hence the index parameters are pairwise different, and thus we have $i^{*}=i$ for all $i \in \mathcal{I}$. But we have $\operatorname{det} \Phi=-2 \cdot 3 \cdot 7 \cdot 11 \cdot 19^{2} \cdot r_{5} \in \mathbb{Q}\left(r_{5}\right)$ and hence $N_{1}=(\operatorname{det} \Phi)^{2}=2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11^{2} \cdot 19^{4} \in \mathbb{Z}$, which is not a square in \mathbb{Z}.
(3.13) Remark. Let E_{K}^{λ} be commutative. Let $e \in \mathbb{N}$ and let $\zeta_{e} \in \mathbb{Q}(\lambda(H))$ be a primitive e-th root of unity such that $\mathbb{Q}(\lambda(H))=\mathbb{Q}\left(\zeta_{e}\right)$. Let $\zeta_{2 e} \in \mathbb{C}$ is a primitive $2 e$-th root of unity. It follows from the proof of Proposition (3.10) that N_{λ} is a square in the ring of integers of $\mathbb{Q}\left(\zeta_{2 e}\right)$, which by [50, Cor.2.2] coincides with $\mathbb{Z}\left[\zeta_{2 e}\right]$. But for the case $\lambda \neq 1$, no characterisation for the generalised Frame number $N_{\lambda} \in \mathbb{Q}(\lambda(H))$ to be a square in the ring of integers $\mathbb{Z}[\lambda(H)]=\mathbb{Z}\left[\zeta_{e}\right]$ of $\mathbb{Q}(\lambda(H))$ is known to the author.
This question is related to the question whether $\prod_{i \in \mathcal{I}_{\lambda}} \zeta_{i} \in \mathbb{Q}(\lambda(H))$ is a square in $\mathbb{Z}[\lambda(H)]$. As by Corollary (1.14) we have $\zeta_{i}=\zeta_{i^{*}}$, for $i \in \mathcal{I}_{\lambda}$, we only have to consider $\prod_{i \in \mathcal{I}_{\lambda}, i=i^{*}} \zeta_{i} \in \mathbb{Q}(\lambda(H))$. Hence let $i \in \mathcal{I}_{\lambda}$ such that $i=i^{*}$. By Definition (1.12) we have $\zeta_{i}=\frac{\lambda\left(\eta_{i}\right)}{\lambda\left(h_{i i}-\right)}$. Let $h \in H_{i}$ and $\eta^{\prime} \in H$ such that

$$
\eta_{i} \cdot g_{i} \cdot h_{i i^{-}}=g_{i}^{-1}=\eta^{\prime} \cdot g_{i} \cdot h \cdot h_{i i^{-}}=\eta^{\prime} \cdot g_{i} h g_{i}^{-1} \cdot g_{i} \cdot h_{i i^{-}}
$$

Hence we have $\eta^{\prime} \cdot g_{i} h g_{i}^{-1}=\eta_{i}$ and thus

$$
\frac{\lambda\left(\eta^{\prime}\right)}{\lambda\left(h \cdot h_{i i^{-}}\right)}=\frac{\lambda\left(\eta_{i}\right)}{\lambda\left(g_{i} h g_{i}^{-1}\right) \cdot \lambda(h) \cdot \lambda\left(h_{i i^{-}}\right)}=\frac{1}{\lambda(h)^{2}} \cdot \frac{\lambda\left(\eta_{i}\right)}{\lambda\left(h_{i i^{-}}\right)} .
$$

Hence without loss of generality we may change the set of representatives of the right cosets $H_{i} \mid H$ of H_{i} in H. Let $h, h^{\prime} \in H$. Then we have

$$
\left(h g_{i} h^{\prime}\right)^{-1}=h^{\prime-1} \cdot \eta_{i} g_{i} h_{i i^{-}} \cdot h^{-1}=h^{\prime-1} \eta_{i} h^{-1} \cdot h g_{i} h^{\prime} \cdot h^{\prime-1} h_{i i^{-}} h^{-1}
$$

and thus $\frac{\lambda\left(h^{\prime-1} \cdot \eta_{i} \cdot h^{-1}\right)}{\lambda\left(h^{\prime-1} \cdot h_{i i}-h^{-1}\right)}=\frac{\lambda\left(\eta_{i}\right)}{\lambda\left(h_{i i}\right)}=\zeta_{i}$. Hence without loss of generality we may as well change the set of representatives of the H - H-double cosets in G.

Thus we may choose $g_{i} \in G$ such that for $\omega_{i}:=\omega_{1} g_{i} \in \Omega$ we have $\omega_{i} g_{i}=\omega_{1}$, Thus we have $g_{i}^{2} \in H_{i}$ and $g_{i}^{-1}=\eta_{i} \cdot g_{i}=g_{i} \cdot \eta_{i}$, where $\eta_{i} \in H_{i} \leq H$. Having made these choices, we have reduced the question whether $\prod_{i \in \mathcal{I}_{\lambda}} \zeta_{i} \in \mathbb{Q}(\lambda(H))$ is a square in $\mathbb{Z}[\lambda(H)]$ to the question whether $\prod_{i \in \mathcal{I}_{\lambda}, i=i^{*}} \lambda\left(\eta_{i}\right) \in \mathbb{Q}(\lambda(H))$ is a square in $\mathbb{Z}[\lambda(H)]$. For this, again, no general statement is known to the author.

We discuss the relationship between the character table of a commutative endomorphism ring E_{K}^{λ}, the set of its centrally primitive idempotents, and its structure constants matrices.
(3.14) Proposition. Let E_{K}^{λ} be commutative, let

$$
\mathcal{E}_{\lambda}:=\left\{\epsilon_{\varphi} \in E_{K}^{\lambda} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right\}
$$

be the set of centrally primitive idempotents of E_{K}^{λ}, and let $\left[\mathcal{E}_{\lambda}\right]_{\mathcal{A}_{\lambda}} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$ be the matrix describing the centrally primitive idempotents in terms of the Schur basis \mathcal{A}_{λ}, see Proposition (3.2).
a) Then \mathcal{E}_{λ} is a K-basis of E_{K}^{λ} and $\left\{\epsilon_{\varphi} E_{K}^{\lambda} \leq E_{K}^{\lambda} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right\}$ is the set of all 1-dimensional E_{K}^{λ}-submodules of E_{K}^{λ}. For $j \in \mathcal{I}_{\lambda}$ we have

$$
\left[\mathcal{E}_{\lambda}\right]_{\mathcal{A}_{\lambda}} \cdot P_{j}^{\lambda}=\operatorname{diag}\left[\varphi\left(\alpha_{j}^{\lambda}\right) ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right] \cdot\left[\mathcal{E}_{\lambda}\right]_{\mathcal{A}_{\lambda}},
$$

where P_{j}^{λ} is the j-th structure constants matrix, see Definition (1.18). b) We have $\left[\mathcal{E}_{\lambda}\right]_{\mathcal{A}_{\lambda}}=\Phi_{\lambda}^{-T}$ as well as

$$
n \cdot \operatorname{diag}\left[m_{\varphi}^{-1} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right] \cdot\left[\mathcal{E}_{\lambda}\right]_{\mathcal{A}_{\lambda}}=\overline{\Phi_{\lambda}} \cdot \operatorname{diag}\left[k_{i}^{-1} ; i \in \mathcal{I}_{\lambda}\right]
$$

Proof. The regular E_{K}^{λ}-module E_{K}^{λ} decomposes as $E_{K}^{\lambda} \cong \bigoplus_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} \epsilon_{\varphi} E_{K}^{\lambda}$, where $\operatorname{dim}_{K}\left(\epsilon_{\varphi} E_{K}^{\lambda}\right)=1$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. We have $\epsilon_{\varphi} \cdot \alpha_{j}^{\lambda}=\varphi\left(\alpha_{j}^{\lambda}\right) \cdot \epsilon_{\varphi}$, for $\varphi \in$ $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. From that and the uniqueness of the centrally primitive idempotents the assertions in a) follow. The assertions in b) follow from Proposition (3.2) and the second orthogonality relations, see Proposition (3.8).
(3.15) Corollary. Let $\mathcal{J} \subseteq \mathcal{I}_{\lambda}$ and $\mathcal{C}:=\left\langle\alpha_{j}^{\lambda} ; j \in \mathcal{J}\right\rangle_{K \text {-algebra }} \leq E_{K}^{\lambda}$. Then we have $\mathcal{C}=E_{K}^{\lambda}$ if and only if $E_{K}^{\lambda} \cong \bigoplus_{i \in\left\{1, \ldots,\left|\mathcal{I}_{\lambda}\right|\right\}} S_{i}$ as \mathcal{C}-modules, where the $S_{i} \leq E_{K}^{\lambda}$ are pairwise non-isomorphic \mathcal{C}-modules such that $\operatorname{dim}_{K}\left(S_{i}\right)=1$.

(3.16) Definition.

a) For $i, j \in \mathcal{I}_{\lambda}$ let $\hat{\alpha}_{i}^{\lambda} \cdot \alpha_{j}^{\lambda}=\sum_{k \in \mathcal{I}_{\lambda}} p_{\hat{i} j \hat{k}}^{\lambda} \cdot \hat{\alpha}_{k}^{\lambda}$, for the dual structure constants $p_{\hat{i} j \hat{k}}^{\lambda} \in \mathbb{Q}(\lambda(H))$, where $\hat{\mathcal{A}}_{\lambda}=\left\{\hat{\alpha}_{k}^{\lambda} ; k \in \mathcal{I}_{\lambda}\right\}$ is the dual Schur basis, see Definition (2.4). For the case $\lambda=1$ let $p_{\hat{i} j \hat{k}}:=p_{\hat{i} j \hat{k}}^{1}$.
b) For $j \in \mathcal{I}_{\lambda}$, the representing matrix $\left[\alpha_{j}^{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}}$ of the right regular action of α_{j}^{λ} on E_{K}^{λ}, with respect to the dual Schur basis $\hat{\mathcal{A}}_{\lambda}$, is given by the j-th dual structure constants matrix

$$
\left[\alpha_{j}^{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}}=\hat{P}_{j}^{\lambda}:=\left[p_{\hat{i} j \hat{k}}^{\lambda} ; i, k \in \mathcal{I}_{\lambda}\right] \in \mathbb{Q}(\lambda(H))^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}
$$

with row index i and column index k. For the case $\lambda=1$ let $\hat{P}_{j}:=\hat{P}_{j}^{1}$.
(3.17) Proposition. Let $i, j, l \in \mathcal{I}_{\lambda}$.
a) For the structure constants matrix $P_{i^{*}}^{\lambda}$ we have

$$
P_{i^{*}}^{\lambda}=\zeta_{i} \cdot \operatorname{diag}\left[k_{j} ; j \in \mathcal{I}_{\lambda}\right] \cdot \overline{\left(P_{i}^{\lambda}\right)^{T}} \cdot \operatorname{diag}\left[k_{l}^{-1} ; l \in \mathcal{I}_{\lambda}\right]
$$

b) For the dual structure constants $p_{\hat{i} j \hat{l}}^{\lambda}$ we have $p_{\hat{i} j \hat{l}}^{\lambda}=\frac{k_{l} \cdot \zeta_{l^{*}}}{k_{i} \cdot \zeta_{i^{*}}} \cdot p_{i^{*} j l^{*}}^{\lambda}$.
c) If E_{K}^{λ} is commutative, then we have $\hat{P}_{j}^{\lambda}=\left(P_{j}^{\lambda}\right)^{T}$.

Proof. Using Corollary (1.14), Remark (1.19), the symmetrising form t, see Proposition (2.3), and Definition (2.4) we obtain

$$
\begin{aligned}
p_{j i^{*} l}^{\lambda} & =\frac{\zeta_{i} \cdot \zeta_{j^{*}}}{\zeta_{l^{*}}} \cdot \overline{p_{i j^{*} l^{*}}^{\lambda}} \\
& =\frac{\zeta_{i} \cdot \zeta_{j^{*}}}{\zeta_{l^{*}}} \cdot \overline{t\left(\alpha_{i}^{\lambda} \alpha_{j^{*}}^{\lambda} \hat{\alpha}_{l^{*}}^{\lambda}\right)} \\
& =\frac{\zeta_{i} \cdot \zeta_{j^{*}}}{\zeta_{l^{*}}} \cdot \frac{|H| \cdot \zeta_{l}}{k_{l}} \cdot \overline{t\left(\alpha_{i}^{\lambda} \alpha_{j^{*}}^{\lambda} \alpha_{l}^{\lambda}\right)} \\
& =\frac{\zeta_{i} \cdot \zeta_{j^{*}}}{\zeta_{l^{*}}} \cdot \frac{|H| \cdot \zeta_{l}}{k_{l}} \cdot \frac{k_{j}}{|H| \cdot \zeta_{j^{*}}} \cdot \overline{t\left(\alpha_{l}^{\lambda} \alpha_{i}^{\lambda} \hat{\alpha}_{j}^{\lambda}\right)} \\
& =\frac{k_{j} \cdot \zeta_{i}}{k_{l}} \cdot \overline{p_{l i j}^{\lambda}}
\end{aligned}
$$

This shows the assertion in a). Furthermore, we have

$$
p_{\hat{i} j \hat{l}}^{\lambda}=t\left(\hat{\alpha}_{i}^{\lambda} \alpha_{j}^{\lambda} \alpha_{l}^{\lambda}\right)=\frac{k_{l} \cdot \zeta_{l^{*}}}{k_{i} \cdot \zeta_{i^{*}}} \cdot t\left(\alpha_{i^{*}}^{\lambda} \alpha_{j}^{\lambda} \hat{\alpha}_{l^{*}}^{\lambda}\right)=\frac{k_{l} \cdot \zeta_{l^{*}}}{k_{i} \cdot \zeta_{i^{*}}} \cdot p_{i^{*} j l^{*}}^{\lambda}
$$

This shows the assertion in b), while the assertion in c) follows from

$$
p_{i j \hat{l}}^{\lambda}=t\left(\hat{\alpha}_{i}^{\lambda} \alpha_{j}^{\lambda} \alpha_{l}^{\lambda}\right)=t\left(\hat{\alpha}_{i}^{\lambda} \alpha_{l}^{\lambda} \alpha_{j}^{\lambda}\right)=t\left(\alpha_{l}^{\lambda} \alpha_{j}^{\lambda} \hat{\alpha}_{i}^{\lambda}\right)=p_{l j i}^{\lambda} .
$$

(3.18) Proposition. Let E_{K}^{λ} be commutative and $j \in \mathcal{I}_{\lambda}$.
a) Let $\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$ be the matrix describing the centrally primitive idempotents of E_{K}^{λ} in terms of the dual Schur basis $\hat{\mathcal{A}}_{\lambda}$. Then we have

$$
\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}} \cdot\left(P_{j}^{\lambda}\right)^{T}=\operatorname{diag}\left[\varphi\left(\alpha_{j}^{\lambda}\right) ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right] \cdot\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}}
$$

and

$$
\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}}=\frac{1}{|G|} \cdot \operatorname{diag}\left[m_{\varphi} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right] \cdot \Phi_{\lambda}
$$

b) We have $P_{j}^{\lambda}=\Phi_{\lambda}^{T} \cdot \operatorname{diag}\left[\varphi\left(\alpha_{j}^{\lambda}\right) ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right] \cdot \Phi_{\lambda}^{-T}$.

Proof. The first assertion in a) follows from Proposition (3.14) and Proposition (3.17). By Proposition (3.2) and its proof we have

$$
\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}}=\left[\frac{1}{c_{\varphi}} \cdot \varphi\left(\alpha_{i}^{\lambda}\right) ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right), i \in \mathcal{I}_{\lambda}\right]
$$

with row index φ and column index i. Hence the second assertion in a) follows. The assertion in b) follows from those in a).

Finally, we discuss the relationship between the character table Φ_{λ} of E_{K}^{λ}, see Definition (3.7), and the ordinary character table of the underlying group G.
(3.19)

Definition. Let $\mathcal{C l}(G)$ denote the set of conjugacy classes of G and let

$$
\mathcal{X}_{\lambda}:=\left[\chi(C) ; \chi \in \operatorname{Irr}_{K}^{\lambda}(G), C \in \mathcal{C} l(G)\right] \in K^{\left|\operatorname{Irr}_{K}^{\lambda}(G)\right| \times|\mathcal{C l}(G)|}
$$

denote the character table of $\operatorname{Irr}_{K}^{\lambda}(G)$, with row index χ and column index C. For $C \in \mathcal{C l}(G)$ and $i \in \mathcal{I}$ let

$$
\gamma_{i}^{\lambda}(C):=\sum_{h \in H} \delta_{C}\left(h g_{i}\right) \cdot \lambda\left(h^{-1}\right) \in \mathbb{Q}(\lambda(H))
$$

where $\delta_{C}: G \rightarrow\{0,1\}$ is defined by $\delta_{C}(g)=1$ if and only if $g \in C$. Note that $\gamma_{i}^{\lambda}(C)$ does not depend on the particular choice of the representative of the double coset $H g_{i} H \subseteq G$. Let

$$
\Gamma_{\lambda}:=\left[\gamma_{i}^{\lambda}(C) ; i \in \mathcal{I}_{\lambda}, C \in \mathcal{C} l(G)\right] \in \mathbb{Q}(\lambda(H))^{\left|\mathcal{I}_{\lambda}\right| \times|\mathcal{C} l(G)|}
$$

with row index $i \in \mathcal{I}_{\lambda}$ and column index C. The $\gamma_{j}^{\lambda}(C)$ for $j \notin \mathcal{I}_{\lambda}$ are dealt with in Proposition (3.22).
For $\lambda=1$ let $\gamma_{i}(C):=\gamma_{i}^{1}(C)=\left|C \cap H g_{i}\right| \in \mathbb{Z}$ and $\Gamma:=\Gamma_{1} \in \mathbb{Q}^{r \times|\mathcal{C l}(G)|}$, for $i \in \mathcal{I}$ and $C \in \mathcal{C l}(G)$.
(3.20) Proposition. For the character table Φ_{λ} of E_{K}^{λ} we have

$$
\Phi_{\lambda}=\frac{1}{|H|} \cdot \mathcal{X}_{\lambda} \cdot \Gamma_{\lambda}^{T} \cdot \operatorname{diag}\left[k_{i} ; i \in \mathcal{I}_{\lambda}\right]
$$

Proof. Let $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$ be its Fitting correspondent, see Proposition (2.7) and Section (2.8). For $\alpha \in E_{K}^{\lambda}$ and $\sigma=\sigma_{\lambda}$ as in Section (2.1), let α_{χ}^{σ}, denote the image of $\alpha^{\sigma} \in \operatorname{End}_{K G}\left(\epsilon_{\lambda} K G\right)$ under the projection onto the direct summand $K^{d_{\varphi} \times d_{\varphi}}$ belonging to χ. Hence we have $\varphi(\alpha)=\operatorname{tr}\left(\alpha_{\chi}^{\sigma}\right)$. Furthermore we have $K^{d_{\varphi} \times d_{\varphi}} \cdot \tau=\epsilon_{\lambda} \epsilon_{\chi} K G \epsilon_{\chi} \epsilon_{\lambda} \subseteq \epsilon_{\chi} K G \epsilon_{\chi} \cong K^{m_{\varphi} \times m_{\varphi}}$, where $m_{\varphi}=\chi(1)$ and $\tau=\tau_{\lambda}$ is as in Section (2.1). Hence the Pierce decomposition of $\epsilon_{\chi} K G \epsilon_{\chi}$ with respect to $\epsilon_{\lambda} \epsilon_{\chi}$ shows that we have $\operatorname{tr}\left(\alpha_{\chi}^{\sigma}\right)=\chi\left(\left(\alpha_{\chi}^{\sigma}\right) \tau\right)$. Since for $\chi \neq \chi^{\prime} \in \operatorname{Irr}_{K}^{\lambda}(G)$ we have $\chi\left(\left(\alpha_{\chi^{\prime}}^{\sigma}\right) \tau\right)=0$, we conclude that $\varphi(\alpha)=\chi\left(\left(\alpha_{\chi}^{\sigma}\right) \tau\right)=$ $\chi\left(\left(\alpha^{\sigma}\right) \tau\right)$. For $i \in \mathcal{I}_{\lambda}$ we hence have

$$
\begin{aligned}
\varphi\left(\alpha_{i}^{\lambda}\right) & =\chi\left(\left(\left(\alpha_{i}^{\lambda}\right)^{\sigma}\right) \tau\right) \\
& =k_{i} \cdot \chi\left(\epsilon_{\lambda} g_{i} \epsilon_{\lambda}\right) \\
& =\frac{k_{i}}{|H|^{2}} \cdot \sum_{h, h^{\prime} \in H} \lambda\left(h^{-1}\right) \cdot \lambda\left(\left(h^{\prime}\right)^{-1}\right) \cdot \chi\left(h g_{i} h^{\prime}\right) \\
& =\frac{k_{i}}{|H|^{2}} \cdot \sum_{h, h^{\prime} \in H} \lambda\left(\left(h^{\prime} h\right)^{-1}\right) \cdot \chi\left(h^{\prime} h g_{i}\right) \\
& =\frac{k_{i}}{|H|} \cdot \sum_{h \in H} \lambda\left(h^{-1}\right) \cdot \chi\left(h g_{i}\right) \\
& =\frac{k_{i}}{|H|} \cdot \sum_{C \in \mathcal{C l}(G)} \gamma_{i}^{\lambda}(C) \chi(C)
\end{aligned}
$$

(3.21) Remark.

a) In particular, for $\lambda=1$ let $\varphi_{1} \in \operatorname{Irr}_{K}\left(E_{K}\right)$ be the Fitting correspondent of the trivial $K G$-character. Then we have, for $i \in \mathcal{I}$,

$$
\varphi_{1}\left(\alpha_{i}\right)=\frac{k_{i}}{|H|} \cdot \sum_{C \in \mathcal{C l}(G)}\left|C \cap H g_{i}\right|=k_{i} \in \mathbb{N}
$$

Hence the index parameters k_{i}, for $i \in \mathcal{I}$, can be read off from the character table Φ of E_{K}. Note that the values of φ_{1} on \mathcal{A} are positive integers, and that by the orthogonality relations, see Proposition (3.8), φ_{1} is uniquely determined by this condition.
b) Let for the moment E_{K}^{λ} be commutative, and let

$$
K^{\prime}:=\mathbb{Q}(\lambda(H))\left[\chi(C) ; \chi \in \operatorname{Irr}_{K}^{\lambda}(G), C \in \mathcal{C l}(G)\right]
$$

As $d_{\varphi}=1$ for all $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, by [18, La.IV.9.1] the Schur indices over $\mathbb{Q}(\lambda(H))$ of all $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$ are equal to 1 . Thus K^{\prime} is a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda}(G)$, and hence for E_{K}^{λ} as well.
c) Let without loss of generality K be a splitting field for $K G$, and let $\rho \in$ $\operatorname{Gal}(K / \mathbb{Q}(\lambda(H)))$. As $\lambda^{\rho}=\lambda$, we conclude that $\operatorname{Irr}_{K}^{\lambda}(G)$ is $\operatorname{Gal}(K / \mathbb{Q}(\lambda(H)))$ invariant. As $\left(\Gamma_{\lambda}\right)^{\rho}=\Gamma_{\lambda}$, the set $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ also is $\operatorname{Gal}(K / \mathbb{Q}(\lambda(H)))$-invariant and we have $\chi_{\varphi^{\rho}}=\left(\chi_{\varphi}\right)^{\rho} \in \operatorname{Irr}_{K}^{\lambda}(G)$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. In particular, if $\lambda(H) \subseteq \mathbb{R}$, we have $\chi_{\bar{\varphi}}=\overline{\chi_{\varphi}} \in \operatorname{Irr}_{K}^{\lambda}(G)$.

(3.22) Proposition.

a) For $j \notin \mathcal{I}_{\lambda}$ we have $\gamma_{j}^{\lambda}(C)=0$ for all $C \in \mathcal{C l}(G)$.
b) For $\chi \notin \operatorname{Irr}_{K}^{\lambda}(G)$ we have $\sum_{C \in \mathcal{C l}(G)} \gamma_{i}^{\lambda}(C) \chi(C)=0$ for all $i \in \mathcal{I}_{\lambda}$.

Proof. Without loss of generality we assume that K is a splitting field for $K G$. Let $\mathcal{X}=\left[\chi(C) ; \chi \in \operatorname{Irr}_{K}(G), C \in \mathcal{C l}(G)\right] \in K^{|\mathcal{C l}(G)| \times \mid \mathcal{C l (G) |}}$ denote the full K-character table of G. Hence as in the proof of Proposition (3.20) we have $\chi\left(\epsilon_{\lambda} g_{k} \epsilon_{\lambda}\right)=\frac{1}{|H|} \cdot \sum_{C \in \mathcal{C l}(G)} \gamma_{k}^{\lambda}(C) \chi(C)$, for $k \in \mathcal{I}$.

By Proposition (2.2), we have $\epsilon_{\lambda} g_{j} \epsilon_{\lambda}=0 \in K G$, for $j \notin \mathcal{I}_{\lambda}$. Hence for all $\chi \in \operatorname{Irr}_{K}(G)$ we have $\sum_{C \in \mathcal{C l}(G)} \gamma_{j}^{\lambda}(C) \chi(C)=0$. Thus $\mathcal{X} \cdot\left[\gamma_{j}^{\lambda}(C) ; C \in \mathcal{C l}(G)\right]^{T}=$ $0 \in K^{|\mathcal{C l}(G)| \times 1}$. As \mathcal{X} is invertible, the assertion in a) follows. For $\chi \notin \operatorname{Irr}_{K}^{\lambda}(G)$ we have $\epsilon_{\lambda} \epsilon_{\chi}=0 \in K G$, hence $\chi\left(\epsilon_{\lambda} K G \epsilon_{\lambda}\right)=0$. From that the assertion in b) follows.
(3.23) Proposition. See also Ree's Formula [15, Thm.1.11.28]. We have

$$
\mathcal{X}_{\lambda}=\operatorname{diag}\left[\frac{m_{\varphi}}{d_{\varphi}} ; \varphi \in \operatorname{Irr}\left(E_{K}^{\lambda}\right)\right] \cdot \Phi_{\lambda} \cdot \overline{\Gamma_{\lambda}} \cdot \operatorname{diag}\left[|C|^{-1} ; C \in \mathcal{C} l(G)\right]
$$

Proof. For $C \in \mathcal{C l}(G)$ let $C^{+}:=\sum_{g \in C} g \in K G$ be the corresponding conjugacy class sum. Since $C^{+} \in Z(K G)$, we have $\lambda^{G}\left(C^{+}\right) \in E_{K}^{\lambda}$. Thus we have $\lambda^{G}\left(C^{+}\right)=\sum_{i \in \mathcal{I}_{\lambda}} \gamma_{i} \cdot \alpha_{i}^{\lambda} \in E_{K}^{\lambda}$, for $\gamma_{i} \in K$. By the definition of the α_{i}^{λ}, see Section (1.7), we have, for $i \in \mathcal{I}_{\lambda}$ and fixed $j \in\left\{1, \ldots, k_{i}\right\}$,

$$
\gamma_{i}:=\sum_{h \in H} \delta_{C}\left(h g_{i} h_{i j}\right) \cdot \lambda_{\omega_{1}}\left(h g_{i} h_{i j}\right) \cdot \lambda\left(h_{i j}\right)=\sum_{h \in H} \delta_{C}\left(h g_{i}\right) \cdot \lambda(h)=\overline{\gamma_{i}^{\lambda}(C)}
$$

For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ let $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$ be its Fitting correspondent, see Section (2.8), and let $\operatorname{tr}_{\varphi}$ denote the K-valued trace function on the $K G \otimes_{K} E_{K}^{\lambda}$-module $S_{\chi_{\varphi}} \otimes_{K} S_{\varphi}$. For $i \in \mathcal{I}_{\lambda}$ we then have $\operatorname{tr}_{\varphi}\left(\alpha_{i}^{\lambda}\right)=m_{\varphi} \cdot \varphi\left(\alpha_{i}^{\lambda}\right)$ and $\operatorname{tr}_{\varphi}\left(C^{+}\right)=$ $d_{\varphi} \cdot|C| \cdot \chi(C)$. Thus $\chi(C)=\frac{m_{\varphi}}{d_{\varphi} \cdot|C|} \cdot \sum_{i \in \mathcal{I}_{\lambda}} \overline{\gamma_{i}^{\lambda}(C)} \cdot \varphi\left(\alpha_{i}^{\lambda}\right)$.
(3.24) Remark. Proposition (3.20) describes Φ_{λ} in terms of \mathcal{X}_{λ} and Γ_{λ}, while Proposition (3.23) describes \mathcal{X}_{λ} in terms of Γ_{λ} and Φ_{λ}. We briefly discuss the remaining case of describing Γ_{λ} in terms of Φ_{λ} and \mathcal{X}_{λ}.
Let E_{K}^{λ} be commutative. Then from Proposition (3.23) and the orthogonality relations, see Proposition (3.8), we obtain

$$
\Gamma_{\lambda}=\frac{1}{n} \cdot \operatorname{diag}\left[k_{i}^{-1} ; i \in \mathcal{I}_{\lambda}\right] \cdot \Phi_{\lambda}^{T} \cdot \overline{\mathcal{X}_{\lambda}} \cdot \operatorname{diag}[|C| ; C \in \mathcal{C} l(G)]
$$

Hence we have

$$
\begin{aligned}
\mathcal{Y}_{\lambda} & :=\left\langle\left[\gamma_{i}^{\lambda}(C) ; C \in \mathcal{C l}(G)\right] ; i \in \mathcal{I}_{\lambda}\right\rangle_{K} \\
& =\left\langle\left[\chi_{\varphi}(C) \cdot|C| ; C \in \mathcal{C} l(G)\right] ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right\rangle_{K} \\
& \leq K^{1 \times|\mathcal{C l}(G)|}
\end{aligned}
$$

By Proposition (3.20) and the second orthogonality relations, see Proposition (3.8), we have

$$
\Gamma_{\lambda} \cdot\left(\mathcal{X}_{\lambda}^{T} \cdot \operatorname{diag}\left[m_{\varphi} ; \varphi \in \operatorname{Irr}\left(E_{K}^{\lambda}\right)\right] \cdot \overline{\mathcal{X}_{\lambda}}\right) \cdot \overline{\Gamma_{\lambda}^{T}}=|G| \cdot|H| \cdot \operatorname{diag}\left[k_{i}^{-1} ; i \in \mathcal{I}_{\lambda}\right] .
$$

Hence $\left\{\left[\gamma_{i}^{\lambda}(C) ; C \in \mathcal{C} l(G)\right] ; i \in \mathcal{I}_{\lambda}\right\}$ is an orthogonal K-basis of \mathcal{Y}_{λ}, with respect to the hermitian form defined by the bracketed term. The latter hence is positive definite on \mathcal{Y}_{λ}. Furthermore, because of the orthogonality relations for \mathcal{X}_{λ} we have

$$
\overline{\mathcal{X}_{\lambda}^{\prime}} \cdot\left(\mathcal{X}_{\lambda}^{T} \cdot \operatorname{diag}\left[m_{\varphi} ; \varphi \in \operatorname{Irr}\left(E_{K}^{\lambda}\right)\right] \cdot \overline{\mathcal{X}_{\lambda}}\right) \cdot\left(\mathcal{X}_{\lambda}^{\prime}\right)^{T}=|G|^{2} \cdot \operatorname{diag}\left[m_{\varphi} ; \varphi \in \operatorname{Irr}\left(E_{K}^{\lambda}\right)\right]
$$

where for short $\mathcal{X}_{\lambda}^{\prime}:=\mathcal{X}_{\lambda} \cdot \operatorname{diag}[|C| ; C \in \mathcal{C l}(G)]$. From that we conclude that $\left\{\left[\chi_{\varphi}(C) \cdot|C| ; C \in \mathcal{C} l(G)\right] ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right\}$ also is an orthogonal K-basis of \mathcal{Y}_{λ}.

4 Krein parameters

In Section 4 we restrict ourselves to the case $\lambda=1$, and discuss another algebraic structure on E_{K}, which has a connection to the tensor product structure on $\operatorname{Irr}_{K}^{1}(G)$. As general references see for example [8, Ch.2.3] and [2, Ch.II.3].

Let K be a cyclotomic field being a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{1}(G)$.

(4.1) Definition.

a) For $A=\left[a_{i j} ; i, j \in\{1, \ldots, n\}\right] \in K^{n \times n}$ and $B=\left[b_{i j} ; i, j \in\{1, \ldots, n\}\right] \in$ $K^{n \times n}$, both with row index i and column index j, let the Hadamard product be defined by

$$
A \star B:=\left[a_{i j} b_{i j} ; i, j \in\{1, \ldots, n\}\right] \in K^{n \times n} .
$$

b) As $E_{K} \rightarrow K^{n \times n}: \alpha_{i} \mapsto\left[\alpha_{i}\right]_{\Omega}$, for $i \in \mathcal{I}$, is a faithful K-representation, E_{K} becomes a commutative K-algebra, denoted by E_{K}^{\star}, by the Hadamard product $\alpha_{i} \star \alpha_{j}:=\delta_{i, j} \cdot \alpha_{i}$, for $i, j \in \mathcal{I}$.

(4.2) Remark.

a) Hence \mathcal{A} is the set of centrally primitive idempotents of E_{K}^{\star}.
b) For λ arbitrary and $i, j \in \mathcal{I}_{\lambda} \subseteq \mathcal{I}_{\lambda^{2}}$, by Proposition (1.10) we have

$$
\left[\alpha_{i}^{\lambda}\right]_{\Omega} \star\left[\alpha_{j}^{\lambda}\right]_{\Omega}=\delta_{i, j} \cdot\left[\alpha_{i}^{\lambda^{2}}\right]_{\Omega}
$$

Hence there is a generalised Hadamard product $\star: E_{K}^{\lambda} \times E_{K}^{\lambda} \rightarrow E_{K}^{\lambda^{2}}$.
(4.3) We give an interpretation of the Hadamard product on E_{K} in terms of the permutation module $K \Omega$.

Let $\Delta: \Omega \rightarrow \Omega \times \Omega: \omega \mapsto(\omega, \omega)$ be the diagonal map, and $\Delta \Omega^{\perp}:=(\Omega \times \Omega) \backslash \Delta \Omega \subseteq$ $\Omega \times \Omega$. Thus $K \Omega \otimes_{K} K \Omega$ is endowed with the structure of a $\left(\left(K G \otimes_{K} E_{K}\right) \otimes_{K}\right.$ $\left.\left(K G \otimes_{K} E_{K}\right)\right)$-module, and it decomposes as $K G$-module as

$$
K \Omega \otimes_{K} K \Omega \cong K(\Omega \times \Omega) \cong K(\Delta \Omega) \oplus K\left(\Delta \Omega^{\perp}\right) \cong K \Omega \oplus K\left(\Delta \Omega^{\perp}\right)
$$

Let $\iota: K \Omega \rightarrow K \Omega \otimes_{K} K \Omega$ and $\pi: K \Omega \otimes_{K} K \Omega \rightarrow K \Omega$ be the $K G$-injection and the $K G$-projection corresponding to the above direct sum decomposition.
(4.4) Proposition. Keeping the notation of Section (4.3), let $\alpha, \alpha^{\prime} \in E_{K}$. Then we have

$$
\iota \cdot\left(\alpha \otimes \alpha^{\prime}\right) \cdot \pi=\alpha \star \alpha^{\prime} \in E_{K}
$$

Proof. With respect to the K-bases Ω of $K \Omega$ and $\Omega \otimes \Omega$ of $K(\Omega \otimes \Omega)$ we have $[\iota]_{\omega,\left(\omega^{\prime} \otimes \omega^{\prime \prime}\right)}=\delta_{\omega, \omega^{\prime}} \delta_{\omega^{\prime}, \omega^{\prime \prime}}$ and $[\pi]_{\left(\omega^{\prime} \otimes \omega^{\prime \prime}\right), \omega}=\delta_{\omega, \omega^{\prime}} \delta_{\omega^{\prime}, \omega^{\prime \prime}}$. Furthermore $\left[\alpha \otimes \alpha^{\prime}\right]_{\left(\omega^{\prime} \otimes \omega^{\prime \prime}\right),\left(\tilde{\omega}^{\prime} \otimes \tilde{\omega}^{\prime \prime}\right)}=[\alpha]_{\omega^{\prime}, \tilde{\omega}^{\prime}} \cdot\left[\alpha^{\prime}\right]_{\omega^{\prime \prime}, \tilde{\omega}^{\prime \prime}}$. Hence for $\omega, \tilde{\omega} \in \Omega$ we get

$$
\left[\iota \cdot\left(\alpha \otimes \alpha^{\prime}\right) \cdot \pi\right]_{\omega, \tilde{\omega}}
$$

$=\sum_{\omega^{\prime}, \omega^{\prime \prime}, \tilde{\omega}^{\prime}, \tilde{\omega}^{\prime \prime} \in \Omega}\left([\iota]_{\omega,\left(\omega^{\prime} \otimes \omega^{\prime \prime}\right)} \cdot\left[\alpha \otimes \alpha^{\prime}\right]_{\left(\omega^{\prime} \otimes \omega^{\prime \prime}\right),\left(\tilde{\omega}^{\prime} \otimes \tilde{\omega}^{\prime \prime}\right)} \cdot[\pi]_{\left.\left(\tilde{\omega}^{\prime} \otimes \tilde{\omega}^{\prime \prime}\right), \tilde{\omega}\right)}\right.$
$=\left[\alpha \otimes \alpha^{\prime}\right]_{(\omega \otimes \omega),(\tilde{\omega} \otimes \tilde{\omega})}$
$=[\alpha]_{\omega, \tilde{\omega}} \cdot\left[\alpha^{\prime}\right]_{\omega, \tilde{\omega}}$.
We introduce suitable structure constants of E_{K}^{\star} and show their relationship to the character values of Schur basis elements.
(4.5) Definition. Let E_{K} be commutative. Let $\operatorname{Irr}_{K}\left(E_{K}\right)=\left\{\varphi_{i} ; i \in \mathcal{I}\right\}$, and for $i \in \mathcal{I}$ let $\epsilon_{i} \in E_{K}$ be the centrally primitive idempotent corresponding to φ_{i}. For $i, j \in \mathcal{I}$ we have $\epsilon_{i} \star \epsilon_{j}=\sum_{k \in \mathcal{I}} q_{i j k} \cdot \epsilon_{k}$, for the Krein parameters $q_{i j k} \in K$ of E_{K}^{\star}.
(4.6) Proposition. Let E_{K} be commutative. Then for $i, j, k \in \mathcal{I}$ we have

$$
q_{i j k}=\frac{m_{i} \cdot m_{j}}{n^{2}} \cdot \sum_{l \in \mathcal{I}} \frac{1}{k_{l}^{2}} \cdot \overline{\varphi_{i}\left(\alpha_{l}\right)} \cdot \overline{\varphi_{j}\left(\alpha_{l}\right)} \cdot \varphi_{k}\left(\alpha_{l}\right) .
$$

Proof. By Proposition (3.2), for $i \in \mathcal{I}$ we have $\epsilon_{i}=\sum_{j \in \mathcal{I}} \frac{m_{i}}{n \cdot k_{j}} \cdot \overline{\varphi_{i}\left(\alpha_{j}\right)} \cdot \alpha_{j}$, where $m_{i}:=m_{\varphi_{i}}$. Hence for $i, j \in \mathcal{I}$ we obtain

$$
\epsilon_{i} \star \epsilon_{j}=\frac{m_{i} \cdot m_{j}}{n^{2}} \cdot \sum_{l \in \mathcal{I}} \frac{1}{k_{l}^{2}} \cdot \overline{\varphi_{i}\left(\alpha_{l}\right)} \cdot \overline{\varphi_{j}\left(\alpha_{l}\right)} \cdot \alpha_{l} .
$$

Let $\mathcal{E}:=\left\{\epsilon_{i} \in E_{K} ; i \in \mathcal{I}\right\}$ be the K-basis of E_{K} consisting of the centrally primitive idempotents, and let $\hat{\mathcal{E}}=\left\{\hat{\epsilon}_{i} ; i \in \mathcal{I}\right\}$ the corresponding dual K-basis with respect to the symmetrising form t, see Proposition (2.3). By Proposition (3.14) we have $[\mathcal{E}]_{\mathcal{A}}=\Phi^{-T}$, hence we conclude $[\hat{\mathcal{E}}]_{\hat{\mathcal{A}}}=\Phi$, where $\Phi=\left[\varphi_{i}\left(\alpha_{j}\right) ; i, j \in \mathcal{I}\right] \in K^{r \times r}$ denotes the character table of E_{K}. Hence for $i \in \mathcal{I}$ we have $\hat{\epsilon}_{i}=\sum_{j \in \mathcal{I}} \varphi_{i}\left(\alpha_{j}\right) \cdot \hat{\alpha}_{j}$. Thus we obtain

$$
\begin{align*}
q_{i j k} & =t\left(\left(\epsilon_{i} \star \epsilon_{j}\right) \cdot \hat{\epsilon}_{k}\right) \\
& =\frac{m_{i} \cdot m_{j}}{n^{2}} \cdot \sum_{l \in \mathcal{I}} \sum_{s \in \mathcal{I}} \frac{1}{k_{l}^{2}} \cdot \overline{\varphi_{i}\left(\alpha_{l}\right)} \cdot \overline{\varphi_{j}\left(\alpha_{l}\right)} \cdot \varphi_{k}\left(\alpha_{s}\right) \cdot t\left(\alpha_{l}, \hat{\alpha}_{s}\right) .
\end{align*}
$$

(4.7) Remark. Let E_{K} be commutative and let φ_{1} be the Fitting correspondent of the trivial $K G$-character. As by Remark (3.21) we have $\varphi_{1}\left(\alpha_{i}\right)=k_{i}$, for all $i \in \mathcal{I}$, and $m_{1}=1$, by the first orthogonality relations, see Proposition (3.8), we obtain

$$
q_{1 j k}=\frac{m_{j}}{n^{2}} \cdot \sum_{l \in \mathcal{I}} \frac{1}{k_{l}} \cdot \overline{\varphi_{j}\left(\alpha_{l}\right)} \cdot \varphi_{k}\left(\alpha_{l}\right)=\delta_{j, k} \cdot \frac{m_{j}}{n^{2}} \cdot \frac{n}{m_{k}}=\delta_{j, k} \cdot \frac{1}{n},
$$

for $j, k \in \mathcal{I}$. Furthermore, for $i, j \in \mathcal{I}$, we have

$$
q_{i j 1}=\frac{m_{i} \cdot m_{j}}{n^{2}} \cdot \sum_{l \in \mathcal{I}} \frac{1}{k_{l}} \cdot \varphi_{\bar{i}}\left(\alpha_{l}\right) \cdot \overline{\varphi_{j}\left(\alpha_{l}\right)}=\delta_{\bar{i}, j} \cdot \frac{m_{i}}{n},
$$

where by Remark (3.21) we let $\bar{i} \in \mathcal{I}$ such that $\varphi_{\bar{i}}=\overline{\varphi_{i}}$.
As was promised at the beginning of Section 4, we prove the relationship between the Hadamard product on E_{K} and the tensor product structure on $\operatorname{Irr}_{K}^{1}(G)$. An application of Proposition (4.8) is given in Section (11.5).
(4.8) Proposition. See also [73].

Let E_{K} be commutative and $i, j, k \in \mathcal{I}$, such that $q_{i j k} \neq 0$. Then the character $\chi_{\varphi_{k}} \in \operatorname{Irr}_{K}^{1}(G)$ is a constituent of the product $\chi_{\varphi_{i}} \cdot \chi_{\varphi_{j}} \in \mathbb{Z} \operatorname{Irr}_{K}(G)$.

Proof. For $i \in \mathcal{I}$ let $S_{i}:=S_{\chi_{\varphi_{i}}}$ denote the simple $K G$-module affording the character χ_{i}. Hence we have $K \Omega \cong \bigoplus_{i \in \mathcal{I}} S_{i}$. Let $\iota_{i}: S_{i} \rightarrow K \Omega$ be the $K G$ injections and $\pi_{i}: K \Omega \rightarrow S_{i}$ be the $K G$-projections corresponding to the above direct sum decomposition. Hence we have $\pi_{i} \cdot \iota_{i}=\epsilon_{i} \in E_{K}$, for $i \in \mathcal{I}$. By assumption we have $\epsilon_{k} \cdot\left(\epsilon_{i} \star \epsilon_{j}\right)=q_{i j k} \cdot \epsilon_{k} \neq 0$. By Proposition (4.4) we have

$$
\begin{aligned}
\epsilon_{k} \cdot\left(\epsilon_{i} \star \epsilon_{j}\right) & =\pi_{k} \cdot \iota_{k} \cdot \iota \cdot\left(\left(\pi_{i} \cdot \iota_{i}\right) \otimes\left(\pi_{j} \cdot \iota_{j}\right)\right) \cdot \pi \\
& =\pi_{k} \cdot \iota_{k} \cdot \iota \cdot\left(\pi_{i} \otimes \pi_{j}\right) \cdot\left(\iota_{i} \otimes \iota_{j}\right) \cdot \pi
\end{aligned}
$$

where the natural tensor product maps $\pi_{i} \otimes \pi_{j}: K \Omega \otimes_{K} K \Omega \rightarrow S_{i} \otimes_{K} S_{j}$ and $\iota_{i} \otimes \iota_{j}: S_{i} \otimes_{K} S_{j} \rightarrow K \Omega \otimes_{K} K \Omega$ are $K G$-homomorphisms with respect to the diagonal $K G$-action. It follows that $0 \neq \iota_{k} \cdot \iota \cdot\left(\pi_{i} \otimes \pi_{j}\right): S_{k} \rightarrow\left(S_{i} \otimes_{K} S_{j}\right)$. As S_{k} is a simple $K G$-module the assertion follows.
(4.9) Remark. Using Remark (4.7), as $\chi_{\varphi_{1}} \in \operatorname{Irr}_{K}^{1}(G)$ is the trivial $K G$ character, Proposition (4.8) for $i, j, k \in \mathcal{I}$ implies the trivial statements that for $j=k$ the character $\chi_{\varphi_{k}}$ is a constituent of $\chi_{\varphi_{1}} \cdot \chi_{\varphi_{j}}=\chi_{\varphi_{j}}$, and that for $\bar{i}=j$ the trivial character $\chi_{\varphi_{1}}$ is a constituent of $\chi_{\varphi_{i}} \cdot \chi_{\varphi_{j}}=\chi_{\varphi_{i}} \cdot \overline{\chi_{\varphi_{i}}}$.

If at least one of i, j, k equals 1 , by Remark (4.7), the converse of Proposition (4.8) holds as well. But this is not true in general, as the following example shows.
(4.10) Example. Let $G:=M_{11}$ and $H:=A_{6}<A_{6} .2_{3}<G$. The character table of the endomorphism ring E_{K}, see Definition (3.7), is contained in the database, see Section (11.1), and is given as follows, where we also indicate the Fitting correspondence $\operatorname{Irr}_{K}\left(E_{K}\right) \rightarrow \operatorname{Irr}_{K}^{1}(G)$, see Proposition (2.7).

φ	χ_{φ}	1	2	3
1	$1 a$	1	1	20
2	$10 a$	1	1	-2
3	$11 a$	1	-1	.

Let $i=j=k=3$. Using GAP, see Section (8.1) and Table 6, by Proposition (4.6) we get $q_{333}=0$. But using the ordinary character table of G, also available in GAP, we find that $\chi_{\varphi_{3}}$ indeed is a constituent of the tensor product $\chi_{\varphi_{3}} \cdot \chi_{\varphi_{3}}$.
(4.11) Remark. We conclude Section 4 by discussing briefly a rationality property of the Krein parameters.
Let E_{K} be commutative and $i, j, k \in \mathcal{I}$. It follows from Propositions (4.6) and (3.1) that we have $q_{i, j, k} \in \mathbb{R}$, and by [2, Thm.II.3.8] we even have the Krein
condition $q_{i, j, k} \geq 0$. According to [2, p.70] it is an open question, when the Krein parameter $q_{i, j, k} \in \mathbb{R}$ is rational. In [2, p.71] an example is given, where the $q_{i, j, k} \in \mathbb{R}$ are at most quadratic irrationalities.
The database, see Section (11.1), contains quite a few examples where some of the Krein parameters are irrational, many of these are quadratic irrationalities. But there also occur irrationalities of higher degree. Using GAP, see Section (8.1) and Table 6 , by Proposition (4.6) we find the following examples.
a) Let $G:=M_{12} .2$ and $H:=M_{8} .\left(A_{4} \times 2\right)<M_{8} .\left(S_{4} \times 2\right)<G$. The character table of the endomorphism ring E_{K} has entries from both the quadratic number fields $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{5})$, and there are Krein parameters being irrationalities of degree 4 .
b) Let $G:=J_{1}$ and $H:=2^{3} .7 .3<G$. The character table of the endomorphism ring E_{K} has entries both from the quadratic number field $\mathbb{Q}(\sqrt{5})$ and from the cubic number field contained in the 19-th cyclotomic field, and there are both Krein parameters being irrationalities of degree 3 and of degree 6 , respectively.

5 Coverings

In Section 5 we examine the situation where we have given transitive G-sets Ω and Ω^{\prime} such that there exists an epimorphism $\Omega^{\prime} \rightarrow \Omega$ of G-sets. In particular, we discuss how the character tables of the endomorphism ring corresponding to Ω and of the endomorphism ring corresponding to Ω^{\prime} are related, provided a disjointness condition on the $K G$-constituents of λ^{G} and of $\left(\lambda^{\prime H}-\lambda\right)^{G}$ holds, see Section (5.3).
(5.1) We begin by fixing some more notation, which will be in force for the remaining parts of the present work. Let $H^{\prime} \leq H \leq G$ be another subgroup.
As in Section (1.1) let $\mathcal{I}^{\prime}:=\left\{1, \ldots, r^{\prime}\right\}$, where $r^{\prime} \in \mathbb{N}$ is the number of $H^{\prime}-H^{\prime}$ double cosets in G, and let $\left\{g_{i}^{\prime} \in G ; i \in \mathcal{I}^{\prime}\right\}$ be a set of representatives of the $H^{\prime}-H^{\prime}$-double cosets in G, where $g_{1}^{\prime}:=1_{G}$. For $i \in \mathcal{I}^{\prime}$ let $H_{i}^{\prime}:=\left(H^{\prime}\right)^{g_{i}^{\prime}} \cap H^{\prime} \leq H^{\prime}$, and $\left\{h_{i j}^{\prime} \in H^{\prime} ; j \in\left\{1, \ldots, k_{i}^{\prime}\right\}\right\}$ be a set of representatives of the right cosets of H_{i}^{\prime} in H^{\prime}, where $k_{i}^{\prime}=\left[H^{\prime}: H_{i}^{\prime}\right]$ and $h_{i 1}^{\prime}:=1_{H^{\prime}}$. Let $\Omega^{\prime}:=H^{\prime} \mid G$ be the set of right cosets of H^{\prime} in G, and $n^{\prime}:=\left[G: H^{\prime}\right]$. Let $\omega_{i j}^{\prime}:=H^{\prime} g_{i}^{\prime} h_{i j}^{\prime}$, for $i \in \mathcal{I}^{\prime}$ and $j \in$ $\left\{1, \ldots, k_{i}^{\prime}\right\}$, and for short $\omega_{i}^{\prime}:=\omega_{i 1}^{\prime}$, as well as $\Omega_{i}^{\prime}:=\left\{\omega_{i j}^{\prime} \in \Omega^{\prime} ; j \in\left\{1, \ldots, k_{i}^{\prime}\right\}\right\}$.
(5.2) Let Θ and λ be as in Section (1.3), and let $\lambda^{\prime}:=\lambda_{H^{\prime}}$. We describe the relationship between λ^{G} and $\lambda^{\prime G}$.
Let $\mathcal{I}_{\lambda^{\prime}}:=\left\{i \in \mathcal{I}^{\prime} ; \lambda_{H_{i}^{\prime}}^{\prime}=\lambda_{H_{i}^{\prime}}^{\prime g_{i}^{\prime}}\right\}$. As in Section (1.5) and Section (1.7) we have

$$
\begin{aligned}
\operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right) & \stackrel{(1)}{\cong} \\
& \stackrel{(2)}{\cong} \\
& \operatorname{Hom}_{\Theta H^{\prime}}\left(\lambda^{\prime},\left(\lambda^{G}\right)_{H^{\prime}}\right) \\
& \stackrel{(3)}{\cong} \bigoplus_{g \in H|G| H^{\prime}} \operatorname{Hom}_{\Theta H^{\prime}}\left(\lambda^{\prime},\left(\lambda_{H^{g} \cap H^{\prime}}^{g}\right)^{H^{\prime}}\right) \\
& \bigoplus_{g \in H|G| H^{\prime}} \operatorname{Hom}_{\Theta\left(H^{g} \cap H^{\prime}\right)}\left(\lambda_{H^{g} \cap H^{\prime}}^{\prime}, \lambda_{H^{g} \cap H^{\prime}}^{g}\right)
\end{aligned}
$$

where the sums run over a set of representatives of the H - H^{\prime}-double cosets in G. Again we have $\operatorname{Hom}_{\Theta\left(H^{g} \cap H^{\prime}\right)}\left(\lambda_{H^{g} \cap H^{\prime}}^{\prime}, \lambda_{H^{g} \cap H^{\prime}}^{g}\right) \neq\{0\}$ if and only if $\lambda_{H^{g} \cap H^{\prime}}^{\prime}=\lambda_{H^{g} \cap H^{\prime}}^{g}$, in which case we have $\operatorname{Hom}_{\Theta\left(H^{g} \cap H^{\prime}\right)}\left(\lambda_{H^{g} \cap H^{\prime}}^{\prime}, \lambda_{H^{g} \cap H^{\prime}}^{g}\right) \cong \Theta$. Furthermore, the Θ-isomorphism (1) still is given by $\alpha \mapsto \alpha^{\prime}:=\left.\alpha\right|_{\Theta_{\lambda^{\prime}}}$.
(5.3) We fix an appropriate setting to be able to describe the relationship between the character tables of E_{K}^{λ} and $E_{K}^{\lambda^{\prime}}$. In particular the disjointness condition formulated below will be in force throughout Section 5 . We encounter several examples for this situation in Part III. After some preparation, the precise relationship between the character values on the Schur basis elements of E_{K}^{λ} and $E_{K}^{\lambda^{\prime}}$, respectively, is given in Corollary (5.13).
Let K, R and F be as in Section (2.10), where in particular the characteristic of F is coprime to $|H|$. Let K be a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda^{\prime}}(G)$. We have $\lambda^{\prime G}=\lambda^{G}+\left(\lambda^{\prime H}-\lambda\right)^{G}$, thus K is a splitting field for all simple $K G$-modules affording a character in $\operatorname{Irr}_{K}^{\lambda}(G)$ as well. We furthermore assume that λ^{G} and $\left(\lambda^{\prime H}-\lambda\right)^{G}$ have no $K G$-constituents in common. In particular this holds if $E_{K}^{\lambda^{\prime}}$ is commutative, since then $d_{\varphi}=1$ for all $\varphi \in \operatorname{Irr}\left(E_{K}^{\lambda^{\prime}}\right)$.
We remark that for the case $\lambda=1$, and hence also $\lambda^{\prime}=1$, the condition of 1_{H}^{G} and $\left(1_{H^{\prime}}^{H}-1_{H}\right)^{G}$ having no $K G$-constituents in common is related to the notion of generalised normal subgroups introduced in [75, Ch.I.5], see [75, Thm.III.19.15].
Hence $\operatorname{Irr}_{K}^{\lambda}(G) \subseteq \operatorname{Irr}_{K}^{\lambda^{\prime}}(G)$ is the set of constituents of λ^{G} and $\operatorname{Irr}_{K}^{\lambda^{\prime}}(G) \backslash \operatorname{Irr}_{K}^{\lambda}(G)$ is the set of constituents of $\left(\lambda^{\prime H}-\lambda\right)^{G}$. Thus as $K G$-modules we have

$$
K_{\lambda^{\prime}} \Omega^{\prime} \cong K_{\lambda} \Omega \oplus \sum_{\chi \in \operatorname{Irr}_{K}^{\prime}(G) \backslash \operatorname{Irr}_{K}^{\lambda}(G)} K_{\lambda^{\prime}} \Omega^{\prime} \epsilon_{\chi}
$$

where $\epsilon_{\chi} \in K G$ is the centrally primitive idempotent belonging to $\chi \in \operatorname{Irr}_{K}(G)$. Let $\alpha_{\lambda^{\prime} \lambda} \in E_{K}^{\lambda^{\prime}}$ denote the corresponding $K G$-projection onto $K_{\lambda} \Omega$. Hence we have $E_{K}^{\lambda} \cong \alpha_{\lambda^{\prime} \lambda} E_{K}^{\lambda^{\prime}} \alpha_{\lambda^{\prime} \lambda}$ and $E_{K}^{\lambda^{\prime}} \cong \alpha_{\lambda^{\prime} \lambda} E_{K}^{\lambda^{\prime}} \alpha_{\lambda^{\prime} \lambda} \oplus\left(1-\alpha_{\lambda^{\prime} \lambda}\right) E_{K}^{\lambda^{\prime}}\left(1-\alpha_{\lambda^{\prime} \lambda}\right)$ as K-algebras. Thus in this sense we can consider E_{K}^{λ} is a subset of $E_{K}^{\lambda^{\prime}}$, and $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ as a subset of $\operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right)$.
(5.4) Proposition. Let λ and λ^{\prime} be as in Section (5.3), where in particular λ^{G} and $\left(\lambda^{\prime H}-\lambda\right)^{G}$ have no $K G$-constituents in common.
a) $\operatorname{Hom}_{R G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ has an R-basis $\mathcal{A}_{\lambda^{\prime} \lambda}:=\left\{\alpha_{i}^{\lambda^{\prime} \lambda} ; i \in \mathcal{I}_{\lambda}\right\}$, defined using the R-isomorphism (1) in Section (5.2) by

$$
\left(\alpha_{i}^{\lambda^{\prime} \lambda}\right)^{\prime}=\left(\alpha_{i}^{\lambda}\right)^{\prime} \in \operatorname{Hom}_{R H}\left(\lambda,\left(\lambda^{G}\right)_{H}\right) \leq \operatorname{Hom}_{R H^{\prime}}\left(\lambda^{\prime},\left(\lambda^{G}\right)_{H^{\prime}}\right)
$$

where $\mathcal{A}_{\lambda}=\left\{\alpha_{i}^{\lambda} ; i \in \mathcal{I}_{\lambda}\right\}$ is the Schur basis of E_{R}^{λ}.
b) Using the natural embedding $\operatorname{Hom}_{R G}\left(\lambda^{\prime G}, \lambda^{G}\right) \rightarrow \operatorname{Hom}_{K G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ of R modules, the set $\mathcal{A}_{\lambda^{\prime} \lambda}$ also is a K-basis of $\operatorname{Hom}_{K G}\left(\lambda^{\prime G}, \lambda^{G}\right)$.
c) $\operatorname{Hom}_{F G}\left(\widetilde{\lambda^{\prime} G}, \tilde{\lambda}^{G}\right)$ has an F-basis $\mathcal{A}_{\tilde{\lambda}^{\prime} \tilde{\lambda}}:=\left\{\alpha_{i}^{\tilde{\lambda}^{\prime} \tilde{\lambda}} ; i \in \mathcal{I}_{\lambda}\right\}$, defined by

$$
\left(\alpha_{i}^{\tilde{\lambda}^{\prime} \tilde{\lambda}}\right)^{\prime}=\left(\alpha_{i}^{\tilde{\lambda}}\right)^{\prime} \in \operatorname{Hom}_{F H}\left(\tilde{\lambda},\left(\tilde{\lambda}^{G}\right)_{H}\right) \leq \operatorname{Hom}_{F H^{\prime}}\left(\tilde{\lambda}^{\prime},\left(\tilde{\lambda}^{G}\right)_{H^{\prime}}\right)
$$

where $\mathcal{A}_{\tilde{\lambda}}=\left\{\alpha_{i}^{\tilde{\lambda}} ; i \in \mathcal{I}_{\lambda}\right\}$ is the Schur basis of $E_{F}^{\tilde{\lambda}}$.
Proof. By Section (2.10), we have $\mathcal{I}_{\tilde{\lambda}}=\mathcal{I}_{\lambda}$. Furthermore, we have

$$
\operatorname{dim}_{K} \operatorname{Hom}_{K G}\left(\lambda^{\prime G}, \lambda^{G}\right)=\operatorname{rk}_{R} \operatorname{Hom}_{R G}\left(\lambda^{\prime G}, \lambda^{G}\right)=\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(\tilde{\lambda}^{G}, \tilde{\lambda}^{G}\right)
$$

and $\operatorname{dim}_{K} E_{K}^{\lambda}=\mathrm{rk}_{R} E_{R}^{\lambda}=\operatorname{dim}_{F} E_{F}^{\tilde{\lambda}}$. As λ^{G} and $\left(\lambda^{\prime H}-\lambda\right)^{G}$ have no $K G$ constituents in common, we have $\operatorname{Hom}_{K G}\left(\lambda^{\prime G}, \lambda^{G}\right) \cong \operatorname{Hom}_{K G}\left(\lambda^{G}, \lambda^{G}\right)=E_{K}^{\lambda}$. $\#$
(5.5) Corollary. For $i \in \mathcal{I}_{\lambda}$ we have $H g_{i} H=H g_{i} H^{\prime} \subseteq G$, and thus H^{\prime} acts transitively on Ω_{i}. In particular, we have $\left[H^{\prime}:\left(H^{\prime} \cap H^{g_{i}}\right)\right]=k_{i}=\left[H: H_{i}\right]$.

(5.6) Definition.

a) For $i^{\prime} \in \mathcal{I}^{\prime}$ and $j^{\prime} \in\left\{1, \ldots, k_{i}^{\prime}\right\}$ let $i \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$ as well as $h_{i^{\prime} j^{\prime}}^{\prime \prime} \in H$ be defined by $g_{i^{\prime}}^{\prime} h_{i^{\prime} j^{\prime}}^{\prime}=h_{i^{\prime} j^{\prime}}^{\prime \prime} \cdot g_{i} h_{i j} \in G$. For $j^{\prime}=1$ let for short $h_{i^{\prime}}^{\prime \prime} \in H$ be defined by $g_{i^{\prime}}^{\prime}=h_{i^{\prime}}^{\prime \prime} \cdot g_{i} h_{i j} \in G$, and let

$$
\zeta_{i^{\prime}}^{\prime}:=\lambda\left(h_{i^{\prime}}^{\prime \prime}\right) \cdot \lambda\left(h_{i j}\right) \in \lambda(H)
$$

Furthermore, as $i \in \mathcal{I}$ depends on $i^{\prime} \in \mathcal{I}^{\prime}$ but not on $j^{\prime} \in\left\{1, \ldots, k_{i}^{\prime}\right\}$, this defines a surjective map $\alpha_{H^{\prime}, H}: \mathcal{I}^{\prime} \rightarrow \mathcal{I}$.
b) The map of G-sets $\Omega^{\prime} \rightarrow \Omega: \omega_{i^{\prime} j^{\prime}}^{\prime} \mapsto \omega_{i j}$, for $i^{\prime} \in \mathcal{I}^{\prime}$ and $j^{\prime} \in\left\{1, \ldots, k_{i^{\prime}}\right\}$, where $i=\alpha_{H^{\prime}, H}\left(i^{\prime}\right) \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$, by Corollary (5.5) induces surjective maps $\Omega_{i^{\prime}}^{\prime} \rightarrow \Omega_{i}$, for $i \in \mathcal{I}_{\lambda}$ and $i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)$. The suborbit Ω_{i} is said to split into the suborbits $\left\{\Omega_{i^{\prime}}^{\prime} ; i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)\right\}$. If $\left|\alpha_{H^{\prime}, H}^{-1}(i)\right|=1$, then Ω_{i} is said to be a non-split suborbit.

(5.7) Remark.

a) For $i \in \mathcal{I}$ we have $\sum_{i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)} k_{i^{\prime}}^{\prime}=\left[H: H^{\prime}\right] \cdot k_{i}$.
b) By Proposition (5.4), for $1 \in \mathcal{I}_{\lambda}$ we obtain $\alpha_{1}^{\lambda^{\prime} \lambda} \in \operatorname{Hom}_{R G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ as

$$
\alpha_{1}^{\lambda^{\prime} \lambda}: R_{\lambda^{\prime}} \Omega^{\prime} \rightarrow R_{\lambda} \Omega: \omega_{i^{\prime} j^{\prime}}^{\prime} \mapsto \lambda\left(h_{i^{\prime} j^{\prime}}^{\prime \prime}\right) \cdot \omega_{i j}
$$

for $i^{\prime} \in \mathcal{I}^{\prime}$ and $j^{\prime} \in\left\{1, \ldots, k_{i}^{\prime}\right\}$, where $i=\alpha_{H^{\prime}, H}\left(i^{\prime}\right) \in \mathcal{I}$ and $j \in\left\{1, \ldots, k_{i}\right\}$, and $h_{i^{\prime} j^{\prime}}^{\prime \prime} \in H$ is as in Definition (5.6). Furthermore, an analogous statement holds for $\alpha_{1}^{\tilde{\lambda^{\prime}}} \in \operatorname{Hom}_{F G}\left(\tilde{\lambda}^{G}, \tilde{\lambda}^{G}\right)$.

(5.8) Lemma.

a) For $i \in \mathcal{I}$ we have

$$
H g_{i} H=\coprod_{x \in H^{\prime}|H|\left(H \cap H^{g_{i}^{-1}}\right)}\left(\coprod_{y \in\left(H \cap H^{\prime x g_{i}}\right)|H| H^{\prime}} H^{\prime} \cdot x \cdot g_{i} \cdot y \cdot H^{\prime}\right)
$$

where x and y run through sets of representatives of the double cosets indicated. b) For $i \in \mathcal{I}_{\lambda}$ we have

$$
H g_{i} H=\coprod_{y \in\left(H \cap H^{\prime g_{i}}\right)\left|H_{i}\right|\left(H^{\prime} \cap H^{g_{i}}\right)} H^{\prime} \cdot g_{i} \cdot y \cdot H^{\prime}
$$

where y runs through a set of representatives of the double cosets indicated.
Proof. The group $H^{\circ} \times H$ acts transitively on $H g_{i} H$ by $(h, \tilde{h}): x \mapsto h x \tilde{h}$, for $h, \tilde{h} \in H$ and $x \in H g_{i} H$, where H° denotes the opposed group. Hence $\operatorname{Stab}_{H^{\circ} \times H}\left(g_{i}\right)=\left\{\left(h^{g_{i}^{-1}}, h^{-1}\right) \in H \times H ; h \in H_{i}\right\}$. As the H^{\prime} - H^{\prime}-double cosets contained in $H g_{i} H$ are exactly the $H^{\prime \circ} \times H^{\prime}$-orbits under this action, we have to find representatives $(x, y) \in H \times H$ of the $\operatorname{Stab}_{H^{\circ} \times H}\left(g_{i}\right)-\left(H^{\prime \circ} \times H^{\prime}\right)$-double cosets in $H^{\circ} \times H$, hence representatives of the orbits of $\operatorname{Stab}_{H^{\circ} \times H}\left(g_{i}\right)^{\circ} \times\left(H_{\tilde{\sim}}^{\prime \circ} \times H^{\prime}\right)$ on $H^{\circ} \times H$ with respect to the action $((a, b),(c, d)):(h, \tilde{h}) \mapsto(c h a, b \tilde{h} d)$, for $(a, b) \in \operatorname{Stab}_{H^{\circ} \times H}\left(g_{i}\right)$, as well as $c, d \in H^{\prime}$ and $h, \widetilde{h} \in H$.
Without loss of generality we let the first component $x \in H$ run through a fixed set of representatives of the $H^{\prime}-\left(H \cap H^{g_{i}^{-1}}\right)$-double cosets in H. For the action of $\left(H \cap H^{g_{i}^{-1}}\right) \times H^{\prime \circ}$ on H we get
$\operatorname{Stab}_{\left(H \cap H^{g_{i}^{-1}}\right) \times H^{\prime 0}}(x)=\left\{\left(h^{x}, h^{-1}\right) \in\left(H \cap H^{g_{i}^{-1}}\right) \times H^{\prime} ; h \in\left(H \cap H^{g_{i}^{-1}}\right)^{x^{-1}} \cap H^{\prime}\right\}$.
Hence, for fixed $x \in H$, the second component $y \in H$ is to be chosen from a set of representatives of the orbits of

$$
\left\{((a, b),(c, d)) \in \operatorname{Stab}_{H^{\circ} \times H}\left(g_{i}\right)^{\circ} \times\left(H^{\prime \circ} \times H^{\prime}\right) ;(a, c) \in \operatorname{Stab}_{\left(H \cap H^{g_{i}^{-1}}\right) \times H^{\prime \circ}}(x)\right\}
$$

on $\{x\} \times H$. This proves the assertion in a).
Since we have $i^{*} \in \mathcal{I}_{\lambda}$, it follows from by Corollary (5.5) that we have

$$
\left[H: H^{\prime}\right]=\left[\left(H \cap H^{g_{i}^{-1}}\right):\left(H^{\prime} \cap H^{g_{i}^{-1}}\right)\right]
$$

Hence we have $H^{\prime} \cdot\left(H \cap H^{g_{i}^{-1}}\right)=H$. Furthermore, because of $\left[H_{i}:\left(H^{\prime} \cap H^{g_{i}}\right)\right]=$ [$H: H^{\prime}$], we have a bijection

$$
\begin{aligned}
\left(H \cap H^{\prime g_{i}}\right)\left|H_{i}\right|\left(H^{\prime} \cap H^{g_{i}}\right) & \rightarrow\left(H \cap H^{\prime g_{i}}\right)|H| H^{\prime}: \\
\left(H \cap H^{\prime g_{i}}\right) \cdot y \cdot\left(H^{\prime} \cap H^{g_{i}}\right) & \mapsto\left(H \cap H^{\prime g_{i}}\right) \cdot y \cdot H^{\prime} .
\end{aligned}
$$

Thus the assertion in b) follows from a).
(5.9) Remark. Let $i \in \mathcal{I}_{\lambda}$. Hence there is a bijection between the set $\left\{\Omega_{i^{\prime}}^{\prime} ; i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)\right\}$ and the set of of representatives y of the double cosets indicated in Lemma (5.8). Using this bijection we may write the index parameters $k_{i^{\prime}}^{\prime}$, for $i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)$, also as $k_{i, y}^{\prime}$.
Because of $H^{\prime} \cap H^{\prime g_{i} y} \leq H^{\prime} \cap H^{g_{i}} \leq H^{\prime}$ we have

$$
\frac{k_{i, y}^{\prime}}{k_{i}}=\left[\left(H^{\prime} \cap H^{g_{i}}\right):\left(H^{\prime} \cap H^{\prime g_{i} y}\right)\right] \in \mathbb{N} .
$$

Because of $H^{\prime} \cap H^{\prime g_{i} y}=\left(H^{\prime} \cap H^{g_{i}}\right) \cap\left(H \cap H^{\prime g_{i}}\right)^{y}$, the quotients $\frac{k_{i, y}^{\prime}}{k_{i}}$ are the lengths of the orbits of the subgroup $H^{\prime} \cap H^{g_{i}} \leq H_{i}$ with respect to the action of H_{i} on the set of right cosets $\left(H \cap H^{\prime g_{i}}\right) \mid H_{i}$. As $H \cap H^{\prime g_{i}}$ and $H^{\prime} \cap H^{g_{i}}$ are not necessarily conjugate in H_{i}, we might in particular have $\frac{k_{i, y}^{\prime}}{k_{i}}>1$ for all double coset representatives y.
If y runs through the set of representatives of the double cosets indicated in Lemma (5.8), then $y^{-1} \cdot g_{i}^{-1}$ runs through a set of representatives of the H^{\prime} -H^{\prime}-double cosets of G contained in $H g_{i}^{-1} H=H g_{i^{*}} H$. As $H^{\prime} \cap H^{\prime y^{-1} g_{i}^{-1}} \leq$ $H^{\prime} \cap H^{g_{i}^{-1}}$, we conclude that $\left\{k_{j^{\prime}}^{\prime} ; j^{\prime} \in \alpha_{H^{\prime}, H}^{-1}\left(i^{*}\right)\right\}=\left\{k_{i^{\prime}}^{\prime} ; i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)\right\}$, with multiplicities. As $k_{i}=k_{i^{*}}$, the same holds for $\left\{\frac{k_{j^{\prime}}^{\prime}}{k_{*^{*}}} ; j^{\prime} \in \alpha_{H^{\prime}, H}^{-1}\left(i^{*}\right)\right\}$.

The following Proposition gives a description of the cardinality $\left|\alpha_{H^{\prime}, H}^{-1}(i) \cap \mathcal{I}_{\lambda^{\prime}}\right|$, for $i \in \mathcal{I}$, in terms of irreducible characters of H.
(5.10) Proposition. Let $E_{K}^{\lambda^{\prime}}$ be commutative. Then for $i \in \mathcal{I}$ we have

$$
\left|\alpha_{H^{\prime}, H}^{-1}(i) \cap \mathcal{I}_{\lambda^{\prime}}\right|=\sum_{\chi \in \operatorname{Irr}_{K}^{\prime}(H)}\left\langle\chi_{H_{i}}, \chi_{H_{i}}^{g_{i}}\right\rangle_{H_{i}},
$$

where $\langle\cdot, \cdot\rangle_{H_{i}}$ denotes the hermitian product on $\operatorname{Irr}_{K}\left(H_{i}\right)$.
Proof. Let for short $\langle\cdot, \cdot\rangle$ denote the hermitian product on ordinary characters, where the group in question always will be clear from the context. As $g_{i}^{-1}=$ $\eta_{i} g_{i^{*}} h_{i^{*} i^{-}}$, where $\eta_{i}, h_{i^{*} i^{-}} \in H$, see Definition (1.12), for $\chi \in \operatorname{Irr}_{K}^{\lambda^{\prime}}(H)$ we have

$$
\left\langle\chi_{H_{i}}, \chi_{H_{i}}^{g_{i}}\right\rangle=\left\langle\chi_{H \cap H_{i}^{g_{i}^{-1}}}^{g_{i}^{-1}}, \chi_{H \cap H^{g_{i}^{-1}}}\right\rangle=\left\langle\chi_{H_{i^{*}}}^{g_{i} *}, \chi_{H_{i^{*}}}\right\rangle .
$$

Hence it is enough to show that the right hand side of the asserted equation equals $\left|\alpha_{H^{\prime}, H}^{-1}\left(i^{*}\right) \cap \mathcal{I}_{\lambda^{\prime}}\right|$. As $d_{\varphi}=1$ for all $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right)$, we have $0=\left\langle\chi^{G}, \tilde{\chi}^{G}\right\rangle=\sum_{i \in \mathcal{I}}\left\langle\chi_{H_{i}}, \tilde{\chi}_{H_{i}}^{g_{i}}\right\rangle$, for $\chi \neq \tilde{\chi} \in \operatorname{Irr}_{K}^{\lambda^{\prime}}(H)$, hence $\left\langle\chi_{H_{i}}, \tilde{\chi}_{H_{i}}^{g_{i}}\right\rangle=0$
for all $i \in \mathcal{I}$. As all $\chi \in \operatorname{Irr}_{K}^{\lambda^{\prime}}(H)$ occur in $\lambda^{\prime H}$ with multiplicity 1 , we have

$$
\begin{aligned}
& \sum_{\chi \in \operatorname{Irr}_{K}^{\lambda^{\prime}}(H)}\left\langle\chi_{H_{i}}, \chi_{H_{i}}^{g_{i}}\right\rangle \\
= & \left\langle\left(\lambda^{\prime H}\right)_{H_{i}},\left(\lambda^{\prime H}\right)_{H_{i}}^{g_{i}}\right\rangle \\
= & \sum_{t \in H^{\prime}|H| H_{i}}\left\langle\left(\lambda_{H^{\prime t} \cap H_{i}}^{t}\right)^{H_{i}},\left(\lambda^{\prime H}\right)_{H_{i}}^{g_{i}}\right\rangle \\
= & \sum_{t \in H^{\prime}|H| H_{i}}\left\langle\lambda_{H^{\prime t} \cap H_{i}}^{\prime t},\left(\left(\lambda^{\prime g_{i}}\right)^{H_{i}}\right)_{H^{\prime t} \cap H_{i}}\right\rangle \\
= & \sum_{t \in H^{\prime}|H| H_{i}} \sum_{s \in H^{\prime g_{i}} \mid H^{g_{i} \mid\left(H^{\prime t} \cap H_{i}\right)}}\left\langle\lambda_{H^{\prime t} \cap H_{i}}^{\prime t},\left(\lambda_{H^{\prime g_{i} s} \cap H^{\prime t} \cap H_{i}}^{\prime g_{i} s}\right)^{H^{\prime t} \cap H_{i}}\right\rangle \\
= & \sum_{t \in H^{\prime}|H| H_{i}} \sum_{s \in H^{\prime g_{i}}\left|H^{g_{i}}\right|\left(H^{\prime t} \cap H_{i}\right)}\left\langle\lambda_{H^{\prime g_{i} s} \cap H^{\prime t} \cap H_{i}}^{\prime t}, \lambda_{H^{\prime} g_{i} g_{i} \cap H^{\prime t} \cap H_{i}}\right\rangle \\
\stackrel{(1)}{=} & \sum_{t \in H^{\prime}|H| H_{i}} \sum_{s \in\left(H^{\prime t g_{i}^{-1}} \cap H\right)|H| H^{\prime}}\left\langle\lambda_{H^{\prime} \cap H^{\prime t g_{i}-1} s}, \lambda_{H^{\prime} \cap H^{\prime t g_{i}^{-1}}}\right\rangle,
\end{aligned}
$$

where the sums run over sets of representatives of the double cosets indicated, and where equation (1) because of $t \in H$ and $s^{g_{i}^{-1}} \in H$ follows from

$$
\begin{aligned}
& \left\langle\lambda_{H^{\prime g_{i} s} \cap H^{\prime t} \cap H_{i}}^{\prime t}, \lambda_{H^{\prime g_{i} s} \cap H^{\prime t} \cap H_{i}}^{\prime g_{i} s}\right\rangle=\left\langle\lambda_{H^{\prime g_{i} s} \cap H^{\prime t} \cap H^{g_{i}}}^{\prime t},\left(\lambda_{\left.H^{\prime g_{i} s g_{i}^{-1}} \cap H^{\prime t g_{i}^{-1}} \cap H^{\prime}\right)^{g_{i} s g_{i}^{-1}}}^{g_{i}}\right\rangle\right. \\
& =\left\langle\lambda_{H^{\prime g_{i} s g_{i}^{-1}} \cap H^{\prime t g_{i}^{-1}}}^{\prime t g_{i}^{-1}}, \lambda_{H^{\prime g_{i} s g_{i}^{-1}} \cap H^{\prime t g_{i}^{-1}}}^{\prime g_{i} s g_{i}^{-1}}\right\rangle \\
& =\left\langle\lambda_{H^{\prime} \cap H^{\prime t s-1} g_{i}^{-1}}^{\prime t g^{-1} \cdot g_{i} s^{-1} g_{-1}^{-1}}, \lambda_{H^{\prime} \cap H^{\prime t s^{-1} g_{i}^{-1}}}^{\prime}\right\rangle .
\end{aligned}
$$

If s and t run through sets of representatives of the double cosets indicated on the right hand side of equation (1), then by Lemma (5.8) the elements $t \cdot g_{i}^{-1} s$ run through a set of representatives of the $H^{\prime}-H^{\prime}$-double cosets in G contained in $H g_{i}^{-1} H$.
(5.11) Corollary. For $s, t \in H$ as on the right hand side of equation (1) in the proof of Proposition (5.10), we have $H^{\prime s^{-1}} g_{i} \cap H^{\prime t} \leq H_{i}$. Hence because of $\lambda_{H^{\prime}}=\lambda^{\prime}$ we conclude

$$
1 \geq\left\langle\lambda_{H^{\prime} \cap H^{\prime t g_{i}^{-1}}}^{\prime t g_{s}^{-1} s}, \lambda_{H^{\prime} \cap H^{\prime t g_{i}^{-1} s}}^{\prime}\right\rangle \geq\left\langle\lambda_{H_{i}}, \lambda_{H_{i}}^{g_{i}}\right\rangle \geq 0
$$

Thus for $i \in \mathcal{I}_{\lambda}$ we obtain $\alpha_{H^{\prime}, H}^{-1}(i) \subseteq \mathcal{I}_{\lambda^{\prime}}$.
(5.12) Proposition. For $i \in \mathcal{I}_{\lambda}$ and $i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i) \subseteq \mathcal{I}_{\lambda^{\prime}}$, see Corollary (5.11), using the identification from Section (5.3), we have

$$
\alpha_{\lambda^{\prime} \lambda} \cdot \alpha_{i^{\prime}}^{\lambda^{\prime}} \cdot \alpha_{\lambda^{\prime} \lambda}=\frac{k_{i^{\prime}}^{\prime} \cdot \zeta_{i^{\prime}}^{\prime}}{k_{i}} \cdot \alpha_{i}^{\lambda}
$$

where $\zeta_{i^{\prime}}^{\prime}$ is as in Definition (5.6), and

$$
\alpha_{i}^{\lambda}=\frac{1}{\left[H: H^{\prime}\right]} \cdot \sum_{i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)} \frac{1}{\zeta_{i^{\prime}}^{\prime}} \cdot \alpha_{i^{\prime}}^{\lambda^{\prime}}
$$

Proof. By Section (5.3) we have $E_{K}^{\lambda} \cong \alpha_{\lambda^{\prime} \lambda} E_{K}^{\lambda^{\prime}} \alpha_{\lambda^{\prime} \lambda} \subseteq E_{K}^{\lambda^{\prime}}$. Because of $\left(\left(\alpha_{\lambda^{\prime} \lambda}\right)^{\sigma} \lambda_{\lambda^{\prime}}\right) \tau_{\lambda^{\prime}}=\epsilon_{\lambda}$ and $\epsilon_{\lambda} \epsilon_{\lambda^{\prime}}=\epsilon_{\lambda}=\epsilon_{\lambda^{\prime}} \epsilon_{\lambda}$, the K-algebra isomorphism in Proposition (2.2) translates the non-unitary embedding $\alpha_{\lambda^{\prime} \lambda} E_{K}^{\lambda^{\prime}} \alpha_{\lambda^{\prime} \lambda} \subseteq E_{K}^{\lambda^{\prime}}$ of K-algebras into the embedding $\epsilon_{\lambda} K G \epsilon_{\lambda} \subseteq \epsilon_{\lambda^{\prime}} K G \epsilon_{\lambda^{\prime}}$. Hence

$$
\epsilon_{\lambda} \cdot\left(\epsilon_{\lambda^{\prime}} g_{i^{\prime}}^{\prime} \epsilon_{\lambda^{\prime}}\right) \cdot \epsilon_{\lambda}=\epsilon_{\lambda} \cdot h_{i^{\prime}}^{\prime \prime} g_{i} h_{i j} \cdot \epsilon_{\lambda}=\zeta_{i^{\prime}}^{\prime} \cdot\left(\epsilon_{\lambda} g_{i} \epsilon_{\lambda}\right)
$$

Let $\mathcal{H} \subseteq H^{\prime} \times H^{\prime}$ be chosen such that $H^{\prime} g_{i^{\prime}}^{\prime} H^{\prime}=\left\{h^{\prime} g_{i^{\prime}}^{\prime} h^{\prime \prime} \in G ;\left(h^{\prime}, h^{\prime \prime}\right) \in \mathcal{H}\right\}$. Hence we have

$$
\begin{aligned}
k_{i^{\prime}}^{\prime} \cdot \epsilon_{\lambda^{\prime}} g_{i^{\prime}}^{\prime} \epsilon_{\lambda^{\prime}} & =\frac{1}{\left|H^{\prime}\right|} \cdot \sum_{\left(h^{\prime}, h^{\prime \prime}\right) \in \mathcal{H}} \lambda^{\prime}\left(\left(h^{\prime} h^{\prime \prime}\right)^{-1}\right) \cdot h^{\prime} g_{i^{\prime}}^{\prime} h^{\prime \prime} \\
& =\frac{\left[H: H^{\prime}\right]}{|H|} \cdot \zeta_{i^{\prime}}^{\prime} \cdot \sum_{\left(h^{\prime}, h^{\prime \prime}\right) \in \mathcal{H}} \lambda\left(\left(h^{\prime} h_{i^{\prime}}^{\prime \prime} h_{i j} h^{\prime \prime}\right)^{-1}\right) \cdot h^{\prime} h_{i^{\prime}}^{\prime \prime} g_{i} h_{i j} h^{\prime \prime} .
\end{aligned}
$$

Rewriting $k_{i} \cdot \epsilon_{\lambda} g_{i} \epsilon_{\lambda}$ analogously, the assertion follows.
(5.13) Corollary. Let $i \in \mathcal{I}_{\lambda}$.
a) For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right) \subseteq \operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right)$ and $i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)$ we have

$$
\varphi\left(\alpha_{i^{\prime}}^{\lambda^{\prime}}\right)=\frac{k_{i^{\prime}}^{\prime} \cdot \zeta_{i^{\prime}}^{\prime}}{k_{i}} \cdot \varphi\left(\alpha_{i}^{\lambda}\right)
$$

b) For $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right)$ we have

$$
\sum_{i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)} \frac{1}{\zeta_{i^{\prime}}^{\prime}} \cdot \varphi\left(\alpha_{i^{\prime}}^{\lambda^{\prime}}\right)=\left\{\begin{aligned}
{\left[H: H^{\prime}\right] \cdot \varphi\left(\alpha_{i}^{\lambda}\right), } & \text { if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right) \subseteq \operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right) \\
0, & \text { if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right) \backslash \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)
\end{aligned}\right.
$$

In particular, if Ω_{i} is a non-split suborbit and thus $\alpha_{H^{\prime}, H}^{-1}(i)=\left\{i^{\prime}\right\}$, then for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda^{\prime}}\right) \backslash \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ we have $\varphi\left(\alpha_{i^{\prime}}^{\lambda^{\prime}}\right)=0$.

(5.14) Example.

a) Let $G:=J_{4}$ and $H:=2^{11}: M_{24}$ as well as $H^{\prime}:=2^{11}: M_{23}$, where $\lambda=1$ and $\lambda^{\prime}=1$. Hence we have $r=7$ and $r^{\prime}=11$ as well as $\mathcal{I}_{\lambda}=\mathcal{I}$ and $\mathcal{I}_{\lambda^{\prime}}=\mathcal{I}^{\prime}$. The character tables of the endomorphism rings E_{K} and $E_{K}^{1_{H^{\prime}}}$ are given in Sections (16.1) and (16.2), see Table 21 and Table 22, respectively. The splitting of the suborbits Ω_{i} is given as follows, where $i^{\prime} \in \alpha_{H^{\prime}, H}(i)^{-1}$ and $i \in \mathcal{I}$.

i	$\frac{k_{i^{\prime}}^{\prime}}{k_{i}}$
1	1,23
2	8,16
3	24
4	24
5	4,20
6	24
7	1,23

b) Let $G:=H N .2$ and $H:=S_{12}$ as well as $H^{\prime}:=S_{11}$, where $\lambda=1$ and $\lambda^{\prime}=1$. Hence we have $r=10$ and $r^{\prime}=17$. The character table of the endomorphism ring $E_{K}^{1 H^{\prime}}$ is given in Section (13.1), see Table 13. The splitting of the Ω_{i} is given as follows, where $i^{\prime} \in \alpha_{H^{\prime}, H}(i)^{-1}$ and $i \in \mathcal{I}$. Note that, even since $\left\langle 1_{H^{\prime}}^{H}, 1_{H^{\prime}}^{H}\right\rangle_{H}=2$, the suborbit Ω_{5} of Ω splits into three suborbits of Ω^{\prime}.

i	$\frac{k_{k^{\prime}}^{\prime}}{k_{i}}$
1	1,11
2	6,6
3	12
4	2,10
5	$1,5,6$
6	12
7	12
8	4,8
9	12
10	1,11

We conclude Section 5 by discussing three particular cases of the above general situation, which are of importance later on.
(5.15) Remark. Let $\left[H: H^{\prime}\right]=2$ and $\lambda^{\prime}=1$. Hence we have $\operatorname{Irr}_{K}^{1}(H)=$ $\left\{1,1^{-}\right\}$, where $1^{-} \in \operatorname{Irr}_{K}(H)$ denotes the inflation of the non-trivial irreducible character of H / H^{\prime} to H. Hence both elements of $\operatorname{Irr}_{K}^{1}(H)$ can be chosen as λ as above. By Remark (5.7) and Remark (5.9), for $i \in \mathcal{I}$, we distinguish two cases.
a) We have $\alpha_{H^{\prime}, H}^{-1}(i)=\left\{i^{\prime}\right\}$, thus $k_{i^{\prime}}^{\prime}=2 \cdot k_{i}$. Hence we have $H g_{i} H=H^{\prime} g_{i} H^{\prime}$ and $\left[\left(H^{\prime} \cap H^{g_{i}}\right):\left(H^{\prime} \cap H^{\prime g_{i}}\right)\right]=2$. By Proposition (5.10) we have $1_{H_{i}}^{-} \neq\left(1^{-}\right)_{H_{i}}^{g_{i}}$, hence $i \notin \mathcal{I}_{1-}$. Thus, by Corollary (5.13), still using the identification from Section (5.3), for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}}\right)$ we have

$$
\varphi\left(\alpha_{i^{\prime}}^{1_{H^{\prime}}}\right)=\left\{\begin{aligned}
2 \cdot \varphi\left(\alpha_{i}^{1_{H}}\right), & \text { if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H}}\right) \\
0, & \text { if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H}^{-}}\right)
\end{aligned}\right.
$$

b) We have $\alpha_{H^{\prime}, H}^{-1}(i)=\left\{i^{\prime}, i^{\prime \prime}\right\}$, thus $k_{i^{\prime}}^{\prime}=k_{i^{\prime \prime}}^{\prime}=k_{i}$. Hence we have $H g_{i} H=$ $H^{\prime} g_{i} H^{\prime} \dot{\cup} H^{\prime} g_{i} y H^{\prime}$, where $\left\{g_{i}, g_{i} y\right\}$ is a set of representatives of the double cosets indicated in Lemma (5.8). We have $H^{\prime} \cap H^{\prime g_{i}}=H^{\prime} \cap H^{\prime g_{i} y}=H^{\prime} \cap H^{g_{i}}$. By Proposition (5.10) we have $1_{H_{i}}^{-}=\left(1^{-}\right)_{H_{i}}^{g_{i}}$, hence $i \in \mathcal{I}_{1^{-}}$. Without loss of generality let $g_{i^{\prime}}^{\prime}:=g_{i}$ and $g_{i^{\prime \prime}}^{\prime}:=g_{i} y$. As $y \in H_{i} \backslash\left(H \cap H^{\prime g_{i}}\right)$, by Definition (5.6), applied to $\lambda=1^{-}$, we obtain $\zeta_{i^{\prime}}^{\prime}=1$ and $\zeta_{i^{\prime \prime}}^{\prime}=\lambda(y)=-1$. Thus, by Corollary (5.13), for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}}\right)$ we have

$$
\varphi\left(\alpha_{i^{\prime}}^{1_{H^{\prime}}}\right)=\left\{\begin{array}{rlr}
\varphi\left(\alpha_{i^{\prime \prime}}^{1_{H^{\prime}}}\right)=\varphi\left(\alpha_{i}^{1_{H}}\right), & & \text { if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H}}\right), \\
-\varphi\left(\alpha_{i^{\prime \prime}}^{1_{H^{\prime}}}\right) & =\varphi\left(\alpha_{i}^{1_{H}^{-}}\right), & \\
\text {if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H}^{H}}\right) .
\end{array}\right.
$$

An example for this situation is given in Section (17.1).
(5.16) Remark. Let $G^{\prime} \leq G$ such that $\left[G: G^{\prime}\right]=2$. Let $H \not \leq G^{\prime}$ and $H^{\prime}:=G^{\prime} \cap H$, hence we have $\left[H: H^{\prime}\right]=2$, and we may identify $H^{\prime} \mid G^{\prime}$ with $\Omega:=H \mid G$ via $H^{\prime} g \mapsto H g$, for $g \in G^{\prime}$. Hence without loss of generality we may in particular choose the double coset representatives $g_{i} \in G^{\prime}<G$, for $i \in \mathcal{I}$.
Let $\lambda^{\prime}=1$. As in Remark (5.15) we have $\operatorname{Irr}_{K}^{1}(H)=\left\{1,1^{-}\right\}$, where now $1^{-} \in \operatorname{Irr}_{K}(H)$ is extendible to $1^{-} \in \operatorname{Irr}_{K}(G)$, where $1^{-} \in \operatorname{Irr}_{K}(G)$ is the inflation of the non-trivial irreducible character of G / G^{\prime} to G. Hence the condition that 1_{H}^{G} and $\left(1^{-}\right)_{H}^{G}$ have no $K G$-constituents in common is equivalent to $\chi \neq \chi \cdot 1^{-} \in$ $\operatorname{Irr}_{K}(G)$ and $\chi \cdot 1^{-} \notin \operatorname{Irr}_{K}^{1}(G)$, for $\chi \in \operatorname{Irr}_{K}^{1}(G)$.
a) Let $E_{K}^{1_{G^{\prime}}^{\prime^{\prime}}}:=\operatorname{End}_{K G^{\prime}}(K \Omega)$ and as usual $E_{K}=E_{K}^{1_{G}^{G}}:=\operatorname{End}_{K G}(K \Omega)$. From Clifford theory and the condition on the $K G$-constituents of 1_{H}^{G} we conclude that $\operatorname{dim}_{K}\left(E_{K}^{1 G_{H^{\prime}}}\right)=\operatorname{dim}_{K}\left(E_{K}\right)$ holds. Hence the H^{\prime}-orbits and the H-orbits on Ω coincide, and thus for the corresponding Schur K-bases $\left\{\alpha_{i}{ }^{1 G^{\prime}} ; i \in \mathcal{I}\right\}$ and $\mathcal{A}=$ $\left\{\alpha_{i} ; i \in \mathcal{I}\right\}$ of $E_{K}^{1 G^{G^{\prime}}}$ and E_{K}, respectively, we have $\alpha_{i}^{1 H^{G^{\prime}}}=\alpha_{i} \in \operatorname{End}_{K}(K \Omega)$, for $i \in \mathcal{I}$. Hence $E_{K}^{11_{H^{\prime}}}$ and E_{K} are isomorphic K-algebras, and the sets $\operatorname{Irr}_{K}\left(E_{K}^{1 G^{G^{\prime}}}\right)$ and $\operatorname{Irr}_{K}\left(E_{K}\right)$ can be identified via $\varphi^{\prime} \mapsto \varphi:\left(\alpha_{i} \mapsto \varphi^{\prime}\left(\alpha_{i}^{1_{H^{\prime}}^{G^{\prime}}}\right)\right)$, for $i \in \mathcal{I}$. Thus $E_{K}^{1 G^{\prime}}$ and E_{K} have the same character table.
Furthermore, by Proposition (3.2), we have $\mathcal{E}^{1_{H^{\prime}}^{G^{\prime}}}=\mathcal{E}$, where $\mathcal{E}^{1_{H^{\prime}}^{G^{\prime}}}$ and \mathcal{E} are the centrally primitive idempotents of $E_{K}^{1_{G^{\prime}}^{G^{\prime}}}$ and E_{K}, respectively. Thus for the Fitting correspondents of a pair of characters $\operatorname{Irr}_{K}\left(E_{K}^{1_{G^{\prime}}^{G^{\prime}}}\right) \ni \varphi^{\prime} \mapsto \varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$ being identified as above we have $\chi_{\varphi^{\prime}}=\left(\chi_{\varphi}\right)_{G^{\prime}} \in \operatorname{Irr}_{K}^{1_{H^{\prime}}}\left(G^{\prime}\right)$.
b) Assume that, for $i \in \mathcal{I}$, we have $\left|\alpha_{H^{\prime}, H}^{-1}(i)\right|=1$. Then, by Remark (5.15), we have $H g_{i} H=H^{\prime} g_{i} H^{\prime} \subseteq G^{\prime}$, a contradiction. Hence we have $\alpha_{H^{\prime}, H}^{-1}(i)=\left\{i^{\prime}, i^{\prime \prime}\right\}$, and $k_{i^{\prime}}^{\prime}=k_{i^{\prime \prime}}^{\prime}=k_{i}$. Let $z \in H \backslash H^{\prime}$. Since $H^{\prime} g_{i} z H^{\prime} \subseteq G \backslash G^{\prime}$ and $H^{\prime} g_{i} H^{\prime} \dot{\cup}$ $H^{\prime} g_{i} z H^{\prime} \subseteq H g_{i} H$, we have equality here. Hence without loss of generality let $g_{i^{\prime}}^{\prime}:=g_{i}$ and $g_{i^{\prime \prime}}^{\prime}:=g_{i} z$.
Let $\epsilon:=\epsilon_{1_{H^{\prime}}} \in K H^{\prime} \subseteq K G^{\prime} \subseteq K G$. Then for $E_{K}^{1_{H^{\prime}}}=E_{K}^{1_{H^{\prime}}^{G}}$ we have $\left(E_{K}^{1_{H^{\prime}}}\right)^{\circ} \cong$ $\epsilon K G \epsilon$ as K-algebras. The latter has $\left\{\epsilon g_{i} \epsilon ; i \in \mathcal{I}\right\} \dot{\cup}\left\{\epsilon g_{i} z \epsilon ; i \in \mathcal{I}\right\}$ as a K-basis, see Proposition (2.2). For $i, j \in \mathcal{I}$ we have $\epsilon g_{i} \epsilon \cdot \epsilon g_{j} \epsilon \in K G^{\prime}$ and $\epsilon g_{i} z \epsilon \cdot \epsilon g_{j} z \epsilon \in$ $K G^{\prime}$ as well as $\epsilon g_{i} \epsilon \cdot \epsilon g_{j} z \epsilon \in K\left(G \backslash G^{\prime}\right)$ and $\epsilon g_{i} z \epsilon \cdot \epsilon g_{j} \epsilon \in K\left(G \backslash G^{\prime}\right)$. Hence we have

$$
\epsilon K G \epsilon=\epsilon K G^{\prime} \epsilon \oplus \epsilon K\left(G \backslash G^{\prime}\right) \epsilon
$$

as K-vector spaces and $\epsilon K G \epsilon$ is a $\mathbb{Z} / 2 \mathbb{Z}$-graded K-algebra, also called a K superalgebra. Furthermore, we have $\epsilon K G^{\prime} \epsilon \cong\left(E_{K}^{1_{H^{\prime}}^{G^{\prime}}}\right)^{\circ}$ as K-algebras.
Let $\left(k_{i} \cdot \epsilon g_{i} \epsilon\right) \cdot\left(k_{j} \cdot \epsilon g_{j} \epsilon\right)=\sum_{l \in \mathcal{I}} p_{j i l}^{\prime} \cdot\left(k_{l} \cdot \epsilon g_{l} \epsilon\right)$, where the $p_{i j l}^{\prime} \in K$, for $i, j, l \in \mathcal{I}$, denote the structure constants of $E_{K}^{1_{G^{\prime}}^{G^{\prime}}}$, see Definition (1.18). As $z^{2} \in H^{\prime}$, we
obtain the structure constants matrices of $E_{K}^{1_{H^{\prime}}}$ as

$$
P_{j^{\prime}}^{1_{H^{\prime}}}=\left[\begin{array}{c|c}
P_{j}^{\prime} & \cdot \\
\hline \cdot & P_{j}^{\prime}
\end{array}\right] \in K^{2 r \times 2 r} \quad \text { and } \quad P_{j^{\prime \prime}}^{1_{H^{\prime}}}=\left[\begin{array}{c|c}
\cdot & P_{j}^{\prime} \\
\hline P_{j}^{\prime} & \cdot
\end{array}\right] \in K^{2 r \times 2 r},
$$

where $P_{j}^{\prime} \in K^{r \times r}$ is the corresponding structure constants matrix of $E_{K}^{1_{H^{\prime}}^{G^{\prime}}}$.
Using the above form of the structure constants matrices of $E_{K}^{1_{H^{\prime}}}$, we conclude that $E_{K}^{1_{H^{\prime}}}$ also is commutative, and for a pair of characters $\operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}^{G^{\prime}}}\right) \ni \varphi^{\prime} \mapsto$ $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$ being identified as above we obtain $\varphi_{+}, \varphi_{-} \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}}\right)$ such that, for $i \in \mathcal{I}$,

$$
\begin{aligned}
& \varphi_{+}\left(\alpha_{i^{\prime}}\right)=\varphi_{+}\left(\alpha_{i^{\prime \prime}}\right)=\varphi^{\prime}\left(\alpha_{i}^{1_{H^{\prime}}^{G^{\prime}}}\right)=\varphi\left(\alpha_{i}\right), \\
& \varphi_{-}\left(\alpha_{i^{\prime}}\right)=-\varphi_{-}\left(\alpha_{i^{\prime \prime}}\right)=\varphi^{\prime}\left(\alpha_{i}^{1{ }_{H}^{H^{\prime}}}\right)=\varphi\left(\alpha_{i}\right),
\end{aligned}
$$

where $\left\{\alpha_{i^{\prime}} ; i \in \mathcal{I}\right\} \dot{\cup}\left\{\alpha_{i^{\prime \prime}} ; i \in \mathcal{I}\right\}$ is the Schur K-basis of $E_{K}^{1_{H^{\prime}}}$.
By Remark (5.15), the set $\left\{\varphi_{+} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)\right\}$ is in Fitting correspondence to $\operatorname{Irr}_{K}^{1}(G)$, while $\left\{\varphi_{-} ; \varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)\right\}$ corresponds to $\operatorname{Irr}_{K}^{1_{H}^{-}}(G)=1^{-} \cdot \operatorname{Irr}_{K}^{1}(G)$. As $H^{\prime} g_{i} \subseteq G^{\prime}$ and $H^{\prime} g_{i} z \subseteq G \backslash G^{\prime}$, for $i \in \mathcal{I}$, we conclude from Proposition (3.20) that, for $\chi \in \operatorname{Irr}_{K}^{1}(G)$, we have $\chi_{\varphi^{+}} \cdot 1^{-}=\chi_{\varphi^{-}}$.
(5.17) Example. Let $G:=J_{2} .2$ and $H:=U_{3}(3) .2$, as well as $G^{\prime}:=J_{2}$ and $H^{\prime}:=U_{3}(3)$. The character table of the endomorphism ring E_{K}, see Definition (3.7), which equals the character table of $E_{K}^{1_{H^{\prime}}^{G^{\prime}}}$, and the character table of $E_{K}^{1_{H^{\prime}}}$ are both contained in the database, see Section (11.1). They are given as follows, where for all three cases the Fitting correspondence, see Proposition (2.7), is indicated as well.

	φ	$\chi \varphi^{\prime}$	χ_{φ}	1	2	3		
	1	$1 a$	$1 a^{+}$	\|	1	36	63	
	2	$36 a$	$36 a^{+}$	1				
	3	$63 a$	$63 a^{+}$	1		3		
φ	χ_{φ}	1^{\prime}	$1^{\prime \prime}$	2^{\prime}	$2^{\prime \prime}$	3^{\prime}	$3^{\prime \prime}$	
1	$1 a^{+}$	1	1	36	36	63	63	
2	$1 a^{-}$	1	-1	36	-36	63	-63	
3	$36 a^{+}$	1	1	6	6	-7	-7	
4	$36 a^{-}$	1	-1	6	-6	-7	7	
5	$63 a^{+}$	1	1	-4	-4	3	3	
6	$63 a^{-}$	1	-1	-4	4	3	-3	

(5.18) Remark. Let $H^{\prime} \unlhd H$ such that $\left[H: H^{\prime}\right]=3$, and $\lambda^{\prime}=1$. Hence we have $\operatorname{Irr}_{K}^{1}(H)=\left\{1, \lambda_{3}, \lambda_{3}^{-1}\right\}$, where $\lambda_{3}, \in \operatorname{Irr}_{K}(H)$ denotes the inflation of one of the non-trivial irreducible characters of H / H^{\prime} to H. Hence all the elements of $\operatorname{Irr}_{K}^{1}(H)$ can be chosen as λ as above, and we have $\mathcal{I}_{\lambda_{3}}=\mathcal{I}_{\lambda_{3}^{-1}}$. For $i \in \mathcal{I}$ we have $\left\langle\left(\lambda_{3}\right)_{H_{i}},\left(\lambda_{3}\right)_{H_{i}}^{g_{i}}\right\rangle_{H_{i}}=1$ if and only if $\left\langle\left(\lambda_{3}^{-1}\right)_{H_{i}},\left(\lambda_{3}^{-1}\right)_{H_{i}}^{g_{i}}\right\rangle_{H_{i}}=1$. Hence by Proposition (5.10) we distinguish two cases.
a) We have $\alpha_{H^{\prime}, H}^{-1}(i)=\left\{i^{\prime}\right\}$, thus $k_{i^{\prime}}^{\prime}=3 \cdot k_{i}$. Hence we have $i \notin \mathcal{I}_{\lambda_{3}}$. Thus, by Corollary (5.13), still using the identification from Section (5.3), for $\varphi \in$ $\operatorname{Irr}_{K}\left(E_{K}^{1}\right)$ we have

$$
\varphi\left(\alpha_{i^{\prime}}^{1_{H^{\prime}}}\right)=\left\{\begin{aligned}
3 \cdot \varphi\left(\alpha_{i}^{1_{H}}\right), & \text { if } \varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H}}\right) \\
0, & \text { if } \varphi \notin \operatorname{Irr}_{K}\left(E_{K}^{1_{H}}\right)
\end{aligned}\right.
$$

b) We have $\alpha_{H^{\prime}, H}^{-1}(i)=\left\{i^{\prime}, i^{\prime \prime}, i^{\prime \prime \prime}\right\}$, thus $k_{i^{\prime}}^{\prime}=k_{i^{\prime \prime}}^{\prime}=k_{i^{\prime \prime \prime}}^{\prime}=k_{i}$. Hence we have $i \in \mathcal{I}_{\lambda_{3}}$, and $H g_{i} H=H^{\prime} g_{i} H^{\prime} \dot{\cup} H^{\prime} g_{i} y H^{\prime} \dot{\cup} H^{\prime} g_{i} y^{\prime} H^{\prime}$, where $\left\{g_{i}, g_{i} y, g_{i} y^{\prime}\right\}$ is a set of representatives of the double cosets indicated in Lemma (5.8). As $H^{\prime} \cap H^{g_{i}} \unlhd H_{i}$ and $H \cap H^{\prime g_{i}} \unlhd H_{i}$, we may choose $y^{\prime}=y^{-1}$. Without loss of generality let $g_{i^{\prime}}^{\prime}:=g_{i}$ as well as $g_{i^{\prime \prime}}^{\prime}:=g_{i} y$ and $g_{i^{\prime \prime \prime}}^{\prime}:=g_{i} y^{-1}$. As $y \in$ $H_{i} \backslash\left(H \cap H^{\prime g_{i}}\right)$, by Definition (5.6), applied to λ_{3}, we obtain $\zeta_{i^{\prime}}^{\prime}=1$, as well as $\zeta_{i^{\prime \prime}}^{\prime}=\lambda_{3}(y)=\zeta_{3}$ and $\zeta_{i^{\prime \prime \prime}}^{\prime}=\lambda_{3}\left(y^{-1}\right)=\frac{1}{\zeta_{3}}$, where $\zeta_{3} \in K$ is a primitive third root of unity. Thus, by Corollary (5.13), for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{1}{ }_{H^{\prime}}\right)$ we have

Let ${ }^{-}: K \rightarrow K$ denote the involutory field automorphism as in Section 3. As the set $\operatorname{Irr}_{K}^{1} H^{\prime}(G)$ is invariant under ${ }^{-}$, by Remark (3.21) we conclude that $\bar{\varphi} \in$ $\operatorname{Irr}_{K}\left(E_{K}^{\lambda_{3}^{-1}}\right)$ if and only if $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda_{3}}\right)$. Hence to determine the character table of $E_{K}^{1_{H^{\prime}}}$ it is sufficient to know, for which $i \in \mathcal{I}$ we have $\left|\alpha_{H^{\prime}, H}^{-1}(i)\right|>1$, and to determine the character tables of $E_{K}^{1_{H}}$ and $E_{K}^{\lambda_{3}}$.
An example for this situation is given in Section (12.2).

6 Condensation functors

In Section 6 we occupy a much more general point of view, which encompasses the cases of the endomorphism rings E_{K}^{λ} as special cases. It turns out that this is the right setting to formulate and understand some of the most powerful techniques of computational representation theory. We begin in a fairly general setting, thereby correcting an impreciseness in [57].

Let Θ be a principal ideal domain. Let A be a Θ-algebra, which is a finitely generated Θ-free Θ-module. Let mod $-A$ be the abelian category of finitely generated right A-modules. For the necessary notions from category theory see [1, Ch.II.1] and [36, Ch.I].

(6.1) Definition.

a) Let V be a finitely generated Θ-free Θ-module, and let $U \leq V$ be a Θ submodule. Then the Θ-pure Θ-submodule

$$
U^{V}:=\bigcap\{X ; X \leq V \text { is a } \Theta \text {-pure } \Theta \text {-submodule, } U \leq X\} \leq V
$$

is called the pure closure of U in V. For the notion of Θ-purity see [39, Ch.I.17]. b) Let $\bmod _{\Theta}-A$ be the full additive subcategory of $\bmod -A$ consisting of its Θ-free objects. In particular, if Θ is a field we have $\bmod _{\Theta}-A=\bmod -A$.
(6.2) Proposition. Let $V, W \in \bmod _{\Theta}-A$ and $\alpha \in \operatorname{Hom}_{A}(V, W)$.
a) Then a kernel ker α and a cokernel $\operatorname{cok} \alpha$ exist in $\bmod _{\Theta}-A$.
b) The natural map, induced by α,

$$
\operatorname{coim} \alpha:=\operatorname{cok}(\operatorname{ker} \alpha) \rightarrow \operatorname{ker}(\operatorname{cok} \alpha)=: \operatorname{im} \alpha
$$

from the coimage of α to the image of α is an isomorphism if and only if $V \alpha \leq W$ is a Θ-pure submodule. In particular, if Θ is not a field then $\bmod _{R}-A$ fails to be an exact category.

Proof. The set theoretic kernel $\operatorname{ker} \alpha \in \bmod -A$ of α again is a Θ-free module, and hence, together with its natural embedding into V, it is a categorical kernel of α in $\bmod _{\Theta}-A$.
As $(V \alpha)^{W} \leq W$ is a Θ-pure submodule, we have $W /(V \alpha)^{W} \in \bmod _{\Theta}-A$. Let $\beta: W \rightarrow W /(V \alpha)^{W}$ denote the natural epimorphism. Let $X \in \bmod _{\Theta}-A$ and $\gamma \in \operatorname{Hom}_{A}(W, X)$, such that $\alpha \gamma=0$. Then for $w \in(V \alpha)^{W}$ there is $\theta \in \Theta$ such that $\theta w \in V \alpha$, hence we have $\theta w \cdot \gamma=0$, and since X is a Θ-free module we conclude $w \gamma=0$. Hence γ factors through β, and $\operatorname{cok} \alpha:=W /(V \alpha)^{W}$ together with β is a categorical cokernel of α in $\bmod _{\Theta}-A$. This shows the assertions in a).

As $\operatorname{ker} \alpha \leq V$ is a Θ-pure submodule, we have $\operatorname{cok}(\operatorname{ker} \alpha) \cong V / \operatorname{ker} \alpha$. As $(V \alpha)^{W} \leq W$ is a Θ-pure submodule, we have $\operatorname{ker}(\operatorname{cok} \alpha) \cong(V \alpha)^{W}$. From that the assertion in b) follows.
(6.3) Definition. Let $V, W, U \in \bmod _{\Theta}-A$ as well as $\alpha \in \operatorname{Hom}_{A}(V, W)$ and $\beta \in \operatorname{Hom}_{A}(W, U)$. The sequence $V \xrightarrow{\alpha} W \xrightarrow{\beta} U$ is called exact, if im $\alpha=\operatorname{ker} \beta$ in the category $\bmod _{\Theta}-A$.

We introduce the objects of interest in Section 6, condensation functors and functors related to them, and discuss a few of their properties. The intention is to show their usefulness as a tool to analyse a given module category in practice.
(6.4) Definition. See also [25, Ch.6.2].

Let $e \in A$ be an idempotent.
a) The additive exact functor

$$
C_{e}: \bmod -A \rightarrow \bmod -e A e: V \mapsto V e,
$$

mapping $\alpha \in \operatorname{Hom}_{A}(V, W)$ to its restriction $\left.\alpha\right|_{V e} \in \operatorname{Hom}_{e A e}(V e, W e)$ to $V e$, is called the condensation functor or Schur functor with respect to e. For $V \in$ $\bmod -A$ the $e A e$-module $V e \in \bmod -e A e$ is called the condensed module of V. b) The uncondensation functor with respect to e is the additive functor

$$
U_{e}:=? \otimes_{e A e} e A: \text { mod }-e A e \rightarrow \bmod -A
$$

For $W \in \bmod -e A e$, the A-module $W \otimes_{e A e} e A \in \bmod -A$ is called the uncondensed module of W.
(6.5) Remark. C_{e} is equivalent to the tensor functor ? $\otimes_{A} A e: \bmod -A \rightarrow$ $\bmod -e A e$, using the equivalence $\sigma_{e}: C_{e} \rightarrow ? \otimes_{A} A e$ of functors from mod- A to $\bmod -e A e$ given by $\sigma_{e}(V): V e \rightarrow V \otimes_{A} A e: v e \mapsto v \otimes e$.
Furthermore, there is an equivalence $\tau_{e}: \operatorname{Hom}_{A}(e A, ?) \rightarrow ? \otimes_{A} A e$ of functors from mod- A to mod- $e A e$, given by $\tau_{e}(V): \operatorname{Hom}_{A}(e A, V) \rightarrow V e: \alpha \mapsto e \alpha$, with inverse given by $\tau_{e}^{-1}(V): V e \rightarrow \operatorname{Hom}_{A}(e A, V): v \mapsto(e a \mapsto v \cdot a)$.
$C_{e} \circ U_{e}$ is equivalent to the identity functor on mod- $e A e$ using the equivalence given by $V \otimes_{e A e} e A \cdot e \rightarrow V: v \otimes e a \cdot e \mapsto v e a e$, for $V \in \bmod -e A e$.

(6.6) Proposition.

a) C_{e} induces an additive functor from $\bmod _{\Theta}-A$ to $\bmod _{\Theta}-e A e$.
b) Let $V, W, U \in \bmod _{\Theta}-A$ and let $V \xrightarrow{\alpha} W \xrightarrow{\beta} U$ be an exact sequence in $\bmod _{\Theta}-A$, see Definition (6.3). Then $V e \xrightarrow{\left.\alpha\right|_{V e}} W e \xrightarrow{\left.\beta\right|_{W e}} U e$ is an exact sequence in $\bmod _{\Theta}-e A e$.

Proof. If $V \in \bmod -A$ is a Θ-free module, then $V e \in \bmod -e A e$ also is a Θ-free module. This shows the assertion in a).
Both $(V \alpha)^{W} \cdot e \leq(V \alpha)^{W}$ and $(V \alpha)^{W} \leq W$ are Θ-pure submodules. Hence $(V \alpha)^{W} \cdot e \leq W$ is a Θ-pure submodule, thus this holds for $(V \alpha)^{W} \cdot e \leq W e$ as well. Hence we have $(V \alpha \cdot e)^{W e} \leq(V \alpha)^{W} \cdot e$. Furthermore, for $w \in(V \alpha)^{W} \cdot e=$ $(V \alpha)^{W} \cap W e$ there is $\theta \in \Theta$ such that $\theta w \in V \alpha \cap W e=V \alpha \cdot e$. Hence we also have $(V \alpha)^{W} \cdot e \leq(V \alpha \cdot e)^{W e}$, and thus equality holds. Using the exactness of C_{e} as a functor from mod- A to mod-eAe, the assertion in b) follows. $\quad \sharp$

The most important case, as far as computational applications are concerned, is where the base ring Θ is a field.
(6.7) Proposition. See also [57, La.3.2].

Let Θ be a field.
a) Let $S \in \bmod -A$ be a simple A-module. Then we have $S e \neq\{0\}$, if and only if S is a constituent of $e A / \operatorname{rad}(e A) \in \bmod -A$. If $S e \neq\{0\}$, then $S e \in \bmod -e A e$ is a simple $e A e$-module.
b) Let $S, S^{\prime} \in \bmod -A$ be simple A-modules, such that $S e \neq\{0\}$. Then we have $S \cong S^{\prime}$ in $\bmod -A$ if and only if $S e \cong S^{\prime} e$ in $\bmod -e A e$.
c) Let $T \in \bmod -e A e$ be a simple $e A e$-module. Then there is a simple A-module $S \in \bmod -A$ such that $T \cong S e$ as $e A e$-modules.

Proof. By Remark (6.5) we have $S e \cong \operatorname{Hom}_{A}(e A, S) \cong \operatorname{Hom}_{A}(e A / \operatorname{rad}(e A), S)$ as Θ-vector spaces. From this the first assertion in a) follows. Let $0 \neq v \in S e$. Since S is a simple A-module, we have $v \cdot e A e=v A \cdot e=S e$. From this the second assertion in a) follows.

Let $S e \cong S^{\prime} e$ in mod-eAe. Choose a decomposition of $e \in A$ as a sum of pairwise orthogonal primitive idempotents in A. We have $\operatorname{Hom}_{A}(e A, S) \cong S e \neq\{0\}$ as Θ-vector spaces, if and only if there is a summand $e_{S} \in e A e \subseteq A$ such that $e_{S} A$ is a projective indecomposable module with $e_{S} A / \operatorname{rad}\left(e_{S} A\right) \cong S$ in mod- A. Applying the condensation functor $C_{e_{S}}: \bmod -e A e \rightarrow \bmod -e_{S} A e_{S}$, we obtain $S e_{S} \cong S^{\prime} e_{S}$ in $\bmod -e_{S} A e_{S}$. Hence we have $\{0\} \neq S^{\prime} e_{S} \cong \operatorname{Hom}_{A}\left(e_{S} A, S^{\prime}\right)$ as Θ-vector spaces, thus $S^{\prime} \cong S$ in mod- A. This proves the assertion in b).
By Remark (6.5) we have $C_{e} \circ U_{e}(T) \cong T \neq\{0\}$ in mod- $e A e$, hence $U_{e}(T) \neq$ $\{0\}$. Thus there is a simple A-module $S \in \bmod -A$ such that $\operatorname{Hom}_{A}\left(U_{e}(T), S\right) \neq$ $\{0\}$. By the Adjointness Theorem [15, Thm.0.2.19] we have as Θ-vector spaces

$$
\operatorname{Hom}_{A}\left(T \otimes_{e A e} e A, S\right) \cong \operatorname{Hom}_{e A e}\left(T, \operatorname{Hom}_{A}(e A, S)\right) \cong \operatorname{Hom}_{e A e}(T, S e) \neq\{0\}
$$

Thus we conclude that $\{0\} \neq S e \in \bmod -e A e$ is a simple $e A e$-module, hence $S e \cong T$ in $\bmod -e A e$.

Given an idempotent $e \in A$, this leads to some further structural features of the category of A-modules. Their usefulness becomes clearer below.
(6.8) Definition. Let Θ be a field and let $e \in A$ be an idempotent.
a) Let $\Sigma_{e} \subseteq \bmod -A$ be a set of representatives of the isomorphism types of simple A-modules $S \in \bmod -A$ such that $S e \neq\{0\}$. In particular, Σ_{1} is a set of representatives of the isomorphism types of all simple A-modules.
b) Let $\bmod _{e}-A$ be the full subcategory of $\bmod -A$ consisting of all A-modules all of whose constituents are isomorphic to an element of Σ_{e}. The natural embedding induces the fully faithful exact functor $I_{e}: \boldsymbol{m o d}_{e^{-}} A \rightarrow \bmod -A$. Let

$$
C_{e}^{\Sigma}:=C_{e} \circ I_{e}: \bmod _{e}-A \rightarrow \bmod -e A e
$$

c) For $V \in \bmod -A$ let $\mathcal{P}(V) \xrightarrow{\rho} V$ denote its projective cover, and let $\Omega(V):=$ ker $\rho \in \bmod -A$ be the Heller module of V. Let $\bmod _{\Omega, e^{-}} A$ be the full subcategory of mod- A consisting of all A-modules V such that both $V / \operatorname{rad}(V) \in$
$\bmod _{e^{-}} A$ and $\Omega(V) / \operatorname{rad}(\Omega(V)) \in \bmod _{e^{-}}$. The natural embedding induces the fully faithful exact functor $I_{\Omega, e}: \bmod _{\Omega, e^{-}} A \rightarrow \bmod -A$. Let

$$
C_{e}^{\Omega}:=C_{e} \circ I_{\Omega, e}: \bmod _{\Omega, e^{-}} A \rightarrow \bmod -e A e
$$

(6.9) Remark. Let Θ be a field and let $e \in A$ be an idempotent.
a) By Proposition (6.7), the set $\left\{S e ; S \in \Sigma_{e}\right\} \subseteq \bmod -e A e$ is a set of representatives of the isomorphism types of all simple $e A e$-modules.
b) If $\Sigma_{e}=\Sigma_{1}$, then the projective A-module $e A \in \bmod -A$ is a progenerator of $\bmod -A$. Hence in this case, by [15, Thm.0.3.54], C_{e} induces an equivalence between mod- A and mod-eAe. Thus C_{e} is fully faithful and essentially surjective.

We discuss properties of the condensation functor C_{e} in the general case, where we do not assume that C_{e} induces an equivalence. Proposition (6.10) shows that C_{e}^{Σ} is a suitable functor to examine the submodule structure of A-modules. Proposition (6.11) and Example (6.14) show that C_{e}^{Σ} is fully faithful, but in general is not essentially surjective. Proposition (6.15) then shows how this failure to be an equivalence can be remedied by using the functor C_{e}^{Ω}.
(6.10) Proposition. Let Θ be a field, $e \in A$ be an idempotent and let $V \in \bmod _{e}-A$. Then C_{e}^{Σ} induces a lattice isomorphism between the submodule lattices of V and $C_{e}^{\Sigma}(V)$.

Proof. Clearly C_{e}^{Σ} preserves inclusion of submodules and commutes with forming sums and intersections of submodules. Hence C_{e}^{Σ} induces a lattice homomorphism from the submodule lattice of V to the submodule lattice of $C_{e}^{\Sigma}(V)$. Since $V \in \bmod _{e}-A$ this homomorphism is injective. It remains to prove that it is also surjective.

Let $\alpha: W \rightarrow V e$ be an injective homomorphism of $e A e$-modules. Applying C_{e} to $\operatorname{Hom}_{A}\left(U_{e}(W), V\right)$ and using the equivalences of Remark (6.9) yields a Θ-linear map

$$
\left(C_{e}\right)_{U_{e}(W), V}:\left\{\begin{aligned}
\operatorname{Hom}_{A}\left(W \otimes_{e A e} e A, V\right) & \rightarrow \operatorname{Hom}_{e A e}\left(W, \operatorname{Hom}_{A}(e A, V)\right): \\
\beta & \mapsto\left(w \mapsto\left(e a \mapsto(w \otimes e)^{\beta} \cdot a\right)\right)
\end{aligned}\right.
$$

This coincides with the adjointness Θ-homomorphism given by [15, Thm.0.2.19], and hence is a Θ-isomorphism. Let $\beta:=\left(C_{e}\right)_{U_{e}(W), V}^{-1}(\alpha) \in \operatorname{Hom}_{A}\left(U_{e}(W), V\right)$. Then we have $U_{e}(W) \beta \leq V$ and $C_{e}\left(U_{e}(W) \beta\right)=\left(C_{e} \circ U_{e}(W)\right) \alpha=W \alpha$.
(6.11) Proposition. Let Θ be a field and let $e \in A$ be an idempotent. Then the functor $C_{e}^{\Sigma}: \bmod _{e}-A \rightarrow \bmod -e A e$ is fully faithful.

Proof. If $\Sigma_{e}=\Sigma_{1}$, then we have $C_{e}^{\Sigma}=C_{e}$, and by Remark (6.9) the functor C_{e} is an equivalence of categories, in particular C_{e} is fully faithful. Hence we may assume $\Sigma_{e} \neq \Sigma_{1}$. Let $e^{\prime} \in A$ be an idempotent orthogonal to e, such that $S e^{\prime} \neq\{0\}$ if and only if $S \in \bmod -A$ is a simple A-module isomorphic to an element of $\Sigma_{1} \backslash \Sigma_{e}$, and let $f:=e+e^{\prime} \in A$. Hence $\Sigma_{f}=\Sigma_{1}$ and thus the functor $C_{f}: \bmod -A \rightarrow \bmod -f A f$ is an equivalence of categories, in particular C_{f} is fully faithful. Note that, since there might be a simple A-module $S \in \bmod -A$ isomorphic to an element of Σ_{e} such that $S(1-e) \neq\{0\}$, in general we cannot simply let $f=1 \in A$.
We have the Pierce decomposition $f A f=e A e \oplus e A e^{\prime} \oplus e^{\prime} A e \oplus e^{\prime} A e^{\prime}$ of $f A f$ as a Θ-vector space. Hence, for $V \in \bmod -e A e$ and $v \in V$ as well as $a \in A$, let $v \cdot e a e^{\prime}=v \cdot e^{\prime} a e=v \cdot e^{\prime} a e:=0$. It is straightforward to check that this defines an $f A f$-module structure on V. Thus we obtain a functor $I_{e}^{f}: \bmod -e A e \rightarrow$ $\bmod -f A f$. As, for $V, W \in \bmod -e A e$, we have $\operatorname{Hom}_{f A f}\left(I_{e}^{f}(V), I_{e}^{f}(W)\right)=$ $\operatorname{Hom}_{e A e}(V, W)$, the functor I_{e}^{f} is fully faithful. By the choice of $e^{\prime} \in A$ we furthermore conclude $I_{e}^{f} \circ C_{e} \circ I_{e}=C_{f} \circ I_{e}$ as functors from $\bmod _{e}-A$ to mod- $f A f$. As both I_{e} and I_{e}^{f}, as well as C_{f}, are fully faithful, the assertion follows. $\quad \sharp$
(6.12) Corollary. Let Θ be a field and let $e \in A$ be an idempotent.
a) For $V \in \bmod _{e}-A$ we then have $\operatorname{End}_{A}(V) \cong \operatorname{End}_{e A e}(V e)$.
b) In particular, if $S \in \bmod _{e}-A$ is a simple A-module, then S is absolutely simple if and only if $S e \in \bmod -e A e$ is.
(6.13) Remark. Let Θ be a field and let $e \in A$ be an idempotent.
a) Let $V \in \bmod _{e^{-}} A$ and let $\mathcal{C} \subseteq e A e$ be a Θ-subalgebra. Then we have $\operatorname{End}_{e A e}(V e) \subseteq \operatorname{End}_{\mathcal{C}}(V e)$, and by Corollary (6.12) we have equality if and only if $\operatorname{dim}_{\Theta} \operatorname{End}_{\mathcal{C}}(V e)=\operatorname{dim}_{\Theta} \operatorname{End}_{A}(V)$
b) The functor $C_{e}^{\Sigma}: \bmod _{e}-A \rightarrow \bmod -e A e$ is not necessarily essentially surjective, hence not necessarily an equivalence of categories, as the following example shows.
(6.14) Example. Let Θ be a field of characteristic 2, let $G:=\mathcal{A}_{5}$ be the alternating group on 5 letters, and $A:=\Theta G$, where we assume Θ to be a splitting field for A. The 2-modular Brauer characters of G can be found in [37]. Let $H \leq G$ be a cyclic subgroup of order 5 , let $\lambda=1$ be the trivial representation of ΘH and $\epsilon=\epsilon_{1} \in \Theta H \subseteq A$, where the notation is as in Section (2.1).
As $\epsilon A \cong 1_{H}^{G}$ as A-modules, we have $\operatorname{Hom}\left(\epsilon A, S_{1}\right) \neq\{0\}$, where S_{1} denotes the trivial A-module. Furthermore, ϵA is a projective A-module, and since $\operatorname{dim}_{\Theta}\left(\mathcal{P}\left(S_{1}\right)\right)=12$, where $\mathcal{P}\left(S_{1}\right)$ denotes the projective cover of S_{1}, we conclude $\epsilon A \cong \mathcal{P}\left(S_{1}\right)$ as A-modules, hence $\epsilon \in A$ is a primitive idempotent, and thus $\operatorname{Hom}_{A}(\epsilon A, S)=\{0\}$ for all simple A-modules $S \not \approx S_{1}$. Hence we have $\Sigma_{\epsilon}=\left\{S_{1}\right\}$ and $S_{1} \epsilon$ is the only simple $\epsilon A \epsilon$-module, up to isomorphism.

As ϵA is a non-simple, projective indecomposable module for the symmetric algebra A, its endomorphism ring $\operatorname{End}_{A}(\epsilon A) \cong(\epsilon A \epsilon)^{\circ}$ as Θ-algebras, see Section
(2.1), is a local Θ-algebra containing non-zero nilpotent elements. Hence $\epsilon A \epsilon$ is not semisimple and in particular we have $\operatorname{Ext}_{\epsilon A \epsilon}^{1}\left(S_{1} \epsilon, S_{1} \epsilon\right) \neq\{0\}$. As G is a perfect group, we have $\operatorname{Ext}_{A}^{1}\left(S_{1}, S_{1}\right)=\{0\}$. Hence all modules in $\bmod _{\epsilon}-A$ are semisimple. Thus C_{ϵ}^{Σ} is not essentially surjective.
(6.15) Proposition. See also [1, Prop.II.2.5].

Let Θ be a field and $e \in A$ be an idempotent. Then the functor $C_{e}^{\Omega}: \bmod _{\Omega, e^{-}} A \rightarrow$ $\bmod -e A e$ is an equivalence of categories.

Proof. Let $V \in \bmod -e A e$ and $S \in \Sigma_{1}$. By the Adjointness Theorem [15, Thm.0.2.19] we have $\operatorname{Hom}_{A}\left(U_{e}(V), S\right) \cong \operatorname{Hom}_{e A e}\left(V, \operatorname{Hom}_{A}(e A, S)\right)$ as Θ-vector spaces. As $\operatorname{Hom}_{A}(e A, S)=\{0\}$ if $S \notin \Sigma_{e}$, we have $U_{e}(V) / \operatorname{rad}\left(U_{e}(V)\right) \in$ $\bmod _{e}-A$. By [3, Cor.2.5.4] we have $\operatorname{Hom}_{A}\left(\Omega\left(U_{e}(V)\right), S\right) \cong \operatorname{Ext}_{A}^{1}\left(V \otimes_{e A e} e A, S\right)$ as Θ-vector spaces. If $P \in \bmod -e A e$ is a projective $e A e$-module, and hence a direct summand of a free $e A e$-module, then $P \otimes_{e A e} e A \in \bmod -A$ is a projective A-module. Thus by the Eckmann-Shapiro Lemma [3, Cor.2.8.4] we conclude $\operatorname{Ext}_{A}^{1}\left(V \otimes_{e A e} e A, S\right) \cong \operatorname{Ext}_{e A e}^{1}\left(V, \operatorname{Hom}_{A}(e A, S)\right)$ as Θ-vector spaces. Hence we also have $\Omega\left(U_{e}(V)\right) / \operatorname{rad}\left(\Omega\left(U_{e}(V)\right)\right) \in \bmod _{e}-A$.

Thus U_{e} restricts to a functor $U_{e}: \bmod -e A e \rightarrow \bmod _{\Omega, e}-A$. By Remark (6.5) $C_{e}^{\Omega} \circ U_{e}$ is equivalent to the identity functor on mod- $e A e$. Conversely, for $V \in \bmod _{\Omega, e^{-}} A$ we have $U_{e} \circ C_{e}(V) \cong \operatorname{Hom}_{A}(e A, V) \otimes_{\operatorname{End}_{A}(e A)^{\circ}} e A \in \bmod _{\Omega, e^{-}} A$. Hence it is sufficient to show that the natural evaluation map

$$
\nu: \operatorname{Hom}_{A}(e A, V) \otimes_{\operatorname{End}_{A}(e A)^{\circ}} e A \rightarrow V: \alpha \otimes e a \mapsto(e a) \alpha
$$

is an isomorphism of A-modules.
Assume that ν is not surjective. Then there is $S \in \Sigma_{e}$ and $0 \neq \beta \in \operatorname{Hom}_{A}(V, S)$ such that $\operatorname{im} \nu \leq \operatorname{ker} \beta \leq V$. As β is surjective, $e A \in \bmod -A$ is a projective A module, and $\operatorname{Hom}_{A}(e A, S) \neq\{0\}$, there is $\alpha \in \operatorname{Hom}_{A}(e A, V)$ such that $\alpha \beta \neq 0$. Hence $\operatorname{im} \alpha \not \leq \operatorname{ker} \beta \leq V$, which is a contradiction. Hence ν is surjective, and we thus have an exact sequence

$$
\{0\} \rightarrow \operatorname{ker} \nu \rightarrow \operatorname{Hom}_{A}(e A, V) \otimes_{\operatorname{End}_{A}(e A)^{\circ}} e A \xrightarrow{\nu} V \rightarrow\{0\}
$$

of A-modules. Since $C_{e} \circ U_{e}$ is equivalent to the identity functor on mod-eAe, applying C_{e} yields the exact sequence $\{0\} \rightarrow(\operatorname{ker} \nu) e \rightarrow V e \xrightarrow{\text { id }} V e \rightarrow\{0\}$ of $e A e$-modules. Hence we conclude $(\operatorname{ker} \nu) e=\{0\}$.
As ν is surjective, the projective cover $\mathcal{P}(V) \xrightarrow{\rho} V$ yields the existence of $\mu \in$ $\operatorname{Hom}_{A}\left(\mathcal{P}(V), \operatorname{Hom}_{A}(e A, V) \otimes_{\operatorname{End}_{A}(e A)^{\circ}} e A\right)$ such that $\mu \nu=\rho$. As $(\Omega(V) \mu) \nu=$ $(\operatorname{ker} \rho) \mu \nu=\{0\}$, there is $\kappa \in \operatorname{Hom}_{A}(\Omega(V), \operatorname{ker} \nu)$ such that $\Omega(V) \mu=\Omega(V) \kappa \leq$ $\operatorname{ker} \nu$. From $(\operatorname{ker} \nu) e=\{0\}$ and $\Omega(V) / \operatorname{rad}(\Omega(V)) \in \bmod _{e}-A$ we conclude that $\Omega(V) \mu=\{0\}$. Hence there is $v \in \operatorname{Hom}_{A}\left(V, \operatorname{Hom}_{A}(e A, V) \otimes_{\operatorname{End}_{A}(e A)^{\circ}} e A\right)$ such that $\rho v=\mu$. Thus we have $\rho v \nu=\rho$. As ρ is surjective, we conclude $v \nu=\mathrm{id}_{V}$. Hence ker ν is a direct summand of $\operatorname{Hom}_{A}(e A, V) \otimes_{\operatorname{End}_{A}(e A)^{\circ}} e A \in \bmod _{\Omega, e^{-}} A$, and hence $\operatorname{ker} \nu / \operatorname{rad}(\operatorname{ker} \nu) \in \bmod _{e^{-}} A$. As $(\operatorname{ker} \nu) e=\{0\}$ we conclude $\operatorname{ker} \nu=$ $\{0\}$, and thus ν is injective as well.
(6.16) Remark. Let $V \in \bmod -A$ and $e \in A$ be an idempotent. The natural evaluation map $\nu: \operatorname{Hom}_{A}(e A, V) \otimes_{e A e} e A \rightarrow V$ used in the proof of Proposition (6.15) is the preimage of $\operatorname{id}_{\operatorname{Hom}_{A}(e A, V)}$ under the adjointness Θ-isomorphism, see [15, Thm.0.2.19],

$$
\operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(e A, V) \otimes_{e A e} e A, V\right) \cong \operatorname{Hom}_{e A e}\left(\operatorname{Hom}_{A}(e A, V), \operatorname{Hom}_{A}(e A, V)\right)
$$

This leads to the definition of relative uncondensation functors, which are of practical importance, see Section (6.22).
(6.17) Definition. Let $V \in \bmod -A$ and $e \in A$ be an idempotent. Let $\alpha: W \rightarrow V e$ be an injective homomorphism of $e A e$-modules. Then we have a homomorphism of A-modules

$$
(\alpha \otimes \mathrm{id}) \cdot \nu: W \otimes_{e A e} e A \xrightarrow{\alpha \otimes \mathrm{id}} V e \otimes_{e A e} e A \xrightarrow{\nu} V,
$$

where $\nu: \operatorname{Hom}_{A}(e A, V) \otimes_{e A e} e A \rightarrow V$ is the natural evaluation map as in Remark (6.16). The A-module $\operatorname{im}((\alpha \otimes \mathrm{id}) \cdot \nu) \leq V$ is called the uncondensed module of W relative to α and V.
(6.18) We consider the question how condensation functors relate to modular reduction.

Let K be an algebraic number field, and let $R \subset K$ be a discrete valuation ring in K with maximal ideal $\wp \triangleleft R$ and finite residue class field $F:=R / \wp$ of characteristic $p>0$. Let ${ }^{\sim}: R \rightarrow F$ denote the natural epimorphism.
Let A be an R-algebra, which is a finitely generated R-free R-module, let $A_{K}:=$ $A \otimes_{R} K$ and $A_{F}:=A \otimes_{R} F$, and let $\sim: A \rightarrow A_{F}$ denote the natural epimorphism. Let $e \in A \subseteq A_{K}$ be an idempotent. We have the Pierce decomposition of R modules $A=e A e \oplus(1-e) A e \oplus e A(1-e) \oplus(1-e) A(1-e)$. As A is an R-free R-module, this also holds for $e A e \leq A$, and we have $e A e \otimes_{R} K \cong e A_{K} e$ as K-algebras and $e A e \otimes_{R} F \cong \tilde{e} A_{F} \tilde{e}$ as F-algebras.
If $V \xrightarrow{\alpha} W \xrightarrow{\beta} U$ is an exact sequence in $\bmod _{R^{-}} A$, see Definition (6.3), then it follows from the proof of Proposition (6.2) that the induced sequence of $e A_{K} e$ modules $V \otimes_{R} K \xrightarrow{\alpha \otimes \mathrm{id}} W \otimes_{R} K \xrightarrow{\beta \otimes i d} U \otimes_{R} K$ is an exact sequence in mod-e $A_{K} e$. Note that this does not necessarily hold for the induced sequence of $\tilde{e} A_{F} \tilde{e}$ modules $V \otimes_{R} F \xrightarrow{\alpha \otimes \text { id }} W \otimes_{R} F \xrightarrow{\beta \otimes \text { id }} U \otimes_{R} F$ in mod- $\tilde{e} A_{F} \tilde{e}$.
As in the group algebra case, see [14, Ch.XII.82-83], which straightforwardly generalises to the general case considered here, we define decomposition maps $D: G\left(A_{K}\right) \rightarrow G\left(A_{F}\right)$ and $D_{e}: G\left(e A_{K} e\right) \rightarrow G\left(\tilde{e} A_{F} \tilde{e}\right)$, where $G(\cdot)$ denotes the corresponding Grothendieck groups, as follows. Let $S \in \bmod -A_{K}$ is a simple A_{K}-module, and let $\hat{S} \in \bmod _{R^{-}} A$, such that $\hat{S} \otimes_{R} K \cong S$ as $A_{K^{-}}$-modules. Let $T \in \bmod -A_{F}$ be a simple A_{K}-module. Then the decomposition number $d_{S, T} \in \mathbb{N}_{0}$ is defined as the multiplicity of the constituent T in an A_{F}-module
composition series of $\widetilde{\hat{S}}:=\hat{S} \otimes_{R} F \in \bmod -A_{F}$. The decomposition numbers $d_{S, T}^{e} \in \mathbb{N}_{0}$ for simple modules $S \in \bmod -e A_{K} e$ and $T \in \bmod -\tilde{e} A_{F} \tilde{e}$ are defined analogously.
(6.19) Proposition. Let A be as in Section (6.18) and let $e \in A \subseteq A_{K}$ be an idempotent.
a) The additive functors $\operatorname{Hom}_{A}(e A, ?) \otimes_{R} K$ and $\operatorname{Hom}_{A_{K}}\left(e A_{K}, ? \otimes_{R} K\right)$ from $\boldsymbol{\operatorname { m o d }}_{R^{-}} A$ to $\boldsymbol{\operatorname { m o d }}-e A_{K} e$ are equivalent.
b) The additive functors $\operatorname{Hom}_{A}(e A, ?) \otimes_{R} F$ and $\operatorname{Hom}_{A_{F}}\left(\tilde{e} A_{F}, ? \otimes_{R} F\right)$ from $\bmod _{R}-A$ to $\bmod -\tilde{e} A_{F} \tilde{e}$ are equivalent.

Proof. As A is an R-free R-module, this also holds for $e A \leq A$. For $V \in$ $\bmod _{R^{-}} A$, hence $\operatorname{Hom}_{A}(e A, V) \leq \operatorname{Hom}_{R}(e A, V)$ also is an R-free R-module. From that the assertions follow.
(6.20) Proposition. Let A be as in Section (6.18) and let $e \in A \subseteq A_{K}$ be an idempotent. Let $S \in \bmod -A_{K}$ be a simple A_{K}-module and $T \in \bmod -A_{F}$ be a simple A_{F}-module, such that $\{0\} \neq T \tilde{e} \in \bmod -\tilde{e} A_{F} \tilde{e}$. Then we have

$$
d_{S, T}=d_{S e, T \tilde{e}}^{e}
$$

In particular, if $S e=\{0\}$ then we have $d_{S T}=0$.
Proof. Let $\hat{S} \in \bmod _{R}-A$ such that $\hat{S} \otimes_{R} K \cong S$ as A_{K}-modules. By Proposition (6.19), for $\hat{S} e \in \bmod _{R^{-}} e A e$ we hence have $\hat{S} e \otimes_{R} K \cong S e$ as $e A_{K} e^{-}$ modules. Thus the decomposition number $d_{S e, T \tilde{e}}^{e} \in \mathbb{N}_{0}$ is the multiplicity of the constituent $T \tilde{e}$ in an $\tilde{e} A_{F} \tilde{e}$-module composition series of $\widetilde{\hat{S}} e \in \bmod -\tilde{e} A_{F} \tilde{e}$. By Proposition (6.19) we have $\widetilde{\hat{S}} e \cong \widetilde{\hat{S}} \tilde{e}$ as $\tilde{e} A_{F} \tilde{e}-$ modules. As $C_{\tilde{e}}: \bmod -A_{F} \rightarrow$ $\bmod -\tilde{e} A_{F} \tilde{e}$ is an exact functor, by Proposition (6.7) we conclude that the multiplicity of the constituent $T \tilde{e}$ in an $\tilde{e} A_{F} \tilde{e}$-module composition series of $\widetilde{\hat{S}} \tilde{e}$ equals the multiplicity of the constituent T in an A_{F}-module composition series of $\widetilde{\hat{S}} \in \bmod -A_{F}$, where the latter by definition is the decomposition number $d_{S, T} \in \mathbb{N}_{0}$.
(6.21) Remark. The statements of Proposition (2.11) are a special case of those of Proposition (6.20).
To see this let K, R and F, as well as λ be as in Section (2.10), where in particular the characteristic of F is coprime to $|H|$, and let $A:=R G$. Then we have $\epsilon_{\lambda} \in R G$, and $\epsilon_{\lambda} K G \epsilon_{\lambda} \cong\left(E_{K}^{\lambda}\right)^{\circ}$ as K-algebras, as well as $\epsilon_{\lambda} R G \epsilon_{\lambda} \cong\left(E_{R}^{\lambda}\right)^{\circ}$ as R-algebras, and $\epsilon_{\tilde{\lambda}} F G \tilde{\epsilon}_{\tilde{\lambda}} \cong\left(E_{F}^{\tilde{\lambda}}\right)^{\circ}$ as F-algebras, see Proposition (2.2). For $\chi \in \operatorname{Irr}_{K}(G)$ let $S_{\chi} \in \bmod -K G$ denote the simple $K G$-module affording χ, see Section (2.8). Then $S_{\chi} \cdot \epsilon_{\lambda} \cong \operatorname{Hom}_{K G}\left(\epsilon_{\lambda} K G, S_{\chi}\right) \neq\{0\}$ as K-vectors spaces, if and only if $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$.

Let $\chi_{\varphi} \in \operatorname{Irr}_{K}^{\lambda}(G)$ denote the Fitting correspondent of $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, see Proposition (2.7). Hence we have $S_{\chi_{\varphi}} \cong \epsilon_{\lambda} K G \cdot e_{\varphi} \leq \epsilon_{\lambda} K G$ as $K G$-modules, where $e_{\varphi} \in E_{K}^{\lambda}$ is an idempotent as in Section (2.6). Thus we have $S_{\chi_{\varphi}} \epsilon_{\lambda} \cong$ $\epsilon_{\lambda} K G e_{\varphi} \cdot \epsilon_{\lambda}=\epsilon_{\lambda} e_{\varphi} \cdot \epsilon_{\lambda} K G \epsilon_{\lambda}$ as $\epsilon_{\lambda} K G \epsilon_{\lambda}$-modules, where $\epsilon_{\lambda} e_{\varphi} \in \epsilon_{\lambda} K G \epsilon_{\lambda}$ is an idempotent. By Proposition (2.2) the latter $\epsilon_{\lambda} K G \epsilon_{\lambda}$-module can be identified with the $\left(E_{K}^{\lambda}\right)^{\circ}$-module $e_{\varphi}\left(E_{K}^{\lambda}\right)^{\circ}=E_{K}^{\lambda} e_{\varphi}$. Let $S_{\varphi} \in \bmod -E_{K}^{\lambda}$ denote the simple E_{K}^{λ}-module affording φ, and let $S_{\varphi}^{*}:=\operatorname{Hom}_{K}\left(S_{\varphi}, K\right)$ be the $\left(E_{K}^{\lambda}\right)^{\circ}$ module dual to the E_{K}^{λ}-module S_{φ}. As E_{K}^{λ} is a symmetric K-algebra, we have $E_{K}^{\lambda} e_{\varphi} \cong\left(e_{\varphi} E_{K}^{\lambda}\right)^{*} \cong S_{\varphi}^{*}$ as $\left(E_{K}^{\lambda}\right)^{\circ}$-modules.

Similarly, for $\varphi \in \operatorname{Irr}_{F}\left(E_{F}^{\tilde{\lambda}}\right)$ we have $P_{\varphi} \cong \epsilon_{\tilde{\lambda}} F G \cdot e_{\varphi}$ as $F G$-modules, and hence analogously the $\epsilon_{\tilde{\lambda}} F G \epsilon_{\tilde{\lambda}}$-module $P_{\varphi} \cdot \epsilon_{\tilde{\lambda}}$ can be identified with the $\left(E_{F}^{\tilde{\lambda}}\right)^{\circ}$-module $E_{F}^{\tilde{\lambda}} e_{\varphi} \cong\left(e_{\varphi} E_{F}^{\tilde{\lambda}}\right)^{*}$. Let $\chi_{\varphi} \in \operatorname{Irr}_{F}^{\tilde{\lambda}}(G)$ denote the Fitting correspondent of φ and let $S_{\chi_{\varphi}}:=P_{\varphi} / \operatorname{rad}\left(P_{\varphi}\right) \in \bmod -F G$ be the simple $F G$-module affording χ_{φ}. As P_{φ} is an $F G$-direct summand of $\epsilon_{\tilde{\lambda}} F G$, we have $\{0\} \neq \operatorname{Hom}_{F G}\left(\epsilon_{\tilde{\lambda}} F G, S_{\chi_{\varphi}}\right) \cong$ $S_{\chi_{\varphi}} \cdot \epsilon_{\tilde{\lambda}} \in \bmod -\epsilon_{\tilde{\lambda}} F G \epsilon_{\tilde{\lambda}}$. As $E_{F}^{\tilde{\lambda}}$ is a symmetric F-algebra, the latter $\epsilon_{\tilde{\lambda}} F G \epsilon_{\tilde{\lambda}}{ }^{-}$ module can be identified with the $\left(E_{F}^{\tilde{\lambda}}\right)^{\circ}$-module $S_{\varphi}^{*} \cong\left(e_{\varphi} E_{F}^{\tilde{\lambda}}\right)^{*} / \operatorname{rad}\left(\left(e_{\varphi} E_{F}^{\tilde{\lambda}}\right)^{*}\right)$.
We have a decomposition map $D_{E^{\circ}}: G\left(\left(E_{K}^{\lambda}\right)^{\circ}\right) \rightarrow G\left(\left(E_{F}^{\tilde{\lambda}}\right)^{\circ}\right)$, where the corresponding decomposition numbers are denoted by $d_{\cdot, \text {. }}^{E^{\circ}} \in \mathbb{N}_{0}$. Let $S \in \bmod -E_{K}^{\lambda}$ be a simple E_{K}^{λ}-module and let $T \in \bmod -E_{F}^{\tilde{\lambda}}$ be a simple $E_{F}^{\tilde{\lambda}}$-module. Thus $S^{*} \in \bmod -\left(E_{K}^{\lambda}\right)^{\circ}$ and $T^{*} \in \bmod -\left(E_{F}^{\tilde{\lambda}}\right)^{\circ}$ are simple modules and we have $d_{S^{*}, T^{*}}^{E^{\circ}}=d_{S, T}^{E}$.
(6.22) We conclude Section 6 with a few general remarks on computational applications of condensation functors; for more specific applications see Section 9.

Relative uncondensation functors, see Definition (6.17), have been used heavily as a constructive tool; for example to construct irreducible representations of the larger sporadic simple groups over finite fields using the MeatAxe, see [59, 78]. Condensation functors inducing equivalences between mod- A and mod-e $A e$, where A is a group algebra over a finite field have been studied in [46].

The other extreme, where $e \in A$ is a primitive idempotent, has been used in [47] to give an algorithm to compute submodule lattices. An implementation for algebras over finite fields is available in the MeatAxe, of which we make heavy use in the analysis of the examples dealt with in Part III. Other applications of condensation functors with respect to primitive idempotents are the computation of socle series [49] and the computation of endomorphism rings [74] of modules. Implementations for algebras over finite fields are available in the MeatAxe as well, these are also used in Part III.

7 Orbital graphs

In Section 7 we give an application using the information collected in the database, see Section (11.1). We begin by fixing the notation and giving the necessary definitions. We assume the reader familiar with the basic notions of graph theory, as a general reference see [4, 24].

(7.1) Definition.

a) A (simple non-directed) graph \mathfrak{G} is a tuple ($\mathfrak{V}, \mathfrak{E}, \iota$), where $\mathfrak{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a finite set of vertices and $\mathfrak{E}=\left\{e_{1}, \ldots, e_{m}\right\}$ is a finite set of edges, as well as $\iota: \mathfrak{E} \rightarrow\{\{v, w\} ; v, w \in \mathfrak{V}, v \neq w\}$ is an injective incidence map. If $\iota(e)=\{v, w\}$, for $e \in \mathfrak{E}$, then the edge $e \in \mathfrak{E}$ and the vertices $v, w \in \mathfrak{V}$ are called incident. If for $v, w \in \mathfrak{V}$ there is an $e \in \mathfrak{E}$ such that $\iota(e)=\{v, w\}$, then the vertices $v, w \in \mathfrak{V}$ are called adjacent, denoted by $v \sim_{\mathfrak{G}} w$. A pair $(v, e) \in \mathfrak{V} \times \mathfrak{E}$ such that $v \in \iota(e)$ is called a flag of \mathfrak{G}.

The number of vertices adjacent to a vertex $v \in \mathfrak{V}$ is called the valency of v. If all vertices of \mathfrak{G} have the same valency, then \mathfrak{G} is called regular. If the vertex set \mathfrak{V} can be partitioned into $\mathfrak{V}=\mathfrak{V}_{1} \dot{\cup} \mathfrak{V}_{2}$ such that $\left|\iota(e) \cap \mathfrak{V}_{i}\right|=1$ for $i \in\{1,2\}$ and for all $e \in \mathfrak{E}$, then \mathfrak{G} is called bipartite.
b) A path of length d in \mathfrak{G}, for $d \in \mathbb{N}_{0}$, is a sequence $\left\{v_{0}, \ldots, v_{d}\right\} \subseteq \mathfrak{V}$ of vertices such that $v_{i-1} \sim_{\mathfrak{G}} v_{i}$, for $i \in\{1, \ldots, d\}$. The distance $d(v, w)=d_{\mathfrak{G}}(v, w) \in \mathbb{N}_{0} \cup$ $\{\infty\}$ of $v, w \in \mathfrak{V}$ in \mathfrak{G} is the minimum length of a path such that $v_{0}=v$ and $v_{d}=$ w, if such a path exists, and $d(v, w)=d_{\mathfrak{G}}(v, w)=\infty$ otherwise. The diameter $d(\mathfrak{G}) \in \mathbb{N}_{0} \cup\{\infty\}$ of \mathfrak{G} is the maximum distance $d(v, w)$ of vertices $v, w \in \mathfrak{V}$. If $d(\mathfrak{G})<\infty$, then \mathfrak{G} is called connected. The largest connected subgraph of \mathfrak{G} having $v \in \mathfrak{V}$ as one of its vertices is called the connected component of v.
For $d \in \mathbb{N}_{0}$ and $v \in \mathfrak{V}$ let the distance sets $\mathfrak{G}_{d}(v):=\{w \in \mathfrak{V} ; d(v, w)=d\} \subseteq \mathfrak{V}$ and $\mathfrak{G}_{\leq d}(v):=\{w \in \mathfrak{V} ; d(v, w) \leq d\} \subseteq \mathfrak{V}$. For $d \in \mathbb{N}_{0}$ the d-th distance graph \mathfrak{G}_{d} of $\overline{\mathfrak{G}}$ is defined by having vertex set \mathfrak{V}, and vertices $v, w \in \mathfrak{V}$ being adjacent if $w \in \mathfrak{G}_{d}(v)$.
c) A connected graph \mathfrak{G} is called distance-transitive, if the group $\operatorname{Aut}(\mathfrak{G})$ of graph automorphisms of \mathfrak{G} acts transitively on the the distance sets $\mathfrak{G}_{d}(v)$, for all $v \in \mathfrak{V}$ and $d \in\{0, \ldots, d(\mathfrak{G})\}$.
A regular connected graph \mathfrak{G} of valency $k \in \mathbb{N}$ is called distance-regular, if
i) for all $d \in\{1, \ldots, d(\mathfrak{G})\}$ as well as $v \in \mathfrak{V}$ and $u \in \mathfrak{G}_{d}(v)$ the cardinality $\left|\left\{w \in \mathfrak{G}_{d-1}(v) ; w \sim_{\mathfrak{G}} u\right\}\right|$ is independent of the particular choice of $v \in \mathfrak{V}$ and $u \in \mathfrak{G}_{d}(v)$, and
ii) for all $d \in\{0, \ldots, d(\mathfrak{G})-1\}$ as well as $v \in \mathfrak{V}$ and $u \in \mathfrak{G}_{d}(v)$ the cardinality $\left|\left\{w \in \mathfrak{G}_{d+1}(v) ; w \sim_{\mathfrak{G}} u\right\}\right|$ is independent of the particular choice of $v \in \mathfrak{V}$ and $u \in \mathfrak{G}_{d}(v)$.
If both of these conditions are fulfilled, then for $v \in \mathfrak{V}$ we let $k_{\mathfrak{G}_{d}}:=\left|\mathfrak{G}_{d}(v)\right| \in \mathbb{N}$ denote the valency of \mathfrak{G}_{d}, for $d \in\{0, \ldots, d(\mathfrak{G})\}$; and for $u \in \mathfrak{G}_{d}(v)$ we let

$$
c_{d}:=\left|\left\{w \in \mathfrak{G}_{d-1}(v) ; w \sim_{\mathfrak{G}} u\right\}\right| \in \mathbb{N}_{0} \text { for } d \in\{1, \ldots, d(\mathfrak{G})\}
$$

as well as

$$
b_{d}:=\left|\left\{w \in \mathfrak{G}_{d+1}(v) ; w \sim_{\mathfrak{G}} u\right\}\right| \in \mathbb{N}_{0} \text { for } d \in\{0, \ldots, d(\mathfrak{G})-1\}
$$

Hence we have $b_{0}=k$ and $c_{1}=1$. The sequence $\left[k, b_{1}, \ldots, b_{d(\mathfrak{G})} ; 1, c_{2}, \ldots, c_{d(\mathfrak{G})}\right]$ of non-negative integers is called the intersection array of \mathfrak{G}.

A distance-regular graph \mathfrak{G} is called primitive, if all the distance graphs \mathfrak{G}_{d}, for $d \in\{0, \ldots, d(\mathfrak{G})\}$, are connected, otherwise it is called imprimitive. A distance-regular graph \mathfrak{G} is called antipodal if $d(\mathfrak{G}) \geq 2$ and if the relation $\{(v, w) \in \mathfrak{V} \times \mathfrak{V} ; d(v, w) \in\{0, d(\mathfrak{G})\}\}$ is an equivalence relation on \mathfrak{V}.

(7.2) Remark.

a) A distance-transitive graph \mathfrak{G} is distance-regular, and the group $\operatorname{Aut}(\mathfrak{G})$ acts flag-transitively, hence in particular edge-transitively and vertex-transitively.
b) Let \mathfrak{G} be a distance-regular graph. If \mathfrak{G} is bipartite then the distance graph \mathfrak{G}_{2} is not connected. If \mathfrak{G} is antipodal then the distance graph $\mathfrak{G}_{d(\mathfrak{G})}$ is not connected. If \mathfrak{G} is imprimitive of valency $k \geq 3$ then by [8, Thm.4.2.1] it is bipartite or antipodal or both.
c) Let \mathfrak{G} be a distance-regular graph of diameter $d(\mathfrak{G}) \geq 3$. Then by [8, Prop.5.1.1] the sequence $\left[k_{\mathfrak{G}_{0}}, \ldots, k_{\mathfrak{G}_{d(\mathfrak{G})}}\right]$ of positive integers is unimodal, hence there are $i, j \in\{1, \ldots, d\}$ such that $i \leq j$ and

$$
1=k_{\mathfrak{G}_{0}}<k_{\mathfrak{G}_{1}}<\ldots<k_{\mathfrak{G}_{i}}=\ldots=k_{\mathfrak{G}_{j}}>\ldots>k_{\mathfrak{G}_{d(\mathfrak{G})}}
$$

Furthermore, if for some $d, e \in\{0, \ldots, d(\mathfrak{G})\}$ such that $d<e$ and $d+e \leq d(\mathfrak{G})$ we have $k_{\mathfrak{G}_{d}}=k_{\mathfrak{G}_{e}}$, then we also have $k_{\mathfrak{G}_{d+1}}=k_{\mathfrak{G}_{e-1}}$.
(7.3) Definition. Let \mathfrak{G} be a graph.
a) The symmetric matrix $A_{\mathfrak{G}}:=\left[a_{i j} ; i, j \in\{1, \ldots, n\}\right] \in \mathbb{Z}^{n \times n}$ defined by

$$
a_{i j}= \begin{cases}1, & \text { if }\left\{v_{i}, v_{j}\right\} \in \operatorname{im}(\iota), \\ 0, & \text { if }\left\{v_{i}, v_{j}\right\} \notin \operatorname{im}(\iota),\end{cases}
$$

is called the adjacency matrix of \mathfrak{G}. As the matrix $A_{\mathfrak{G}}$ is diagonalisable over \mathbb{R}, let $\rho_{1}>\ldots>\rho_{s}$ for some $s \in \mathbb{N}$ denote the pairwise different eigenvalues of $A_{\mathcal{O}}$. The set of eigenvalues $\left\{\rho_{1}, \ldots, \rho_{s}\right\} \subseteq \mathbb{R}$ of $A_{\mathfrak{G}}$, together with their multiplicities, is called the spectrum of \mathfrak{G}.
b) If \mathfrak{G} is a regular graph of valency $k \in \mathbb{N}$, then the number

$$
\rho_{\mathfrak{G}}:=\max \left\{\left|\rho_{i}\right| \in \mathbb{R} ; i \in\{1, \ldots, s\},\left|\rho_{i}\right|<k\right\} \in \mathbb{R}
$$

is called the graph spectral radius of \mathfrak{G}. A connected regular graph \mathfrak{G} of valency $k \in \mathbb{N}$ is called a Ramanujan graph if $\rho_{\mathfrak{G}} \leq 2 \cdot \sqrt{k-1}$.

(7.4) Remark.

a) If \mathfrak{G} is a regular graph of valency $k \in \mathbb{N}$, then by [4, Prop.I.3.1] we have $\left|\rho_{i}\right| \leq k$, for all $i \in\{1, \ldots, s\}$, where $\rho_{1}=k$, whose multiplicity equals the number of connected components of \mathfrak{G}. Furthermore, if \mathfrak{G} is connected, then by [24, Thm.8.8.2] \mathfrak{G} is a bipartite graph if and only if $\rho_{s}=-k$. In this case, $-\rho \in \mathbb{R}$ is an eigenvalue of $A_{\mathfrak{G}}$ whenever $\rho \in \mathbb{R}$ is.
b) The notion of Ramanujan graphs is related to the notion of expander graphs. For a discussion of these notions, in particular how groups come into play in some of the constructions, and further references, see for example [44, Ch.1,Ch.4.5] and [76, Ch.II.19].

The following definition introduces the graphs we deal with in the sequel, orbital graphs. We show how some of the properties of orbital graphs can be deduced from the data collected in the database, see Section (11.1). We keep the notation of Section (1.1), where in all of Section 7 we assume $\lambda=1$ and K to be as in Section 3.
(7.5) Definition. Let $1 \neq i \in \mathcal{I}$, let $\alpha_{i} \in \mathcal{A}$ be the corresponding Schur basis element of $E_{\mathbb{Z}}$, and let $\left[\alpha_{i}\right] \in \mathbb{Z}^{n \times n}$ be the representing matrix of its action on $\mathbb{Z} \Omega$, with respect to the basis Ω, see Proposition (1.10).
a) If $i=i^{*}$ corresponds to a self-paired orbital, then the graph \mathfrak{O}_{i} with vertex set Ω, defined by the adjacency matrix $\left[\alpha_{i}\right] \in \mathbb{Z}^{n \times n}$, is called the i-th orbital graph of Ω.
b) If $i \neq i^{*}$ corresponds to a not self-paired orbital, then the graph \mathfrak{O}_{i} with vertex set Ω, defined by the adjacency matrix $\left[\alpha_{i}\right]+\left[\alpha_{i^{*}}\right]=\left[\alpha_{i}\right]+\left[\alpha_{i}\right]^{T} \in \mathbb{Z}^{n \times n}$, see Corollary (1.14), is called the i-th orbital graph of Ω. It coincides with the i^{*}-th orbital graph $\mathfrak{O}_{i^{*}}$ of Ω.
Let \mathfrak{O}_{i}^{0} denote the connected component of \mathfrak{O}_{i} containing the vertex $\omega_{1} \in \Omega$.

(7.6) Remark.

a) Let $1 \neq i \in \mathcal{I}$. As G acts transitively on the i-th orbital $\mathcal{O}_{i} \subseteq \Omega \times \Omega$, the group G acts as a vertex-transitive and edge-transitive group of graph automorphisms on \mathfrak{O}_{i}. If $i=i^{*}$ then G acts as a flag-transitive group of graph automorphisms on \mathfrak{O}_{i}, while if $i \neq i^{*}$ then G does not act flag-transitively. The connected components of \mathfrak{O}_{i} are all isomorphic to \mathfrak{O}_{i}^{0} as graphs and permuted transitively by G.
b) As the vertices adjacent to ω_{1} in \mathfrak{O}_{i} are $\left(\mathfrak{O}_{i}\right)_{1}\left(\omega_{1}\right)=\Omega_{i}$, the orbital graph \mathfrak{O}_{i} is a regular graph of valency k_{i}. As H acts transitively on the suborbits $\Omega_{k} \subseteq \Omega$, for $k \in \mathcal{I}$, the distance sets $\left(\mathfrak{D}_{i}\right)_{d}\left(\omega_{1}\right) \subseteq \mathfrak{O}_{i}^{0}$ and $\left(\mathfrak{D}_{i}\right)_{\leq d}\left(\omega_{1}\right) \subseteq \mathfrak{D}_{i}^{0}$, for $d \in \mathbb{N}_{0}$, are unions of suborbits.
c) For a subset $\mathcal{J} \subseteq \mathcal{I} \backslash\{1\}$, such that for $i \in \mathcal{J}$ we also have $i^{*} \in \mathcal{J}$, the graph $\mathfrak{O}_{\mathcal{J}}$ with vertex set Ω, defined by the adjacency matrix $\sum_{i \in \mathcal{J}}\left[\alpha_{i}\right] \in \mathbb{Z}^{n \times n}$, is called the generalised orbital graph of Ω with respect to \mathcal{J}. In particular, for $\mathcal{J}=\mathcal{I} \backslash\{1\}$, the generalised orbital graph $\mathfrak{O}_{\mathcal{I} \backslash\{1\}}$ is the complete graph
with vertex set Ω. Note that the group G does not act edge-transitively on a generalised orbital graph which is not an orbital graph.
(7.7) Proposition. Let $k \in \mathcal{I}$ and $d \in \mathbb{N}_{0}$.
a) Let $1 \neq i \in \mathcal{I}$ such that $i=i^{*}$. Then the matrix entry $\left[\left(P_{i}\right)^{d}\right]_{1, k} \in \mathbb{N}_{0}$ equals the number of paths of length d in \mathfrak{D}_{i} connecting ω_{1} and $\omega_{k} \in \Omega$. Letting $\mathcal{K}_{i, \leq-1}:=\emptyset$ as well as

$$
\mathcal{K}_{i, \leq d}:=\left\{k \in \mathcal{I} ;\left[\left(P_{i}\right)^{s}\right]_{1, k}>0 \text { for some } s \in\{0, \ldots, d\}\right\} \subseteq \mathcal{I}
$$

and $\mathcal{K}_{i, d}:=\mathcal{K}_{i, \leq d} \backslash \mathcal{K}_{i, \leq(d-1)} \subseteq \mathcal{I}$, we have $\left(\mathfrak{D}_{i}\right)_{d}\left(\omega_{1}\right)=\coprod_{k \in \mathcal{K}_{i, d}} \Omega_{k}$, and hence

$$
d\left(\mathfrak{D}_{i}^{0}\right)=\min \left\{d \in \mathbb{N} ; \mathcal{K}_{i, d}=\emptyset\right\}-1
$$

In particular \mathfrak{O}_{i} is connected if and only if $\mathcal{K}_{i, \leq d\left(\mathfrak{D}_{i}^{0}\right)}=\mathcal{I}$.
b) Let $j \in \mathcal{I}$ such that $j \neq j^{*}$. Then the matrix entry $\left[\left(P_{j}+P_{j^{*}}\right)^{d}\right]_{1, k} \in \mathbb{N}_{0}$ equals the number of paths of length d in \mathfrak{O}_{j} connecting ω_{1} and $\omega_{k} \in \Omega$. Letting $\mathcal{K}_{j, \leq-1}^{*}:=\emptyset$ as well as

$$
\mathcal{K}_{j, \leq d}^{*}:=\left\{k \in \mathcal{I} ;\left[\left(P_{j}+P_{j^{*}}\right)^{s}\right]_{1, k}>0 \text { for some } s \in\{0, \ldots, d\}\right\} \subseteq \mathcal{I}
$$

and $\mathcal{K}_{j, d}^{*}:=\mathcal{K}_{j, \leq d}^{*} \backslash \mathcal{K}_{j, \leq(d-1)}^{*} \subseteq \mathcal{I}$, we have $\left(\mathfrak{O}_{j}\right)_{d}\left(\omega_{1}\right)=\coprod_{k \in \mathcal{K}_{j, d}^{*}} \Omega_{k}$, and hence

$$
d\left(\mathfrak{O}_{j}^{0}\right)=\min \left\{d \in \mathbb{N}_{0} ; \mathcal{K}_{j, d}^{*}=\emptyset\right\}-1
$$

In particular \mathfrak{O}_{j} is connected if and only if $\mathcal{K}_{j, \leq d\left(\mathfrak{V}_{j}^{0}\right)}^{*}=\mathcal{I}$.
Proof. By Definition (1.18) we have $\alpha_{i}^{d}=\alpha_{1} \cdot \alpha_{i}^{d}=\sum_{k \in \mathcal{I}}\left[\left(P_{i}\right)^{d}\right]_{1, k} \cdot \alpha_{k} \in E_{K}$. By [4, La.I.2.5] the matrix entry $\left[\left(\alpha_{i}\right)^{d}\right]_{\omega_{1}, \omega_{k}} \in \mathbb{N}_{0}$, for $k \in \mathcal{I}$, is the number of paths of length d connecting ω_{1} and ω_{k}. By Remark (7.6) the distance set $\left(\mathfrak{O}_{i}\right)_{\leq d}\left(\omega_{1}\right)$ is a union of suborbits. From this the assertions in a) follow. The assertions in b) are proved analogously.
(7.8) Proposition. Let $1 \neq i \in \mathcal{I}$ such that $i=i^{*}$, and such that the orbital graph $\mathfrak{O}_{i}=\mathfrak{O}_{i}^{0}$ is connected.
a) Then \mathfrak{O}_{i} is distance-regular if and only if
i) for all $d \in\left\{1, \ldots, d\left(\mathfrak{O}_{i}\right)\right\}$ and $k \in \mathcal{K}_{i, d}$, see Proposition (7.7), the number $\sum_{l \in \mathcal{K}_{i, d-1}}\left[P_{i}\right]_{l k} \in \mathbb{N}_{0}$ is independent of the particular choice of $k \in \mathcal{K}_{i, d}$, and
ii) for all $d \in\left\{0, \ldots, d\left(\mathfrak{O}_{i}\right)-1\right\}$ and $k \in \mathcal{K}_{i, d}$ the number $\sum_{l \in \mathcal{K}_{i, d+1}}\left[P_{i}\right]_{l k} \in \mathbb{N}_{0}$ is independent of the particular choice of $k \in \mathcal{K}_{i, d}$.
If both of these conditions are fulfilled, then the entries of the intersection array are given as

$$
c_{d}=\sum_{l \in \mathcal{K}_{i, d-1}}\left[P_{i}\right]_{l k} \in \mathbb{N}_{0} \text { for } d \in\left\{1, \ldots, d\left(\mathfrak{O}_{i}\right)\right\} \text { and } k \in \mathcal{K}_{i, d}
$$

as well as

$$
b_{d}:=\sum_{l \in \mathcal{K}_{i, d+1}}\left[P_{i}\right]_{l k} \in \mathbb{N}_{0} \text { for } d \in\left\{0, \ldots, d\left(\mathfrak{D}_{i}\right)-1\right\} \text { and } k \in \mathcal{K}_{i, d}
$$

while for $d \in\left\{0, \ldots, d\left(\mathfrak{D}_{i}\right)\right\}$ the valency of the distance graph $\left(\mathfrak{Q}_{i}\right)_{d}$ is given as

$$
k_{\left(\mathfrak{O}_{i}\right)_{d}}=\sum_{l \in \mathcal{K}_{i, d}} k_{l}
$$

where the $k_{l}=\left|\Omega_{l}\right|$, for $l \in \mathcal{I}$, are the index parameters of Ω.
b) The group G acts distance-transitively on the graph \mathfrak{D}_{i} if and only if we have $\left|\mathcal{K}_{i, d}\right|=1$ for all $d \in\left\{0, \ldots, d\left(\mathfrak{D}_{i}\right)\right\}$.
c) If \mathfrak{O}_{i} is distance-regular, then it is primitive if and only if for all $d \in$ $\left\{1, \ldots, d\left(\mathfrak{D}_{i}\right)\right\}$ the eigenvalue $\sum_{l \in \mathcal{K}_{i, d}} k_{l} \in \mathbb{Z}$ of the matrix $\sum_{l \in \mathcal{K}_{i, d}}\left[\alpha_{l}\right] \in \mathbb{Z}^{n \times n}$ has multiplicity 1.
d) If \mathfrak{O}_{i} is distance-regular, then it is bipartite if and only if $-\sum_{l \in \mathcal{K}_{i, 1}} k_{l} \in \mathbb{Z}$ is an eigenvalue of the matrix $\sum_{l \in \mathcal{K}_{i, 1}}\left[\alpha_{l}\right] \in \mathbb{Z}^{n \times n}$.
e) If \mathfrak{O}_{i} is distance-regular, then it is antipodal if and only if $d\left(\mathfrak{O}_{i}\right) \geq 2$ and for all $l, s \in \mathcal{K}_{i, d\left(\mathfrak{D}_{i}\right)}$ and $k \in \mathcal{I} \backslash\left(\mathcal{K}_{i, d\left(\mathfrak{O}_{i}\right)} \cup \mathcal{K}_{i, 0}\right)=\mathcal{I} \backslash\left(\mathcal{K}_{i, d\left(\mathfrak{O}_{i}\right)} \cup\{1\}\right)$ we have $p_{l s k}=0$.
As in Proposition (7.7), similar statements hold for $j \in \mathcal{I}$ such that $j \neq j^{*}$ and such that $\mathfrak{O}_{j}=\mathfrak{O}_{j}^{0}$ is connected.

Proof. By Definitions (7.5) and (1.18) we have

$$
\left[P_{i}\right]_{l k}=p_{l i k}=p_{l i^{*} k}=\left|\left\{\omega \in \Omega_{l} ; \omega \sim_{\mathfrak{O}_{i}} \omega_{k}\right\}\right|
$$

Thus the assertion in a) follows from Definition (7.1) and the definition of the sets $\mathcal{K}_{i, d}$ in Proposition (7.7). The assertion in b) is clear. By definition of the sets $\mathcal{K}_{i, d}$ the matrix $\sum_{l \in \mathcal{K}_{i, d}}\left[\alpha_{l}\right] \in \mathbb{Z}^{n \times n}$ is the adjacency matrix of the distance graph $\left(\mathfrak{O}_{i}\right)_{d}$. Hence the assertions in c) and d) follow from Remark (7.4). Finally, let $A:=\sum_{s \in \mathcal{K}_{i, d\left(\mathfrak{D}_{i}\right)}}\left[\alpha_{s}\right] \in \mathbb{Z}^{n \times n}$. Then the relation

$$
\left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega ; \omega=\omega^{\prime} \text { or } \omega^{\prime} \in\left(\mathfrak{O}_{i}\right)_{d\left(\mathfrak{O}_{i}\right)}\right\}
$$

is an equivalence relation if and only if $A^{2} \in \mathbb{Z}^{n \times n}$ is a \mathbb{Z}-linear combination of $\left[\alpha_{1}\right]=\left[\mathrm{id}_{\mathbb{Z} \Omega}\right] \in \mathbb{Z}^{n \times n}$ and A. Hence the assertion in e) follows from Definition (1.18) and the non-negativity of the structure constants. The statements for $j \neq j^{*}$ are proved analogously.
(7.9) Proposition. See also [8, Prop.4.1.11].

Let $1 \neq i \in \mathcal{I}$ such that G acts distance-transitively on the orbital graph \mathfrak{O}_{i}.
a) We have $j=j^{*}$ for all $j \in \mathcal{I}$.
b) The endomorphism ring E_{K} is as a K-algebra generated by the Schur basis element $\alpha_{i} \in E_{K}$. In particular, E_{K} is a commutative ring.

Proof. By distance-transitivity we have $i=i^{*} \in \mathcal{I}$. By Propositions (7.7) and (7.8) we have $\left|\mathcal{K}_{i, d}\right|=1$ for all $d \in\left\{0, \ldots, d\left(\mathfrak{O}_{i}\right)\right\}$ and $\mathcal{K}_{i, \leq d\left(\mathfrak{O}_{i}\right)}=\mathcal{I}$, hence all suborbits are self-paired. Furthermore, we have $d\left(\mathfrak{D}_{i}\right)=r-1$, and from the proof of Proposition (7.7) we conclude that the minimum polynomial of the structure constants matrix P_{i} has degree at least r. Hence we have $\operatorname{dim}_{K}\left(\left\langle P_{i}\right\rangle_{K \text {-algebra }}\right)=r=\operatorname{dim}_{K}\left(E_{K}\right)$.
(7.10) Let $1 \neq i \in \mathcal{I}$ such that $i=i^{*}$. Then the spectrum of the graph \mathfrak{O}_{i} is the set of eigenvalues in \mathbb{R} of $\left[\alpha_{i}\right] \in \mathbb{Z}^{n \times n}$, together with their multiplicities. Analogously, if $j \in \mathcal{I}$ such that $j \neq j^{*}$, then the spectrum of the graph \mathfrak{O}_{j} is the set of eigenvalues in \mathbb{R} of $\left[\alpha_{j}\right]+\left[\alpha_{j^{*}}\right] \in \mathbb{Z}^{n \times n}$, together with their multiplicities.
As the regular K-representation of E_{K} is a faithful representation, the eigenvalues of $\left[\alpha_{i}\right]$, for $1 \neq i \in \mathcal{I}$ such that $i=i^{*}$, are precisely the eigenvalues in \mathbb{R} of the matrix $P_{i} \in \mathbb{Z}^{r \times r}$ representing the action of α_{i} on the regular module E_{K}, see Definition (1.18), where by Remark (1.19) the matrix P_{i} is diagonalisable over \mathbb{R}. Analogously, the eigenvalues of $\left[\alpha_{j}\right]+\left[\alpha_{j^{*}}\right]$, for $j \in \mathcal{I}$ such that $j \neq j^{*}$, are precisely the eigenvalues in \mathbb{R} of $\left(P_{j}+P_{j^{*}}\right) \in \mathbb{Z}^{r \times r}$, where again by Remark (1.19) the matrix $\left(P_{j}+P_{j^{*}}\right)$ is diagonalisable over \mathbb{R}. Furthermore, the eigenvalues of $\sum_{l \in \mathcal{K}_{i, d}}\left[\alpha_{l}\right] \in \mathbb{Z}^{n \times n}$ and $\sum_{l \in \mathcal{K}_{j, d}^{*}}\left[\alpha_{l}\right] \in \mathbb{Z}^{n \times n}$ for $d \in \mathbb{N}_{0}$ and $i, j \in \mathcal{I}$ as above, see Proposition (7.8), are precisely the eigenvalues in \mathbb{R} of $\sum_{l \in \mathcal{K}_{i, d}} P_{l} \in \mathbb{Z}^{r \times r}$ and $\sum_{l \in \mathcal{K}_{j, d}^{*}} P_{l} \in \mathbb{Z}^{r \times r}$, respectively, where by Proposition (1.13) the sets $\mathcal{K}_{i, d}$ and $\mathcal{K}_{j, d}^{*}$ are invariant under $*: \mathcal{I} \rightarrow \mathcal{I}$, hence by Remark (1.19) the latter matrices are diagonalisable over \mathbb{R}.

To determine the eigenvalues of $P_{i} \in \mathbb{Z}^{r \times r}$ and their multiplicities as eigenvalues of $\left[\alpha_{i}\right] \in \mathbb{Z}^{n \times n}$, for $1 \neq i \in \mathcal{I}$ such that $i=i^{*}$, we proceed as follows. By first decomposing the regular K-representation of E_{K} as a direct sum of siple $E_{K^{-}}$ modules S_{φ}, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$, and subsequently diagonalising the action of α_{i} on the simple E_{K}-summands, each eigenvalue of α_{i} is attached to one or more of the $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$, see Section (2.8). Hence we are reduced to finding the eigenvalues of the action of α_{i} on the simple $E_{K^{-}}$-modules S_{φ}, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$. If E_{K} is commutative, then the eigenvalues of the action of α_{i} on S_{φ} are precisely the entries of the character table of E_{K} in the column corresponding to $i \in \mathcal{I}$. The multiplicity of an eigenvalue of $\left[\alpha_{i}\right] \in \mathbb{Z}^{n \times n}$ is the sum of the degrees of the Fitting correspondents of the $\varphi \in \operatorname{Irr}_{K}\left(E_{K}\right)$ attached to it. By Remark (3.9) these degrees can also be determined from the character table of E_{K}.
The sums $\left[\alpha_{j}\right]+\left[\alpha_{j^{*}}\right]$ and $\sum_{l \in \mathcal{K}_{i, d}}\left[\alpha_{l}\right]$ as well as $\sum_{l \in \mathcal{K}_{j, d}^{*}}\left[\alpha_{l}\right]$, for $d \in \mathbb{N}_{0}$ and $i, j \in \mathcal{I}$ as above, are dealt with analogously, using the sums of the columns corresponding to $\left\{j, j^{*}\right\}$ and $\mathcal{K}_{i, d}$ as well as $\mathcal{K}_{j, d}^{*}$, respectively.

We conclude Section 7 by presenting two classification results using the data collected in the database, being concerned with distance-regular orbital graphs, and Ramanujan orbital graphs, respectively.
(7.11) Using the data contained in the database, see Section (11.1), it is straightforward to implement the technique described in Propositions (7.7) and (7.8) and Section (7.10) into GAP. Hence for the sporadic simple groups, their automorphism groups and their Schur covering groups we obtain a classification of their distance-regular orbital graphs afforded by a multiplicity-free permutation action, up to the single exception $G=2 . B$ and $H=F i_{23}$ not yet dealt with; as soon as the data for the bicyclic extensions of the sporadic simple groups is available, these cases can be dealt with as well, see Section (11.1).
By Proposition (7.9) this covers all distance-transitive graphs having one of the above-mentioned groups as a group of automorphisms. The primitive distancetransitive graphs amongst them have been classified in [34], hence we do not list them here. The imprimitive cases are given in Table 1. Below we rule out the existence of a distance-transitive orbital graph for the exceptional case $G=2 . B$ and $H=F i_{23}$ not dealt with in Section (11.1), hence the latter list indeed is complete.
Let us assume to the contrary that one of the orbital graphs, \mathcal{O}_{i} say, afforded by the permutation action of $G=2 . B$ on the right cosets of $H=F i_{23}$ is distance-transitive. As this permutation action has rank $r=34$, see Section (17.11), by Proposition (7.8) we conclude that \mathcal{O}_{i} has diameter $d\left(\mathcal{O}_{i}\right)=33$ and that the sequence of index parameters can be reordered to yield the sequence $\left[k_{\left(\mathcal{O}_{i}\right)_{0}}, \ldots, k_{\left(\mathcal{O}_{i}\right)_{33}}\right]$ of the valencies of the corresponding distance graphs $\left(\mathcal{O}_{i}\right)_{d}$, for $d \in\{0, \ldots, 33\}$. Using Remark (5.15), the index parameters can be derived from the splitting of suborbits as given in Table 27, see also Section (17.11). By Proposition (7.2) we conclude that $k_{\left(\mathcal{O}_{i}\right)_{0}}=k_{\left(\mathcal{O}_{i}\right)_{33}}=1$ and furthermore that $k_{\left(\mathcal{O}_{i}\right)_{d}}=k_{\left(\mathcal{O}_{i}\right)_{33-d}}$ for $d \in\{0, \ldots, 16\}$, a contradiction to the sequence of index parameters derived from Table 27. Hence none of the orbital graphs afforded by this permutation action are distance-transitive.
For the distance-regular orbital graphs, afforded by a multiplicity-free permutation action where the group under consideration does not act distancetransitively, we restrict ourselves to the edge-transitive cases, which are shown in Table 2. For the non-edge-transitive cases we would have to consider all the generalised orbital graphs, see Remark (7.6). This would be doable, but the author does not expect interesting results.
In Tables 1 and 2, we indicate the rank $r \in \mathbb{N}$ of the permutation action under consideration, the orbital $i \in \mathcal{I}$ leading to the corresponding distance-regular orbital graph, its valency $k \in \mathbb{N}$, the cardinality $n \in \mathbb{N}$ of its vertex set, its diameter $d \in \mathbb{N}$, its intersection array, and whether it is primitive p, bipartite b, or antipodal a, see Definition (7.1).

Using the data given in Tables 1 and 2, it is possible to identify the corresponding graphs. The imprimitive distance-transitive orbital graphs of diameter 5 of HS.2 and $M_{22} .2$ are described in [8, Ch.6.11]. The non-distance-transitive orbital graphs of diameter 8 of $3 . M_{22}$ and of diameter 4 of $3 . F i_{24}^{\prime}$ are described in [8, Ch.6.12]. The non-distance-transitive orbital graph of diameter 4 of $3 . S u z$ is a 3-
fold antipodal cover, see [8, Ch.4.2.A], of the primitive distance-transitive Suzuki graph of diameter 2 . The orbital graph of diameter 4 of J_{2} is the J_{2}-graph, see [8, Thm.13.6.1], whose full graph automorphism group is isomorphic to $J_{2} .2$ and acts distance-transitively. The orbital graphs of diameter 3 of M_{24} and M_{12} are, by [8, Thm.6.1.1], the Johnson graphs $J(12,3)$ and $J(24,3)$, see [8, Ch.9.1], whose full graph automorphism groups act distance-transitively. The imprimitive distance-regular graphs of diameter 3 are described in [8, Ch.14,pp.431432]. Finally, the distance-regular graphs of diameter 2 are precisely the strongly regular graphs, see [8, Ch.A.1], as a general reference see [9, 33].
(7.12) Using the data contained in the database, see Section (11.1), the technique described in Section (7.10) and GAP, it is straightforward to obtain a classification of the Ramanujan orbital graphs for the sporadic simple groups, their automorphism groups and their Schur covering groups, coming from a multiplicity-free permutation action, up to the single exception $G=2 . B$ and $H=F i_{23}$ not yet dealt with; as soon as the data for the bicyclic extensions of the sporadic simple groups is available, these cases can be dealt with as well, see Section (11.1).

By the discussion of Ramanujan graphs in [44], a Ramanujan graph tends to be the more interesting the smaller its valency is, compared to the cardinality of its vertex set. Accordingly, a subset of the Ramanujan connected orbital graphs of the above-mentioned groups and permutation actions is shown in Table 3; complete results for the generalised orbital graphs such that $n \leq 10^{7}$ have been compiled in [32]. In Table 3 we indicate the rank $r \in \mathbb{N}$ of the permutation action under consideration, the orbital $i \in \mathcal{I}$ leading to the corresponding Ramanujan orbital graph, its valency $k \in \mathbb{N}$, the cardinality $n \in \mathbb{N}$ of its vertex set, and its diameter $d \in \mathbb{N}$.

II Computational techniques

8 Intersection numbers and character tables

In Section 8 we discuss computational techniques useful to deal with structure constants matrices, character tables of endomorphism rings, and the Fitting correspondence. We keep the notation of Sections 1 and 3. In particular let Φ_{λ} be the character table of the endomorphism ring E_{K}^{λ}, see Definition (3.7) and Section (1.5), where K is as in Section 3.

Throughout Section 8 we assume E_{K}^{λ} to be commutative.
(8.1) If Φ_{λ} is known, then the structure constants matrices P_{j}^{λ}, for $j \in \mathcal{I}_{\lambda}$, see Definitions (1.6) and (1.18), can be determined using Proposition (3.18). As this is particularly nice and straightforward to implement in GAP, we show the relevant GAP code in Table 4.

Table 1：Imprimitive distance－transitive orbital graphs．

		88	$\theta \theta \theta \theta 00008$	0008
\bigcirc		1020		$\sim \sim \sim \sim$
\approx		$\underset{\sim}{8} \underset{\sim}{2}$		ホ N N ત
\bigcirc		$\underset{N}{N}$		N ก ก ค ํ
\therefore		00	みみみみみひひみひ	$\cdots \infty<$
\sim		$\cdots \infty$	$\cdots み$－	$\cdots \infty \ll$
\pm				
\checkmark				$\underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{\sim}$

Table 2: Non-distance-transitive distance-regular orbital graphs.

	\bigcirc			$0 \sim 2 R 2$	
\bigcirc	∞		-	$\cdots \infty<\infty<$	N N
\approx					
*					
\therefore	$\stackrel{1}{7}$		N	O OL	
\sim	10		200 N		
\pm	\sim				
\checkmark					

Table 3: Ramanujan orbital graphs of valency $k \leq \sqrt{n}$.

G	H	i	r	n	k	d
$M_{12} \cdot 2$	$3^{2} \cdot 2 . S_{4}$	2	9	440	4	6
M_{22}	$2^{3}: L_{3}(2)$	2	5	330	7	4
$M_{22} \cdot 2$	$2^{3}: L_{3}(2) \times 2$	2	5	330	7	4
$M_{22} \cdot 2$	$2^{3}: L_{3}(2)<2^{3}: L_{3}(2) \times 2$	3	10	660	7	5
J_{2}	$2_{-}^{1+4}: A_{5}$	2	6	315	10	4
$J_{2} .2$	$2_{-}^{1+4}: S_{5}$	2	5	315	10	4
M_{12}	$3^{2} \cdot 2 . S_{4}$	2	5	220	12	3
M_{12}	$3^{2} .2 . S_{4}$	2	5	220	12	3
$J_{2} .2$	$\left(A_{5} \times D_{10}\right) .2$	2	8	1008	12	5
$M_{22} \cdot 2$	A_{7}	2	6	352	15	4
J_{2}	$A_{4} \times A_{5}$	2	7	840	15	4
$J_{2} .2$	$\left(A_{4} \times A_{5}\right) .2$	2	7	840	15	4
$J_{2} .2$	$A_{4} \times A_{5}<\left(A_{4} \times A_{5}\right) .2$	3	14	1680	15	5
$H S .2$	$5_{+}^{1+2}:\left[2^{5}\right]$	2	15	22176	50	3
M_{24}	$2^{6}:\left(L_{3}(2) \times S_{3}\right)$	3	5	3795	56	3
M_{24}	$2^{6}:\left(L_{3}(2) \times 3\right)<2^{6}:\left(L_{3}(2) \times S_{3}\right)$	3	8	7590	56	3
M_{24}	$2^{6}:\left(L_{3}(2) \times 3\right)<2^{6}:\left(L_{3}(2) \times S_{3}\right)$	4	8	7590	56	3

Table 4: GAP code: Finding the P_{j}^{λ} from Φ_{λ}.
\# tbl: Φ_{λ} for E_{K}^{λ} commutative,
\# a matrix with entries in the cyclotomic field K
\# mats: the P_{j}^{λ} for $j \in \mathcal{I}_{\lambda}$, a list of matrices over K
IntersectionMatsFromCharTable:=function(tbl)
local mats, trtbl, itrtbl, j, diag;
mats:=[];
trtbl:=TransposedMat(tbl);
itrtbl:=trtbl~ (-1);
for j in [1..Length(tbl)] do
diag:=DiagonalMat(List([1..Length(tbl)],i->tbl[i][j]));
mats[j]:=trtbl*diag*itrtbl;
od;
return mats;
end;

Table 5: GAP code: Finding the m_{φ} from Φ.

```
# tbl: }\Phi\mathrm{ for }\mp@subsup{E}{K}{}\mathrm{ commutative,
# a matrix with entries in the cyclotomic field K,
# }\mp@subsup{\varphi}{1}{}\mathrm{ is the first character in $
# degs: the m
CharDegrees:=function(tbl)
    local degs, n, j, s, i;
    degs:=[1];
    n:=Sum(tbl[1]);
    for j in [2..Length(tbl)] do
        s:=0;
        for i in [1..Length(tbl)] do
            s:=s+tbl[j][i]*GaloisCyc(tbl[j][i],-1)/tbl[1][i];
        od;
        degs[j]:=n/s;
    od;
    return degs;
end;
```

For the case $\lambda=1$, if Φ is known, then the Fitting correspondent φ_{1} of the trivial character $K G$ is found by Remark (3.21). This yields the index parameters k_{i}, for $i \in \mathcal{I}$, see Definition (1.2), from Φ. Furthermore, if Φ_{λ} is known for arbitrary λ, by the first orthogonality relations, see Remark (3.9), the character degrees $\chi_{\varphi}(1)=m_{\varphi}$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, can be determined from Φ_{λ} and the index parameters k_{i}, for $i \in \mathcal{I}_{\lambda}$. For the case $\lambda=1$ we show the relevant GAP code in Table 5.
For the case $\lambda=1$, if Φ is known, then the Krein parameters $q_{i j k}$, see Definition (4.5), can be determined using Proposition (4.6). We show the relevant GAP code in Table 6.
(8.2) We discuss the strategy to find the character table of E_{K}^{λ} from the structure constants matrices. Let \mathcal{E}_{λ} be the set of all centrally primitive idempotents of E_{K}^{λ}. By Proposition (3.14), the rows of $\left[\mathcal{E}_{\lambda}\right]_{\mathcal{A}_{\lambda}} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$ are a K-basis of $K^{1 \times\left|\mathcal{I}_{\lambda}\right|}$, consisting of simultaneous eigenvectors of all the structure constants matrices $P_{j}^{\lambda} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$, for $j \in \mathcal{I}_{\lambda}$. Up to reordering and scalar multiples, this is the only K-basis of $K^{1 \times\left|\mathcal{I}_{\lambda}\right|}$ consisting of simultaneous eigenvectors of all the P_{j}^{λ}.
Furthermore, the corresponding eigenvalues are the character values $\varphi\left(\alpha_{j}^{\lambda}\right)$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $j \in \mathcal{I}_{\lambda}$. Hence to determine the character table Φ_{λ}, we could just determine a K-basis consisting of simultaneous eigenvectors of all the P_{j}^{λ}, and subsequently compute the corresponding eigenvalues. But for the latter we would have to determine all the P_{j}^{λ}, for $j \in \mathcal{I}_{\lambda}$. Indeed, we can do better.

Table 6: GAP code: Finding the Krein parameters $q_{i j k}$ from Φ.

```
# tbl: }\Phi\mathrm{ for }\mp@subsup{E}{K}{}\mathrm{ commutative,
# a matrix with entries in the cyclotomic field K,
# }\quad\mp@subsup{\varphi}{1}{}\mathrm{ is the first character in }
# q: the q}\mp@subsup{q}{ijk}{}\mathrm{ , a list of lists of lists over K
KreinParameters:=function(tbl)
    local q, n, m, i, j, k, t, s;
    q:= [];
    n:=Sum(tbl[1]);
    m:=CharDegrees(tbl); # see Table 5
    for i in [1..Length(tbl)] do
        q[i]:=[];
        for j in [1..Length(tbl)] do
                q[i][j]:=[];
                for k in [1..Length(tbl)] do
                    t:=0;
                for s in [1..Length(tbl)] do
                        t:=t+GaloisCyc(tbl[i][s],-1)
                                    *GaloisCyc(tbl[j][s],-1)
                            *tbl[k][s]/tbl[1][s]^ 2;
                od;
                q[i][j][k]:=t*m[i]*m[j]/n^2;
                od;
        od;
    od;
    return q;
end;
```

By Proposition (3.18), the rows of $\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$ are a K-basis of $K^{1 \times\left|\mathcal{I}_{\lambda}\right|}$, consisting of simultaneous eigenvectors of all the dual structure constants matrices $\hat{P}_{j}^{\lambda}=\left(P_{j}^{\lambda}\right)^{T} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$, for $j \in \mathcal{I}_{\lambda}$, see Proposition (3.17). Still, the corresponding eigenvalues are the character values $\varphi\left(\alpha_{j}^{\lambda}\right)$, for $\varphi \in \operatorname{Trr}_{K}\left(E_{K}^{\lambda}\right)$ and $j \in \mathcal{I}_{\lambda}$. Furthermore, the row of $\left[\mathcal{E}_{\lambda}\right]_{\hat{\mathcal{A}}_{\lambda}}$ corresponding to $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ is equal to $\frac{m_{\varphi}}{|G|} \cdot\left[\varphi\left(\alpha_{j}^{\lambda}\right) ; j \in \mathcal{I}_{\lambda}\right] \in K^{1 \times\left|\mathcal{I}_{\lambda}\right|}$, hence up to a scalar multiple is equal to the corresponding row of Φ_{λ}.
Because of $\varphi\left(\alpha_{1}^{\lambda}\right)=1$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, to determine the character table Φ_{λ}, it hence is sufficient to find a K-basis consisting of simultaneous eigenvectors of all the \hat{P}_{j}^{λ}, for $j \in \mathcal{I}_{\lambda}$, and to rescale these vectors to have an entry 1 in position $i=1 \in \mathcal{I}_{\lambda}$. In turn, to find a K-basis consisting of simultaneous eigenvectors of all the \hat{P}_{j}^{λ}, it is sufficient to find a subset $\mathcal{J} \subseteq \mathcal{I}_{\lambda}$, such that $\mathcal{C}:=\left\langle\alpha_{j}^{\lambda} ; j \in \mathcal{J}\right\rangle_{K-a l g e b r a}$ equals E_{K}^{λ}, and to compute $\left\{\hat{P}_{j}^{\lambda} ; j \in \mathcal{J}\right\}$ only. By Corollary (3.15), we have $\mathcal{C}=E_{K}^{\lambda}$ if and only if the simultaneous eigenspaces of $\left\{\hat{P}_{j}^{\lambda} ; j \in \mathcal{J}\right\}$ in $K^{1 \times\left|\mathcal{I}_{\lambda}\right|}$ are 1-dimensional.
A similar algorithm is well-known for the group character table case, see [17, 71]. In that case, the character degrees usually are not known in advance. Hence, in addition to finding simultaneous eigenvalues, the scaling factors to yield the correct character degrees have to be determined as well.
To find the eigenspaces of \hat{P}_{j}^{λ}, for $j \in \mathcal{I}_{\lambda}$, we proceed as follows. Let $\mu_{\hat{P}_{j}^{\lambda}} \in K[X]$ be the minimum polynomial of $\hat{P}_{j}^{\lambda} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$. As E_{K}^{λ} is a commutative split semisimple K-algebra, $\mu_{\hat{P}_{j}^{\lambda}} \in K[X]$ is a separable polynomial. Hence to find the eigenspaces of \hat{P}_{j}^{λ}, we have to find the irreducible factors of $\mu_{\hat{P}_{j}^{\lambda}}$ in $K[X]$, which are linear. As $\hat{P}_{j}^{\lambda} \in \mathbb{Q}(\lambda(H))^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$, we also have $\mu_{\hat{P}_{j}^{\lambda}} \in \mathbb{Q}(\lambda(H))[X]$. Hence we first compute the irreducible factors of $\mu_{\hat{P}_{\lambda}^{\lambda}}$ in $\mathbb{Q}(\lambda(H))[X]$, and subsequently factorize the latter into linear factors in $K[X]$.
Algorithms for polynomial factorisation over algebraic number fields are known, see [12, Ch.3.6.2]. By Proposition (3.10) we even have $\mu_{\hat{P}_{j}^{\lambda}} \in \mathbb{Z}[\lambda(H)][X]$; note that by [50, Cor.2.2] the ring $\mathbb{Z}[\lambda(H)]$ coincides with the ring of algebraic integers in $\mathbb{Q}(\lambda(H))$. For the case $\lambda=1$ the polynomial $\mu_{\hat{P}_{j}^{\lambda}}$ has to be factorized in $\mathbb{Z}[X]$. Algorithms for polynomial factorisation over \mathbb{Z} are known as well, see [12, Ch.3.5], and are available in GAP. Furthermore, as the zeroes of $\mu_{\hat{P}_{j}^{\lambda}} \in K[X]$ are exactly the character values $\varphi\left(\alpha_{j}^{\lambda}\right)$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, the factorisation of $\mu_{\hat{P}_{j}^{\lambda}}$ into linear factors can be done in the polynomial ring $K^{\prime}[X]$, where $K^{\prime}:=\mathbb{Q}(\lambda(H))\left[\chi(C) ; \chi \in \operatorname{Irr}_{K}^{\lambda}(G), C \in \mathcal{C l}(G)\right]$, which is a splitting field for E_{K}^{λ}, see Remark (3.21).
(8.3) We briefly digress, and consider the case where E_{K}^{λ} is non-commutative. As the irreducible characters $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ are no longer necessarily linear, we are faced with the problem to determine representing matrices for the action
of the Schur basis elements $\alpha_{i}^{\lambda} \in \mathcal{A}_{\lambda}$ on the simple E_{K}^{λ}-modules S_{φ}, for $\varphi \in$ $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ and $i \in \mathcal{I}_{\lambda}$. Still, it suffices to find the structure constants matrices $P_{i}^{\lambda} \in K^{\left|\mathcal{I}_{\lambda}\right| \times\left|\mathcal{I}_{\lambda}\right|}$, for $i \in \mathcal{I}_{\lambda}$. But the technique described in Section (8.2), to find the character table Φ_{λ} of E_{K}^{λ} from possibly only part of the structure constants matrices, does no longer work. Furthermore, Proposition (3.18) no longer holds. Hence it seems to be unavoidable to compute all of the structure constants matrices explicitly. For larger examples this might be a considerable task. If the structure constants matrices are available, there are at least two strategies to proceed.
Firstly, in particular if the degrees $m_{\varphi}=\varphi(1)$ of the $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ are small, we could use the strategy described in Section (8.2). For $i, j \in \mathcal{I}_{\lambda}$, such that $i=i^{*}$ and $j \neq j^{*}$, by Remark (1.19) the structure constants matrices P_{i}^{λ} and $P_{j}^{\lambda} \pm P_{j^{*}}^{\lambda}$ are diagonalisable over a suitable algebraic extension field of K. Hence we again could compute the irreducible factors of the minimum polynomials $\mu_{P_{i}^{\lambda}} \in K[X]$, find the corresponding characteristic spaces in $K^{1 \times\left|\mathcal{I}_{\lambda}\right|}$, intersect them, and compute the action of the structure constants matrices on these K-subspaces. Secondly, in particular for the case $\lambda=1$, where $P_{i} \in \mathbb{Z}^{n \times n}$, for $i \in \mathcal{I}$, we could use general MeatAxe techniques over the rationals and the rational integers, see [55, 66], to find the constituents of the regular E_{K}^{λ}-module. For the time being, no substantial examples have been dealt with computationally.
(8.4) In the remaining parts of Section 8 we discuss the strategy to determine the Fitting correspondence explicitly. Let again E_{K}^{λ} be commutative.

Without loss of generality we may assume that K is a splitting field for $K G$. If the full character table $\mathcal{X}=\left[\chi(C) ; \chi \in \operatorname{Irr}_{K}(G), C \in \mathcal{C} l(G)\right] \in K^{|\mathcal{C} l(G)| \times|\mathcal{C l} l(G)|}$ of G as well as Φ_{λ} are known, then necessary conditions to find the Fitting correspondent $\chi_{\varphi} \in \operatorname{Irr}_{K}(G)$ of $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ are given as follows. Note that, although in many cases $\operatorname{Irr}_{K}^{\lambda}(G)$ is known in advance and only the Fitting correspondence has to be determined, $\operatorname{Irr}_{K}^{\lambda}(G)$ need not be known for the following approach.
By Section (8.1), the character degree $\chi_{\varphi}(1)=m_{\varphi}$, for $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, can be determined from Φ_{λ}. Furthermore, by Remark (3.24), the matrix $\Gamma_{\lambda} \in$ $\mathbb{Q}(\lambda(H))^{\left|\mathcal{I}_{\lambda}\right| \times|\mathcal{C l}(G)|}$, see Definition (3.19), can be determined from Φ_{λ} and \mathcal{X}_{λ}. Now the $\gamma_{i}^{\lambda}(C) \in \mathbb{Q}(\lambda(H))$, for $i \in \mathcal{I}_{\lambda}$ and $C \in \mathcal{C} l(G)$, are algebraic integers, and in particular for $\lambda=1$ we even have $\gamma_{i}(C) \in \mathbb{N}_{0}$, for $i \in \mathcal{I}$.
We first determine the sets $\operatorname{Irr}_{K}^{\varphi}(G):=\left\{\chi \in \operatorname{Irr}_{K}(G) ; \chi(1)=m_{\varphi}\right\}$, for $\varphi \in$ $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. Thus $\prod_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} \operatorname{Irr}_{K}^{\varphi}(G)$ can be considered as a set of candidate cases for the Fitting correspondence searched for, where we restrict ourselves to the cases where $\left[\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}\right] \in \prod_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} \operatorname{Irr}_{K}^{\varphi}(G)$ has pairwise different entries. From $\left[\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}\right]$ we obtain the submatrix $\mathcal{X}_{\chi_{1}, \ldots, \chi_{\left|I_{\lambda}\right|}}$ of \mathcal{X} consisting of the rows corresponding to $\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}$. Then we compute the matrix

$$
\begin{aligned}
& \Gamma_{\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}} \in K^{\left|\mathcal{I}_{\lambda}\right| \times|\mathcal{C l}(G)|} \text { defined by } \\
& \quad \Gamma_{\chi_{1}, \ldots, \chi_{\left|I_{\lambda}\right|}}:=\frac{1}{n} \cdot \operatorname{diag}\left[k_{i}^{-1} ; i \in \mathcal{I}_{\lambda}\right] \cdot \Phi_{\lambda}^{T} \cdot \overline{\mathcal{X}_{\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}}} \cdot \operatorname{diag}[|C| ; C \in \mathcal{C l}(G)] .
\end{aligned}
$$

By Remark (3.24), if $\Gamma_{\chi_{1}, \ldots, \chi_{\left|I_{\lambda}\right|}}$ has an entry which is not an element of $\mathbb{Q}(\lambda(H))$ or which is not an algebraic integer or which for the case $\lambda=1$ is a negative integer, then we discard the candidate case $\left[\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}\right]$, otherwise $\left[\chi_{1}, \ldots, \chi_{\left|\mathcal{I}_{\lambda}\right|}\right]$ is an admissible case. Let $\mathcal{F}_{\lambda} \subseteq \prod_{\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)} \operatorname{Irr}_{K}^{\varphi}(G)$ denote the set of admissible candidate cases.

(8.5) Definition.

a) Let $\mathcal{S}_{\mathcal{C l (G)}}$ be the symmetric group on the set $\mathcal{C l}(G)$ of conjugacy classes of G, let $\pi \in \mathcal{S}_{\mathcal{C l (G)}}$, and for $\chi \in \operatorname{Irr}_{K}(G)$ let $\chi^{\pi}: \mathcal{C l}(G) \rightarrow K$ be the class function defined by $\chi^{\pi}: C \mapsto \chi\left(C \pi^{-1}\right)$. For $s \in \mathbb{Z}$ the s-th power map $\mathcal{C l}(G) \rightarrow \mathcal{C l}(G)$ is defined as the map induced by the map $G \rightarrow G: g \mapsto g^{s}$. Then π is called a table automorphism of $\operatorname{Irr}_{K}(G)$, if π commutes with the s-th power maps on $\mathcal{C l}(G)$, for all $s \in \mathbb{Z}$, and $\chi^{\pi} \in \operatorname{Irr}_{K}(G)$, for all $\chi \in \operatorname{Irr}_{K}(G)$. Let $\operatorname{Aut}\left(\operatorname{Irr}_{K}(G)\right) \leq$ $\mathcal{S}_{\mathcal{C l}(G)}$ denote the group of table automorphisms of $\operatorname{Irr}_{K}^{\lambda}(G)$. Furthermore, $\pi \in$ $\operatorname{Aut}\left(\operatorname{Irr}_{K}(G)\right)$ is a table automorphism of $\operatorname{Irr}_{K}^{\lambda}(G)$, if additionally $\chi^{\pi} \in \operatorname{Irr}_{K}^{\lambda}(G)$, for all $\chi \in \operatorname{Irr}_{K}^{\lambda}(G)$.
b) Let $\mathcal{S}_{\mathcal{I}_{\lambda}}$ be the symmetric group on the set \mathcal{I}_{λ}, let $\pi \in \mathcal{S}_{\mathcal{I}_{\lambda}}$, and for $\varphi \in$ $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$ let $\varphi^{\pi}: \mathcal{I}_{\lambda} \rightarrow K$ be the class function defined by $\varphi^{\pi}: i \mapsto \varphi\left(i \pi^{-1}\right)$. Then π is called a table automorphism of $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, if $\varphi^{\pi} \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$, for all $\varphi \in \operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$. Let $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)\right) \leq \mathcal{S}_{\mathcal{I}_{\lambda}}$ denote the the group of table automorphisms of $\operatorname{Irr}_{K}\left(E_{K}^{\lambda}\right)$.

(8.6) Remark.

a) Given the character table $\mathcal{X} \in K^{|\mathcal{C l}(G)| \times|\mathcal{C l}(G)|}$ of $\operatorname{Irr}_{K}(G)$, there are programs available in GAP to compute $\operatorname{Aut}\left(\operatorname{Irr}_{K}(G)\right)$. Note that, by the orthogonality relations for \mathcal{X}, a table automorphism $\pi \in \operatorname{Aut}\left(\operatorname{Irr}_{K}(G)\right)$ leaves the sets $\mathcal{C} l(G)_{c}:=\{C \in \mathcal{C} l(G) ;|C|=c\}$, for $c \in \mathbb{N}$, invariant.
Furthermore, given the character table $\Phi \in K^{\left|\operatorname{Irr}_{K}\left(E_{K}\right)\right| \times|\mathcal{I}|}$ for the case $\lambda=1$, by Remark (3.21), each $\pi \in \operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$ fixes the Fitting correspondent φ_{1} of the trivial $K G$-character. Hence π leaves the sets $\mathcal{I}_{k}:=\left\{i \in \mathcal{I} ; k_{i}=k\right\}$, for $k \in \mathbb{N}$, invariant. Thus we have $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right) \leq \prod_{k \in\left\{k_{i} ; i \in \mathcal{I}\right\}} \mathcal{S}_{\mathcal{I}_{k}}$. For the examples occurring in the present work, see Section (11.1), this turns out to be a sufficiently small group such that we are able to check for all of its elements whether they are in $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$ or not. In particular, if all the index parameters k_{i}, for $i \in \mathcal{I}$, are pairwise different, then we have $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)=\{1\}$.
b) For table automorphisms $\pi_{G} \in \operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ and $\pi_{E} \in \operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$ let $\left[\pi_{G}\right] \in \mathbb{Z}^{|\mathcal{C l}(G)| \times|\mathcal{C l}(G)|}$ and $\left[\pi_{E}\right] \in \mathbb{Z}^{|\mathcal{I}| \times|\mathcal{I}|}$ denote the permutation matrices inducing the corresponding column permutations of \mathcal{X}_{1} and Φ, respectively. If
$\Gamma_{\chi_{1}, \ldots, \chi_{|\mathcal{I}|}} \in K^{|\mathcal{I}| \times|\mathcal{C} l(G)|}$ fulfils the admissibility conditions in Section (8.4), then

$$
\left[\pi_{E}\right]^{-1} \cdot \Gamma_{\chi_{1}, \ldots, \chi_{|\mathcal{I}|}} \cdot\left[\pi_{G}\right]=\frac{1}{n} \cdot \operatorname{diag}\left[k_{i}^{-1}\right] \cdot\left(\Phi \cdot\left[\pi_{E}\right]\right)^{T} \cdot \overline{\mathcal{X} \cdot\left[\pi_{G}\right]} \cdot \operatorname{diag}[|C|]
$$

also is an admissible matrix. Hence $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right) \times \operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ acts on the set of admissible candidate cases \mathcal{F}_{1} for the Fitting correspondence, and the strategy described in Section (8.4) yields unions of orbits under this action.

The strategy described in Section (8.4) and Remark (8.6) is applied in Section (11.3).

9 Condensation

In Section 9 we discuss aspects of practical computational applications of condensation functors. We keep the notation of Section 6.
(9.1) Let Θ be as in Section (2.1), let λ be a representation of ΘH, such that the underlying ΘH-module Θ_{λ} is Θ-free of degree 1 , and let $\epsilon_{\lambda} \in \Theta H \subseteq \Theta G$ denote the corresponding idempotent. We have $\epsilon_{\lambda} \Theta G \cong \lambda^{G}$ as ΘG-modules. Hence, using Definition (6.4) and Remark (6.5), for $V \in \bmod -\Theta G$ we have $V \epsilon_{\lambda}=C_{\epsilon_{\lambda}}(V) \cong \operatorname{Hom}_{\Theta G}\left(\lambda^{G}, V\right) \cong \operatorname{Hom}_{\Theta H}\left(\lambda, V_{H}\right)$ as Θ-modules. Hence, if Θ is a field, then the underlying set of the condensed module $V \epsilon_{\lambda} \in \bmod -\epsilon_{\lambda} \Theta G \epsilon_{\lambda}$ is the isotypic component of V_{H} belonging to λ.
From the computational point of view, for given $V \in \bmod _{\Theta^{-}} \Theta G$, we have to find a Θ-basis of $V \epsilon_{\lambda}$, and subsequently, for given $g \in G$, we have to find the action of $\epsilon_{\lambda} g \epsilon_{\lambda} \in \epsilon_{\lambda} \Theta G \epsilon_{\lambda}$ on $V \epsilon_{\lambda}$ with respect to this basis. In practice, this has to be done without having available explicit representing matrices for the action of the elements of G on V, since typically $\mathrm{rk}_{\Theta}(V)$ is so large that we would not be able to deal computationally with these matrices.

If $\lambda=1$, let $\epsilon:=\epsilon_{1}$. In this case we have $V \epsilon=\operatorname{Fix}_{H}(V)$, the set of the H fixed points in V. This particular condensation functor is called a fixed point condensation functor. The latter have been applied to different types of $F G$ modules over finite fields F. Historically, the first application [77] has been to permutation modules. We give the corresponding condensation formula in Proposition (9.5). An implementation is available as the ZKD program in the MeatAxe. Originally, this program returns representing matrices for the action of $\epsilon g \epsilon$ on $V \epsilon$, for $g \in G$. We have generalised it slightly to return, optionally, orbit counting matrices $C(g)$ having integral entries, see Definition (9.4).

Applying fixed point condensation functors to tensor product modules has been sketched in [52], and has been worked out in [79, 48]; an implementation, with a few improvements [58], is also available in the MeatAxe. Arbitrary induced modules have been dealt with in [59], an implementation being available in GAP. Great improvements for the permutation module case have been made by the invention of the direct condense technique [67], which has subsequently been
developed into a parallelised version in [45]; a modified version has been used in [57] and we further elaborate on this technique in Section 10.

(9.2) Remark.

a) Let $\Theta \in\{K, F\}$ be as in Section (2.10), where in particular the characteristic of F is coprime to $|H|$, and let $\chi_{V} \in \mathbb{Z I B r}_{\Theta}(G)$ denote the Brauer character of $V \in \bmod -\Theta G$. If $\Theta=F$, then χ_{V} is a K-valued class function on the p^{\prime}-classes of G, which can be extended to a class function on G by letting $\chi_{V}(g)=\chi_{V}\left(g_{p^{\prime}}\right)$, where $g=g_{p} \cdot g_{p^{\prime}} \in G$ denote the p-part and the p^{\prime}-part of $g \in G$, respectively. If $\Theta=K$, then χ_{V} is a K-valued class function on G anyway. Hence we have

$$
\operatorname{dim}_{\Theta}\left(V \epsilon_{\lambda}\right)=\left\langle\left(\chi_{V}\right)_{H}, \lambda\right\rangle_{H}=\left\langle\chi_{V}, \lambda^{G}\right\rangle_{G}
$$

where $\langle\cdot, \cdot\rangle_{G}$ and $\langle\cdot, \cdot\rangle_{H}$ denote the hermitian products on the K-valued class functions on G and H, respectively. Hence the Θ-dimension of the condensed module $V \epsilon_{\lambda}$ of V can be determined from purely character theoretic information without actually applying the condensation functor.
b) Let $k \in \mathcal{I}$ and $g \in H g_{k} H$, and let $\operatorname{tr}_{V \epsilon_{\lambda}}$ and tr_{V} denote the Θ-valued trace functions on V and $V \epsilon_{\lambda}$, respectively. As in the proof of Proposition (3.20) we have

$$
\operatorname{tr}_{V \epsilon_{\lambda}}\left(\epsilon_{\lambda} g \epsilon_{\lambda}\right)=\operatorname{tr}_{V}\left(\epsilon_{\lambda} g \epsilon_{\lambda}\right)=\frac{1}{|H|} \cdot \sum_{C \in \mathcal{C} l(G)} \gamma_{k}(C) \cdot \operatorname{tr}_{V}(C)
$$

where $\gamma_{k}(C) \in \Theta$ is as in Definition (3.19). We have $\operatorname{tr}_{V}(C)=\chi_{V}(C)$, if $\Theta=K$, and $\operatorname{tr}_{V}(C)=\widetilde{\chi_{V}(C)}$, if $\Theta=F$, respectively.
This has been applied to solve problems concerned with the determination of decomposition numbers of algebraically conjugate ordinary characters, see [57, $65,70]$.
(9.3) We proceed to prove the condensation formula, see Proposition (9.5), to which fixed point condensation of permutation modules boils down.

Let $\lambda=1$ and $\epsilon=\epsilon_{1}$. Let $U \leq G$ be another subgroup and $\Xi:=U \mid G$. Let $\mathcal{J}:=\{1, \ldots, \tilde{r}\}$, where $\tilde{r} \in \mathbb{N}$ is the number of U - H-double cosets in G, and let $\left\{\tilde{g}_{j} \in G ; j \in \mathcal{J}\right\}$ be a set of representatives of the U - H-double cosets in G, where $\tilde{\tilde{g}}_{1}:=1_{G}$.

As in Section (5.2) we have

$$
\operatorname{Hom}_{\Theta G}\left(1_{H}^{G}, 1_{U}^{G}\right) \cong \operatorname{Hom}_{\Theta H}\left(1,\left(1_{U}^{G}\right)_{H}\right) \cong \bigoplus_{j \in \mathcal{J}} \operatorname{Hom}_{\Theta H}\left(1,\left(1_{U^{\tilde{g}_{j}} \cap H}\right)^{H}\right)
$$

(9.4) Definition.

a) For $j \in \mathcal{J}$ let $\Xi_{j}:=\left\{U \tilde{\tilde{g}}_{j} h \in \Xi ; h \in H\right\} \subseteq \Xi$ and $\Xi_{j}^{+}:=\sum_{\xi \in \Xi_{j}} \xi \in \Theta \Xi$. Hence $\Xi^{+}:=\left\{\Xi_{j}^{+} ; j \in \mathcal{J}\right\}$ is a Θ-basis of $\Theta \Xi \cdot \epsilon$.
b) For $g \in G$ and $i, j \in \mathcal{J}$ let the orbit counting numbers $c_{i j}(g) \in \mathbb{N}_{0}$ with respect to $\Xi=\coprod_{j \in \mathcal{J}} \Xi_{j}$ be defined by

$$
c_{i j}(g):=\left|\left\{\xi \in \Xi_{i} ; \xi g \in \Xi_{j}\right\}\right|=\left|\Xi_{i} g \cap \Xi_{j}\right|=\left|\Xi_{i} \cap\left(\Xi_{j} g^{-1}\right)\right|
$$

Let the orbit counting matrix $C(g) \in \mathbb{N}_{0}^{\tilde{r} \times \tilde{r}}$ with respect to $\Xi=\coprod_{j \in \mathcal{J}} \Xi_{j}$, belonging to g, be defined by $C(g)_{i j}:=c_{i j}(g)$, for $i, j \in \mathcal{J}$.
(9.5) Proposition. Let $g \in G$. Then the representing matrix for the action of $\epsilon g \epsilon \in \epsilon \Theta G \epsilon$ on $\Theta \Xi \cdot \epsilon$ with respect to the Θ-basis Ξ^{+}is given as

$$
[\epsilon g \epsilon]_{\Xi^{+}}=C(g) \cdot \operatorname{diag}\left[\left|\Xi_{j}\right|^{-1} ; j \in \mathcal{J}\right] \in \Theta^{\tilde{r} \times \tilde{r}}
$$

Proof. We have $\Xi_{i}^{+} \cdot \epsilon g \epsilon=\frac{1}{|H|} \cdot \sum_{j \in \mathcal{J}}\left|\left\{\xi \in \Xi_{i} ; \xi g \in \Xi_{j}\right\}\right| \cdot \frac{|H|}{\left|\Xi_{j}\right|} \cdot \Xi_{j}^{+}$.
(9.6) Proposition. Let $U=H$, hence $\Xi=\Omega$ and $\mathcal{J}=\mathcal{I}$. Let $g \in H g_{l} H \subseteq$ G for $l \in \mathcal{I}$. Then for $i, j \in \mathcal{I}$ and the structure constants $p_{l i j} \in \Theta$, see Definition (1.18), we have,

$$
p_{l i j}=\frac{k_{l}}{k_{j}} \cdot c_{i j}(g)=\frac{k_{l}}{k_{j}} \cdot\left|\Omega_{i} \cap\left(\Omega_{j} g^{-1}\right)\right|=\frac{k_{l}}{k_{j}} \cdot\left|\Omega_{i} g \cap \Omega_{j}\right| \in \Theta
$$

independent of the particular choice of $g \in H g_{l} H$.
Proof. As in the proof of Proposition (2.2), we have

$$
\Omega_{i}^{+} \sigma=\sum_{i^{\prime} \in\left\{1, \ldots, k_{i}\right\}} \epsilon g_{i} h_{i i^{\prime}}=\frac{|H|}{\left|H_{i}\right|} \cdot \epsilon g_{i} \epsilon=k_{i} \cdot \epsilon g_{i} \epsilon \in \epsilon \Theta G
$$

We may without loss of generality assume that $g=g_{l}$. Thus we have

$$
\left(k_{i} \cdot \epsilon g_{i} \epsilon\right) \cdot \epsilon g_{l} \epsilon=\sum_{j \in \mathcal{I}} \frac{c_{i j}\left(g_{l}\right)}{k_{j}} \cdot\left(k_{j} \cdot \epsilon g_{j} \epsilon\right)
$$

Furthermore, by Proposition (2.2) we have $\left(k_{i} \cdot \epsilon g_{i} \epsilon\right) \cdot\left(k_{l} \cdot \epsilon g_{l} \epsilon\right)=\sum_{j \in \mathcal{I}} p_{l i j}$. $\left(k_{j} \cdot \epsilon g_{j} \epsilon\right)$. This yields the assertion.
(9.7) Remark. Let still $U=H$, hence $\Xi=\Omega$ and $\mathcal{J}=\mathcal{I}$.
a) If $g \in G$ is given, the row of $C(g)=\left[c_{i j}(g) ; i, j \in \mathcal{I}\right]$ corresponding to $i=1 \in$ \mathcal{I} has exactly one non-vanishing entry. If this is in the column corresponding to $k \in \mathcal{I}$, then by Definition (9.4) we have $g \in H g_{k} H$. Furthermore, for the row sums and column sums of $C(g)$ we have $\sum_{j \in \mathcal{I}} c_{i j}(g)=k_{i}$ and $\sum_{i \in \mathcal{I}} c_{i j}(g)=k_{j}$, for fixed $i \in \mathcal{I}$ and fixed $j \in \mathcal{I}$, respectively.
b) If E_{K} is commutative, we have $p_{l i j}=p_{i l j}$, for $i, j, l, \in \mathcal{I}$. Hence by Proposition (9.6) we have

$$
P_{l}=k_{l} \cdot C\left(g_{l}\right) \cdot \operatorname{diag}\left[k_{j}^{-1} ; j \in \mathcal{I}\right]=k_{l} \cdot\left[\epsilon g_{l} \epsilon\right]_{\Omega^{+}}
$$

(9.8) For the computation of orbit counting matrices, see Definition (9.4), for the case $\Xi=\Omega$, which is most interesting in the present work, we occasionally use the following strategy, whose usefulness becomes clear in Section (10.3).

Let $U \leq H$, let $\mathcal{J}:=\{1, \ldots, \tilde{r}\}$, where $\tilde{r} \in \mathbb{N}$ is the number of H - U-double cosets in G, and let $\left\{\tilde{g}_{j} \in G ; j \in \mathcal{J}\right\}$ be a set of representatives of the H-U-double cosets in G, where $\tilde{g}_{1}:=1_{G}$. For $j \in \mathcal{J}$ let $\tilde{\Omega}_{j}:=\left\{H \tilde{g}_{j} u \in \Omega ; u \in U\right\} \subseteq \Omega$ Then, for each $j \in \mathcal{J}$ there is $i \in \mathcal{I}$ such that $\tilde{\Omega}_{j} \subseteq \Omega_{i}$. This defines a surjective $\operatorname{map} \alpha_{U, H}: \mathcal{J} \rightarrow \mathcal{I}$.
Let $\tilde{c}_{i j}(g):=\left|\left\{\omega \in \tilde{\Omega}_{i} ; \omega g \in \tilde{\Omega}_{j}\right\}\right| \in \mathbb{N}_{0}$, for $i, j \in \mathcal{J}$ and $g \in G$, be the orbit counting numbers with respect to $\Omega=\coprod_{j \in \mathcal{J}} \tilde{\Omega}_{j}$. Furthermore, let $c_{i j}(g) \in \mathbb{N}_{0}$, for $i, j \in \mathcal{I}$ and $g \in G$, be the orbit counting numbers with respect to $\Omega=$ $\coprod_{i \in \mathcal{I}} \Omega_{i}$. Hence we have

$$
c_{i j}(g)=\sum_{\tilde{i} \in \alpha_{U, H}^{-1}(i)} \sum_{\tilde{j} \in \alpha_{U, H}^{-1}(j)} \tilde{c}_{\tilde{i} \tilde{j}}(g) .
$$

To determine the sets $\alpha_{U, H}^{-1}(i) \subseteq \mathcal{J}$, for $i \in \mathcal{I}$, we additionally compute orbit counting matrices $\tilde{C}(h)=\left[\tilde{c}_{i j}(h) ; i, j \in \mathcal{J}\right] \in \mathbb{N}_{0}^{\tilde{r} \times \tilde{r}}$, for $h \in \mathcal{H}$, where $\mathcal{H} \subseteq H$ is a set of generators of H. From these we compute the finest set partition $\left\{\mathcal{J}_{k} \subseteq \mathcal{J} ; k \in\{1, \ldots, s\}\right\}$ of \mathcal{J}, hence $\mathcal{J}=\coprod_{k=1}^{s} \mathcal{J}_{k}$, such that we have $j \in \mathcal{J}_{k}$, whenever $i \in \mathcal{J}_{k}$ and $j \in \mathcal{J}$ such that $\tilde{c}_{i j}(h) \neq 0$ for some $h \in \mathcal{H}$. As $\langle\mathcal{H}\rangle=H$ and by the definition of the orbit counting numbers we conclude that $s=r$ and $\left\{\alpha_{U, H}^{-1}(i) ; i \in \mathcal{I}\right\}=\left\{\mathcal{J}_{k} ; k \in\{1, \ldots, r\}\right\}$.
(9.9) We return to the case of λ arbitrary. In practice we only compute representing matrices for the action of a few elements $\left\{\epsilon_{\lambda} g \epsilon_{\lambda} ; g \in \mathcal{G}\right\} \subseteq \epsilon_{\lambda} \Theta G \epsilon_{\lambda}$, for some subset $\mathcal{G} \subseteq G$, on the module $V \epsilon_{\lambda} \in \bmod _{\Theta}-\epsilon_{\lambda} \Theta G \epsilon_{\lambda}$, where $V \in$ $\bmod _{\Theta}-\Theta G$. Hence we only know the action of the Θ-subalgebra

$$
\mathcal{C}_{\mathcal{G}}:=\left\langle\epsilon_{\lambda} g \epsilon_{\lambda} ; g \in \mathcal{G}\right\rangle_{\Theta-\text { algebra }} \subseteq \epsilon_{\lambda} \Theta G \epsilon_{\lambda}
$$

on $V \epsilon_{\lambda}$, which poses the problem to infer the structure of the $\epsilon_{\lambda} \Theta G \epsilon_{\lambda}$-module $V \epsilon_{\lambda}$ from an explicit analysis of the $\mathcal{C}_{\mathcal{G}}$-module structure of $V \epsilon_{\lambda}$. Different strategies to tackle this problem have been developed, see for example [26, 38, 59]. The following idea and the criterion in Proposition (9.11) might be helpful as well, although for the time being they have not yet been applied to substantial examples.
Let $V \in \bmod _{\epsilon_{\lambda}}-F G$ be a trivial source $F G$-module; for example this holds for $V \cong \epsilon_{\lambda} F G$ as $F G$-modules. By [39, Thm.II.12.4] we have $\operatorname{dim}_{F} \operatorname{End}_{F G}(V)=$ $\left\langle\chi_{\hat{V}}, \chi_{\hat{V}}\right\rangle_{G}$, where $\hat{V} \in \bmod _{R^{-}} R G$ is the uniquely defined trivial source $R G$ module such that $\tilde{\hat{V}} \cong V$ as $F G$-modules, and where $\langle\cdot, \cdot\rangle_{G}$ is the hermitian product on the K-valued class functions on G. Hence in this situation $\operatorname{dim}_{F} \operatorname{End}_{F G}(V)$ can be determined from purely character theoretic information,
and as the assumptions of Remark (6.13) are fulfilled, $\operatorname{dim}_{F} \operatorname{End}_{\epsilon_{\lambda} F G \epsilon_{\lambda}}\left(V \epsilon_{\lambda}\right)$ is also known.

If $\mathcal{C}_{\mathcal{G}} \subseteq \epsilon_{\lambda} F G \epsilon_{\lambda}$ is an F-subalgebra, and the restriction of $V \epsilon_{\lambda}$ to $\mathcal{C}_{\mathcal{G}}$ is given, we can explicitly determine $\operatorname{End}_{\mathcal{C}_{\mathcal{G}}}\left(V \epsilon_{\lambda}\right)$, using the algorithms described in [74] to compute endomorphism rings available in the MeatAxe. If $\operatorname{dim}_{F} \operatorname{End}_{\mathcal{C}_{\mathcal{G}}}\left(V \epsilon_{\lambda}\right)>$ $\operatorname{dim}_{F} \operatorname{End}_{\epsilon_{\lambda} F G \epsilon_{\lambda}}\left(V \epsilon_{\lambda}\right)$, we compute representing matrices for the action of additional elements $\epsilon_{\lambda} g \epsilon_{\lambda} \in \epsilon_{\lambda} F G \epsilon_{\lambda}$ on $V \epsilon_{\lambda}$, and thus enlarge the set $\mathcal{G} \subseteq$ G and the F-subalgebra $\mathcal{C}_{\mathcal{G}} \subseteq \epsilon_{\lambda} F G \epsilon_{\lambda}$, until we have $\operatorname{dim}_{F} \operatorname{End}_{\mathcal{C}_{\mathcal{G}}}\left(V \epsilon_{\lambda}\right)=$ $\operatorname{dim}_{F} \operatorname{End}_{\epsilon_{\lambda} F G \epsilon_{\lambda}}\left(V \epsilon_{\lambda}\right)$. Hence we have explicitly determined $\operatorname{End}_{\epsilon_{\lambda} F G \epsilon_{\lambda}}\left(V \epsilon_{\lambda}\right)=$ $\operatorname{End}_{\mathcal{C}_{\mathcal{G}}}\left(V \epsilon_{\lambda}\right)$.

Knowing $\operatorname{End}_{\epsilon_{\lambda} F G \epsilon_{\lambda}}\left(V \epsilon_{\lambda}\right)$, we may for example determine a direct sum decomposition of the $\epsilon_{\lambda} F G \epsilon_{\lambda}$-module $V \epsilon_{\lambda}$ into indecomposable summands and the isomorphism types of the summands, using the relevant algorithms described in [74], available in the MeatAxe. Furthermore we may infer the existence of certain $\epsilon_{\lambda} F G \epsilon_{\lambda}$-modules, namely those which are images of $\epsilon_{\lambda} F G \epsilon_{\lambda}$-endomorphisms of $V \epsilon_{\lambda}$.
Letting $D_{V \epsilon_{\lambda}}: \epsilon_{\lambda} F G \epsilon_{\lambda} \rightarrow \operatorname{End}_{F}\left(V \epsilon_{\lambda}\right)$ denote the corresponding representation, in general we might still have a proper inclusion $D_{V \epsilon_{\lambda}}\left(\mathcal{C}_{\mathcal{G}}\right) \subset D_{V \epsilon_{\lambda}}\left(\epsilon_{\lambda} F G \epsilon_{\lambda}\right)$, as we might have a proper inclusion $D_{V \epsilon_{\lambda}}\left(\epsilon_{\lambda} F G \epsilon_{\lambda}\right) \subset \operatorname{End}_{\operatorname{End}_{\epsilon_{\lambda} F G \epsilon_{\lambda}}\left(V \epsilon_{\lambda}\right)}\left(V \epsilon_{\lambda}\right)=$ $\operatorname{End}_{\operatorname{End}_{\mathcal{C}_{\mathcal{G}}}\left(V \epsilon_{\lambda}\right)}\left(V \epsilon_{\lambda}\right)$. To the knowledge of the author, the known general criteria to ensure equality here, hence the double centralizer property, are quite restrictive, see [14, Thm.VIII.59.6].
(9.10) Let $H^{\prime} \leq H$ as well as λ and λ^{\prime} be as in Section (5.3). In particular, we keep the condition that λ^{G} and $\left(\lambda^{\prime H}-\lambda\right)^{G}$ have no $K G$-constituents in common, and that the characteristic of F is coprime to $|H|$. Let $\Theta \in\{K, R\}$. Then we have $\lambda^{G} \epsilon_{\lambda^{\prime}} \cong \operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ as Θ-modules, and $\tilde{\lambda}^{G} \epsilon_{\tilde{\lambda}^{\prime}} \cong \operatorname{Hom}_{F G}\left(\tilde{\lambda}^{G}, \tilde{\lambda}^{G}\right)$ as F-vector spaces. Furthermore let $D_{\Theta}^{\lambda^{\prime} \lambda}:\left(E_{\Theta}^{\lambda^{\prime}}\right)^{\circ} \rightarrow \operatorname{End}_{\Theta} \operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ denote the corresponding representation of $\left(E_{\Theta}^{\lambda^{\prime}}\right)^{\circ} \cong \epsilon_{\lambda^{\prime}} \Theta G \epsilon_{\lambda^{\prime}}$, and let $D_{F}^{\tilde{\lambda^{\prime}} \tilde{\lambda}}:\left(E_{F}^{\tilde{\lambda}^{\prime}}\right)^{\circ} \rightarrow$ $\operatorname{End}_{F} \operatorname{Hom}_{F G}\left(\widetilde{\lambda^{\prime}}{ }^{G}, \tilde{\lambda}^{G}\right)$ denote the analogous one of $\left(E_{F}^{\tilde{\lambda}^{\prime}}\right)^{\circ} \cong \epsilon_{\widetilde{\lambda}^{\prime}} F G \epsilon_{\tilde{\lambda}^{\prime}}$. We give an admittedly rather restrictive criterion to ensure the equality $D_{\Theta}^{\lambda^{\prime} \lambda}(\mathcal{C})=$ $D_{\Theta}^{\lambda^{\prime} \lambda}\left(E_{\Theta}^{\lambda^{\prime}}\right)$, for a Θ-subalgebra $\mathcal{C} \subseteq E_{\Theta}^{\lambda^{\prime}}$, and an analogous statement for $E_{F}^{\mathcal{\lambda}^{\prime}}$.
(9.11) Proposition. We keep the notation of Section (9.10).
a) Let $\alpha_{1}^{\lambda^{\prime} \lambda} \in \operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ be as in Remark (5.7) and let $\mathcal{C} \subseteq E_{\Theta}^{\lambda^{\prime}}$ be a Θ-subalgebra. Then we have

$$
E_{\Theta}^{\lambda^{\prime}} \cdot \alpha_{1}^{\lambda^{\prime} \lambda}=\operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right)
$$

and $D_{\Theta}^{\lambda^{\prime} \lambda}(\mathcal{C})=D_{\Theta}^{\lambda^{\prime} \lambda}\left(E_{\Theta}^{\lambda^{\prime}}\right)$ holds if and only if $\mathcal{C} \cdot \alpha_{1}^{\lambda^{\prime} \lambda}=E_{\Theta}^{\lambda^{\prime}} \cdot \alpha_{1}^{\lambda^{\prime} \lambda}$.
b) Let $\alpha_{1}^{\tilde{\lambda^{\prime}}} \tilde{\operatorname{Hom}_{F G}}\left(\tilde{\lambda}^{\prime} G, \tilde{\lambda}^{G}\right)$ be as in Remark (5.7) and let $\mathcal{C} \subseteq E_{F}^{\tilde{\lambda}^{\prime}}$ be an F-subalgebra. Then we have

$$
E_{F}^{\tilde{\lambda^{\prime}}} \cdot \alpha_{1}^{\tilde{\lambda^{\prime}} \tilde{\lambda}}=\operatorname{Hom}_{F G}\left(\tilde{\lambda}^{G}, \tilde{\lambda}^{G}\right)
$$

and $D_{F}^{\tilde{\lambda^{\prime}} \tilde{\lambda}}(\mathcal{C})=D_{F}^{\tilde{\lambda}^{\prime} \tilde{\lambda}}\left(E_{F}^{\tilde{\lambda}^{\prime}}\right)$ holds if and only if $\mathcal{C} \cdot \alpha_{1}^{\tilde{\lambda}^{\prime} \tilde{\lambda}}=E_{F}^{\tilde{\lambda}^{\prime}} \cdot \alpha_{1}^{\tilde{\lambda}^{\prime} \tilde{\lambda}}$.

Proof. Let $i^{\prime} \in \mathcal{I}_{\lambda^{\prime}}$ and $\alpha_{i^{\prime}}^{\lambda^{\prime}} \in \mathcal{A}_{\lambda^{\prime}}$. Then by Section (1.7) and Definition (5.6) we have

$$
\alpha_{i^{\prime}}^{\lambda^{\prime}} \cdot \alpha_{1}^{\lambda^{\prime} \lambda}: \omega_{1}^{\prime} \mapsto \sum_{j^{\prime} \in\left\{1, \ldots, k_{i^{\prime}}^{\prime}\right\}} \lambda^{\prime}\left(h_{i^{\prime} j^{\prime}}^{\prime-1}\right) \cdot \lambda\left(h_{i^{\prime} j^{\prime}}^{\prime \prime}\right) \cdot \omega_{i j},
$$

where $i=\alpha_{H^{\prime}, H}\left(i^{\prime}\right)$, and $j \in\left\{1, \ldots, k_{i}\right\}$ depends on j^{\prime}. For $i \in \mathcal{I}_{\lambda}$, by Corollary (5.11), we have $\alpha_{H^{\prime}, H}^{-1}(i) \subseteq \mathcal{I}_{\lambda^{\prime}}$. Hence from $g_{i^{\prime}}^{\prime} h_{i^{\prime} j^{\prime}}^{\prime}=h_{i^{\prime} j^{\prime}}^{\prime \prime} g_{i} h_{i j}$ and $g_{i^{\prime}}^{\prime}=$ $h_{i^{\prime}}^{\prime \prime} g_{i} h_{i j_{1}}$ for some $j_{1} \in\left\{1, \ldots, k_{i}\right\}$, see Definition (5.6), we obtain

$$
g_{i}^{-1} h_{i^{\prime}}^{\prime \prime} g_{i} \cdot h_{i j_{1}} \cdot h_{i^{\prime} j^{\prime}}^{\prime}=g_{i}^{-1} h_{i^{\prime} j^{\prime}}^{\prime \prime} g_{i} \cdot h_{i j}
$$

and thus $\lambda^{\prime}\left(h_{i^{\prime} j^{\prime}}^{\prime-1}\right) \cdot \lambda\left(h_{i^{\prime} j^{\prime}}^{\prime \prime}\right)=\zeta_{i^{\prime}}^{\prime} \cdot \lambda\left(h_{i j}^{-1}\right)$. Hence, by Proposition (5.4), for $i \in \mathcal{I}_{\lambda}$ and $i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)$ we have

$$
\alpha_{i^{\prime}}^{\lambda^{\prime}} \cdot \alpha_{1}^{\lambda^{\prime} \lambda}=\frac{k_{i^{\prime}}^{\prime}}{k_{i}} \cdot \zeta_{i^{\prime}}^{\prime} \cdot \alpha_{i}^{\lambda^{\prime} \lambda} \in \operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right)
$$

This shows the first assertion in a). By Remark (5.9) the quotient $\frac{k_{i^{\prime}}^{\prime}}{k_{i}} \in \mathbb{N}$ is coprime to p. Hence an analogous argument shows the first assertion in b).
For the second assertion in a), we only have to show sufficiency. Let $\alpha \in E_{\Theta}^{\lambda^{\prime}}$. Because of $\mathcal{C} \cdot \alpha_{1}^{\lambda^{\prime} \lambda}=\operatorname{Hom}_{\Theta G}\left(\lambda^{\prime G}, \lambda^{G}\right)$ there is $\beta \in \mathcal{C}$ such that $\beta \cdot \alpha_{1}^{\lambda^{\prime} \lambda}=\alpha \cdot \alpha_{1}^{\lambda^{\prime} \lambda}$. By Proposition (5.4) for $i \in \mathcal{I}_{\lambda}$ we have $\alpha_{i}^{\lambda^{\prime} \lambda}=\alpha_{1}^{\lambda^{\prime} \lambda} \cdot \alpha_{i}^{\lambda}$. Hence we have $(\alpha-\beta) \cdot \alpha_{i}^{\lambda^{\prime} \lambda}=(\alpha-\beta) \cdot \alpha_{1}^{\lambda^{\prime} \lambda} \cdot \alpha_{i}^{\lambda}=0$. Thus $D_{\Theta}^{\lambda^{\prime} \lambda}(\alpha)=D_{\Theta}^{\lambda^{\prime} \lambda}(\beta)$. An analogous argument shows the second assertion in b).
(9.12) For the special case $H=H^{\prime}$ and $\lambda=\lambda^{\prime}=1$, the representations $D_{\Theta}^{\lambda \lambda}$ and $D_{F}^{\tilde{\lambda} \tilde{\lambda}}$ are the left regular representations of E_{Θ} and E_{F}, respectively. These hence are faithful representations. We have $\alpha_{1}^{\lambda \lambda}=\alpha_{1}^{\lambda}=\mathrm{id}_{\Theta_{\lambda} \Omega}$ and $\alpha_{1}^{\tilde{\lambda} \tilde{\lambda}}=\alpha_{1}^{\tilde{\lambda}}=\operatorname{id}_{F_{\tilde{\lambda}} \Omega}$, and the criteria in Proposition (9.11) boil down to the trivial statements that $\mathcal{C}=E_{\Theta}$ if and only if $\mathcal{C} \cdot \mathrm{id}_{\Theta \Omega}=E_{\Theta} \cdot \mathrm{id}_{\Theta \Omega}$, and $\mathcal{C}=E_{F}$ if and only if $\mathcal{C} \cdot \operatorname{id}_{F \Omega}=E_{F} \cdot \mathrm{id}_{F \Omega}$, respectively.

This special case has found practical applications, for example see [46] and also Section (19.2). Another generalisation of this special case different from the one given in Proposition (9.11) has been derived in [79, 46].

We conclude Section 9 with an observation concerning symmetric algebras, which proves useful in Section (19.2).
(9.13) Proposition. Let Θ be a perfect field, and let A be a symmetric finite-dimensional Θ-algebra. For $\varphi \in \operatorname{Irr}_{\Theta}(A)$ let $S_{\varphi} \in \bmod -A$ be the simple A module affording φ, let $d_{\varphi}:=\operatorname{dim}_{\Theta}\left(S_{\varphi}\right) \in \mathbb{N}_{0}$ and $f_{\varphi}:=\operatorname{dim}_{\Theta} \operatorname{End}_{A}\left(S_{\varphi}\right) \in \mathbb{N}_{0}$, and let $P_{\varphi} \in \bmod -A$ be the projective cover of S_{φ}.
a) Then the multiplicity of the constituent S_{φ} in an A-module composition series of the regular A-module A equals $\frac{1}{f_{\varphi}} \cdot \operatorname{dim}_{\Theta}\left(P_{\varphi}\right)$.
b) The simple A-module S_{φ} is a projective A-module if and only if the above multiplicity of S_{φ} equals $\frac{d_{\varphi}}{f_{\varphi}}$, otherwise the multiplicity is at least $2 \cdot \frac{d_{\varphi}}{f_{\varphi}}$.

Proof. For $\psi \in \operatorname{Irr}_{\Theta}(A)$ let the Cartan number $c_{\varphi \psi} \in \mathbb{N}_{0}$ be the multiplicity of the constituent S_{ψ} in an A-module composition series of P_{φ}. Hence we have

$$
\operatorname{dim}_{\Theta}\left(P_{\varphi}\right)=\sum_{\psi \in \operatorname{Irr}_{\Theta}(A)} c_{\varphi \psi} \cdot d_{\psi}
$$

Let $e_{\psi} \in A$ be a primitive idempotent such that $e_{\psi} A / \operatorname{rad}\left(e_{\psi} A\right) \cong S_{\psi}$ as A modules. By Remark (6.5) we have, as Θ-vector spaces,

$$
S_{\psi} e_{\psi} \cong \operatorname{Hom}_{A}\left(e_{\psi} A, S_{\psi}\right) \cong \operatorname{Hom}_{A}\left(e_{\psi} A / \operatorname{rad}\left(e_{\psi} A\right), S_{\psi}\right) \cong \operatorname{End}_{A}\left(S_{\psi}\right)
$$

and hence $f_{\psi}=\operatorname{dim}_{\Theta}\left(S_{\psi} e_{\psi}\right)$. Furthermore, by Propositions (6.6) and (6.7) we have $\operatorname{dim}_{\Theta}\left(e_{\varphi} A \cdot e_{\psi}\right)=\operatorname{dim}_{\Theta}\left(P_{\varphi} \cdot e_{\psi}\right)=c_{\varphi \psi} \cdot f_{\psi}$. By [18, La.I.16.6] we have $\operatorname{dim}_{\Theta}\left(e_{\varphi} A e_{\psi}\right)=\operatorname{dim}_{\Theta}\left(e_{\psi} A e_{\varphi}\right)$. Hence we conclude $c_{\varphi \psi} \cdot f_{\psi}=c_{\psi \varphi} \cdot f_{\varphi}$.
As $A \cong \bigoplus_{\varphi \in \operatorname{Irr}_{\Theta}(A)}\left(\bigoplus_{i=1}^{\frac{d_{\varphi}}{f_{\varphi}}} P_{\varphi}\right)$ as A-modules, the multiplicity of S_{φ} in the regular A-module A is equal to
$\sum_{\psi \in \operatorname{Irr}_{\Theta}(A)} \frac{d_{\psi}}{f_{\psi}} \cdot c_{\psi \varphi}=\sum_{\psi \in \operatorname{Irr}_{\Theta}(A)} \frac{d_{\psi}}{f_{\varphi}} \cdot c_{\varphi \psi}=\frac{1}{f_{\varphi}} \cdot \sum_{\psi \in \operatorname{Irr}_{\Theta}(A)} d_{\psi} \cdot c_{\varphi \psi}=\frac{1}{f_{\varphi}} \cdot \operatorname{dim}_{\Theta}\left(P_{\varphi}\right)$.
This proves the assertion in a), the assertion in b) is clear.
(9.14) Remark. Proposition (9.13) can be applied to the regular module of the Θ-algebra $A:=\epsilon \Theta G \epsilon$, where $\epsilon=\epsilon_{1} \in \Theta H \subseteq \Theta G$, hence the situation of Section (9.12). If Θ is a finite field, then the MeatAxe finds the simple A-modules S_{φ}, for $\varphi \in \operatorname{Irr}_{\Theta}(A)$, the Θ-dimensions d_{φ}, the Θ-dimensions f_{φ}, and the multiplicities of the S_{φ} as constituents in an A-module composition series of the regular A-module. Hence from these standard MeatAxe results the projective simple A-modules can be determined, as well as the Θ-dimensions of the projective indecomposable A-modules, without actually decomposing the regular A-module into indecomposable summands. For such an application, see Section (19.2)

10 Enumeration of long orbits

In Section 10 we describe strategies to enumerate long and ultra-long orbits. Different variants of these are the main workhorses to collect the data necessary to compute structure constants matrices. We elaborate on the basic idea invented in [45], where the exposition given here is inspired by [57].
(10.1) Let $U \leq G$, let $\tilde{r} \in \mathbb{N}$ be the number of H - U-double cosets in G and $\mathcal{J}:=\{1, \ldots, \tilde{r}\}$, and let $\left\{\tilde{g}_{j} \in G ; j \in \mathcal{J}\right\}$ be a set of representatives of the $H-U$ double cosets in G, where $\tilde{g}_{1}:=1_{G}$. For $j \in \mathcal{J}$ let $\tilde{\Omega}_{j}:=\left\{H \tilde{g}_{j} u \in \Omega ; u \in U\right\} \subseteq \Omega$ and $\tilde{\omega}_{j}:=H \tilde{g}_{j} \in \tilde{\Omega}_{j} \subseteq \Omega$, where Ω still is the set $H \mid G$ of right cosets of H in G. Note that in Section (9.8) we have assumed additionally that $U \leq H$ holds, which we do not do here. In the sequel of Section 10 we do not distinguish between the G-set $\Omega=H \mid G$ and other G-sets isomorphic to Ω, such as sets of vectors.

Let $\mathcal{G} \subset G$ be a set of generators of G, and let $\mathcal{U} \subseteq U$ be a set of generators of U. We use a modification of the standard breadth-first orbit algorithm using \mathcal{G} to enumerate the G-orbit Ω. Namely, whenever we compute an element $\omega \in \Omega$ which has not been encountered earlier in the orbit enumeration, then we first compute its whole U-orbit $\omega \cdot U \subseteq \Omega$, using \mathcal{U}, which hence is one of the $\tilde{\Omega}_{j}$, for $j \in \mathcal{J}$, and then proceed with the general orbit algorithm. Thus the G-orbit Ω is enumerated piecewise, U-orbit by U-orbit. For each U-orbit $\omega \cdot U \subseteq \Omega$ we encounter, we store a word in the set of generators \mathcal{G} of G mapping the start point $\omega_{1} \in \Omega$ to $\omega \in \Omega$. To actually enumerate long and ultra-long orbits we cannot afford to store all elements of Ω. Instead we only store a certain subset of Ω, which is done as follows.

We choose a subgroup $U_{1} \leq U \leq G$, small enough such that the elements of U_{1} can be enumerated explicitly, and objects representing the action of all of these elements on Ω can be stored; these objects could be permutations, or matrices if Ω is a set of vectors. Furthermore we choose a U_{1}-set Ξ_{1}, such that there is a homomorphism $q: \Omega_{U_{1}} \rightarrow \Xi_{1}$ of U_{1}-sets, where $\Omega_{U_{1}}$ denotes the U_{1}-set Ω defined by restricting the G-action to U_{1}. We do not assume that q is surjective, nor that U_{1} acts transitively on Ξ_{1}, but we assume that $\left|\Xi_{1}\right|$ is small enough such that the elements of Ξ_{1} can be enumerated explicitly, and all of them can be stored.

For each U_{1}-orbit $\xi \cdot U_{1} \subseteq \Xi_{1}$ we choose an element $\xi_{0} \in \xi \cdot U_{1} \subseteq \Xi_{1}$, which is called the strongly minimal element of $\xi \cdot U_{1}$. For $\xi_{0} \neq \xi^{\prime} \in \xi \cdot U_{1} \subseteq \Xi_{1}$ we store an element of U_{1} mapping ξ^{\prime} to ξ; in practice this means a pointer to that element of U_{1}. For the strongly minimal element ξ_{0} we store the elements of $\operatorname{Stab}_{U_{1}}\left(\xi_{0}\right) \leq U_{1}$; in practice this again means pointers to the elements of $\operatorname{Stab}_{U_{1}}\left(\xi_{0}\right)$.

For a U_{1}-orbit $\omega \cdot U_{1} \subseteq \Omega$ let $\xi_{0} \in q\left(\omega \cdot U_{1}\right)=q(\omega) \cdot U_{1} \in \Xi_{1}$ be the strongly minimal element of the U_{1}-orbit $q(\omega) \cdot U_{1}$. Then the set $q^{-1}\left(\xi_{0}\right) \subseteq \omega \cdot U_{1} \subseteq \Omega$ is called the set of weakly minimal elements of the U_{1}-orbit $\omega \cdot U_{1}$. The weakly minimal elements of $\omega \cdot U_{1}$ are given as $\omega \cdot u \cdot \operatorname{Stab}_{U_{1}}\left(\xi_{0}\right) \subseteq \Omega$, where $u \in U_{1}$ is the element stored with $q(\omega) \in \Xi_{1}$ if $q(\omega) \in \Xi_{1}$ is not strongly minimal, or $u=1$ if $q(\omega) \in \Xi_{1}$ is strongly minimal, while $\operatorname{Stab}_{U_{1}}\left(\xi_{0}\right)$ is stored with the strongly minimal element $\xi_{0} \in \Xi_{1}$ belonging to $q(\omega) \cdot U_{1}$.

To enumerate Ω piecewise, U-orbit by U-orbit, we have to enumerate all the U orbits $\tilde{\Omega}_{j} \subseteq \Omega$, for $j \in \mathcal{J}$, in turn. The latter again are enumerated piecewise,
U_{1}-orbit by U_{1}-orbit. We store exactly the weakly minimal elements of the U_{1}-orbits in Ω, together with the information to which of the U-orbits $\tilde{\Omega}_{j}$, for $j \in \mathcal{J}$, they belong.

Hence, during the enumeration of Ω, for $\omega \in \Omega$ we have to decide whether we already have encountered the U_{1}-orbit $\omega \cdot U_{1} \subseteq \Omega$ earlier. To do this we compute $\omega \cdot u \in \Omega$, where $u \in U_{1}$ is the element stored with $q(\omega) \in \Xi_{1}$ if $q(\omega) \in \Xi_{1}$ is not strongly minimal, or $u=1$ if $q(\omega) \in \Xi_{1}$ is strongly minimal. If $\omega \cdot u \in \Omega$ is already stored, then we have encountered $\omega \cdot U_{1}$ earlier. If $\omega \cdot u \in \Omega$ is not yet stored, then we store all the weakly minimal elements of $\omega \cdot U_{1} \subseteq \Omega$.
(10.2) A few comments on this general strategy are in order.
a) As we also store the information to which of the U-orbits $\tilde{\Omega}_{j}$, for $j \in \mathcal{J}$, the weakly minimal elements belong, this is sufficient to compute orbit counting numbers with respect to $\Omega=\coprod_{j \in \mathcal{J}} \tilde{\Omega}_{j}$, see Definition (9.4).
b) To avoid to store too many elements of Ω, the proportion of weakly minimal elements of Ω should be small. Hence there is a tendency of choosing U_{1} such that the U_{1}-orbits in Ξ_{1} are long, at least on average; this makes the proportion of strongly minimal elements of Ξ_{1} small. Furthermore, the sets $\omega \cdot u \cdot \operatorname{Stab}_{U_{1}}\left(\xi_{0}\right) \subseteq \Omega$ of weakly minimal elements of Ω tend to be smaller, if the stabilizers $\operatorname{Stab}_{U_{1}}\left(\xi_{0}\right) \leq U_{1}$ are small. Hence at best we have some large subgroup $U_{1} \leq U$ and some large set Ξ_{1}, having a tendency to contain mostly regular U_{1}-orbits. Contrary to this, as we require both the elements of U_{1} and of Ξ_{1} to be explicitly enumerable, this poses upper bounds on how large U_{1} and Ξ_{1} might possibly be chosen.
c) If Ω is a set of vectors in an $F G$-module V, where F is a finite field, then a standard choice of the U_{1}-set Ξ_{1} is as follows. Let $\hat{q}: V_{U_{1}} \rightarrow V_{1}$ be a homomorphism of $F U_{1}$-modules, let $\Xi_{1}=V_{1}$ be the set of vectors in V_{1} and let $q:=\hat{q}_{\Omega}: \Omega_{U_{1}} \rightarrow \Xi_{1}$. Note that one possible pitfall here is that the zero vector $0 \in \Xi_{1}=V_{1}$ is a strongly minimal element of Ξ_{1} and we have $\operatorname{Stab}_{U_{1}}(0)=U_{1}$, hence all elements of $q^{-1}(0) \cap \Omega$ are weakly minimal elements of Ω and have to be stored.
d) To store and recover elements quickly we use a hashing technique. If the elements of Ω are vectors over some finite field F, one technique to find a suitable hash function is to view the entries of a vector as the coefficients of the $|F|$-adic expansion of an integer, and to take the latter as hash value. If this yields a hash function whose range is too large, compared to the expected number of weakly minimal elements of Ω, then we are content with only using part of the entries of the vectors to compute the hash function. Hash functions of that type have indeed proven to be suitable for the kind of computations done in the present work, although no attempt of a formal analysis has been made.
e) Depending on the example being under consideration, different amounts of memory to store an element of Ω are needed. Hence we have to make choices, fulfilling the requirements described above, such that we obtain a sufficiently small
number of weakly minimal elements of Ω, which actually have to be stored. We do not go into a detailed analysis of memory requirements here; some numerical considerations of these issues are given in [57] for the example examined there, where in particular the problem, that the zero vector has a relatively large stabilizer, cannot be neglected.
(10.3) We briefly discuss implementational details.
a) The strategy described in Sections (10.1) and (10.2) has been implemented, for Ω being a set of vectors in a vector space V over a finite field, in the programs described in [45]. These are also parallelised in the sense that the different suborbits $\tilde{\Omega}_{j} \subseteq \Omega$ are treated in parallel. To use the full strength of this parallelisation, we have to ensure that $|\mathcal{J}|$ is large compared to the number of processors we want to use.
b) We also make use of modified versions of these programs [56], for Ω being a set of subspaces of a vector space V over a finite field F, where we both allow for 1-dimensional and higher dimensional F-subspaces. In the former case, the necessary modifications of the programs are straightforward.
In the latter case, let $\Omega \subseteq V$ consist of F-subspaces of V of F-dimension $d \in \mathbb{N}$. Then a standard choice of the U_{1}-set Ξ_{1} is as follows. Let again \hat{q} : $V_{U_{1}} \rightarrow V_{1}$ be a homomorphism of $F U_{1}$-modules. One possible choice of Ξ_{1} is the set of all F-subspaces of V_{1}. But it turns out that typically these sets are too large to be enumerated explicitly. Instead we assume $\operatorname{dim}_{F} \operatorname{im}(\hat{q}) \geq d+1$ and let Ξ_{1} be the set of all F-subspaces of V_{1} of F-dimension d. Still we have to ensure that the elements of Ξ_{1} can be enumerated explicitly. Thus we only have a map of U_{1}-sets $\tilde{q}:=\hat{q}_{\tilde{\Omega}}: \tilde{\Omega}_{U_{1}} \rightarrow \Xi_{1}$, where $\tilde{\Omega}:=\left\{\omega \in \Omega ; \hat{q}(\omega) \in \Xi_{1}\right\} \subseteq \Omega$, which might be a proper subset of Ω. Hence this only allows to treat the $\omega \in \tilde{\Omega}$ as described above, while all $\omega \in \Omega \backslash \tilde{\Omega}$ are simply defined to be weakly minimal and hence have to be stored.
To remedy this, we proceed as follows. Let $\hat{q}_{i}: V_{U_{1}} \rightarrow V_{1}^{i}$, for $i \in\{1, \ldots, k\}$ and $k \in \mathbb{N}$, be homomorphisms of $F U_{1}$-modules, such that $\operatorname{dim}_{F} \operatorname{im}\left(\hat{q}_{i}\right) \geq d+1$, for $i \in\{1, \ldots, k\}$. As becomes clear below, the different $F U_{1}$-homomorphisms \hat{q}_{i} should be as independent from each other as possible. Hence we additionally require that

$$
\operatorname{codim}_{F}\left(\bigcap_{i \in\{1, \ldots, k\}} \operatorname{ker} \hat{q}_{i}\right)=\sum_{i \in\{1, \ldots, k\}} \operatorname{codim}_{F} \operatorname{ker}\left(\hat{q}_{i}\right)
$$

Let again Ξ_{1}^{i} be the set of all F-subspaces of V_{1}^{i} of F-dimension d, and $\tilde{\Omega}^{i}:=$ $\left\{\omega \in \Omega ; \hat{q}_{i}(\omega) \in \Xi_{1}^{i}\right\} \subseteq \Omega$, as well as $\tilde{q}_{i}:=\left(\hat{q}_{i}\right)_{\tilde{\Omega}^{i}}:\left(\tilde{\Omega}^{i}\right)_{U_{1}} \rightarrow \Xi_{1}^{i}$, for $i \in\{1, \ldots, k\}$. An element $\omega \in \Omega$ is processed as follows. If $\omega \in \tilde{\Omega}^{1}$ then we may and do use \tilde{q}_{1} as described above. If $\omega \notin \tilde{\Omega}^{1}$, but $\omega \in \tilde{\Omega}^{2}$, then we may and do use \tilde{q}_{2}, and so on. Hence only the elements $\omega \in \Omega \backslash\left(\bigcup_{i \in\{1, \ldots, k\}} \tilde{\Omega}^{i}\right)$, cannot be treated this way, and are simply defined to be weakly minimal and hence have to be stored. Thus we have to choose k big enough such that we can afford to do so. A more
detailed description of this idea, together with some numerical considerations for the example examined there, is given in [57].
(10.4) For ultra-long orbits Ω the assumptions in Section (10.1) on the explicit enumerability of the subgroup $U_{1}<U$ and the U_{1}-set Ξ_{1} turn out to be too strict. We still follow the strategy to enumerate Ω piecewise, U-orbit by U-orbit, but instead of one subgroup $U_{1}<U$ we use a whole chain of subgroups iteratively.

Let $\{1\}:=U_{0}<U_{1}<U_{2}<\ldots<U_{k}<U_{k+1}=$: U be a chain of subgroups, for some $k \in \mathbb{N}$, given by sets of generators \mathcal{U}_{i}, respectively. Hence Section (10.1) deals with the case $k=1$. For all $i \in\{1, \ldots, k\}$ let Ξ_{i} be a U_{i}-set, such that there are homomorphisms $q_{i, i-1}:\left(\Xi_{i}\right)_{U_{i-1}} \rightarrow \Xi_{i-1}$ of U_{i-1}-sets, for $i \in\{1, \ldots, k+1\}$, where we let $\Xi_{k+1}:=\Omega$ and Ξ_{0} is the trivial U_{0}-set with $\left|\Xi_{0}\right|=1$.

For $i \in\{1, \ldots, k\}$ let $\mathcal{T}_{i} \subseteq U_{i}$ be a set of representatives of the left cosets $U_{i} \mid U_{i-1}$ of U_{i-1} in U_{i}. Thus $u \in U_{k}$ can be written as $u=t_{k}(u) \cdot t_{k-1}(u) \cdots \cdot t_{1}(u)$, where $t_{i}(u) \in \mathcal{T}_{i}$, for $i \in\{1, \ldots, k\}$. We assume that the sets $\mathcal{T}_{i} \subseteq U_{i}$ can be enumerated explicitly, but we do not assume that this can be done for the left cosets $U \mid U_{k}$ of $U=U_{k+1}$ in U_{k}.
For $i \in\{0, \ldots, k+1\}$ we by induction define certain distinguished elements of the U_{i}-orbits in Ξ_{i}. For $i \in\{0, \ldots, k\}$ we define strongly minimal elements such that each U_{i}-orbit in Ξ_{i} contains exactly one strongly minimal element, while for $i \in\{1, \ldots, k+1\}$ we define weakly minimal elements of the U_{i}-orbits in Ξ_{i}, where each U_{i}-orbit in Ξ_{i} contains at least one, but possibly more than one, weakly minimal element. For $i=0$ the U_{0}-set Ξ_{0} is a U_{0}-orbit and Ξ_{0} is the set of strongly minimal elements of Ξ_{0}.
Let $i \in\{1, \ldots, k\}$. By induction we may assume that we have already defined the strongly minimal elements of Ξ_{i-1}. Let $\xi \in \Xi_{i}$. Using the set of coset representatives \mathcal{T}_{i} we obtain $\xi \cdot U_{i}=\coprod_{t \in \mathcal{T}_{i}^{\prime}} \xi \cdot t \cdot U_{i-1} \subseteq \Xi_{i}$, where t runs through a suitable subset $\mathcal{T}_{i}^{\prime} \subseteq \mathcal{T}_{i}$. For $t \in \mathcal{T}_{i}^{\prime}$ let $\tilde{\xi}_{t, 0} \in \Xi_{i-1}$ be the strongly minimal element of the U_{i-1}-orbit $q_{i, i-1}\left(\xi \cdot t \cdot U_{i-1}\right)=q_{i, i-1}(\xi \cdot t) \cdot U_{i-1} \subseteq \Xi_{i-1}$. The set of weakly minimal elements of $\xi \cdot U_{i}$ is defined as $q_{i, i-1}^{-1}\left(\left\{\tilde{\xi}_{t, 0} ; t \in \mathcal{T}_{i}^{\prime}\right\}\right) \subseteq$ $\xi \cdot U_{i} \subseteq \Xi_{i}$. In particular, for $i=1$ this means that all elements of Ξ_{1} are weakly minimal. We choose one of the weakly minimal elements of $\xi \cdot U_{i} \subseteq \Xi_{i}$ as the strongly minimal element $\xi_{0} \in \xi \cdot U_{i}$, and for each weakly minimal element $\xi_{0} \neq \xi^{\prime} \in \xi \cdot U_{i} \subseteq \Xi_{i}$ we store an element of U_{i}, as a word in the set of generators \mathcal{U}_{i}, mapping ξ^{\prime} to ξ_{0}, while for the strongly minimal element ξ_{0} we store a set of generators of $\operatorname{Stab}_{U_{i}}\left(\xi_{0}\right)$, again as a set of words in the set of generators \mathcal{U}_{i}.

Let finally $i=k+1$, hence we have $U_{k+1}=U$ and $\Xi_{k+1}=\Omega$. The set of weakly minimal elements of a U_{k}-orbit $\xi \cdot U_{k} \subseteq \Xi_{k+1}$ is defined as the set $q^{-1}\left(\tilde{\xi}_{0}\right) \subseteq \xi \cdot U_{k}$, where $\tilde{\xi}_{0} \in q_{k+1, k}\left(\xi \cdot U_{k}\right)=q_{k+1, k}(\xi) \cdot U_{k} \subseteq \Xi_{k}$ is the strongly minimal element of the U_{k}-orbit $q_{k+1, k}(\xi) \cdot U_{k} \subseteq \Xi_{k}$. The set of weakly minimal elements of a U_{k+1}-orbit $\xi \cdot U_{k+1} \subseteq \Xi_{k+1}$ is defined as the union of the sets of weakly minimal
elements of the U_{k}-orbits contained in $\xi \cdot U_{k+1}$.
By induction, for $i \in\{1, \ldots, k+1\}$, each U_{i}-orbit in Ξ_{i} encountered is enumerated piecewise, U_{i-1}-orbit by U_{i-1}-orbit. Exactly the weakly minimal elements are stored, where for $i \in\{1, \ldots, k\}$ we store the additional information as described above, while for $i=k+1$ we additionally store the information to which of the U-orbits $\tilde{\Omega}_{j}$, for $j \in \mathcal{J}$, the weakly minimal elements belong. Finally, we store elements of G mapping the start point $\omega_{1} \in \Omega$ to $\tilde{\omega}_{j} \in \tilde{\Omega}_{j} \subseteq \Omega$, for $j \in \mathcal{J}$, as well as elements of U mapping $\tilde{\omega}_{j} \in \tilde{\Omega}_{j}$ to representatives of the U_{k}-orbits in $\tilde{\Omega}_{j}$. These elements are stored as words in the sets of generators \mathcal{G} and \mathcal{U}, respectively.
During the enumeration of Ω, for $\omega \in \Omega$ we have to decide whether we have already encountered the U_{k}-orbit $\omega \cdot U_{k} \subseteq \Omega$ earlier. To do this, as in Section (10.1), we compute $\omega \cdot u \in \Omega$, where $u \in U_{k}$ is the element stored with $q_{k+1, k}(\omega) \in$ Ξ_{k} if $q_{k+1, k}(\omega) \in \Xi_{k}$ is not strongly minimal, or $u=1$ if $q_{k+1, k}(\omega) \in \Xi_{k}$ is strongly minimal. If $\omega \cdot u \in \Omega$ is already stored, then we have encountered $\omega \cdot U_{k}$ earlier. If $\omega \cdot u \in \Omega$ is not yet stored, then we store all the weakly minimal elements of $\omega \cdot U_{k} \subseteq \Omega$, which are again given as $\omega \cdot u \cdot \operatorname{Stab}_{U_{k}}\left(\xi_{0}\right) \subseteq \Omega$, where $\operatorname{Stab}_{U_{k}}\left(\xi_{0}\right)$ is stored with the strongly minimal element $\xi_{0} \in \Xi_{k}$ belonging to $q_{k+1, k}(\omega) \cdot U_{k} \subseteq \Xi_{k}$.
(10.5) Again, a few comments on this general strategy are in order.
a) Let $i \in\{1, \ldots, k\}$. Deviating from the strategy described in Section (10.1), we do not store the weakly minimal elements in Ξ_{i} in advance, and we even do not store all of them. We only store those weakly minimal elements which actually belong to $q_{i+1, i} \circ \cdots \circ q_{k, k-1} \circ q_{k+1, k}\left(\Omega_{U_{i}}\right)$. Such an element is stored if a preimage of it is encountered during the enumeration of Ω.
b) To find the sets \mathcal{T}_{i} of representatives of the left cosets $U_{i} \mid U_{i-1}$ of U_{i-1} in U_{i}, for $i \in\{1, \ldots, k\}$, as a set of words in the set of generators \mathcal{U}_{i}, we proceed as follows. Let Ξ_{i}^{\prime} be the regular transitive U_{i}-set, hence we have $\Xi_{i}^{\prime} \cong U_{i}$ as U_{i}-sets. For $i=1$ we use a standard breadth-first orbit algorithm using \mathcal{U}_{1} to enumerate the elements of $\Xi_{1}^{\prime} \cong U_{1}=: \mathcal{T}_{1}$.
Let by induction $i \geq 2$. We enumerate Ξ_{i}^{\prime} piecewise, U_{i-1}-orbit by U_{i-1}-orbit, but using a left orbit algorithm. Let $\xi_{1} \in \Xi_{i}^{\prime}$ be fixed. Using the isomorphism $\Xi_{i}^{\prime} \cong U_{i}$ of U_{i}-sets, the element $\xi_{1} \in \Xi_{i}^{\prime}$ corresponds to $1 \in U_{i}$. Whenever we compute an element $\xi \in \Xi_{i}^{\prime}$, whose U_{i-1}-orbit $\xi \cdot U_{i-1} \subseteq \Xi_{i}^{\prime}$ has not been encountered before, we store an element $u_{\xi} \in U_{i}$, as a word in the set of generators \mathcal{U}_{i}, mapping ξ_{1} to ξ, where we let $u_{\xi_{1}}:=1$, and then enumerate the U_{i-1}-orbit $\xi \cdot U_{i-1} \subseteq \Xi_{i}^{\prime}$. Thus we obtain a sequence $\left\{u_{\xi_{1}}, u_{\xi_{2}}, \ldots\right\} \subseteq U_{i}$, and the left orbit algorithm is now performed by running through this list, multiplying from the left with the elements of \mathcal{U}_{i}, hence forming successively the products $u \cdot u_{\xi_{j}}$, for $u \in \mathcal{U}_{i}$, and computing the U_{i-1}-orbits $\xi_{1} \cdot u \cdot u_{\xi_{j}} \cdot U_{i-1} \subseteq \Xi_{i}^{\prime}$. As $\Xi_{i}^{\prime} \cong U_{i}$ as $U_{i^{-}}$ sets, on termination the set $\mathcal{T}_{i}:=\left\{u_{\xi_{1}}, u_{\xi_{2}}, \ldots\right\} \subseteq U_{i}$ is a set of representatives of the left cosets $U_{i} \mid U_{i-1}$ of U_{i-1} in U_{i}.

To actually do these orbit enumerations we in turn may use the strategies described in Section (10.1) or in Section (10.4), for the truncated subgroup chain $U_{0}<U_{1}<\ldots<U_{i-1}<U_{i}$. Having built up the U_{i-1}-orbit structure on Ξ_{i}^{\prime}, for $i \in\{1, \ldots, k\}$, this can be used to compute in U_{k}, hence multiply or invert elements of U_{k}, and writing the results again as a product of elements of the \mathcal{T}_{i}.
c) Let $\xi_{0} \in \Xi_{i}$ be a strongly minimal element. A set of generators of $\operatorname{Stab}_{U_{i}}\left(\xi_{0}\right)$ is found as follows. We may assume $\xi_{0} \cdot U_{i}=\coprod_{t \in \mathcal{T}_{i}^{\prime}} \xi_{0} \cdot t \cdot U_{i-1} \subseteq \Xi_{i}$, where $\mathcal{T}_{i}^{\prime} \subseteq \mathcal{T}_{i}$ is a suitable subset as in Section (10.4). If $t \cdot u \in \operatorname{Stab}_{U_{i}}\left(\xi_{0}\right)$, where $t \in \mathcal{T}_{i}$ and $u \in U_{i-1}$, then $\xi_{0} \cdot t \in \xi_{0} \cdot U_{i-1} \subseteq \Xi_{i}$. Hence we only have to consider the coset representatives $t \in \mathcal{T}_{i}^{\prime \prime}:=\left\{t \in \mathcal{T}_{i} ; \xi_{0} \cdot t \in \xi_{0} \cdot U_{i-1}\right\}$. Conversely, for $t \in \mathcal{T}_{i}^{\prime \prime}$ there is a $u_{t} \in U_{i-1}$ such that $\xi_{0} \cdot t \cdot u_{t}=\xi_{0}$, and we have $\operatorname{Stab}_{U_{i}}\left(\xi_{0}\right) \cap$ $\left(t \cdot U_{i-1}\right)=t \cdot u_{t} \cdot \operatorname{Stab}_{U_{i-1}}\left(\xi_{0}\right)$. Hence we have to find the sets $\mathcal{T}_{i}^{\prime \prime} \subseteq \mathcal{T}_{i}$, the elements $u_{t} \in U_{i-1}$, and a set of generators of $\operatorname{Stab}_{U_{i-1}}\left(\xi_{0}\right)$, where we have $\operatorname{Stab}_{U_{i-1}}\left(\xi_{0}\right) \leq \operatorname{Stab}_{U_{i-1}}\left(q_{i, i-1}\left(\xi_{0}\right)\right)$, and the latter group is known by induction.
d) As we do not assume that a set of representatives of the left cosets $U_{k+1} \mid U_{k}$ of U_{k} in $U_{k+1}=U$ can be enumerated explicitly, the machinery using regular transitive sets described above cannot immediately be extended to U. Occasionally, we use another U-set Ξ_{k+1}^{\prime}, which we choose to be faithful, together with randomised Schreier-Sims techniques, to obtain results on certain subgroups of U, such as stabilizers $\operatorname{Stab}_{U}(\omega)$, for $\omega \in \Omega$. This tends to be helpful to find break conditions, where some U-orbit $\omega \cdot U \subseteq \Omega$ is too long to be enumerated completely, but where it suffices to know some substantial part of it, see Section (17.8).
e) If Ω is a set of vectors in an $F G$-module V, where F is a finite field, then again a standard choice of the U_{i}-sets Ξ_{i}, for $i \in\{1, \ldots, k\}$, is as follows. Let $V_{k+1}:=$ V, and let $\hat{q}_{i+1, i}:\left(V_{i+1}\right)_{U_{i}} \rightarrow V_{i}$ be homomorphisms of $F U_{i}$-modules, let $\Xi_{i}=V_{i}$ be the set of the vectors in V_{i}, and let $q_{i+1, i}:=\left(\hat{q}_{i+1, i}\right)_{\Xi_{i+1}}:\left(\Xi_{i+1}\right)_{U_{i}} \rightarrow \Xi_{i}$. Furthermore, a standard choice of the regular transitive set Ξ_{i}^{\prime}, for $i \in\{1, \ldots, k\}$, is a regular U_{i}-orbit in the $F U_{i}$-module $\left(V_{j}\right)_{U_{i}}$, for some $j \in\{i, \ldots, k+1\}$.
(10.6) The strategy described in Sections (10.4) and (10.5) has been implemented in GAP, for Ω being a set of vectors in an $F G$-module V, where F is a finite field. We make heavy use of the fast arithmetic for vectors over finite fields, available in GAP, which employs the techniques also used in the MeatAxe. Altogether, the relevant GAP code implementing the hashing techniques, computations in U_{k} using the regular transitive U_{i}-sets, for $i \in\{1, \ldots, k\}$, the different necessary orbit enumeration algorithms and the randomised Schreier-Sims algorithms, keeping track of transversals and subgroup generators as words in the given sets of generators, amounts to some 2000 lines of GAP code. A more detailed description of this, including some numerical considerations of memory requirements and running times, will be given elsewhere [54].

III Explicit results

For all of Part III, let $\lambda=1$ be the trivial character of the subgroup $H \leq G$ under consideration, and let K be as in Section 3, depending on the group under consideration. We keep the notation of Sections 1 and 3. Occasionally we need another subgroup $H^{\prime} \leq H$, where we keep the notation of Section 5 and let $\lambda^{\prime}=1$ as well.

11 The database

(11.1) We have compiled a database containing the character tables of the endomorphism rings of the multiplicity-free permutation representations of the sporadic simple groups, their automorphism groups and their Schur covering groups, see [7]. Up to now, there still is a single exceptional case, where the character table is not known, namely for $G:=2 . B$ and $H:=F i_{23}$. As some partial information is already known, see Section (17.11), there is hope that this case will be successfully treated completely in the near future, see Section (17.12). Furthermore, an examination of the multiplicity-free permutation representations of the bicyclic extensions of the sporadic simple groups currently is under way [7].
In the present work we provide proofs for the cases for the sporadic simple groups, their automorphism groups and their Schur covering groups where $n=$ $|\Omega| \geq 10^{7}$, see Table 7. In Sections 12-17 we deal with the different groups G and subgroups H as indicated in Table 7. But before doing so, in the remaining parts of Section (11.1) we comment on the smaller cases, on earlier results used and on the explicit determination of the Fitting correspondence.
a) The multiplicity-free permutation representations of the sporadic simple groups, their automorphism groups, their Schur covering groups and their bicyclic extensions have been classified in $[6,43,5]$.
b) The work of systematically computing structure constants matrices related to the sporadic simple groups and their automorphism groups has been begun in [68]. In the thesis [32], which the author has had the opportunity to co-supervise, these and other earlier results, scattered in the literature, have been collected. Furthermore, the remaining cases of multiplicity-free permutation actions of the sporadic simple groups and their automorphism groups for $n=|\Omega| \leq 10^{7}$ have been dealt with. We comment briefly on the methods used in [32], which we refer to for more details.

For the sporadic simple groups up to group order 10^{9}, hence the largest one being $M c L$, and a few of their automorphism groups, the tables of marks are known and available in GAP. Together with the corresponding table of marks, GAP provides the smallest faithful permutation representation of the corresponding group, given in terms of a set of standard generators in the sense of [81], and for each conjugacy class of subgroups a set of generators of a representative of this class is given as words in the set of standard generators. Using this
information, and the programs dealing with permutation groups available in GAP, it is straightforward to compute the necessary permutation representations and sufficiently many of the related structure constants matrices. Thus by the technique described in Section (8.2) the character tables of the corresponding endomorphism rings can be determined.
For quite a few of these cases, this strategy is not sufficient. Instead we have to apply other standard techniques from the MeatAxe to construct the necessary permutation representations, such as finding orbits of vectors, as is implemented in the ZVP program of the MeatAxe. Here we use the database [83] as a source of explicitly given representations for the sporadic simple groups and related groups, where these as well are given in terms of sets of standard generators in the sense of [81], and as a source of words describing sets of generators of maximal subgroups.
c) For the Schur covering groups of the sporadic simple groups, the corresponding permutation representations have been constructed in [43], with the exception of the cases $G:=3 . F i_{24}^{\prime}$ and $H:=O_{10}^{-}(2)$ as well as $G:=2 . B$ and $H:=F i_{23}$, and sufficiently many of the related structure constants matrices have been computed [41]. For the case $G:=3 . F i_{24}^{\prime}$ and $H:=O_{10}^{-}(2)$ see Section (12.2), for the case $G:=2 . B$ and $H:=F i_{23}$ see Section (17.11).
(11.2) We briefly comment on the cases in Table 7 related to $F i_{22}$, to $F i_{23}$, to $C o_{1}$ and to M. Here, either explicit permutations are known, and hence all the structure constants matrices can be computed using Remark (1.19), or part of the structure constants matrices have been computed elsewhere. In all of these cases the character tables of the endomorphism rings can be computed using the technique described in Section (8.2), since the known structure constants matrices are sufficient to get 1-dimensional eigenspaces.
a) Let $G:=3 . F i_{22}$ and $H:={ }^{2} F_{4}(2)^{\prime}$. By [43], explicit permutations are known, as well as the character table of the endomorphism ring [41].
b) Let $G:=F i_{23}$ and $H:=S_{8}(2)$. The index parameters and the structure constants matrices for the two smallest non-trivial suborbits Ω_{2} and Ω_{3} with $k_{2}=2295$ and $k_{3}=13056$ have been computed in [42].
c) Let $G:=F i_{23}$ and $H:=2^{11} . M_{23}$. The index parameters and the structure constants matrix for the smallest non-trivial suborbit Ω_{2} with $k_{2}=506$ have been computed in [42].
d) Let $G:=C o_{1}$ and $H:=2_{+}^{1+8} . O_{8}^{+}(2)$. The index parameters and the structure constants matrix for the smallest non-trivial suborbit Ω_{2} with $k_{2}=270$ have been computed in [34].
e) Let $G:=2 . C o_{1}$ and $H:=C o_{3}$. By [43], explicit permutations are known, as well as the character table of the endomorphism ring [41].
f) Let $G:=M$ and $H:=2 . B$. The index parameters and the structure constants matrix for the smallest non-trivial suborbit Ω_{2} with $k_{2}=27143910000$ have

Table 7: Large multiplicity-free permutation representations.

G	H	n	r	Section
$3 . F i_{22}$	${ }^{2} F_{4}(2)^{\prime}$	10777536	25	(11.2)
$H N$	A_{11}	13680000	19	(13.2)
$H N$	$U_{3}(8) .3_{1}$	16500000	19	(13.4)
$H N .2$	S_{11}	13680000	17	(13.1)
$H N .2$	$U_{3}(8) .6$	16500000	15	(13.3)
$L y$	$3 . M c L$	19212250	8	(14.1)
$T h$	${ }^{3} D_{4}(2) .3$	143127000	11	(15.1)
$T h$	$2^{5} \cdot L_{5}(2)$	283599225	11	(15.2)
$F i_{23}$	$S_{8}(2)$	86316516	13	(11.2)
$F i_{23}$	$2^{11} . M_{23}$	195747435	16	(11.2)
$C o_{1}$	$2_{+}^{1+8} . O_{8}^{+}(2)$	46621575	11	(11.2)
$2 . C o_{1}$	$C o_{3}$	16773120	12	(11.2)
J_{4}	$2^{11}: M_{24}$	173067389	7	(16.1)
J_{4}	$2^{11}: M_{23}$	5153617336	11	(16.2)
$F i_{24}^{\prime}$	$O_{10}^{-}(2)$	1251680460142	17	(12.1)
$F i_{24}^{\prime}$	$3^{7} . O_{7}(3)$	50177360142	17	(12.4)
$F i_{24}^{\prime} \cdot 2$	$O_{10}^{-}(2) .2$	100354720284	34	(12.1)
$F i_{24}^{\prime} \cdot 2$	$O_{10}^{-}(2)$	125168046080	17	(12.1)
$F i_{24}^{\prime} \cdot 2$	$3^{7} . O_{7}(3) .2$	150532080426	43	(12.2)
$3 . F i_{24}^{\prime}$	$O_{10}^{-}(2)$	13571955000	5	(17.1)
B	$2 .{ }^{2} E_{6}(2) .2$	27143910000	8	(17.1)
B	$2 . E_{6}(2)$	11707448673375	10	$(17.2) \mathrm{ff}$.
B	$2^{1+22} . C o_{2}$	1015970529280000	23	$(17.6) \mathrm{ff}$.
B	$F i_{23}$	2031941058560000	34	$(17.11) \mathrm{f}$.
$2 . B$	$F i_{23}$	9	(11.2)	
M	$2 . B$	97239461142009186000	9	

been computed in [64].
(11.3) The character tables of endomorphism rings E_{K} contained in the database, and in particular the indicated Fitting correspondence from the characters $\varphi \in \operatorname{Irr}\left(E_{K}\right)$ to the irreducible characters $\chi_{\varphi} \in \operatorname{Irr}_{K}^{1}(G)$ of the corresponding group G, have been compiled taking the following point of view into account.

If a set $\mathcal{G} \subseteq G$ of standard generators of G in the sense of [81] is given, then the conjugacy classes $\mathcal{C l}(G)$ can be defined by giving representatives as words in the set \mathcal{G} of generators. Such sets of standard generators and definitions of the conjugacy classes are available for the sporadic simple groups, their automorphism groups and their Schur covering groups in [83]. This hence also defines the irreducible characters $\operatorname{Irr}_{K}(G)$ uniquely. Note that the character table \mathcal{X} of $\operatorname{Irr}_{K}(G)$ alone leaves ambiguities which are described by the group $\operatorname{Aut}\left(\operatorname{Irr}_{K}(G)\right)$ of table automorphisms of $\operatorname{Irr}_{K}(G)$, see Definition (8.5).
To determine the Fitting correspondence, we hence first find all the admissible candidate cases $\mathcal{F}=\mathcal{F}_{1}$ using the technique described in Section (8.4). The set \mathcal{F} is a union of orbits under the action of $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right) \times \operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$, see Remark (8.6), hence also is a union of orbits under the action of the possibly strictly smaller group $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$. To obey the point of view introduced above, we have to determine which of the $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$-orbits in \mathcal{F} gives the Fitting correspondence, but then we are allowed to choose freely within this orbit. In particular, we are done if \mathcal{F} consists of exactly one such orbit.

Actually, for a few of the cases dealt with the determination of the Fitting correspondence in the above sense would pose rather hard problems. Hence we loosen our assumptions as follows. Let $\left\{H_{1}, \ldots, H_{k}\right\}$, for some $k \in \mathbb{N}$, be a set of representatives of the conjugacy classes of proper subgroups affording a multiplicity-free permutation character $1_{H_{i}}^{G}$. Furthermore, let $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1_{H_{i}}}(G)\right)$ and $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}^{1_{H}}\right)\right)$, for $i \in\{1, \ldots, k\}$, be the corresponding table automorphism groups of $\operatorname{Irr}_{K}^{1_{H_{i}}}(G)$ and $\operatorname{Irr}_{K}\left(E_{K}^{1_{H_{i}}}\right)$, respectively, see Definition (8.5). We consider the sets \mathcal{F}^{i} of admissible candidate cases for the Fitting correspondence for the subgroups H_{i}, for $i \in\{1, \ldots, k\}$, at the same time. Namely,

$$
\left(\prod_{i=1}^{k} \operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}^{1_{H_{i}}}\right)\right)\right) \times\left(\bigcap_{i=1}^{k} \operatorname{Aut}\left(\operatorname{Irr}_{K}^{1_{H_{i}}}(G)\right)\right)
$$

acts on $\prod_{i=1}^{k} \mathcal{F}^{i}$, where the first direct factor acts componentwise, while the second one acts diagonally. Still, we have to determine which of the orbits in $\prod_{i=1}^{k} \mathcal{F}^{i}$ under the action of the above group gives the k-tuple of Fitting correspondences, but then we are allowed to choose freely within this orbit. In particular, we are done if $\prod_{i=1}^{k} \mathcal{F}^{i}$ consists of exactly one such orbit.
(11.4) We comment on the computations involved in the explicit determination of the Fitting correspondence. The most complicated case is dealt with in

Section (11.5).
a) Actually, for the cases dealt with the technique described in Section (8.4), applied to a fixed subgroup H, rather often yields a set \mathcal{F} of admissible candidate cases consisting of a single $\operatorname{Aut}\left(\operatorname{Trr}_{K}\left(E_{K}\right)\right)$-orbit, or \mathcal{F} even consists of a unique solution. In particular, the latter case occurs if the degrees $\chi(1)$ for $\chi \in \operatorname{Irr}_{K}^{1}(G)$ are pairwise different. Furthermore, Corollary (5.13) and Remarks (5.15), (5.16) and (5.18) can be applied to delete inadmissible orbits.
b) For the remaining cases of those groups G whose tables of marks are known, see Section (11.1), we use one of the faithful permutation representations of G and the programs dealing with permutation groups available in GAP to find representatives of the conjugacy classes $C l(G)$, and to find the matrices $\Gamma:=$ $\left[\left|C \cap H g_{i}\right| ; i \in \mathcal{I}, C \in \mathcal{C} l(G)\right] \in \mathbb{Z}^{|\mathcal{I}| \times|\mathcal{C l}(G)|}$, see Definition (3.19), explicitly. The only general technique known to the author to find the numbers $\left|C \cap H g_{i}\right| \in \mathbb{N}_{0}$ is to fix $C \in \mathcal{C l}(G)$ and $i \in \mathcal{I}$, to run through the elements of $h \in H$ explicitly and to find out to which conjugacy class $C \in \mathcal{C l}(G)$ the element $h g_{i}$ belongs, using conjugacy tests in G. This admittedly not too clever strategy turns out to be doable for the present cases.
This also works for $G:=H S .2$, as the relevant subgroups turn out to be $H_{1}:=$ $5_{+}^{1+2}:\left[2^{5}\right]$ and $H_{2}:=M_{11}$. Hence we have $\left|H_{1}\right|=4000$ and $r_{1}=15$ as well as $\left|H_{2}\right|=7920$ and $r_{2}=17$. The transitive permutation representation of G on 100 points is available in [83], in terms of a set of standard generators of G in the sense of [81]. Using the programs dealing with permutation groups available in GAP, we find the subgroups H_{1} and H_{2}, representatives of the conjugacy classes $C l(G)$, and the matrices $\Gamma \in \mathbb{Z}^{|\mathcal{I}| \times|\mathcal{C} l(G)|}$.
The same strategy works for $3 . M_{22}$ and $6 . M_{22}$, where we use the table of marks of M_{22} available in GAP and the permutation representations available in [83].
c) Let $G:=R u$ and $H:=\left(2^{2} \times S z(8)\right): 3$. By the technique described in Section (8.4), we find 2 admissible candidate cases for the Fitting correspondence. They differ in the preimages of $34944 a / b$. For each of the other subgroups \tilde{H} of G affording multiplicity-free permutation characters, namely ${ }^{2} F_{4}(2)^{\prime} .2$ and ${ }^{2} F_{4}(2)^{\prime}$ the technique described in Section (8.4) yields a set $\mathcal{F}^{\tilde{H}}$ of admissible candidate cases for the Fitting correspondence, which is exactly one orbit under the action of the corresponding table automorphism group $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}^{1_{\tilde{H}}}\right)\right)$. Hence we are allowed to use the action of the full group $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ of table automorphisms on the set of admissible candidate cases for the Fitting correspondence for E_{K}. Using GAP we find that the image of the action of $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ on the characters in $\operatorname{Irr}_{K}^{1}(G)$ is generated by the element (34944a, 34944b). Hence we are allowed to choose freely from the set of admissible candidate cases for the subgroup H.
d) Let $G:=O N$ and $H:=L_{3}(7) \cdot 2$, as well as $H^{\prime}:=L_{3}(7)$. For both cases, by the technique described in Section (8.4), we find 4 admissible candidate cases each for the Fitting correspondence. They differ in the preimages of $26752 a^{ \pm}, 52668 a^{ \pm} \in \operatorname{Irr}_{K}\left(E_{K}^{1_{H}}\right) \subseteq \operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}}\right)$. Hence, as the assumptions of

Section (5.15) are fulfilled, the Fitting correspondence for $E_{K}^{1_{H^{\prime}}}$ is determined by the one for $E_{K}^{1_{H}}$. As H and H^{\prime} are the only subgroups of G affording multiplicity-free permutation characters, we are allowed to use the action of the full group $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1_{H}}(G)\right)$ of table automorphisms on the set of admissible candidate cases for the Fitting correspondence for $E_{K}^{1_{H}}$. Using GAP we find that the image of the action of $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1_{H}}(G)\right)$ on the characters in $\operatorname{Irr}_{K}^{1_{H}}(G)$ is generated by the elements $\left(26752 a^{+}, 26752 a^{-}\right)$and $\left(52668 a^{+}, 52668 a^{-}\right)$. Hence we are allowed to choose freely from the set of admissible candidate cases for the subgroup H.
(11.5) Let $G:=H N$ and $H:=U_{3}(8) .3_{1}$, see Section (13.4) and in particular Table 17. By the technique described in Section (8.4) we find 16 admissible candidate cases for the Fitting correspondence. These are given by

$$
\begin{aligned}
\left\{\varphi_{5^{\prime}}, \varphi_{5^{\prime \prime}}\right\} & \rightarrow\{35112 a, 35112 b\} \\
\left\{\varphi_{8^{\prime}}, \varphi_{8^{\prime \prime}}\right\} & \rightarrow\{374528 a, 374528 b\} \\
\left\{\varphi_{12^{\prime}}, \varphi_{12^{\prime \prime}}\right\} & \rightarrow\{656250 a, 656250 b\} \\
\left\{\varphi_{13^{\prime}}, \varphi_{13^{\prime \prime}}\right\} & \rightarrow\{1361920 b, 1361920 c\}
\end{aligned}
$$

while for the other characters in $\operatorname{Irr}\left(E_{K}\right)$, their Fitting correspondent is uniquely determined and as shown in Table 17.

The group $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$ of table automorphisms of $\operatorname{Irr}_{K}\left(E_{K}\right)$, being defined by its action on the columns of the character table Φ, is generated by the set $\left\{\left(5^{\prime}, 5^{\prime \prime}\right),\left(8^{\prime}, 8^{\prime \prime}\right),\left(12^{\prime}, 12^{\prime \prime}\right),\left(13^{\prime}, 13^{\prime \prime}\right)\right\}$. Hence we have $\left|\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)\right|=$ 16. The image of the action of $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$ on the characters in $\operatorname{Irr}\left(E_{K}\right)$ is generated by $\left\{\left(\varphi_{5^{\prime}}, \varphi_{5^{\prime \prime}}\right)\left(\varphi_{8^{\prime}}, \varphi_{8^{\prime \prime}}\right),\left(\varphi_{9^{\prime}}, \varphi_{9^{\prime \prime}}\right)\left(\varphi_{12^{\prime}}, \varphi_{12^{\prime \prime}}\right)\right\}$, thus the image has order 4.
For each of the other subgroups \tilde{H} of G affording multiplicity-free permutation characters, namely A_{12} and A_{11} as well as 2.HS.2, the technique described in Section (8.4) yields a set $\mathcal{F}^{\tilde{H}}$ of admissible candidate cases for the Fitting correspondence, which is exactly one orbit under the action of the corresponding table automorphism group $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}^{1 \tilde{H}}\right)\right)$. Hence we are allowed to use the action of the full group $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ of table automorphisms on the set of admissible candidate cases for the Fitting correspondence for E_{K}. Using GAP we find that the image of the action of $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ on the characters in $\operatorname{Irr}_{K}^{1}(G)$ is generated by $\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$, where $\pi_{1}:=(35112 a, 35112 b)(374528 a, 374528 b)$ as well as $\pi_{2}:=(656250 a, 656250 b)$ and $\pi_{3}:=(1361920 b, 1361920 c)$.
Hence we may choose the Fitting correspondence, using $\operatorname{Aut}\left(\operatorname{Irr}_{K}\left(E_{K}\right)\right)$, to be $\varphi_{5^{\prime}} \mapsto 35112 a$ and $\varphi_{5^{\prime \prime}} \mapsto 35112 b$, and using $\operatorname{Aut}\left(\operatorname{Irr}_{K}^{1}(G)\right)$ we may furthermore choose $\varphi_{12^{\prime}} \mapsto 656250 a$ and $\varphi_{12^{\prime \prime}} \mapsto 656250 b$ as well as $\varphi_{13^{\prime}} \mapsto 1361920 b$ and $\varphi_{13^{\prime \prime}} \mapsto 1361920 c$. Hence we have to decide whether $\varphi_{8^{\prime}} \mapsto 374528 a$ or $\varphi_{8^{\prime}} \mapsto$ $374528 b$.

Using Proposition (4.6), see also Section (8.1) and in particular Table 6, we find the Krein parameter $q_{2,5^{\prime}, 8^{\prime}}=\frac{1}{4400000} \neq 0$. Furthermore, using GAP we find
that the tensor product $760 a \cdot 35112 a$ of irreducible characters of G decomposes in $\operatorname{Irr}_{K}(G)$ as

$$
\begin{aligned}
760 a \cdot 35112 a= & 3344 a+2 \cdot 35112 b+267520 a+270864 a+\mathbf{3 7 4 5 2 8} \mathbf{a}+ \\
& 1185030 a+1361920 a+1575936 a+4561920 a+\ldots,
\end{aligned}
$$

where we only give the constituents belonging to $\operatorname{Irr}_{K}^{1}(G)$. From this we conclude by Proposition (4.8) that we have $\varphi_{8^{\prime}} \mapsto 374528 a$ and $\varphi_{8^{\prime \prime}} \mapsto 374528 b$.

12 The Fischer group $F i_{24}^{\prime}$

(12.1) Let $G:=F i_{24}^{\prime} .2$ and $H:=O_{10}^{-}(2) .2$, as well as $G^{\prime}:=F i_{24}^{\prime}$ and $H^{\prime}:=O_{10}^{-}(2)$. We have $r=17$ and $r^{\prime}=34$. The conditions of Remark (5.16) are fulfilled.
The index parameters and the structure constants matrices for the two smallest non-trivial suborbits Ω_{2} and Ω_{3} of $\Omega:=H \mid G$ with $k_{2}=25245$ and $k_{3}=104448$ have been computed in [42]. Using the technique described in Section (8.2), where these structure constants matrices are sufficient to get eigenspaces of dimension 1, we obtain the character table of $E_{K}=E_{K}^{1_{H}^{G}}$ as given in Table 8. By Remark (5.16), $E_{K}^{1_{H^{\prime}}^{\prime^{\prime}}}$ and E_{K} have the same character table. The Fitting correspondents for $E_{K}^{1_{H^{\prime}}^{G^{\prime}}}$ are given as the restrictions $\left(\chi_{\varphi}\right)_{G^{\prime}}$. Again by Remark (5.16), the character table of $E_{K}^{1 H^{\prime}}=E_{K}^{1_{H^{\prime}}^{G}}$ is determined by the character table of E_{K}. As the general pattern of this is shown in Example (5.17), the character table of $E_{K}^{1_{H^{\prime}}}$ is not shown here.
(12.2) Let $G:=3 . F i_{24}^{\prime}$ and $H^{\prime}:=O_{10}^{-}(2)$, as well as $H:=Z(G) \times H^{\prime}=$ $3 \times O_{10}^{-}(2)$. We have $r^{\prime}=43$. Let $\lambda^{\prime}=1$ and let $\lambda_{3} \in \operatorname{Irr}_{K}^{1_{H^{\prime}}}(H)$ be as in Remark (5.18).

The splitting of the suborbits $i \in \mathcal{I}$, the index parameters and the structure constants matrices for the non-trivial suborbits $\Omega_{1^{\prime \prime}}^{\prime}, \Omega_{1^{\prime \prime \prime}}^{\prime}$ as well as $\Omega_{2^{\prime}}^{\prime}$ and $\Omega_{3^{\prime}}^{\prime}, \Omega_{3^{\prime \prime}}^{\prime}, \Omega_{3^{\prime \prime \prime}}^{\prime}$ on $\Omega^{\prime}:=H^{\prime} \mid G$, where $1,3 \in \mathcal{I}_{\lambda_{3}}$ but $2 \notin \mathcal{I}_{\lambda_{3}}$, with $k_{1^{\prime}}^{\prime}=1$, $k_{2^{\prime}}^{\prime}=75735$ and $k_{3^{\prime}}^{\prime}=104448$, have been computed in [41], using a technique similar to the one employed in [42]. Using the technique described in Section (8.2), and these structure constants matrices, we obtain a splitting of $K^{1 \times r^{\prime}}$ into 39 eigenspaces of dimension 1, and two eigenspaces of dimension 2. One of the latter is contained in the K-span of $\operatorname{Irr}_{K}\left(E_{K}^{\lambda_{3}}\right) \subseteq \operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}}\right)$, while the other one is contained in the K-span of $\operatorname{Irr}_{K}\left(E_{K}^{\lambda_{3}^{-1}}\right) \subseteq \operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}}\right)$. Employing a technique similar to the one described in more detail for an analogous situation in Section (12.3), we also find the splitting of the eigenspaces of dimension 2.
By Remark (5.18), to describe the character table of $E_{K}^{1_{H^{\prime}}}$, it is sufficient to give the character table of $E_{K}^{1_{H}}$, see Table 8, and the character table of $E_{K}^{\lambda_{3}}$, see Table 9. In the latter character table we have made the following choice for the

Table 8: The character table for $G:=F i_{24}^{\prime} .2$ and $H:=O_{10}^{-}(2) .2$.

$i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)$, for $i \in \mathcal{I}_{\lambda_{3}}$. As we have $i^{*}=i$, for $i \in \mathcal{I}$, see Section (12.1), we conclude that the pairing $*: \mathcal{I}^{\prime} \rightarrow \mathcal{I}^{\prime}$ leaves the sets $\alpha_{H^{\prime}, H}^{-1}(i)$ invariant, for $i \in \mathcal{I}$. Hence for each $i \in \mathcal{I}_{\lambda_{3}}$ we may without loss of generality choose $i^{\prime} \in \alpha_{H^{\prime}, H}^{-1}(i)$ such that $i^{\prime *}=i^{\prime}$ and $i^{\prime \prime *}=i^{\prime \prime \prime}$.
(12.3) Let $G:=F i_{24}^{\prime} .2$ and $H:=3^{7} . O_{7}(3) .2$. We have $r=17$.

The index parameters and the structure constants matrices for the two smallest non-trivial suborbits Ω_{2} and Ω_{3} of $\Omega:=H \mid G$ with $k_{2}=1120$ and $k_{3}=49140$ have been computed in [42]. Using the technique described in Section (8.2) and the structure constants matrix P_{3}, we obtain a splitting of $K^{1 \times r}$ into 15 eigenspaces of dimension 1, and an eigenspace of dimension 2 . The structure constants matrix P_{2} does not give a further splitting. As the characters in $\operatorname{Irr}_{K}^{1}(G)$ have pairwise different degrees, the Fitting correspondents of the characters in the 1-dimensional eigenspaces can be determined by Section (8.1). From this we conclude that we have found the irreducible characters $\left\{\varphi_{1}, \ldots, \varphi_{5}, \varphi_{7}, \ldots, \varphi_{15}, \varphi_{17}\right\} \subseteq \operatorname{Irr}_{K}\left(E_{K}\right)$, see Table 10.
A K-basis for the 2 -dimensional eigenspace is given by $\left\{\psi_{1}, \psi_{2}\right\}$, see also Table 10. As we have $\varphi_{6}\left(\alpha_{1}\right)=\varphi_{16}\left(\alpha_{1}\right)=1$, the missing characters are given by $\varphi_{6}=$ $\psi_{1}+a \psi_{2}$ and $\varphi_{16}=\psi_{1}+b \psi_{2}$, for $a, b \in K$. As all values of $\chi_{\varphi_{6}}=79452373 a^{+}$ and $\chi_{\varphi_{16}}=17161712568 a^{+}$are rational integers, by Proposition (3.20) we have $a, b \in \mathbb{Q}$. By the first orthogonality relations, see Proposition (3.8), we obtain

$$
\sum_{i \in \mathcal{I}} \frac{\left(\left(\psi_{1}+a \psi_{2}\right)\left(\alpha_{i}\right)\right)^{2}}{k_{i}}=\frac{n}{\chi_{\varphi_{6}}(1)}
$$

This leads to a quadratic equation for a, with coefficients in \mathbb{Q}, which turns out to have the solutions $a=2916$ and $a^{\prime}=-\frac{96228}{31}$. As a^{\prime} leads to a character whose values are not all integers, by Proposition (3.10) we have $\varphi_{6}=\psi_{1}+2916 \cdot \psi_{2}$. An analogous argument for φ_{16} yields $b=-108$ and $b^{\prime}=-\frac{2484}{31}$, and thus $\varphi_{16}=\psi_{1}-108 \cdot \psi_{2}$. The characters φ_{6} and φ_{16} are also given in Table 10.
(12.4) Let still $G:=F i_{24}^{\prime} .2$ and $H:=3^{7} . O_{7}(3) .2$, as well as $G^{\prime}:=F i_{24}^{\prime}$ and $H^{\prime}:=3^{7} . O_{7}(3)$. We have $r^{\prime}=18$ and $r=17$.

Note that the condition on the $K G$-constituents of 1_{H}^{G} and $\left(1^{-}\right)_{H}^{G}$ in Remark (5.16) are not fulfilled. We may identify $H^{\prime} \mid G^{\prime}$ with $\Omega:=H \mid G$. As the ranks of the G^{\prime}-action and of the G-action on Ω are $r^{\prime}=18$ and $r=17$, respectively, the G^{\prime}-suborbits and the G-suborbits on Ω coincide, except exactly one G suborbit which is the union of two G^{\prime}-suborbits. It was shown in [42] that the G-suborbit Ω_{15} splits into G^{\prime}-suborbits as $\Omega_{15}=\Omega_{15^{\prime}} \dot{\cup} \Omega_{15^{\prime \prime}}$. As $H^{\prime} \unlhd H$, the group H interchanges the H^{\prime}-orbits $\Omega_{15^{\prime}}$ and $\Omega_{15^{\prime \prime}}$, and for the index numbers we hence have $k_{15^{\prime}}=k_{15^{\prime \prime}}=\frac{k_{15}}{2}=9183300480$. Using the above identification, analogous to Remark (5.16), we have an embedding $E_{K}=E_{K}^{1_{H}^{G}} \rightarrow E_{K}^{1_{H^{\prime}}^{G^{\prime}}}$ of

Table 9: The character table for $G:=3 . F i_{24}^{\prime}$ and $H:=3 \times O_{10}^{-}(2)$, where $\lambda=\lambda_{3}$.

∞	
is	
\%os	
\times	
9	

10^{\prime}	12^{\prime}	13^{\prime}	14^{\prime}	15^{\prime}	17^{\prime}
-8225280	101787840	-160849920	339292800	-226195200	542868480
4465152	10178784	-36765696	-20599920	35544960	19388160
665280	5103000	13009920	5896800	18295200	-8346240
-495936	1496880	2188032	-1995840	-1663200	1197504
1728	68040	-1026048	-1412640	-1740960	-2021760
292032	81648	215808	-51840	-833760	-461376
-95040	-171720	-168960	194400	237600	17280
-70848	42768	-37632	142560	73440	-513216
13824	-45360	-58368	174960	43200	-158976
13824	-27216	70656	-33696	43200	324864
13824	5184	24576	31104	-34560	-55296
-1728	-14256	17664	-38880	4320	95040
-6588	12474	-26616	4860	9180	-52380

Table 10: The character table for $G:=F i_{24}^{\prime} .2$ and $H:=3^{7} . O_{7}(3) .2$.

K-algebras given by, for $j \in \mathcal{I}$,

$$
\alpha_{j} \mapsto\left\{\begin{aligned}
\alpha_{j}^{1}{ }_{H^{\prime}}^{G^{\prime}}, & \text { if } j \neq 15 \\
\alpha_{15^{\prime}}^{11_{H^{\prime}}^{G^{\prime}}}+\alpha_{15^{\prime \prime}}^{1 \underline{G}^{\prime \prime}}, & \text { if } j=15
\end{aligned}\right.
$$

Furthermore, we have $\left(\chi_{\varphi_{i}}\right)_{G^{\prime}} \in \operatorname{Irr}_{K}^{1_{H^{\prime}}^{G^{\prime}}}\left(G^{\prime}\right)$ for $i \neq 14$, while $\chi_{\varphi_{14}}$ splits under restriction to G^{\prime} as $\left(\chi_{\varphi_{14}}\right)_{G^{\prime}}=10776585600 a+10776585600 b$. Using the Fitting correspondence, see Proposition (2.7), for $K G$ and E_{K} as well as for $K G^{\prime}$ and $E_{K}^{1_{G^{\prime}}^{G^{\prime}}}$, we obtain $\operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}^{G^{\prime}}}\right)=\left\{\varphi_{i}^{\prime} ; i \in \mathcal{I}, i \neq 14\right\} \dot{\cup}\left\{\varphi_{14^{\prime}}^{\prime}, \varphi_{14^{\prime \prime}}^{\prime}\right\}$, where for $i \in \mathcal{I} \backslash\{14\}$ and $j \in \mathcal{I} \backslash\{15\}$ we have $\varphi_{i}^{\prime}\left(\alpha_{j}^{1^{G^{\prime}}}\right)=\varphi_{i}\left(\alpha_{j}\right)$. Furthermore we have, for $j \neq 15$,

$$
\varphi_{14^{\prime}}^{\prime}\left(\alpha_{j}^{1_{H^{\prime}}^{G^{\prime}}}\right)=\varphi_{14^{\prime \prime}}^{\prime}\left(\alpha_{j}^{1_{H^{\prime}}^{G^{\prime}}}\right)=\varphi_{14}\left(\alpha_{j}\right)
$$

and using the first orthogonality relations, see Proposition (3.8), with respect to φ_{1}^{\prime} we obtain, for $i \neq 14$,

$$
\varphi_{i}^{\prime}\left(\alpha_{15^{\prime}}^{1}{ }^{1_{G^{\prime}}^{\prime}}\right)=\varphi_{i}^{\prime}\left(\alpha_{15^{\prime \prime}}^{11_{H}^{G^{\prime}}}\right)=\frac{\varphi_{i}\left(\alpha_{15}\right)}{2}
$$

Finally, we have

$$
\varphi_{14^{\prime}}^{\prime}\left(\alpha_{15^{\prime}}^{11_{G^{\prime}}^{G^{\prime}}}+\alpha_{15^{\prime \prime}}^{11_{H^{\prime}}^{G^{\prime}}}\right)=\varphi_{14^{\prime \prime}}^{\prime}\left(\alpha_{15^{\prime}}^{11_{H^{\prime}}^{G^{\prime}}}+\alpha_{15^{\prime \prime}}^{1_{H^{\prime \prime}}^{G^{\prime}}}\right)=\varphi_{14}\left(\alpha_{15}\right)=101088
$$

Again using the first orthogonality relations with respect to φ_{1}^{\prime}, where now $\chi_{\varphi_{14^{\prime}}^{\prime}}(1)=\chi_{\varphi_{14^{\prime \prime}}^{\prime}}(1)=\frac{\chi_{\varphi_{14}}(1)}{2}$, we obtain a system of two linear equations for $\varphi_{14^{\prime}}^{\prime}\left(\alpha_{15^{\prime}}^{11_{H^{\prime}}^{\prime}}\right)$ and $\varphi_{14^{\prime \prime}}^{\prime}\left(\alpha_{15^{\prime}}^{1_{H^{\prime}}^{G^{\prime}}}\right)$, which leads to

$$
\left\{\varphi_{14^{\prime}}^{\prime}\left(\alpha_{15^{\prime}}^{1}\right), \varphi_{14^{\prime \prime}}^{G_{H^{\prime}}^{\prime}}\left(\alpha_{15^{\prime}}^{11_{H^{\prime}}^{\prime}}\right)\right\}=\{-112752,213840\}
$$

This determines the values of the characters in $\operatorname{Irr}_{K}\left(E_{K}^{1_{H^{\prime}}^{G^{\prime}}}\right)$ completely. The character table of $E_{K}^{1 H_{H^{\prime}}^{G^{\prime}}}$ is shown in Table 11, where the latter character values are indicated in bold type.

13 The Harada-Norton group $H N$

(13.1) Let $G:=H N .2$ and $H:=S_{11}$, as well as $G^{\prime}:=H N$ and $H^{\prime}:=A_{11}$. We have $r=17$.
Let $\Omega:=H \mid G$. As $n=|\Omega|=13680000$ is small enough, using GAP, we construct explicit permutations for the action of G on Ω. Let additionally $\tilde{H}:=S_{12}$, where we have $H<\tilde{H}<G$ and $[\tilde{H}: H]=12$. Let $\tilde{\Omega}:=\tilde{H} \mid G$, where

Table 11: The character table for $G^{\prime}:=F i_{24}^{\prime}$ and $H^{\prime}:=3^{7} . O_{7}(3)$.

	$\\| \underset{\sim}{\infty}$	

Table 12: The character table for $G:=H N .2$ and $\tilde{H}:=S_{12}$.

φ	χ_{φ}	1	2	3	4	5	6	7	8	9	10
1	$1 a^{+}$	1	462	5040	10395	16632	30800	69300	311850	332640	362880
2	266	1	-198	.	2475	792	4400	-9900	-14850	.	17280
3	$760 a^{+}$	1	132	-1080	1485	-1188	1100	4950	.	-11880	6480
4	$3344 a^{+}$	1	12	240	495	1332	-2200	300	-900	-2160	2880
5	$8910 a^{+}$	1	82	480	515	-88	400	900	-1650	1280	-1920
6	$16929 a^{+}$	1	62	-240	155	632	400	-300	1050	160	-1920
7	70224	1	-48	.	225	-108	-100	-150	900	.	-720
8	$267520 a^{+}$	1	12	60	-45	-18	50	-150	450	-540	180
9	$365750 a^{+}$	1	-18	.	-45	72	80	180	-270	.	.
10	$406296 a^{+}$	1	12	-40	5	-68	-100	-50	-200	360	80

$\tilde{n}=1140000$. The character table of $E_{K}^{11_{H}^{G}}$ as is contained in the database, see Section (11.1), is given in Table 12.
Let $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. We start with explicitly known permutations for the action of the elements of \mathcal{G} on $\tilde{\Omega}$ available in [83]. Using the randomised Schreier-Sims algorithm implemented in GAP, keeping track of transversals and subgroup generators as words in the given set of generators, see Section (10.6), we obtain a Schreier subgroup chain of G and a set $\tilde{\mathcal{H}}$ of generators of \tilde{H}, given explicitly as words in \mathcal{G}. Restricting to the smallest non-trivial suborbit $\tilde{\Omega}_{2}$, where $\tilde{k}_{2}=462$, we obtain a faithful permutation action of \tilde{H}. By a random search we find a subset of \tilde{H}, again explicitly as words in the set of generators of \tilde{H}, generating a subgroup of order $39916800=11$!, which we hence may choose as $H \cong S_{11}$. Using the programs implemented in GAP dealing with permutation groups, explicit permutations for the action of $\tilde{\mathcal{H}}$ on the set of right cosets $\Xi:=H \mid \tilde{H}$ of H in \tilde{H} can be determined.
Let $\left\{\tilde{g}_{i} ; i \in\{1, \ldots, \tilde{n}\}\right\}$ be a set of representatives of the right cosets $\tilde{H} \mid G$ of \tilde{H} in G, where $\tilde{g}_{1}:=1$. Let $\left\{\tilde{h}_{j} ; j \in\{1, \ldots,[\tilde{H}: H]\}\right\}$ be a set of representatives of the right cosets $H \mid \tilde{H}$ of H in \tilde{H}, where $\tilde{h}_{1}:=1$. Hence we obtain a set of representatives $\left\{\tilde{h}_{j} \tilde{g}_{i} ; j \in\{1, \ldots,[\tilde{H}: H]\}, i \in\{1, \ldots, \tilde{n}\}\right\}$ of the right cosets $H \mid G$ of H in G. Let $\pi_{\tilde{\Omega}}: G \rightarrow \mathcal{S}_{\tilde{n}}$ as well as $\pi_{\Xi}: \tilde{H} \rightarrow \mathcal{S}_{[\tilde{H}: H]}$ and $\pi_{\Omega}: G \rightarrow \mathcal{S}_{n}$ denote the group homomorphisms defined by the action of G on $\tilde{\Omega}$, by the action of \tilde{H} on Ξ and by the action of G on Ω, respectively. As noted above both $\pi_{\tilde{\Omega}}$ and π_{Ξ} are given in terms of the sets \mathcal{G} and $\tilde{\mathcal{H}}$ of generators of G and \tilde{H}, respectively. Explicit permutations for the action of \mathcal{G} and of $\tilde{\mathcal{H}}$ on Ω are obtained as follows.
For $g \in G$ as well as $i \in\{1, \ldots, \tilde{n}\}$ and $j \in\{1, \ldots,[\tilde{H}: H]\}$, let $i^{\prime}:=i \cdot \pi_{\tilde{\Omega}}(g)$ and $j^{\prime}:=j \cdot \pi_{\Xi}\left(\tilde{g}_{i} \cdot g \cdot \tilde{g}_{i^{\prime}}^{-1}\right)$. Hence we have $\tilde{h}_{j} \tilde{g}_{i} \cdot g=h \cdot \tilde{h}_{j^{\prime}} \tilde{g}_{i^{\prime}}$, for some $h \in H$. Thus $\pi_{\Omega}(g)$ can be determined from $\pi_{\tilde{\Omega}}(g)$ and π_{Ξ}, where we have to write $\tilde{g}_{i} \cdot g \cdot \tilde{g}_{i^{\prime}}^{-1} \in \tilde{H}$ as a word in the given set $\tilde{\mathcal{H}}$ of generators of \tilde{H}. This can be done in GAP using the Schreier subgroup chain of G obtained above, containing the transversals and subgroup generators as words in the given set $\tilde{\mathcal{H}}$ of generators.

Hence we are prepared to apply the ZKD program in the MeatAxe, see Section (9.1), to some arbitrarily chosen elements of G. Using Proposition (9.6) and Remark (9.7) we obtain some of the structure constants matrices P_{k}, for some $k \in \mathcal{I}$. Using the technique described in Section (8.2) and sufficiently many of the P_{k}, we obtain the character table of E_{K} as shown in Table 13. Rows and columns have been reordered and column indexing has been adjusted to exhibit the phenomena described in Section 5, see Example (5.14), where the character table of $E_{K}^{1 G}$ is given in Table 12.

Table 13: The character table for $G:=H N .2$ and $H:=S_{11}$.

(13.2) Let still $G:=H N .2$ and $H:=S_{11}$, as well as $G^{\prime}:=H N$ and $H^{\prime}:=$ A_{11}, and $\tilde{H}:=S_{12}$. We have $r^{\prime}=19$.

A $H^{\prime} \mid G^{\prime}$ can be identified with $\Omega:=H \mid G$, to determine the character table of $E_{K}^{1_{H^{\prime}}^{G^{\prime}}}$ we also use the explicit permutations for \mathcal{G} obtained above. Sets of generators of $G^{\prime}<G$ as well as of $A_{12} \cong \tilde{H}^{\prime}:=\tilde{H} \cap G^{\prime}<G^{\prime}$ and of $H^{\prime}<\tilde{H}^{\prime}$, given as words in \mathcal{G}, are available in [83]. Hence the same technique as used for the character table of E_{K} yields the character table of $E_{K}^{1_{H^{\prime}}^{G^{\prime}}}$. It is shown in Table 14 , where $r_{5}:=\sqrt{5} \in \mathbb{R}$.

Alternatively, we could also apply the technique used in Section (12.4), for which we need to know which suborbits of Ω split. As we have $\left[H: H^{\prime}\right]=2$ as well as $r=17$ and $r^{\prime}=19$, there are exactly two of the suborbits of the G-action on Ω which each split into two suborbits of the G^{\prime}-action. To find out, which suborbits split, we also identify $\tilde{H}^{\prime} \mid G^{\prime}$ with $\tilde{\Omega}$, and compare the character tables of $E_{K}^{1_{\tilde{G}}^{G}}$, see Table 12, and $E_{K}^{1}{ }_{G_{G^{\prime}}^{\prime}}$, which is contained in the database, see Section (11.1), and has originally been computed in [63]. We find that the suborbits $\tilde{\Omega}_{3}$ and $\tilde{\Omega}_{9}$ split, see Table 12. Hence we conclude that the suborbits $\Omega_{3^{\prime}}$ and $\Omega_{9^{\prime}}$ split, see Table 13. The relevant character values are obtained as in Section (12.4) and are indicated in Table 14 in bold type. In Table 14, rows and columns have been reordered and column indexing has been adjusted to exhibit the phenomena described in Section 5.
(13.3) Let $G:=H N .2$ and $H:=U_{3}(8) .6$, as well as $G^{\prime}:=H N$ and $H^{\prime}:=$ $U_{3}(8) .3_{1}$. We have $r=15$.

Let $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. We start with explicitly known matrices for the action of the elements of \mathcal{G} on the absolutely irreducible $\mathbb{F}_{2} G$-module V of \mathbb{F}_{2}-dimension 760 available in [83]. The subgroup $H<G$ is a maximal subgroup of G, and $H^{\prime}<G^{\prime}$ is a maximal subgroup of G^{\prime}. A set of generators \mathcal{H} of H and a set of generators \mathcal{G}^{\prime} of G^{\prime}, both given as words in \mathcal{G}, is available in [83] as well. Using the MeatAxe, a set of generators of H^{\prime}, again as words in the set of generators \mathcal{H} of H, can be found.
Using the MeatAxe, we find that $V_{H^{\prime}}$ has a uniquely determined trivial $\mathbb{F}_{2} H^{\prime}$ submodule. Hence, if we pick the vector $0 \neq v_{H^{\prime}} \in V_{H^{\prime}}$ in this submodule we conclude that there is a G-set isomorphism between the G-set $v_{H^{\prime}} \cdot G \subseteq V$ and $\Omega:=H \mid G$, where the latter can also be identified with $H^{\prime} \mid G^{\prime}$.
We apply the technique described in Section (10.3) for $U=H^{\prime}$, where $U_{1}<U$ is a cyclic subgroup of order 21. The $\mathbb{F}_{2} U_{1}$-epimorphic image V_{1} is chosen to be isomorphic to $V_{1} \cong 6 a \oplus 6 a$, where $6 a$ is one of the irreducible $\mathbb{F}_{2} U_{1}$-modules of \mathbb{F}_{2}-dimension 6 . We find the orbit counting numbers for the elements of \mathcal{G}^{\prime} with respect to $\Omega=\coprod_{j \in \mathcal{J}} \tilde{\Omega}_{j}$ first, using the notation of Section (9.8), and using the set of generators \mathcal{H} of H yields the orbit counting numbers with respect to $\Omega=\coprod_{i \in \mathcal{I}} \Omega_{i}$.

Table 14: The character table for $G^{\prime}:=H N$ and $H^{\prime}:=A_{11}$.

Using Remark (9.7), we obtain some of the structure constants matrices for E_{K}, such that using the technique described in Section (8.2) we obtain a splitting of $K^{1 \times r}$ into eigenspaces of dimension 1 . The character table of E_{K} is shown in Table 15.
(13.4) Let still $G:=H N .2$ and $H:=U_{3}(8) .6$, as well as $G^{\prime}:=H N$ and $H^{\prime}:=U_{3}(8) .3_{1}$. We have $r^{\prime}=19$.
The splitting of the suborbits Ω_{i}, for $i \in \mathcal{I}$, into the suborbits $\tilde{\Omega}_{j}$, for $j \in \mathcal{J}$, is known by [34], but can also be deduced from the results on orbit counting numbers in Section (13.3). The split suborbits are $\{5,8,12,13\}$. As $\left[H: H^{\prime}\right]=2$, a split suborbit of G splits into two suborbits of G^{\prime} of equal length.
Using the orbit counting matrices with respect to $\Omega=\coprod_{j \in \mathcal{J}} \tilde{\Omega}_{j}$ found for \mathcal{G}^{\prime} in Section (13.3), and the technique described in Section (8.2), we obtain a splitting of $K^{1 \times r^{\prime}}$ into 11 eigenspaces of dimension 1 , and 4 eigenspaces of dimension 2 , where K-bases $\left\{\psi_{1}, \psi_{2},\right\}, \ldots,\left\{\psi_{7}, \psi_{8}\right\}$ of the latter are given in Table 16.
Using the character table of $E_{K}=E_{K}^{1_{H}^{G}}$ given in Table 15 , we conclude that we have found $\left\{\varphi_{1}, \ldots, \varphi_{4}, \varphi_{6}, \varphi_{7}, \varphi_{10}, \varphi_{11}, \varphi_{13}, \ldots, \varphi_{15}\right\} \subseteq \operatorname{Irr}\left(E_{K}^{1_{H^{\prime}}^{\prime^{\prime}}}\right)$, see Table 17. Furthermore, the Fitting correspondents of $\varphi_{5^{\prime}}, \varphi_{5^{\prime \prime}}$ are $35112 a b$, and we have $\varphi_{5^{\prime}}, \varphi_{5^{\prime \prime}} \in\left\langle\psi_{1}, \psi_{2}\right\rangle_{K}$. Analogously, $\varphi_{8^{\prime}}, \varphi_{8^{\prime \prime}}$ correspond to $374528 a b$ and $\varphi_{8^{\prime}}, \varphi_{8^{\prime \prime}} \in\left\langle\psi_{3}, \psi_{4}\right\rangle_{K}$, while $\varphi_{9^{\prime}}, \varphi_{9^{\prime \prime}}$ correspond to $656250 a b$ and $\varphi_{9^{\prime}}, \varphi_{9^{\prime \prime}} \in$ $\left\langle\psi_{5}, \psi_{6}\right\rangle_{K}$, and finally $\varphi_{12^{\prime}}, \varphi_{12^{\prime \prime}}$ correspond to $1361920 b c$ and $\varphi_{12^{\prime}}, \varphi_{12^{\prime \prime}} \in$ $\left\langle\psi_{7}, \psi_{8}\right\rangle_{K}$. Using GAP we find that $\chi_{\varphi_{i}}(G) \subseteq \mathbb{Q}(\sqrt{5}) \subseteq \mathbb{R}$, for $i \in\left\{5^{\prime}, 5^{\prime \prime}, 8^{\prime}, 8^{\prime \prime}\right\}$, while $\chi_{\varphi_{i}}(G) \subseteq \mathbb{Q}(\sqrt{-19}) \nsubseteq \mathbb{R}$, for $i \in\left\{9^{\prime}, 9^{\prime \prime}\right\}$, and $\chi_{\varphi_{i}}(G) \subseteq \mathbb{Q}(\sqrt{-10}) \nsubseteq \mathbb{R}$, for $i \in\left\{12^{\prime}, 12^{\prime \prime}\right\}$, where all of the latter irreducible characters are non-rational.
From this we obtain $\varphi_{5^{\prime}}, \varphi_{5^{\prime \prime}}, \varphi_{8^{\prime}}, \varphi_{8^{\prime \prime}}$, using the same technique as in Section (12.3). By Remark (3.21), the values of the characters $\varphi_{9^{\prime}}, \varphi_{9^{\prime \prime}}, \varphi_{12^{\prime}}, \varphi_{12^{\prime \prime}}$ on the Schur basis elements are not all real, and using the same technique as in Section (12.4) we conclude

$$
\begin{gathered}
\varphi_{9^{\prime}}\left(\alpha_{5}^{11_{H^{\prime}}^{G^{\prime}}}+\alpha_{5^{\prime}}^{1_{H^{\prime}}^{G^{\prime}}}\right)=\varphi_{9^{\prime}}\left(\alpha_{5^{\prime}}^{11_{H^{\prime}}^{G^{\prime}}}\right)+\overline{\varphi_{9^{\prime}}\left(\alpha_{5^{\prime}}^{1_{H^{\prime}}^{G^{\prime}}}\right)}=\varphi_{9}\left(\alpha_{5}^{1_{H}^{G}}\right)=288, \\
\varphi_{12^{\prime}}\left(\alpha_{5^{\prime}}^{1_{H^{\prime}}^{G^{\prime}}}+\alpha_{5^{\prime}}^{1_{H^{\prime}}^{G^{\prime}}}\right)=\varphi_{12^{\prime}}\left(\alpha_{5^{\prime}}^{11_{H^{\prime}}^{G^{\prime}}}\right)+\overline{\varphi_{12^{\prime}}\left(\alpha_{5^{\prime}}^{1_{H^{\prime}}^{G^{\prime}}}\right)}=\varphi_{12}\left(\alpha_{5}^{1{ }_{H}^{G}}\right)=-108,
\end{gathered}
$$

where ${ }^{-}$is the involutory field automorphism of K as defined in Section 3.
As in Section (12.3) we let $\varphi_{9^{\prime}}=\psi_{5}+a \psi_{6}$ and $\varphi_{12^{\prime}}=\psi_{7}+b \psi_{8}$, for $a, b \in K$. The above equations already determine the real parts $\frac{a+\bar{a}}{2}$ and $\frac{b+\bar{b}}{2}$ of a and b, respectively. As we know the degrees $\chi_{\varphi}(1)$ of the Fitting correspondents of $\varphi_{9^{\prime}}$ and $\varphi_{12^{\prime}}$, the orthogonality relations, see Proposition (3.8), lead to quadratic equations for the imaginary parts $\frac{a-\bar{a}}{2 i}$ and $\frac{b-\bar{b}}{2 i}$ of a and b, respectively. This yields $\varphi_{9^{\prime}}$ and $\varphi_{12^{\prime}}$, as well as $\varphi_{9^{\prime \prime}}=\overline{\varphi_{9^{\prime}}}$ and $\varphi_{12^{\prime \prime}}=\overline{\varphi_{12^{\prime}}}$.
The character table of $E_{K}^{1 G^{G^{\prime}}}$ is shown in Table 17 , where again we indicate the relevant character values in bold type, and where $r_{5}:=\sqrt{5} \in \mathbb{R}$ as well as

Table 15: The character table for $G:=H N .2$ and $H:=U_{3}(8) .6$.

+	
-	$\mid \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N}$
\bigcirc	
20	
∞	
\sim	
\checkmark	
$\stackrel{9}{*}$	
a	

	○ $\underset{10}{10} \underset{\sim}{1} \underset{\sim}{N} \underset{\sim}{\infty} \underset{\sim}{\infty}$
\because	
σ	

Table 16: 2-dimensional eigenspaces for $G^{\prime}:=H N$ and $H^{\prime}:=U_{3}(8) .3_{1}$.

9^{\prime}	10^{\prime}	11^{\prime}	12^{\prime}	$12^{\prime \prime}$	13^{\prime}	$13^{\prime \prime}$	14^{\prime}	15^{\prime}
-1008	-1152	4608	3456	4032	-4416	-4416	-2304	576
.	.	.	-4	4	.	.	.	\cdot
-648	1728	1728	1296	-648	504	504	-3024	216
.	.	.	2	-2	.	.	.	\cdot
720	-576	576	576	576	576	-1728	-576	-1152
.	-8	8	.	\cdot
27	513	378	-216	-216	81	-243	-1269	1026
.	3	-3	.	.

$i_{10}:=i \cdot \sqrt{10} \in \mathbb{C}$ and $i_{19}:=i \cdot \sqrt{19} \in \mathbb{C}$. The Fitting correspondence is determined in Section (11.5).

14 The Lyons group Ly

(14.1) Let $G:=L y$ and $H^{\prime}:=3 . M c L$, as well as $H:=3 . M c L .2$. We have $r^{\prime}=8$ and $r=5$.

Let $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. We start with explicitly known matrices for the action of the elements of \mathcal{G} on the absolutely irreducible $\mathbb{F}_{5} G$-module V of \mathbb{F}_{5}-dimension 517 available in [83]. The subgroup $H<G$ is a maximal subgroup of G, and a set of generators of H, given as words in \mathcal{G}, is available in [83] as well. Using the MeatAxe, a set of generators \mathcal{H}^{\prime} of H^{\prime}, again as words in the set of generators of H, can be found.

Using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that $V_{H^{\prime}} \cong 1 a \oplus 210 a \oplus 306 a$ as $\mathbb{F}_{5} H^{\prime}$-modules, where $1 a, 210 a$ and $306 a$ are the absolutely irreducible $\mathbb{F}_{5} H^{\prime}$-modules of the respective dimensions, see [37]. Hence all $\mathbb{F}_{5} H^{\prime}$-submodules of $V_{H^{\prime}}$ are also invariant under the action of $\mathbb{F}_{5} H$ and using the MeatAxe we find that the trivial $\mathbb{F}_{5} H^{\prime}$-module $1 a$ extends to the non-trivial linear $\mathbb{F}_{5} H$-module $1 a^{-}$. Hence, if we pick a vector $0 \neq v_{H^{\prime}} \in 1 a \leq V_{H^{\prime}}$, we conclude that there is a G-set isomorphism between the G-orbit $v_{H^{\prime}} \cdot G \subseteq V$ and $\Omega^{\prime}:=H^{\prime} \mid G$.
To use the strategy described in Section (10.3) efficiently, we proceed as described in Section (9.8). We choose a subgroup $U<H^{\prime}$, and compute the orbit counting numbers with respect to $\Omega^{\prime}=\coprod_{j \in \mathcal{J}} \tilde{\Omega}_{j}^{\prime}$ first. From these the orbit counting numbers with respect to $\Omega^{\prime}=\coprod_{i \in \mathcal{I}^{\prime}} \Omega_{i}^{\prime}$ are found. We choose $U:=3 \times M_{11}<3 . M c L=H^{\prime}$, which is a maximal subgroup of H^{\prime}. A set of generators of U, given as words in \mathcal{H}^{\prime}, is available in [83] as well. We have $|U|=23760$ and using GAP we find $\left\langle 1_{H^{\prime}}^{G}, 1_{U}^{G}\right\rangle_{G}=837$, thus we have $|\mathcal{J}|=837$, while $\left|\mathcal{I}^{\prime}\right|=r^{\prime}=8$. Furthermore, we choose $U_{1}<U$ to be a subgroup of order 11. Using the MeatAxe we find $V_{U_{1}} \cong 47 \cdot 1 a \oplus 47 \cdot 5 a \oplus 47 \cdot 5 b$, where $1 a$, $5 a$ and $5 b$ are the irreducible $\mathbb{F}_{5} U_{1}$-modules of the respective dimensions. As $\mathbb{F}_{5} U_{1}$-epimorphic image V_{1} we choose one of the irreducible quotients $V_{1} \cong 5 a$.

We compute the orbit counting numbers for the elements in \mathcal{G} and those in \mathcal{H}^{\prime}, and applying Section (9.8) and Remark (9.7) we obtain two of the structure constants matrices $P_{k_{1}}$ and $P_{k_{2}}$, for $k_{1}, k_{2} \in \mathcal{I}^{\prime}$. Using the technique described in Section (8.2), we obtain a splitting of $K^{1 \times r^{\prime}}$, into 6 eigenspaces of dimension 1 , and an eigenspace of dimension 2 , where a K-basis $\left\{\psi_{1}, \psi_{2}\right\}$ of the latter is shown in Table 18. As the degrees of the characters in $\operatorname{Irr}_{K}^{1}(G)$ are pairwise different, we conclude that we have found $\left\{\varphi_{1}, \ldots, \varphi_{5}, \varphi_{8}\right\}$, while φ_{6} and φ_{7} are missing.
We could compute more of the structure constants matrices, until these yield only eigenspaces of dimension 1. But proceeding as in Section (12.3), we let $\varphi_{6}=\psi_{1}+a \psi_{2}$ and $\varphi_{7}=\psi_{1}+b \psi_{2}$, for $a, b \in K$. This yields $a \in\{ \pm 1800\}$ and

Table 17: The character table for $G^{\prime}:=H N$ and $H^{\prime}:=U_{3}(8) .3_{1}$.

$b \in\{ \pm 675\}$. The orthogonality relations, see Proposition (3.8), imply $a \cdot b<0$. This determines the character table of $E_{K}^{1 H^{\prime}}$ up to a table automorphism of $\operatorname{Irr}\left(E_{K}^{1 H^{\prime}}\right)$, see Definition (8.5).
The character table of $E_{K}^{1_{H^{\prime}}}$ is shown in Table 18. Rows and column have been reordered and column indexing has been adjusted to exhibit the phenomena described in Section 5, where the character table of $E_{K}=E_{K}^{1_{H}}$ is contained in the database, see Section (11.1).
(14.2) Remark. Let $C_{3 A} \in \mathcal{C l}(G)$ denote the $3 A$-conjugacy class of G, see [13]. Then G acts on $C_{3 A}$ by conjugation, and as $H^{\prime}=C_{G}(3 a)$, where $3 a \in C_{3 A}$ is a suitable representative of the $3 A$-conjugacy class, the G-sets Ω^{\prime} and $C_{3 A}$ are isomorphic. Using GAP, we compute the class multiplication coefficients

$$
m_{3 A, 3 A, C}:=\left|\left\{(x, y) \in G \times G ; x, y \in C_{3 A}, x y=z_{0} \in C\right\}\right| \in \mathbb{N}_{0}
$$

where $C \in \mathcal{C l}(G)$ and $z_{0} \in C$ is a fixed element. We find $m_{3 A, 3 A, C} \neq 0$ for the conjugacy classes $C \in\left\{C_{1 A}, C_{3 A}, C_{3 B}, C_{4 A}, C_{5 B}, C_{6 A}, C_{10 A}, C_{15 A}\right\}$. Hence we have a bijection between these conjugacy classes and the orbitals $\mathcal{O}_{i}^{\prime} \subseteq \Omega^{\prime} \times \Omega^{\prime}$, for $i \in \mathcal{I}^{\prime}$. Furthermore, the corresponding index parameters k_{i}^{\prime} are given as $k_{C}^{\prime}=\frac{|C| \cdot m_{3 A, 3 A, C}}{\left|C_{3 A}\right|}$. Using the character table of $E_{K}=E_{K}^{1_{H}}$, this determines the splitting of the suborbits Ω_{i} of Ω, for $i \in \mathcal{I}$, into those of Ω^{\prime}. The split suborbits are $i \in\{1,3,5\}$.

C	k_{C}^{\prime}	i
$1 A$	1	1
$3 A$	1	1
$3 B$	30800	2
$4 A$	534600	3
$5 B$	7185024	5
$6 A$	534600	3
$10 A$	3742200	4
$15 A$	7185024	5

15 The Thompson group Th

(15.1) Let $G:=T h$ and $H:={ }^{3} D_{4}(2) .3$. We have $r=11$.

Let $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. We start with explicitly known matrices for the action of the elements of \mathcal{G} on the absolutely irreducible $\mathbb{F}_{2} G$-module of \mathbb{F}_{2}-dimension 248 available in [83]. Tensoring with \mathbb{F}_{4} over \mathbb{F}_{2} yields an $\mathbb{F}_{4} G$-module V.
The subgroup $H<G$ is a maximal subgroup of G, and a set of generators of H, given as words in \mathcal{G}, is available in [83] as well. Using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that V_{H} has exactly two H-invariant 1-dimensional \mathbb{F}_{4}-subspaces. We choose

Table 18：The character table for $G:=L y$ and $H^{\prime}:=3 . M c L$ ．

is	\mid		$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \text { O } \\ & \text { in } \end{aligned}$
is			$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$
－			
－		$\left\lvert\, \begin{array}{ll} 8 & 10 \\ 0 & 0 \\ 1 & 0 \\ 1 \end{array}\right.$	
－o		$\left\lvert\, \begin{array}{cc} 8 & 10 \\ 0 \\ -1 & 1 \\ \hline \end{array}\right.$	
え			
＝			
－	－－－－－		
\times			
9	ーNのサー	$\cdots \wedge \infty$	²

one of them, $\left\langle v_{H}\right\rangle_{\mathbb{F}_{4}} \leq V$ say, and as $H<G$ is a maximal subgroup of G, we conclude that there is a G-set isomorphism between the G-orbit $\left\langle v_{H}\right\rangle_{\mathbb{F}_{4}} \cdot G$ of 1-dimensional \mathbb{F}_{4}-subspaces of V and $\Omega:=H \mid G$.

To use the strategy described in Section (10.1) efficiently, we proceed as described in Section (9.8). We choose a subgroup $U<H$, and compute the orbit counting numbers with respect to $\Omega=\coprod_{j \in \mathcal{J}} \tilde{\Omega}_{j}$ first. From these the orbit counting numbers with respect to $\Omega=\coprod_{i \in \mathcal{I}} \Omega_{i}$ are found. We choose $U:=2_{+}^{1+8}: L_{2}(8): 3=N_{H}(2 a)<H$, where $C_{2 A} \in \mathcal{C} l(H)$ denotes the $2 A$ conjugacy class of H, and $2 a \in C_{2 A}$. The subgroup $U<H$ is a maximal subgroup of H. A set of generators of U, given as words in the set of generators of H, is found using a standard MeatAxe technique, exploiting the fact that the subgroup U is the centralizer in H of an element of order 2. We have $|U|=774144$, and using GAP we find $\left\langle 1_{H}^{G}, 1_{U}^{G}\right\rangle_{G}=241$, thus we have $|\mathcal{J}|=241$, while $|\mathcal{I}|=r=11$. Furthermore, we choose $U_{1}:=9: 6<U$ to be a subgroup of order 54. Using the MeatAxe we find that $V_{U_{1}}$ has an absolutely irreducible $\mathbb{F}_{4} U_{1}$-epimorphic image V_{1} of \mathbb{F}_{4}-dimension 6 . Hence U_{1} acts faithfully on V_{1}.
We compute the orbit counting numbers for the elements in \mathcal{G}. Applying Section (9.8), Remark (9.7) and using the technique described in Section (8.2), we obtain a splitting of $K^{1 \times r}$ into eigenspaces of dimension 1 . The character table of E_{K} is shown in Table 19, where the index parameters have also been found in [51], see also [34].
(15.2) Let $G:=T h$ and $H:=2^{5} . L_{5}(2)$. We have $r=11$.

We apply the same strategy as described in Section (15.1). Let $\mathcal{G} \subseteq G$ be as in Section (15.1), and let V be the absolutely irreducible $\mathbb{F}_{2} G$-module of $\mathbb{F}_{2^{-}}$ dimension 248. Again, the subgroup $H<G$ is a maximal subgroup of G, and a set of generators of H, given as words in \mathcal{G}, is available in [83] as well. Using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that V_{H} has exactly one 5-dimensional absolutely irreducible $\mathbb{F}_{2} H$-submodule W. As $H<G$ is a maximal subgroup of G, we conclude that there is a G-set isomorphism between the G-orbit $W \cdot G$ of 5 -dimensional \mathbb{F}_{2}-subspaces of V and $\Omega:=H \mid G$.
We choose $U:=\left(2 \times 2^{4}\right) . L_{4}(2)<2^{5} .\left(2^{4}: L_{4}(2)\right)<H$, hence U is a preimage of a Levi subgroup of a maximal, maximal parabolic subgroup of $L_{5}(2)$, with respect to the natural group epimorphism $H \rightarrow L_{5}(2)$. We have $|U|=645120$, and using GAP we find $\left\langle 1_{H}^{G}, 1_{U}^{G}\right\rangle_{G}=482$, thus we have $|\mathcal{J}|=482$, while $|\mathcal{I}|=r=11$. Applying a few standard MeatAxe techniques we find a set of generators of U as words in the set of generators of H.
We choose $U_{1}:=(7: 3) \times 2<A_{7}<L_{4}(2)<U$ to be a subgroup of order 42 ; note that $L_{4}(2) \cong A_{8}$. Again applying a few standard MeatAxe techniques, we find a set of generators of U_{1} as words on the set of generators of U. Furthermore, using the algorithms to compute submodule lattices described in [47] available

Table 19: The character table for $G:=T h$ and $H:={ }^{3} D_{4}(2) .3$.

φ	χ_{φ}	1	2	3	4	5	6	7	8	9	10	11
1	$1 a$	1	17199	45864	179712	1304576	2201472	5031936	8128512	8805888	11741184	105670656
2	$4123 a$	1	-2457	6552	\cdot	46592	.	-179712	-290304	.	419328	
3	$30875 a$	1	459	2340	-7776	-7840	-34992	76896	12960	101088	90144	-233280
4	$61256 a$	1	1323	2772	-4320	16352	15120	6048	72576	-75600	56448	-90720
5	$2450240 a$	1	-441	504	-288	4256	4032	7056	-6048	1008	-7056	-3024
6	$3376737 a$	1	-117	612	1440	-928	-5040	3168	-864	-7200	288	8640
7	$4881384 a$	1	403	492	960	112	2640	-1392	-144	6000	-2032	-7040
8	$11577384 a$	1	99	-36	-288	-2224	1872	2736	-3888	-3312	1584	3456
9	$28861000 a$	1	-117	180	-288	-928	144	-2016	1728	1008	-576	864
10	$40199250 a$	1	99	-36	-288	800	-1152	-288	-864	-288	-1440	3456
11	$51684750 a$	1	-45	-180	288	224	288	288	864	288	1440	-3456

in the MeatAxe, we find that $V_{U_{1}}$ has an $\mathbb{F}_{2} U_{1}$-epimorphic image isomorphic to

$$
V_{0}:=\bigoplus_{k=1}^{5}\left[\begin{array}{l}
3 a \\
3 a
\end{array}\right]
$$

where the summands are pairwise isomorphic uniserial $\mathbb{F}_{2} U_{1}$-modules with composition series as indicated, and where $3 a$ is one of the absolutely irreducible $\mathbb{F}_{2} U_{1}$-modules of \mathbb{F}_{2}-dimension 3 . Hence we obtain $\mathbb{F}_{2} U_{1}$-epimorphisms \hat{q}_{k}, for $k \in\{1, \ldots, 5\}$, given by concatenating the natural projection onto V_{0} with either of the projections onto the indecomposable summands of V_{0}. We have $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{im}\left(\hat{q}_{k}\right)=6$, for $k \in\{1, \ldots, 5\}$.
We compute the orbit counting numbers for the elements in \mathcal{G}, applying Section (9.8), Remark (9.7) and using the technique described in Section (8.2), we obtain a splitting of $K^{1 \times r}$ into 7 eigenspaces of dimension 1 and two eigenspaces of dimension 2, where K-bases $\left\{\psi_{1}, \psi_{2}\right\}$ and $\left\{\psi_{3}, \psi_{4}\right\}$ of the latter are shown in Table 20. Using the degrees of the characters in $\operatorname{Irr}_{K}^{1}(G)$ we conclude that we have found $\left\{\varphi_{1}, \varphi_{2}, \varphi_{5}, \varphi_{6}, \varphi_{8}, \varphi_{10}, \varphi_{11}\right\}$, while $\varphi_{3}, \varphi_{4}, \varphi_{7}$ and φ_{9} are missing.
As $\chi_{\varphi_{3}}, \chi_{\varphi_{4}} \in \operatorname{Irr}_{K}^{1}(G)$ are a pair of complex conjugate characters, by Remark (3.21) this also holds for $\varphi_{3}, \varphi_{4} \in \operatorname{Irr}_{K}\left(E_{K}\right)$. Hence, by Proposition (3.1), there is at least one pair of non-self-paired orbitals. Hence we conclude that there is exactly one such pair, namely the orbitals $\{4,5\}$. Thus we have $\varphi_{3}, \varphi_{4} \in$ $\left\langle\psi_{1}, \psi_{2}\right\rangle_{K}$, and $\varphi_{7}, \varphi_{9} \in\left\langle\psi_{3}, \psi_{4}\right\rangle_{K}$. As φ_{7}, φ_{9} are real-valued, we obtain these characters using the technique described in (12.3). From $\varphi_{3}\left(\alpha_{5}\right)=\overline{\varphi_{3}\left(\alpha_{4}\right)}$ we find the real part $\frac{\varphi_{3}\left(\alpha_{4}\right)+\overline{\varphi_{3}\left(\alpha_{4}\right)}}{2}=-1008$ of $\varphi_{3}\left(\alpha_{4}\right)$. From this φ_{3} and φ_{4} are determined, using the technique described in Section (13.4).
The character table of E_{K} is shown in Table 20, where $i_{6}:=i \cdot \sqrt{6} \in \mathbb{C}$, and where the index parameters have also been found in [34].

16 The Janko group J_{4}

(16.1) Let $G:=J_{4}$ and $H:=2^{11}: M_{24}$. We have $r=7$.

The index parameters and the structure constants matrix for the smallest nontrivial suborbit Ω_{2} with $k_{2}=15180$ have been computed in [35]. Using the technique described in Section (8.2), where this structure constants matrix is sufficient to get eigenspaces of dimension 1 , we obtain the character table of E_{K} as given in Table 21, where $r_{33}:=\sqrt{33} \in \mathbb{R}$.
(16.2) Let still $G:=J_{4}$ and $H:=2^{11}: M_{24}$, as well as $H^{\prime}:=2^{11}: M_{23}$. We have $r^{\prime}=10$. Let $\Omega:=H \mid G$ and $\Omega^{\prime}:=H^{\prime} \mid G$, hence we have $\frac{\left|\Omega^{\prime}\right|}{|\Omega|}=\left[H: H^{\prime}\right]=24$.
Let $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. We start with explicitly known matrices for the action of the elements of \mathcal{G} on the absolutely irreducible $\mathbb{F}_{2} G$-module V of \mathbb{F}_{2}-dimension 112 available in [83]. The subgroup

Table 20: The character table for $G:=T h$ and $H:=2^{5} . L_{5}(2)$.

Table 21：The character table for $G:=J_{4}$ and $H:=2^{11}: M_{24}$ ．

N	
\bigcirc	
20	
－	
∞	
\sim	
\rightarrow	いーいていてい
	\checkmark Nのサレロー

$H<G$ is a maximal subgroup of G, and a set of generators of H, given as words in \mathcal{G}, is available in [83] as well.

Using the MeatAxe and the absolutely irreducible $\mathbb{F}_{2} H$-module $11 a$, on which the normal 2 -subgroup $2^{11} \unlhd H$ hence acts trivially, by a random search we find a set of standard generators of $H / 2^{11} \cong M_{24}$. Using V, it turns out that this set indeed generates a subgroup isomorphic to M_{24} in H. Furthermore, by a random search we find an element of H contained in the normal subgroup $2^{11} \unlhd H$. As M_{24} acts non-trivially on the normal subgroup 2^{11}, the latter is an absolutely irreducible $\mathbb{F}_{2} M_{24}$-module. Altogether this yields a set of generators of H, which is a preimage of a set of standard generators of the epimorphic image $M_{24} \cong H / 2^{11}$ of H. A set of generators of M_{23}, given as words in a set of standard generators of M_{24}, is available in [83] as well. Hence this can be used to find a set of generators \mathcal{H}^{\prime} of H^{\prime} as words in the set of generators of H found above, and to find a set of standard generators of a subgroup $M_{23}=H^{\prime} \cap M_{24}<$ H. Note that M_{23} acts non-trivially on the normal subgroup $2^{11} \unlhd H^{\prime}$, hence the latter is an absolutely irreducible $\mathbb{F}_{2} M_{23}$-module, see [37].
Using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that

$$
V_{H} \cong\left[\begin{array}{c}
1 a \\
11 b \\
44 b \\
44 a \\
11 a \\
1 a
\end{array}\right]
$$

a uniserial $\mathbb{F}_{2} \mathrm{H}$-module with composition series as indicated, where the constituents are absolutely irreducible $\mathbb{F}_{2} \mathrm{H}$-modules of the respective dimensions, see [37], and $11 a / b$ and $44 a / b$ are pairs of mutually contragredient $\mathbb{F}_{2} H$-modules. Furthermore, we find that $V_{H^{\prime}}$ is a uniserial $\mathbb{F}_{2} H^{\prime}$-module, where the $\mathbb{F}_{2} H$ constituents of V_{H} restrict to pairwise non-isomorphic absolutely irreducible $\mathbb{F}_{2} H^{\prime}$-modules. Let $V^{\prime} \leq V_{H}$ be the uniquely determined $\mathbb{F}_{2} H$-submodule of \mathbb{F}_{2}-dimension 12, being isomorphic to $V^{\prime} \cong\left[\begin{array}{c}11 a \\ 1 a\end{array}\right]$ as $\mathbb{F}_{2} H$-modules. Hence the G-orbit $V^{\prime} \cdot G$ of 12 -dimensional \mathbb{F}_{2}-subspaces of V is as a G-set isomorphic to Ω. While enumerating the G-orbit $V^{\prime} \cdot G$, we collect a set $\left\{g_{i} \in G ; i \in \mathcal{I}\right\}$ of representatives of the right cosets $H \mid G$ of H in G, as words in the set \mathcal{G}. From that we find the G-action on Ω^{\prime} as follows.
We use the strategy which has also been used in Section (13.1). Let $\Xi:=H^{\prime} \mid H$ be the set of right cosets of H^{\prime} in H. Let $\left\{h_{j} ; j \in\left\{1, \ldots,\left[H: H^{\prime}\right]\right\}\right\}$ be a set of representatives of the right cosets $H^{\prime} \mid H$ of H^{\prime} in H, where $h_{1}:=1$. Hence we obtain a set of representatives $\left\{h_{j} g_{i} ; j \in\left\{1, \ldots,\left[H: H^{\prime}\right]\right\}, i \in \mathcal{I}\right\}$ of the right cosets $H^{\prime} \mid G$ of H in G. Let $\pi_{\Omega}: G \rightarrow \mathcal{S}_{n}$ as well as $\pi_{\Xi}: H \rightarrow \mathcal{S}_{\left[H: H^{\prime}\right]}$ and $\pi_{\Omega^{\prime}}: G \rightarrow \mathcal{S}_{n^{\prime}}$ denote the group homomorphisms defined by the action of G on Ω, by the action of H on Ξ, and by the action of G on Ω^{\prime}, respectively.

For $g \in G$ as well as $i \in \mathcal{I}$ and $j \in\left\{1, \ldots,\left[H: H^{\prime}\right]\right\}$, let $i^{\prime}:=i \cdot \pi_{\Omega}(g)$ and $j^{\prime}:=j \cdot \pi_{\Xi}\left(g_{i} \cdot g \cdot g_{i^{\prime}}^{-1}\right)$. Hence we have $h_{j} g_{i} \cdot g=h \cdot h_{j^{\prime}} g_{i^{\prime}}$, for some $h \in H$. Thus $\pi_{\Omega^{\prime}}(g)$ can be determined from $\pi_{\Omega}(g)$ and π_{Ξ}, where we have to determine $\pi_{\Xi}\left(g_{i} \cdot g \cdot \tilde{g}_{i^{\prime}}^{-1}\right)$ explicitly. This is achieved as follows.
Let $V^{\prime *}:=\operatorname{Hom}_{\mathbb{F}_{2} H}\left(V^{\prime}, \mathbb{F}_{2}\right)$ denote the $\mathbb{F}_{2} H$-module contragredient to V^{\prime}. Hence we have $V^{\prime *} \cong\left[\begin{array}{c}1 a \\ 11 b\end{array}\right]$ as $\mathbb{F}_{2} H$-modules. It turns out that there is $v^{*} \in V^{\prime *}$ such that the H-orbit $v^{*} \cdot H \subseteq V^{* *}$ is as an H-set isomorphic to the exterior square $\Xi \wedge \Xi$ of Ξ, hence we have $|\Xi \wedge \Xi|=276$. Using the H^{\prime}-action on $\Xi \wedge \Xi$, the elements of $v^{*} \cdot H \subseteq V^{*}$ can be identified with the subsets of cardinality 2 of Ξ. Given $g_{i} \cdot g \cdot g_{i^{\prime}}^{-1} \in H=\operatorname{Stab}_{G}\left(V^{\prime}\right)$, using the MeatAxe, we compute matrices representing its action on V^{\prime} and on $V^{\prime *}$. From that its action on $\Xi \wedge \Xi$ is found, and using the identification with subsets of cardinality 2 of Ξ, the permutation $\pi_{\Xi}\left(g_{i} \cdot g \cdot \tilde{g}_{i^{\prime}}^{-1}\right) \in \mathcal{S}_{\left[H: H^{\prime}\right]}$ can be determined.
To use the strategy described in Section (10.1) efficiently, we proceed as described in Section (9.8). We choose $U_{1}:=L_{2}(11)<U:=M_{22}<M_{23}=$ $H^{\prime} \cap M_{24}<H$, where a set of standard generators of M_{22}, given as words in a set of standard generators of M_{23}, and a set of standard generators of $L_{2}(11)$, given as words in a set of standard generators of M_{22}, are available in [83]. We have $|U|=443520$, and using GAP we find $\left\langle 1_{H}^{G}, 1_{U}^{G}\right\rangle_{G}=582$ and $\left\langle 1_{H^{\prime}}^{G}, 1_{U}^{G}\right\rangle_{G}=9609$. Furthermore, using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that

$$
V_{U_{1}} \cong\left[\begin{array}{c}
10 a \\
1 a
\end{array}\right] \oplus\left[\begin{array}{c}
1 a \\
10 a
\end{array}\right] \oplus \bigoplus_{i=1}^{2} 1 a \oplus \bigoplus_{i=1}^{4} 10 b \oplus \bigoplus_{i=1}^{2} 24 a
$$

as $\mathbb{F}_{2} U_{1}$-modules, where the constituents $1 a$ and $10 a$ are absolutely irreducible $\mathbb{F}_{2} U_{1}$-modules of the respective dimensions, and $10 b$ and $24 a$ are irreducible $\mathbb{F}_{2} U_{1}$-modules having splitting field \mathbb{F}_{4}, see [37]. As $\mathbb{F}_{2} U_{1}$-epimorphic image V_{1} we choose an $\mathbb{F}_{2} U_{1}$-direct summand of $V_{U_{1}}$ isomorphic to $\left[\begin{array}{c}10 a \\ 1 a\end{array}\right] \oplus 10 b$, together with the corresponding $\mathbb{F}_{2} U_{1}$-projection. Hence we have $\operatorname{dim}_{\mathbb{F}_{2}} V_{1}=21$.

Using the technique described in Sections (10.3) and (9.8) we compute the orbit counting numbers for the elements in \mathcal{G} and \mathcal{H}^{\prime}. Using Remark (9.7) and the technique described in Section (8.2), it turns out that that the resulting structure constants matrices are sufficient to obtain a splitting of $K^{1 \times r^{\prime}}$ into eigenspaces of dimension 1. The character table of $E_{K}^{1_{H^{\prime}}}$ is given in Table 22. Rows and column have been reordered and column indexing has been adjusted to exhibit the phenomena described in Section 5, see Example (5.14), where the character table of E_{K} is given in Table 21, and $r_{33}:=\sqrt{33} \in \mathbb{R}$.

17 The Baby Monster B

(17.1) Let $G:=B$ and $H:=2 .{ }^{2} E_{6}(2) .2$, as well as $H^{\prime}:=2 .{ }^{2} E_{6}(2)$ and $\lambda^{\prime}=1$, hence we have $\operatorname{Irr}_{K}^{1}(H)=\left\{1,1^{-}\right\}$, see Remark (5.15). We have $r=5$

Table 22: The character table for $G:=J_{4}$ and $H^{\prime}:=2^{11}: M_{23}$.

and the split suborbits are $\mathcal{I}_{1^{-}}=\{1,2,4\}$, as is shown in [29], where also the character tables of E_{K} and $E_{K}^{1^{-}}$are given. Using Remark (5.15), from this the character table of $E_{K}^{1_{H^{\prime}}}$ can be determined. The character tables of E_{K} and $E_{K}^{1^{-}}$as well as $E_{K}^{1_{H^{\prime}}}$ are given in Table 23.
(17.2) Let $G:=B$ and $H:=2^{1+22} . C o_{2}$. We have $r=10$.

The index parameters k_{i}, for $i \in \mathcal{I}$ have been determined in [34], but no explicit proof is given there. Unfortunately, the values for the index parameters given there do not sum up to $n=[G: H]$. Hence we compute the index parameters anew, by applying the same strategy as in Remark (14.2).

Let $C_{2 B} \in \mathcal{C l}(G)$ denote the $2 B$-conjugacy class of G, see [13]. Then G acts on $C_{2 B}$ by conjugation, and as $H=C_{G}(2 b)$, where $2 b \in C_{2 B}$ is a suitable representative of the $2 B$-conjugacy class, the G-sets Ω and $C_{2 B}$ are isomorphic. For $C \in \mathcal{C} l(G)$ let $\left(C_{2 B}\right)_{C}:=\left\{g \in C_{2 B} ;(2 b) \cdot g \in C\right\} \subseteq C_{2 B}$, which are unions of H-orbits. Letting $k_{C}:=\left|\left(C_{2 B}\right)_{C}\right| \in \mathbb{N}_{0}$, we have $k_{C}=\frac{|C| \cdot m_{2 B, 2 B, C}}{\left|C_{2 B}\right|}$, where $m_{2 B, 2 B, C} \in \mathbb{N}_{0}$ is the corresponding class multiplication coefficient. Using GAP we compute the class multiplication coefficients $m_{2 B, 2 B, C} \in \mathbb{N}_{0}$ and find $k_{C} \neq 0$ for the conjugacy classes

$$
C \in\left\{C_{1 A}, C_{2 B}, C_{2 D}, C_{3 A}, C_{4 B}, C_{4 E}, C_{4 G}, C_{5 A}, C_{6 C}\right\}
$$

and the cardinalities k_{C} as given in Table 24.
As we have $r=10$, but only find 9 conjugacy classes $C \in \mathcal{C} l(G)$ such that $k_{C} \neq$ 0 , we conclude that precisely one of the corresponding subsets $\left(C_{2 B}\right)_{C} \subseteq C_{2 B}$ consists of two H-orbits, while the others consist of one H-orbit. As $k_{2 B}$ is the only of these cardinalities which is not a divisor of $|H|$, we conclude that $\left(C_{2 B}\right)_{2 B}$ splits. The lengths of the two suborbits contained in $\left(C_{2 B}\right)_{2 B}$ are determined in Section (17.4). Sorting the suborbits with respect to increasing lengths gives the indexing with $i \in \mathcal{I}$ also indicated in Table 24 .

After all, it turns out that in [34] the value of $k_{7}=k_{4 G}$ is falsely stated as 4700602368 , obviously a misprint.
(17.3) Let $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. We start with explicitly known matrices for the action of the elements of \mathcal{G} on the absolutely irreducible $\mathbb{F}_{2} G$-module V of \mathbb{F}_{2}-dimension 4370 available in [83]. The subgroup $H<G$ is a maximal subgroup of G, and a set of generators of H, given as words in \mathcal{G}, is available in [83] as well. Using a random search and the MeatAxe, we find a set of generators \mathcal{H} of H being a preimage of a set of standard generators of Co_{2} with respect to the natural group epimorphism $H \rightarrow C o_{2}$. Using the MeatAxe we find that V_{H} has a uniquely determined trivial submodule $1 a \leq V_{H}$, and if we pick $0 \neq v_{H} \in 1 a \leq V$ we conclude that the G-orbit $v_{H} \cdot G \subseteq V$ is as a G-set isomorphic to Ω.

Table 23: The character tables for $G:=B$ and $H:=2 .{ }^{2} E_{6}(2) .2$, where $\lambda=1$ and $\lambda=1^{-}$, as well as for $H^{\prime}:=2 .^{2} E_{6}(2)$.

φ	χ_{φ}	1^{\prime}	$1^{\prime \prime}$	2^{\prime}	$2^{\prime \prime}$	3^{\prime}	4^{\prime}	$4^{\prime \prime}$	5^{\prime}
1	$1 a$	1	1	3968055	3968055	46227456	2370830336	2370830336	22348085760
2	$96255 a$	1	1	228735	228735	-1419264	14483456	14483456	-28005120
3	$9458750 a$	1	1	50895	50895	266112	124928	124928	-617760
4	$4275362520 a$	1	1	1935	1935	-8064	-31744	-31744	67680
5	$9287037474 a$	1	1	-945	-945	3456	14336	14336	-30240
6	$4371 a$	1	-1	566865	-566865	\cdot	84672512	-84672512	\cdot
7	$63532485 a$	1	-1	28665	-28665	.	-114688	114688	\cdot
8	$13508418144 a$	1	-1	-135	135	.	512	-512	\cdot

Table 24: Conjugacy classes and suborbits.

i	C	k_{C}	splits into	$\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Fix}_{V}(\cdot)$
1	$1 A$	1		
2,3	$2 B$	7379550	$93150+7286400$	2322
4	$2 D$	262310400		2202
6	$3 A$	9646899200		
5	$4 B$	4196966400		1256
8	$4 E$	537211699200		1114
7	$4 G$	470060236800		1166
9	$5 A$	4000762036224		
10	$6 C$	6685301145600		

We apply the strategy described in Section (10.6), and we choose the following chain of subgroups

$$
\begin{aligned}
G=B & >U_{4}:=U:=H=2^{1+22} \cdot C o_{2} \quad>2^{1+22} \cdot M_{23} \\
& >U_{3}:=2^{11} \cdot M_{22} \\
& >U_{2}:=2 \cdot M_{22} \\
& >U_{1}:=L_{2}(11)
\end{aligned}
$$

where we have the following group orders

$$
\begin{aligned}
|B| & = & 4154781481226426191177580544000000 & \sim 4 \cdot 10^{33}, \\
\left|2^{1+22} \cdot C o_{2}\right| & = & 354883595661213696000 & \sim 4 \cdot 10^{20}, \\
\left|2^{11} \cdot M_{22}\right| & = & 908328960 & \sim 9 \cdot 10^{8}, \\
\left|2 \cdot M_{22}\right| & = & 887040 & \sim 9 \cdot 10^{5}, \\
\left|L_{2}(11)\right| & = & 660 & \sim 7 \cdot 10^{2} .
\end{aligned}
$$

Words in the set of standard generators of Co_{2} giving a set of standard generators of the maximal subgroup $M_{23}<C o_{2}$ are available in [83]. We apply these to the set of generators \mathcal{H} of H, which indeed yields a set of generators of the maximal subgroup $2^{1+22} \cdot M_{23}<H$, as an analysis using the MeatAxe shows. Furthermore, words in the set of standard generators of M_{23} giving a set of standard generators of the maximal subgroup $M_{22}<M_{23}$ are also available in [83]. An application of these yields a subgroup $2^{1+22} \cdot M_{22}<H$, as the MeatAxe shows.
Let $2^{1+22} \cong N \unlhd H$ be the maximal normal 2 -subgroup of H, which is an extraspecial group, such that Co_{2} acts absolutely irreducibly on the \mathbb{F}_{2}-vector space $N / Z(N)$ of \mathbb{F}_{2}-dimension 22 , see $[13,37]$. The MeatAxe shows that the $\mathbb{F}_{2} M_{22}$-module $(N / Z(N))_{M_{22}}$, for the subgroup $M_{22}<M_{23}<C o_{2}$, has the
structure

$$
(N / Z(N))_{M_{22}} \cong\left[\begin{array}{c}
1 a \\
10 b \\
10 a \\
1 a
\end{array}\right]
$$

a uniserial $\mathbb{F}_{2} M_{22}$-module with composition series as indicated, where the constituents are absolutely irreducible $\mathbb{F}_{2} M_{22}$-modules of the respective dimensions, and $10 a, b$ are a pair of mutually contragredient $\mathbb{F}_{2} M_{22}$-modules, see [37].

Going over to an $\mathbb{F}_{2} H$-epimorphic image W of V_{H} of an \mathbb{F}_{2}-dimension small enough to do random searches using the MeatAxe quickly and on which $Z(H)=$ $Z(N)$ acts trivially, we proceed as follows. The group acting on $W_{2^{1+22} \cdot M_{22}}$ is isomorphic to $2^{22} . M_{22}$, and by a random search we find an element of $N / Z(N) \cong$ 2^{22} which under the conjugation action of M_{22} generates the $\mathbb{F}_{2} M_{22}$-submodule of $(N / Z(N))_{M_{22}}$ of \mathbb{F}_{2}-dimension 11. By a random search using the MeatAxe, where we modify the given generators of $2^{22} . M_{22}$ by multiplying with elements of this $\mathbb{F}_{2} M_{22}$-submodule, we find a set of generators of a subgroup $2^{11} \cdot M_{22}$, as words in the given generators of $2^{1+22} \cdot M_{22}$. Applying these to $2^{1+22} \cdot M_{22}$ acting on V_{H}, we obtain a subgroup $2 \times 2^{11} \cdot M_{22}$, as the MeatAxe shows, and we straightforwardly find a subgroup $2^{11} . M_{22}<2 \times 2^{11} . M_{22}$ in there.
We already know that the normal subgroup $2^{11} \unlhd 2^{11} . M_{22}$ as an $\mathbb{F}_{2} M_{22}$-module is uniserial having the trivial $\mathbb{F}_{2} M_{22}$-module $1 a$ as its socle. Using the above strategy again, we find a subgroup $2 . M_{22}<2^{11} . M_{22}$, which is a non-split central extension of M_{22} by a cyclic group of order 2. As the set of generators we have obtained is a preimage of a set of standard generators of M_{22}, we use the words giving a maximal subgroup $L_{2}(11)<M_{22}$ available in [83], to find a subgroup $2 \times L_{2}(11)<2 . M_{22}$ and straightforwardly a subgroup $L_{2}(11)<2 \times L_{2}(11)<$ 2. M_{22} in there.

To specify the $\mathbb{F}_{2} U_{i}$-modules V_{i} and the maps $\hat{q}_{i+1, i}:\left(V_{i+1}\right)_{U_{i}} \rightarrow V_{i}$ of $\mathbb{F}_{2} U_{i^{-}}$ modules, for $i \in\{1, \ldots, 3\}$, as in Section (10.5), we proceed as follows. Let $V_{4}:=V_{H}=(4370 a)_{H}$. Using the programs to determine socle series described in [49] available in the MeatAxe, we compute a few layers of the socle series of the $\mathbb{F}_{2} U_{3}$-module $V_{U_{3}}^{*}$ contragredient to $V_{U_{3}}$, which amounts to computing a few layers of the radical series of $V_{U_{3}}$. Going over to $V_{U_{3}} / \operatorname{rad}^{5}\left(V_{U_{3}}\right)$, by a random search using the MeatAxe we look for a suitable $\mathbb{F}_{2} U_{3}$-epimorphic image. The most restrictive of the conditions required for an application of the strategy described in Section (10.6) turns out to be the one, that the regular transitive U_{i}-sets Ξ_{i}^{\prime}, for $i \in\{1, \ldots, 3\}$, are assumed to be realizable as a regular U_{i}-orbit of vectors in one of the quotient modules $\left(V_{j}\right)_{U_{i}}$, for $i \leq j \in\{1, \ldots, 4\}$, see Section (10.5). Using the MeatAxe and a random search, we find a suitable quotient module V_{3} of $V_{U_{3}} / \operatorname{rad}^{5}\left(V_{U_{3}}\right)$ of \mathbb{F}_{2}-dimension 78, and let $\hat{q}_{4,3}:\left(V_{4}\right)_{U_{3}}=V_{U_{3}} \rightarrow V_{3}$ denote the corresponding natural $\mathbb{F}_{2} U_{3}$-epimorphism. Furthermore, using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find a suitable quotient module V_{2} of $\left(V_{3}\right)_{U_{2}}$ of \mathbb{F}_{2}-dimension 31 with corresponding natural $\mathbb{F}_{2} U_{2}$-epimorphism $\hat{q}_{3,2}:\left(V_{3}\right)_{U_{2}} \rightarrow V_{2}$, and a suitable
quotient module V_{1} of $\left(V_{2}\right)_{U_{1}}$ of \mathbb{F}_{2}-dimension 21 with corresponding natural $\mathbb{F}_{2} U_{1}$-epimorphism $\hat{q}_{2,1}:\left(V_{2}\right)_{U_{1}} \rightarrow V_{1}$. Hence the chosen quotient modules have the following \mathbb{F}_{2}-dimensions.

i	U_{i}	$\operatorname{dim}_{\mathbb{F}_{2}} V_{i}$
	B	4370
4	$2^{1+22} \cdot C o_{2}$	4370
3	$2^{11} \cdot M_{22}$	78
2	$2 . M_{22}$	31
1	$L_{2}(11)$	21

(17.4) Let $\omega_{1}=v_{H} \in V$. To find representatives $\omega_{i} \in \Omega_{i} \subseteq v_{H} \cdot G \subseteq V$ and elements $g_{i} \in G$ such that $\omega_{i}=\omega_{1} g_{i}$, for $1 \neq i \in \mathcal{I}$, we use the G set $C_{2 B}$ isomorphic to Ω, see Section (17.2). By a random search using the MeatAxe we compute the action on V of few elements $g \in G$, given as words in \mathcal{G}, and check to which conjugacy class of G the commutator $[(2 b), g]:=$ $(2 b) \cdot\left(g^{-1} \cdot(2 b) \cdot g\right) \in G$ belongs. This is done by computing the order of $[(2 b), g] \in G$ and $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Fix}_{V}([(2 b), g])$, where the \mathbb{F}_{2}-dimensions of the fixed spaces of representatives of the relevant conjugacy classes of G are as given in Table 24. This yields representatives of the suborbits $i \in\{1,4,6, \ldots, 10\}$. Summing up the k_{i} for $i \in\{1,4,6, \ldots, 10\}$ and dividing by $|\Omega|$, we obtain a fraction of ~ 0.9996. Hence it seems to be rather improbable to find further suborbits using a random search.
To proceed we concentrate on Ω_{2}. If we had indeed $k_{2}=93150$, we would be tempted to conjecture that there is an element $2 b^{\prime} \in N \unlhd H$ such that $2 b^{\prime} \in C_{2 B}$ and $(2 b) \cdot\left(2 b^{\prime}\right) \in C_{2 B}$ as well as $C_{H}\left(2 b^{\prime}\right)=2^{1+21} \cdot\left(2^{10}: M_{22}: 2\right)$, where $2^{10}: M_{22}: 2<C o_{2}$ is a maximal subgroup and $C_{H}\left(2 b^{\prime}\right) \cap N=2^{1+21}$. Words in the set of standard generators of Co_{2} giving a set of standard generators of the maximal subgroup $2^{10}: M_{22}: 2<C o_{2}$ are available in [83], and the MeatAxe indeed shows that the $\mathbb{F}_{2}\left(2^{10}: M_{22}: 2\right)$-module $(N / Z(N))_{2^{10}: M_{22}: 2}$ is uniserial with structure

$$
(N / Z(N))_{2^{10}: M_{22}: 2} \cong\left[\begin{array}{c}
1 a \\
10 b \\
10 a \\
1 a
\end{array}\right]
$$

using the notation from Section (17.3). Applying these words to the set of generators \mathcal{H} of H, an analysis using the MeatAxe indeed yields a set of generators of a subgroup $2^{1+21} \cdot\left(2^{10}: M_{22}: 2\right)<H$, where the normal subgroup $2^{1+21}<2^{1+21} \cdot\left(2^{10}: M_{22}: 2\right)$ necessarily is a preimage of the $\mathbb{F}_{2}\left(2^{10}: M_{22}: 2\right)$ submodule of \mathbb{F}_{2}-dimension 21 with respect to the natural group epimorphism $N \rightarrow N / Z(N)$. Computing $\operatorname{Fix}_{V}\left(2^{1+21} \cdot\left(2^{10}: M_{22}: 2\right)\right)$ we find a fixed vector $\omega_{2} \in$ Ω of $2^{1+21} \cdot\left(2^{10}: M_{22}: 2\right)$, different from ω_{1}, and as $\left[H:\left(2^{1+21} \cdot\left(2^{10}: M_{22}: 2\right)\right)\right]=$ 93150 we have thus proved that $k_{2}=93150$ and $k_{3}=7286400$, see Section (17.2). By applying the strategy described in Section (10.6), we enumerate a substantial part of suborbit Ω_{9}, say, and by checking randomly a few elements
in the G-orbit of $\omega_{2} \in \Omega$ we find an element in Ω_{9}, and thus an element $g_{2} \in G$, as a word in the set of generators \mathcal{G}, such that $\omega_{1} g_{2}=\omega_{2}$. Furthermore, it is straightforward to enumerate Ω_{2} completely by a standard breadth-first orbit algorithm.
We are also tempted to conjecture that the set $\Omega_{2} \cdot g_{2} \subseteq \Omega$ contains elements of Ω_{3} and Ω_{5}, which are the two suborbits of which we not yet have representatives. This indeed turns out to be true, by checking a few elements of $\Omega_{2} \cdot g_{2}$ using the same strategy as was used above for the longer suborbits.
(17.5) We are now able, by applying the strategy described in Section (10.6), to enumerate substantial parts of the suborbits $i \in\{5, \ldots, 10\}$. A problem arises for the suborbits $i \in\{3,4\}$, since it turns out that in these cases the order $\left|\operatorname{Stab}_{U_{3}}\left(\hat{q}_{4,3}\left(\omega_{i}\right)\right)\right|$ is large, which contradicts the assumptions made in Section (10.5) and causes the programs to become ineffective; we circumvent this.

We determine the structure constants matrix $P_{2}=\left[p_{i, 2, k} ; i, k \in \mathcal{I}\right] \in \mathbb{Z}^{r \times r}$ for the smallest non-trivial suborbit Ω_{2}, with $k_{2}=93150$. For $i, k \in \mathcal{I}$, by Proposition (9.6) we have

$$
p_{i, 2, k}=\frac{k_{i}}{k_{k}} \cdot c_{2, k}\left(g_{i}\right)=\frac{k_{i}}{k_{k}} \cdot\left|\Omega_{2} g_{i} \cap \Omega_{k}\right|
$$

where the $c_{2, k}\left(g_{i}\right) \in \mathbb{N}_{0}$ are the orbit counting numbers with respect to $\Omega=$ $\coprod_{i \in \mathcal{I}} \Omega_{i}$, see Definition (9.4). Hence the remaining task is to apply successively the elements $g_{i} \in G$, for $i \in \mathcal{I}$, to all elements of $\Omega_{2} \subseteq \Omega \subseteq V$ explicitly, and find the cardinalities $\left|\Omega_{2} g_{i} \cap \Omega_{k}\right| \in \mathbb{N}_{0}$, for $k \in \mathcal{I}$.
Given $\omega \in \Omega_{2} g_{i}$ and $k \in \mathcal{I}$, we have to check whether $\omega \in \Omega_{k}$ holds. For $k \notin\{3,4\}$, as we have enumerated only a part of Ω_{k} explicitly, again it is not sufficient to check $\omega \in \Omega_{2} g_{i} \subseteq V$ itself, but a few other elements of $\omega \cdot H \subseteq V$ have to be checked as well. Still, this method only allows to prove membership, but not to disprove it. Hence, in a first run over $k \in \mathcal{I}$ we only test very few elements of $\omega \cdot H \subseteq V$, at most 5 say, for membership in Ω_{k}. If $\omega \in \Omega_{2} g_{i}$ cannot be proven to belong to a particular suborbit, we start a second run over $k \in \mathcal{I}$, where we now test some more elements of $\omega \cdot H \subseteq V$, at most 1000 say.

We could repeat this until all of $\Omega_{2} g_{i}$ is treated. But actually after the second run, only a very few elements have not been proven to belong to a particular suborbit. Hence we have found lower bounds for the $c_{2, k}\left(g_{i}\right) \in \mathbb{N}_{0}$, where by Remark (9.7) we have $\sum_{k \in \mathcal{I}} c_{2, k}\left(g_{i}\right)=k_{i}$, for $i \in \mathcal{I}$. Furthermore, we have the following numerical conditions on the $c_{2, k}\left(g_{i}\right) \in \mathbb{N}_{0}$. As all the index parameters k_{i}, for $i \in \mathcal{I}$, are pairwise different, we conclude that all suborbits are self-paired. Hence by Proposition (3.17) we have, for $i, k \in \mathcal{I}$,

$$
c_{2, k}\left(g_{i}\right)=\frac{k_{k}}{k_{i}} \cdot p_{i, 2, k}=\frac{k_{k}}{k_{i}} \cdot p_{i, 2^{*}, k}=\frac{k_{k}}{k_{i}} \cdot \frac{k_{i}}{k_{k}} \cdot p_{k, 2, i}=p_{k, 2, i}=\frac{k_{k}}{k_{i}} \cdot c_{2, i}\left(g_{k}\right) \in \mathbb{Z}
$$

which hence is an integrality condition. In particular, we have $c_{2, k}\left(g_{i}\right)=0$ if and only if $c_{2, i}\left(g_{k}\right)=0$. It turns out that these conditions are sufficient to find all
the numbers $c_{2, k}\left(g_{i}\right) \in \mathbb{N}_{0}$, for $i, k \in \mathcal{I}$, where $(i, k) \notin\{(3,3),(3,4),(4,3),(4,4)\}$. Using these numerical conditions, there are only finitely many possibilities for the matrix entries $c_{2, k}\left(g_{i}\right) \in \mathbb{N}_{0}$, for $i, k \in\{3,4\}$, left. It turns out that the number of candidate matrices is small enough to check the following additional necessary condition for all of them.
By Proposition (1.19) the structure constants matrix $P_{2} \in \mathbb{Z}^{r \times r}$ is diagonalisable over an algebraic closure of \mathbb{Q}. As all characters in $\operatorname{Irr}_{K}^{1}(G)$ are rational-valued, by Propositions (3.10) and (3.20) we have $\Phi \in \mathbb{Z}^{r \times r}$. Thus the characteristic polynomial of P_{2} splits into linear factors over the rationals. It turns out that the latter condition is fulfilled by precisely one of the candidate structure constants matrices obtained by Remark (9.7) from the above candidate orbit counting matrices. This determines the structure constants matrix $P_{2} \in \mathbb{Z}^{r \times r}$ as is shown in Table 25.

Using the technique described in Section (8.2), and the matrix P_{2} we obtain a splitting of $K^{1 \times r}$ into 8 eigenspaces of dimension 1 and an eigenspace of dimension 2. Using the degrees of the characters in $\operatorname{Irr}_{K}^{1}(G)$, see Section (8.1), we conclude that we have found the characters $\left\{\varphi_{1}, \varphi_{3}, \varphi_{5}, \ldots, \varphi_{10}\right\}$, while φ_{2} and φ_{4} are missing. These are found using the technique described in Section (12.3). The character table of E_{K} is shown in Table 26.
(17.6) Let $G:=B$ and $H:=F i_{23}$, which is a maximal subgroup of G. We have $r=23$.

First of all we construct an $F G$-module, for a suitable finite field F, containing a vector being H-invariant, but not G-invariant. Let $4370 a$ be the absolutely irreducible $\mathbb{F}_{2} G$-module of \mathbb{F}_{2}-dimension 4370. Representing matrices for a set of standard generators $\{a, b\} \subseteq G$ in the sense of [81] are available in [83]; the elements a and b have order 2 and 3 , respectively. Words in the set of standard generators giving a set of standard generators of H are also available in [83]. The $\mathbb{F}_{2} H$-module $(4370 a)_{H}$ turns out to have the constituents $782 a$ and $3588 a$, where the latter are absolutely irreducible $\mathbb{F}_{2} \mathrm{H}$-modules of the respective dimensions; hence $4370 a$ would not serve our purposes.
Let $R \subset K$ and F be as in Section (2.10). Let $\hat{V} \in \bmod _{R^{-}} R G$ be an R-free $R G$-module such that $\hat{V} \otimes_{R} K$ is an irreducible $K G$-module of K-dimension 4371. By [13], $\hat{V} \otimes_{R} K$ is absolutely irreducible and uniquely determined up to equivalence. All the character values of $\hat{V} \otimes_{R} K$ are rational integers. As $\hat{V} \otimes_{R} K$ occurs as a constituent of multiplicity 1 in a rational representation of G, namely the permutation representation $1_{2_{E_{6}(2)}}^{G}$, see $\operatorname{Section}(17.1)$, we by [18,
La.IV.9.1] conclude that the rational Schur index of $\hat{V} \otimes_{R} K$ is equal to 1 . Hence for our constructive purposes we may choose $K:=\mathbb{Q}$ and, as we construct a module in characteristic 2 , let $R:=\mathbb{Z}_{(2)}$, the localisation of $\mathbb{Z} \subseteq \mathbb{Q}$ at the prime ideal $(2) \triangleleft \mathbb{Z}$, hence we have $F=\mathbb{F}_{2}$.
As the 2 -modular reduction $V:=\tilde{\hat{V}} \in \bmod -\mathbb{F}_{2} G$ of \hat{V} has the $\mathbb{F}_{2} G$-module $4370 a$ and the trivial $\mathbb{F}_{2} G$-module $1 a$ as its constituents, we conclude by [39,

Table 25: Structure constants matrix P_{2} for $G:=B$ and $H:=2^{1+22} . C o_{2}$.

i	k_{i}	1	2	3	4	5	6	7	8	9	10
1	1		1			.					
2	93150	93150	925	63	15	1					
3	7286400	.	4928	63	120	42	.	1	.		
4	262310400	.	42240	4320	1815	420	.	30	15	.	.
5	4196966400	.	45056	24192	6720	1807	891	272	120	.	27
6	9646899200	2048	891	512		100	36
7	470060236800	.	.	64512	53760	30464	24948	10287	5040	3850	3060
8	537211699200	.	.	.	30720	15360	.	5760	3495	4125	4320
9	4000762036224		41472	32768	30720	31175	32256
10	6685301145600	43008	24948	43520	53760	53900	53451

Table 26: The character table for $G:=B$ and $H:=2^{1+22} . C o_{2}$.

Cor.I.17.5] that \hat{V} can be chosen such that

$$
V \cong\left[\begin{array}{c}
1 a \\
4370 a
\end{array}\right]
$$

is a uniserial $\mathbb{F}_{2} G$-module with composition series as indicated. Furthermore, by [13], we have $\left(\hat{V} \otimes_{R} K\right)_{H} \cong \widehat{1 a} \oplus \widehat{782 a} \oplus \widehat{3588 a}$ as $K H$-modules, where the latter are absolutely irreducible $K H$-modules of the respective dimensions. Hence we conclude that the 2-modular reductions $\widetilde{782 a}$ and $\widetilde{\widetilde{3588 a}}$ are irreducible $\mathbb{F}_{2} \mathrm{H}$ -
 as well, are 2 -modular reductions of R-free modules, we conclude by [39, I.17.3] that, as $\mathbb{F}_{2} H$-modules,

$$
V_{H}=(\widetilde{\hat{V}})_{H}=\widetilde{\left(\hat{V}_{H}\right)} \cong 1 a \oplus 782 a \oplus 3588 a
$$

Let $0 \neq v_{H} \in V_{H}$ such that $1 a=\left\langle v_{H}\right\rangle_{\mathbb{F}_{2}} \leq V_{H}$. Hence the G-orbit $v_{H} \cdot G \subseteq V$ is isomorphic to $\Omega:=H \mid G$ as G-sets.

We construct the $\mathbb{F}_{2} G$-module V explicitly, using the $\mathbb{F}_{2} G$-module $4370 a$ and a variant of the randomised technique to compute an upper bound on the dimension $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a)$ described in [46], of which we have a new GAP implementation, using the fast arithmetic for vectors over finite fields. We use the interpretation of $\operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a)$ as group cohomology

$$
\operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a) \cong H_{\mathbb{F}_{2}}^{1}(G, 4370 a):=Z_{\mathbb{F}_{2}}^{1}(G, 4370 a) / B_{\mathbb{F}_{2}}^{1}(G, 4370 a)
$$

where $Z^{1}:=Z_{\mathbb{F}_{2}}^{1}(G, 4370 a)$ and $B^{1}:=B_{\mathbb{F}_{2}}^{1}(G, 4370 a) \leq Z^{1}$ are the group of 1-cocyles and 1-coboundaries of G with values in $4370 a$, respectively. Let $Z_{b}^{1}:=\left\{\zeta \in Z^{1} ; \zeta(b)=0\right\} \leq Z^{1}$ and $B_{b}^{1}:=Z_{b}^{1} \cap B^{1} \leq B^{1}$, where $b \in G$ is the standard generator of G of order 3 . Using the restriction map

$$
\operatorname{res}_{G,\langle b\rangle}: H_{\mathbb{F}_{2}}^{1}(G, 4370 a) \rightarrow H_{\mathbb{F}_{2}}^{1}\left(\langle b\rangle,(4370 a)_{\langle b\rangle}\right)
$$

to the cyclic subgroup $\langle b\rangle<G$, see [3, Ch.3.6], as well as the semisimplicity of the group algebra $\mathbb{F}_{2}\langle b\rangle$, we obtain

$$
H_{\mathbb{F}_{2}}^{1}(G, 4370 a)=Z_{\mathbb{F}_{2}}^{1}(G, 4370 a) / B_{\mathbb{F}_{2}}^{1}(G, 4370 a) \cong Z_{b}^{1} / B_{b}^{1}
$$

The elements of Z^{1} are maps from G to $4370 a$ fulfilling the cocyle relations, hence $\zeta \in Z_{b}^{1}$ is determined if $\zeta(a)$ is known, where $a \in G$ is the standard generator of G of order 2 . Hence we have a \mathbb{F}_{2}-linear embedding $\nu_{a}: Z_{b}^{1} \rightarrow$ $V: \zeta \mapsto \zeta(a)$. If $w(A, B)$ is an abstract word in the letters $\{A, B\}$, such that $w(a, b)=1 \in G$, then using the cocyle and coboundary relations this translates into \mathbb{F}_{2}-linear equations to be fulfilled by the elements of $\nu_{a}\left(Z_{b}^{1}\right)$ and $\nu_{a}\left(B_{b}^{1}\right)$. We choose some abstract words as above, where we simply use the orders of some elements in G, and finally end up with \mathbb{F}_{2}-subspaces $\nu_{a}\left(B_{b}^{1}\right) \leq \nu_{a}\left(Z_{b}^{1}\right) \leq V$ such that $\operatorname{dim} \nu_{a}\left(B_{b}^{1}\right)+1=\operatorname{dim} \nu_{a}\left(Z_{b}^{1}\right)$. As we already know that there is a non-split
extension of $1 a$ with $4370 a$, by [3, Cor.2.5.4] we have $\operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a) \neq\{0\}$. Hence we have shown that $\operatorname{dim}_{F_{2}} \operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a)=1$.
Using the interpretation in [3, Prop.3.7.2] an element in $\nu_{a}\left(Z_{b}^{1}\right) \backslash \nu_{a}\left(B_{b}^{1}\right)$ describes the matrix entries in a representing matrix for the action of $a \in G$ on a non-split extension V of $1 a$ with $4370 a$. Furthermore, as $\left|\operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a) \backslash\{0\}\right|=1$ the $\mathbb{F}_{2} G$-module V is uniquely determined up to isomorphism.
(17.7) To apply the strategy described in Section (10.6), we choose the following chain of subgroups

$$
G=B>U_{4}:=U:=H=F i_{23}>U_{3}:=S_{8}(2)>U_{2}:=2^{10}: A_{8}>U_{1}:=A_{7}
$$

where we have the following group orders

$$
\begin{aligned}
|B| & = & 4154781481226426191177580544000000 & \sim 4 \cdot 10^{33} \\
\left|F i_{23}\right| & = & 4089470473293004800 & \sim 4 \cdot 10^{18}, \\
\left|S_{8}(2)\right| & = & 47377612800 & \sim 4 \cdot 10^{10}, \\
\left|2^{10}: A_{8}\right| & = & 20643840 & \sim 2 \cdot 10^{7}, \\
\left|A_{7}\right| & = & 2520 & \sim 2 \cdot 10^{3} .
\end{aligned}
$$

Words in the set of standard generators of H giving a set of non-standard generators of the maximal subgroup $S_{8}(2)<H$, are available in [83]. Using standard MeatAxe techniques, using the constituents of $V_{S_{8}(2)}$, we derive a suitable small faithful permutation representation of $S_{8}(2)$. Then running through some randomly chosen elements of $S_{8}(2)$, we find a set of standard generators in the sense of [81].
The subgroup $2^{10}: A_{8}<S_{8}(2)$ is a maximal subgroup of index 2295 . To find a set of generators of $2^{10}: A_{8}$, we first compute the uniquely determined transitive permutation representation of $S_{8}(2)$ on 2295 points, again using standard MeatAxe techniques and the constituents of $V_{S_{8}(2)}$. From this, using the Schreier-Sims algorithm, a set of generators of the point stabilizer $2^{10}: A_{8}$ is found. Running through some randomly chosen elements of $2^{10}: A_{8}$, we find a set of generators of a complement A_{8} of the normal subgroup $2^{10} \unlhd 2^{10}: A_{8}$, and finally a set of generators of $A_{7}<A_{8}$.
We specify the $\mathbb{F}_{2} U_{i}$-modules V_{i} and the maps $\hat{q}_{i+1, i}:\left(V_{i+1}\right)_{U_{i}} \rightarrow V_{i}$ of $\mathbb{F}_{2} U_{i^{-}}$ modules, for $i \in\{1, \ldots, 3\}$, as in Section (10.5). Let $V_{4}:=782 a$ be as in Section (17.6), and let $\hat{q}: V_{H} \rightarrow V_{4}$ be the natural $\mathbb{F}_{2} H$-projection of V_{H} onto its $\mathbb{F}_{2} H$ direct summand isomorphic to V_{4}. Using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that $\left(V_{4}\right)_{U_{3}}$ has a uniquely determined $\mathbb{F}_{2} U_{3}$-quotient module isomorphic to

$$
V_{3} \cong\left[\begin{array}{c}
16 a \\
26 a
\end{array}\right]
$$

a uniserial $\mathbb{F}_{2} U_{3}$-module with composition series as indicated, where the constituents are the absolutely irreducible $\mathbb{F}_{2} U_{3}$-modules of the respective dimensions, see [37]. Let $\hat{q}_{4,3}:\left(V_{4}\right)_{U_{3}} \rightarrow V_{3}$ be the natural $\mathbb{F}_{2} U_{3}$-epimorphism. Analysis
of the $\mathbb{F}_{2} U_{2}$-module $\left(V_{3}\right)_{U_{2}}$ shows that $\left(V_{3}\right)_{U_{2}}$ has a uniquely determined $\mathbb{F}_{2} U_{2^{-}}$ submodule of \mathbb{F}_{2}-dimension 11 . The $\mathbb{F}_{2} U_{2}$-quotient module V_{2} with respect to this submodule has the structure

$$
V_{2} \cong\left[\begin{array}{c}
1 a \\
4 a \\
6 a \oplus 6 a \\
14 a
\end{array}\right]
$$

where the diagram indicates the radical and socle series, and the constituents are absolutely irreducible $\mathbb{F}_{2} U_{2}$-modules of the respective dimensions, see [37]. Let $\hat{q}_{3,2}:\left(V_{3}\right)_{U_{2}} \rightarrow V_{2}$ be the natural $\mathbb{F}_{2} U_{2}$-epimorphism. Finally, the $\mathbb{F}_{2} U_{1-}$ module $\left(V_{2}\right)_{U_{1}}$ turns out to have a uniquely determined $\mathbb{F}_{2} U_{1}$-quotient module isomorphic to

$$
V_{1} \cong 4 a \oplus 14 a
$$

where the constituents are absolutely irreducible $\mathbb{F}_{2} U_{1}$-modules of the respective dimensions, see [37], obtained as the restrictions of the absolutely irreducible $\mathbb{F}_{2} U_{2}$-modules of these dimensions. Let $\hat{q}_{2,1}:\left(V_{2}\right)_{U_{1}} \rightarrow V_{1}$ be the natural $\mathbb{F}_{2} U_{1}$-epimorphism. Hence the chosen quotient modules have the following $\mathbb{F}_{2^{-}}$ dimensions.

i	U_{i}	$\operatorname{dim}_{\mathbb{F}_{2}} V_{i}$
	B	4371
4	$F i_{23}$	782
3	$S_{8}(2)$	42
2	$2^{10}: A_{8}$	31
1	A_{7}	18

(17.8) We do not describe the partition $\Omega=\coprod_{i \in \mathcal{I}} \Omega_{i}$ into the G-suborbits Ω_{i} directly, but instead find the H-orbits $\hat{q}\left(\Omega_{i}\right) \subseteq V_{4}$, for $i \in \mathcal{I}$. This is done using the strategy described in Section (10.6), applied to the group $H=U=$ U_{4} and the chain of subgroups $U_{3}>U_{2}>U_{1}$. In turn, to describe an H orbit $\hat{q}\left(\Omega_{i}\right)=\tilde{\omega}_{i} \cdot H \subseteq V_{4}$, for $\tilde{\omega}_{i}:=\hat{q}\left(\omega_{i}\right) \in \hat{q}\left(\Omega_{i}\right)$, we do not enumerate $\tilde{\omega}_{i} \cdot H$ completely, but while enumerating $\tilde{\omega}_{i} \cdot H$ use a randomised SchreierSims technique to find subgroups of $\operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)$. To do this, we use the smallest faithful permutation representation of H on 31671 points, which in terms of a set of standard generators of H is available in [83].
We terminate the enumeration of $\tilde{\omega}_{i} \cdot H$ if the product of the number of elements of $\tilde{\omega}_{i} \cdot H$ found and the order of the subgroup of $\operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)$ found exceeds $\frac{|H|}{2}$. Then we know the orbit length $\left|\tilde{\omega}_{i} \cdot H\right|$ and have even obtained $\operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)$ explicitly as a permutation group, where we additionally find a set of generators of $\operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)$ as words in the set of standard generators of H. Hence we may compute $\omega_{i} \cdot \operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right) \subseteq \Omega \subseteq V$, provided $\left|\omega_{i} \cdot \operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)\right|$ is small enough to do so. In this case, as we have

$$
\left|\operatorname{Stab}_{H}\left(\omega_{i}\right)\right| \cdot\left|\omega_{i} \cdot \operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)\right|=\left|\operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)\right|
$$

we are able to find $\left|\Omega_{i}\right|=\frac{|H|}{\left|\operatorname{Stab}_{H}\left(\omega_{i}\right)\right|}$, and obtain $H_{i}=\operatorname{Stab}_{H}\left(\omega_{i}\right)$ explicitly as a permutation group. Hence, using the algorithms dealing with permutation groups available in GAP, we are also able to find the structure of the subgroup $H_{i} \leq H$. The cases for which $\left|\omega_{i} \cdot \operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)\right|$ is too large to proceed as just described, have to be dealt with separately, which is commented on below.

It turns out that there are suborbits Ω_{i}, for $i \in \mathcal{I}$, apart from the trivial suborbit Ω_{1}, for which $\hat{q}\left(\omega_{i}\right)=\{0\} \subseteq V_{4}$ and hence $\operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)=H$ holds. To find $H_{i}=\operatorname{Stab}_{H}\left(\omega_{i}\right)$ for these $i \in \mathcal{I}$, these suborbits have to be dealt with separately, which also is commented on below. Furthermore, it might happen that $\hat{q}\left(\Omega_{i}\right)=$ $\hat{q}\left(\Omega_{j}\right)$, for $i \neq j \in \mathcal{I}$. In this case we would have to distinguish Ω_{i} and Ω_{j} by other means. But it turns out that, apart from the cases where $\hat{q}\left(\omega_{i}\right)=\{0\}$, even the orbit lengths $\left|\hat{q}\left(\Omega_{i}\right)\right|$, for $i \in \mathcal{I}$, are pairwise different.

To find some of the representatives $\omega_{i} \in \Omega$, for $i \in \mathcal{I}$, we begin with $\omega_{1}=v_{H} \in$ $\Omega \subseteq V$, apply a few random elements of G, and for the elements $\omega \in \Omega$ thus obtained enumerate $\hat{q}(\omega) \cdot H \subseteq V_{4}$, as was described above. This random search yields 14 of the suborbits Ω_{i}, namely for $i \in\{1,7,11,13, \ldots, 23\}$, see Table 27 , where the suborbits Ω_{i} are sorted with respect to increasing index parameters $k_{i}=\left|\Omega_{i}\right|$. Summing up the k_{i} for $i \in\{1,7,11,13, \ldots, 23\}$, and dividing by $|\Omega|$, we obtain a fraction of ~ 0.998. Hence it seems to be rather improbable to find further suborbits using a random search. To proceed, using the facts we already know, we are tempted to look for candidate subgroups $\tilde{H} \leq H$ which might occur as stabilizers $\operatorname{Stab}_{H}\left(\omega_{i}\right)=H_{i}$. Indeed, the author has been hinted to the right guesses for the remaining 9 subgroups $\operatorname{Stab}_{H}\left(\omega_{i}\right) \leq H$, namely for $i \in\{2, \ldots, 6,8, \ldots, 10,12\}$, by [82].
Given a candidate $\tilde{H} \leq H$, we apply the usual strategy of combining sets of generators of subgroups given in [83] with standard MeatAxe techniques to find a set of generators of \tilde{H} as words in the set of standard generators of H. Using the MeatAxe, we find the \mathbb{F}_{2}-subspace $\operatorname{Fix}_{V}(\tilde{H}) \leq V$, and for each $0 \neq v \in \operatorname{Fix}_{V}(\tilde{H})$ we proceed as follows. We compute a few elements $v^{\prime} \in v \cdot G \subseteq V$, and check whether $\hat{q}\left(v^{\prime}\right) \in V_{4}$ is an element of an H-orbit $\hat{q}\left(\Omega_{i}\right) \subseteq V_{4}$, for some $i \in \mathcal{I}$, encountered earlier. As we have enumerated only a part of $\hat{q}\left(\Omega_{i}\right)$ explicitly, it is not sufficient to check $\hat{q}\left(v^{\prime}\right)$ itself, but depending on the proportion of elements of $\hat{q}\left(\Omega_{i}\right)$ enumerated explicitly, we check a few other elements of $\hat{q}\left(v^{\prime}\right) \cdot H \subseteq V_{4}$ as well. If we succeed in proving $\hat{q}\left(v^{\prime}\right) \in \hat{q}\left(\Omega_{i}\right)$, then the technique described in Section (10.6) also yields an element of $h \in H$, given as a word in the set of standard generators of H, mapping $\hat{q}\left(v^{\prime}\right)$ to $\tilde{\omega}_{i} \in \hat{q}\left(\Omega_{i}\right)$. It is then checked whether $v^{\prime} h=\omega_{i} \in \Omega$ holds, which proves that indeed $v \in \Omega$. Thus the cases $i \in\{2,5,10\}$ are dealt with straightforwardly. We briefly comment on the other cases, including those for which $\left|\omega_{i} \cdot \operatorname{Stab}_{H}\left(\tilde{\omega}_{i}\right)\right|$ is large.
a) We have $\hat{q}\left(\omega_{i}\right)=0 \in V_{4}$ for $i \in\{3,4\}$, and, by construction, $\operatorname{Stab}_{H}\left(\omega_{3}\right) \geq$ $S_{8}(2)$ and $\operatorname{Stab}_{H}\left(\omega_{4}\right) \geq 2^{11} . M_{23}$. As both candidate subgroups $S_{8}(2)<H$ and $2^{11} . M_{23}<H$ are maximal subgroups, we conclude that equality holds.
b) For $i=8$ we have $2 \times{ }^{2} F_{4}(2)^{\prime}<N_{H}(2 a) \cong 2 . F i_{22}<H$, where for $1 \neq$

Table 27: Suborbits of $G:=B$ and $H:=F i_{23}$.

$2 a \in Z\left(2 \times{ }^{2} F_{4}(2)^{\prime}\right)$ we have $2 a \in C_{2 A} \in \mathcal{C} l(H)$, where the latter in turn denotes the $2 A$-conjugacy class of H. Using the ordinary character tables of $2 \times{ }^{2} F_{4}(2)^{\prime}$ and of all the maximal subgroups of H, as well as the programs using ordinary character tables to find candidates for the natural maps between the conjugacy classes of a candidate subgroup and those of a given group, available in GAP, we find that $2 . F i_{22} \cong N_{H}(2 a)<H$ is the only maximal subgroup of H containing $2 \times{ }^{2} F_{4}(2)^{\prime}$. Furthermore, $2 \times{ }^{2} F_{4}(2)^{\prime}<N_{H}(2 a)$ in turn is a maximal subgroup. As by construction $\operatorname{Stab}_{H}\left(\omega_{8}\right) \geq 2 \times{ }^{2} F_{4}(2)^{\prime}$, we only have to check that $\operatorname{Stab}_{H}\left(\omega_{8}\right)<N_{H}(2 a)$, and that $\hat{q}\left(\omega_{8}\right) \neq 0 \in V_{4}$ as well as $\operatorname{Stab}_{H}\left(\hat{q}\left(\omega_{8}\right)\right) \geq N_{H}(2 a)$ holds.
c) For $i=9$ we have $S_{3} \times G_{2}(3)<N_{H}(3 a) \cong S_{3} \times O_{7}(3)<H$, where $3 a \in$ $S_{3} \unlhd S_{3} \times G_{2}(3)$ is an element of order 3 , which turns out to be an element of $C_{3 A} \in \mathcal{C l}(H)$, where the latter in turn denotes the $3 A$-conjugacy class of H. It turns out that $S_{3} \times O_{7}(3)$ contains two conjugacy classes of subgroups isomorphic to $S_{3} \times G_{2}(3)$, and indeed exactly one of them yields a fixed vector in V belonging to Ω, different from $\omega_{1}=v_{H} \in V$. Proceeding as in the case $i=7$, for the correct subgroup $S_{3} \times G_{2}(3)$, we find that $S_{3} \times O_{7}(3) \cong N_{H}(3 a)<H$ is the only maximal subgroup of H containing $S_{3} \times G_{2}(3)$. Furthermore, $S_{3} \times O_{7}(3)<N_{H}(3 a)$ in turn is a maximal subgroup. As by construction $\operatorname{Stab}_{H}\left(\omega_{9}\right) \geq S_{3} \times G_{2}(3)$, we only have to check that $\operatorname{Stab}_{H}\left(\omega_{9}\right)<N_{H}(3 a)$, and that $\hat{q}\left(\omega_{9}\right) \neq 0 \in V_{4}$ as well as $\operatorname{Stab}_{H}\left(\hat{q}\left(\omega_{9}\right)\right) \geq N_{H}(3 a)$ holds.
d) For $i=12$ we have $\left(2 \times 2 . M_{22}\right) .2<N_{H}(2 b) \cong 2^{2} . U_{6}(2) .2<H$, where for $1 \neq 2 b \in Z\left(\left(2 \times 2 . M_{22}\right) .2\right)$ we have $2 b \in C_{2 B} \in \mathcal{C} l(H)$, where the latter in turn denotes the $2 B$-conjugacy class of H. It turns out that $2^{2} . U_{6}(2) .2$ contains three conjugacy classes of subgroups isomorphic to $\left(2 \times 2 . M_{22}\right) .2$, and indeed exactly one of them yields a fixed vector in V belonging to Ω, different from $\omega_{1}=v_{H} \in V$.
e) For the last remaining case $i=6$ we may assume that all the other 22 suborbits have already been found. We find that H has exactly three conjugacy classes of maximal subgroups which contain a subgroup isomorphic to $O_{8}^{+}(2)$, namely subgroups isomorphic to $S_{8}(2)$, to $O_{8}^{+}(3): S_{3}$ and to 2 .Fi i_{22}, respectively. It turns out that a subgroup $O_{8}^{+}(2)<S_{8}(2)$ yields fixed vectors in V belonging to Ω, different from $\omega_{1}=v_{H} \in \Omega$ and $\omega_{3} \in \Omega$.
(17.9) For later use, see Section (17.11), we collect the following facts about some of the groups H_{i}, using the programs dealing with permutation groups available in GAP.
a) For $i=4$ the subgroup $M_{23}<2^{11} . M_{23}=H_{4}$ acts irreducibly on the elementary abelian normal subgroup $2^{11} \unlhd 2^{11} \cdot M_{23}$, hence $2^{11} \cdot M_{23}$ is a perfect group.
b) For $i=10$ the subgroup $M_{11}<2^{10} \cdot M_{11}=H_{10}$ acts irreducibly on the elementary abelian normal subgroup $2^{10} \unlhd 2^{10} . M_{11}$, hence $2^{10} . M_{11}$ is a perfect group.
c) For $i=13$ the group $H_{13}=2^{7} . A_{8}$ is not 2-perfect, since the normal sub-
group $2^{7} \unlhd 2^{7} . A_{8}$ is elementary abelian, but as an $\mathbb{F}_{2} A_{8}$-module is isomorphic to $\left[\begin{array}{c}1 a \\ 6 a\end{array}\right]$, a uniserial $\mathbb{F}_{2} A_{8}$-module with composition series as indicated, where the constituents are absolutely irreducible $\mathbb{F}_{2} A_{8}$-modules of the respective dimensions, see [37].
d) For $i=14$ the group $H_{14}=2^{7} \cdot U_{3}(3)$ is a perfect group, since the normal subgroup $2^{7} \unlhd 2^{7} . U_{3}(3)$ is elementary abelian, and as an $\mathbb{F}_{2} U_{3}(3)$-module is isomorphic to $\left[\begin{array}{l}6 a \\ 1 a\end{array}\right]$, a uniserial $\mathbb{F}_{2} U_{3}(3)$-module with composition series as indicated, where the constituents are absolutely irreducible $\mathbb{F}_{2} U_{3}(3)$-modules of the respective dimensions, see [37].
(17.10) We compute the structure constants matrix $P_{2}=\left[p_{i, 2, k} ; i, k \in \mathcal{I}\right] \in$ $\mathbb{Z}^{r \times r}$ for the smallest non-trivial suborbit Ω_{2}, with $k_{2}=412896$, using the strategy described in Section (17.5). Hence again the remaining task is to enumerate $\Omega_{2} \subseteq V$ explicitly, to apply successively the elements $g_{i} \in G$, for $i \in \mathcal{I}$, to all elements of $\Omega_{2} \subseteq \Omega \subseteq V$, and to find the cardinalities $c_{2, k}\left(g_{i}\right)=\left|\Omega_{2} g_{i} \cap \Omega_{k}\right| \in \mathbb{N}_{0}$ by checking for membership in Ω_{k}, for $k \in \mathcal{I}$. As we have not enumerated the G-suborbits directly, but the H-orbits $\hat{q}\left(\Omega_{i}\right) \subseteq V_{4}$, for $i \in \mathcal{I}$, instead, see Section (17.8), the membership test is done by checking whether $\hat{q}(\omega) \in \hat{q}\left(\Omega_{k}\right)$ holds, for $\omega \in \Omega_{2} g_{i}$ and $k \notin\{3,4\}$. As we have enumerated only a part of $\hat{q}\left(\Omega_{k}\right)$ explicitly, again it is not sufficient to check $\hat{q}(\omega)$ itself, but a few other elements of $\hat{q}(\omega) \cdot H \subseteq V$ have to be checked as well. For the exceptional cases $k \in\{3,4\}$ we cannot check at all whether $\hat{q}(\omega) \in \hat{q}\left(\Omega_{k}\right)$ holds. But it turns out that the numerical conditions given in Section (17.5) are sufficient to find all the matrix entries $c_{2, k}\left(g_{i}\right) \in \mathbb{N}_{0}$, for $i, k \in \mathcal{I}$, in particular those for $k \in\{3,4\}$.

The structure constants matrix $P_{2} \in \mathbb{Z}^{r \times r}$ can be determined using Remark (9.7), it is shown in Tables 28 and 29. Using the technique described in Section (8.2), the structure constants matrix P_{2} turns out to be sufficient to obtain a splitting of $K^{1 \times r}$ into eigenspaces of dimension 1 . The character table of E_{K} is given in Tables 30, 31 and 32.
(17.11) Let $G:=2 . B$ and $H^{\prime}:=F i_{23}$ as well as $H:=Z(G) \times H^{\prime} \cong 2 \times F i_{23}$. The assumptions of Remark (5.15) are fulfilled. We have $r=23$ and $r^{\prime}=34$, where $\Omega:=H \mid G$ and $\Omega^{\prime}:=H^{\prime} \mid G$. We determine the 11 split and 12 non-split suborbits.

Let $i \in \mathcal{I}$ such that Ω_{i} is a non-split suborbit. Hence by Remark (5.15) we have $\left[\left(H^{\prime} \cap H^{g_{i}}\right):\left(H^{\prime} \cap H^{\prime g_{i}}\right)\right]=2$, and thus we have $H^{\prime} \cap H^{g_{i}} \leq H^{\prime}$ but $H^{\prime} \cap H^{g_{i}} \not \leq$ $H^{\prime g_{i}}$. Furthermore, by Corollary (5.5) we have $\left[H^{\prime}:\left(H^{\prime} \cap H^{g_{i}}\right)\right]=k_{i}=\left[H: H_{i}\right]$ anyway, and thus $\left[H_{i}:\left(H^{\prime} \cap H^{g_{i}}\right)\right]=\left[H: H^{\prime}\right]=2$. Hence $H^{\prime} \cap H^{g_{i}}$ is a normal subgroup in H_{i} of index 2, and in turn $H^{\prime} \cap H^{g_{i}}$ has $H^{\prime} \cap H^{\prime g_{i}}$ as a normal subgroup of index 2 .
The structure of the subgroups $H_{i} \leq H$ is indicated in Table 27, see also Section (17.9), where the subgroups $H_{i} \leq H$ considered here are split central extensions

Table 28: Structure constants matrix P_{2} for $G:=B$ and $H:=F i_{23}$.

\bigcirc	
0	
∞	
\wedge	
\bigcirc	
20	
H	
\cdots	
\sim	
\square	$\begin{aligned} & \otimes \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{7} \\ & \underset{\gamma}{2} \end{aligned}$
运	

Table 29: Structure constants matrix P_{2} for $G:=B$ and $H:=F i_{23}$, continued.

\bigcirc	
ล	
-	N N
-	
9	
∞	
\wedge	
\bigcirc	억• .
12	-
\pm	
\because	
จ	
$=$	

Table 30：The character table for $G:=B$ and $H:=F i_{23}$ ．

	 엉
	Nのサレロト

Table 31: The character table for $G:=B$ and $H:=F i_{23}$, continued.

9	10	11	12	13	14	15	16
160533964800	504245392560	1044084577536	1152560897280	1584771233760	5282570779200	7888639030272	12678169870080
-5945702400	39426594480	-21483221760	-4743048960	-110868769440	65216923200	-292171815936	573908924160
-511948800	12027702960	-9527341824	6966984960	30484602720	28447848000	58091185152	118446831360
258508800	1991288880	1252323072	-1021697280	4906012320	-3514104000	3727696896	12802648320
35481600	1084693680	550851840	-432034560	-2400567840	1235995200	-300174336	4718165760
-167270400	224426160	533820672	271607040	-9741600	916660800	2067158016	-1656357120
63866880	185985072	-186810624	778242816	-259829856	-2109032640	-1909619712	-643458816
74188800	87499440	-219034368	-142145280	29121120	499867200	-274627584	-544631040
4147200	110118960	-61012224	62588160	198033120	197640000	-366363648	5218560
20044800	-21727440	115105536	171953280	32315760	217339200	-118153728	122446080
-18662400	32946480	-61205760	-22584960	-74323440	-10756800	200600064	-34179840
-6912000	5609520	-1790208	-28857600	-1265760	-80222400	35030016	-96802560
-6912000	12798000	19554048	-7568640	3745440	-43200	-48356352	-17729280
5913600	-1900240	-8656128	8992640	-2385200	-15211200	36246016	7220480
1935360	-841680	6983424	3168000	10755360	2721600	1741824	-31921920
691200	-2857680	2467584	-777600	-4879440	5417280	-5515776	518400
-460800	2430000	-1928448	3732480	-3810240	648000	5308416	933120
-414720	-2332368	-1292544	-307584	-943056	2928960	787968	6269184
76800	-292560	472832	-1668480	588720	-1924800	-2025984	4348160
-709632	-452304	-850176	134784	854064	938304	-1866240	518400
248832	73008	200448	-335232	518832	-720576	898560	1237248
138240	114480	532224	-293760	-481680	25920	-262656	-1416960
-82944	86832	-352512	508032	-42768	191808	290304	-311040

Table 32: The character table for $G:=B$ and $H:=F i_{23}$, continued.

| 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 21514470082560 | 43028940165120 | 50712679480320 | 133120783635840 | 190172548051200 | 262954634342400 | 283991005089792 |
| -79683225280 | 531221483520 | 1460859079680 | -2739110774400 | -782603078400 | 3246353510400 | -1168687263744 |
| 158430504960 | -222361251840 | 239651343360 | 190079809920 | -857327328000 | 28598169600 | 218194808832 |
| 10166446080 | 20332892160 | 7936220160 | 8210885760 | 47791814400 | -25333862400 | -90188550144 |
| -4534548480 | -8511713280 | -1053803520 | 12753417600 | 10828857600 | -17953689600 | 3908653056 |
| -679311360 | 1892782080 | 3994721280 | -5895711360 | 1568160000 | -10005811200 | 6838013952 |
| 1675634688 | 1177473024 | 3238050816 | -155675520 | -44478720 | -6826659840 | 4981616640 |
| -5806080 | 592220160 | 722856960 | 813214080 | -1399600 | -1025740800 | -578285568 |
| -75479040 | -452874240 | -1233239040 | -1778474880 | 666144000 | 148377600 | 2518290432 |
| -322237440 | 661893120 | -489991680 | 959091840 | -1020988800 | 174182400 | -479582208 |
| 269982720 | 836075520 | -664312320 | -183254400 | -1004918400 | 593510400 | 125024256 |
| -145152000 | -11612160 | 83082240 | 268168320 | -170553600 | 212889600 | -59609088 |
| 18524160 | -16035840 | -61793280 | 98133120 | -116640000 | 190771200 | -74649600 |
| -39797760 | -41656320 | -22725120 | 16717440 | 9264000 | 80076800 | -41576448 |
| -5806080 | -58060800 | 36449280 | -18264960 | 41644800 | 94187520 | -83349504 |
| 14515200 | 11612160 | 15137280 | 9797760 | -15085440 | -21934080 | -10450944 |
| 14100480 | -9953280 | -9953280 | -18195840 | 27993600 | 27648000 | -35831808 |
| 7216128 | -6967296 | -2225664 | -16744320 | 22654080 | -8663040 | -276480 |
| -1582080 | 5468160 | -919040 | -1537920 | -7036800 | -17100800 | 23365632 |
| -746496 | -1658880 | 2198016 | 3825792 | 6065280 | -4534272 | -3815424 |
| -1410048 | 995328 | -1893888 | -4053888 | -1316736 | -2764800 | 8570880 |
| 2903040 | -1658880 | -69120 | -3058560 | 51840 | 6082560 | -2709504 |
| -1741824 | 995328 | 705024 | 4572288 | -1026432 | -700416 | -3151872 |

of the subgroups given in Table 27 by the central subgroup $Z(G)$ of order 2 . Hence we conclude that for $i \in\{1,3,4,6,10,14,18\}$ the subgroup $H_{i} \leq H$ has only 2 -perfect subgroups of index 2 , and thus these are 7 of the split suborbits, as is indicated in the last column of Table 27. Note that by Section (17.9) the above condition on the subgroup structure does not hold for H_{13}.
We have a closer look at the embedding of the subgroups H_{i} into G. As all characters in $\operatorname{Irr}_{K}^{1} H^{\prime}(G)$ are rational-valued, by Propositions (3.20) and (3.1) and the orthogonality relations, see Proposition (3.8) we conclude that all suborbits of Ω^{\prime} are self-paired. Hence we may without loss of generality choose the set of representatives $\left\{g_{i} ; i \in \mathcal{I}\right\}$ of the H - H-double cosets in G such that $g_{i}^{2} \in H^{\prime}$. We still assume that $i \in \mathcal{I}$ such that Ω_{i} is a non-split suborbit. Let $\tilde{H}^{\prime} \leq H^{\prime}$ be a subgroup such that $H^{\prime} \cap H^{g_{i}} \leq \tilde{H}^{\prime}$, and let $\tilde{H}:=Z(G) \times \tilde{H}^{\prime} \leq H$. Hence we have $H_{i} \leq \tilde{H}$. Since $H^{\prime} \cap H^{g_{i}} \not \leq H^{\prime g_{i}}$, we also have $H^{\prime} \cap H^{g_{i}} \not \leq \tilde{H}^{\prime g_{i}}$, but we have $H^{\prime} \cap H^{g_{i}} \leq H_{i}=H_{i}^{g_{i}} \leq \tilde{H}^{g_{i}}$.
Let $f_{\tilde{H}}: \mathcal{C l}(\tilde{H}) \rightarrow \mathcal{C l}(G)$ denote the natural map between the conjugacy classes of \tilde{H} and those of G, and let $f_{\tilde{H}^{\prime}, \tilde{H}}: \mathcal{C l}\left(\tilde{H}^{\prime}\right) \rightarrow \mathcal{C l}(\tilde{H})$ denote the natural map between the conjugacy classes of \tilde{H}^{\prime} and those of \tilde{H}. Let $f_{g_{i}}: \mathcal{C l}(\tilde{H}) \rightarrow \mathcal{C l}\left(\tilde{H}^{g_{i}}\right)$ be the natural bijection between the conjugacy classes of \tilde{H} and those of $\tilde{H}^{g_{i}}$, induced by conjugation with $g_{i} \in G$; its restriction to $\mathcal{C l}\left(\tilde{H}^{\prime}\right)$ also is denoted by $f_{g_{i}}$. Hence the natural map between the conjugacy classes of $\tilde{H}^{g_{i}}$ and those of G is $f_{\tilde{H}} \circ f_{g_{i}}^{-1}: \mathcal{C l}\left(\tilde{H}^{g_{i}}\right) \rightarrow \mathcal{C l}(G)$, and the natural map between the conjugacy classes of $\tilde{H}^{\prime g_{i}}$ and those of $\tilde{H}^{g_{i}}$ is $f_{g_{i}} \circ f_{\tilde{H}^{\prime}, \tilde{H}} \circ f_{g_{i}}^{-1}: \mathcal{C l}\left(\tilde{H}^{\prime g_{i}}\right) \rightarrow \mathcal{C l}\left(\tilde{H}^{g_{i}}\right)$.
For the natural maps

$$
f^{\prime}: \mathcal{C l}\left(H^{\prime} \cap H^{g_{i}}\right) \rightarrow \mathcal{C} l\left(\tilde{H}^{\prime}\right) \quad \text { and } \quad f^{\prime \prime}: \mathcal{C l}\left(H^{\prime} \cap H^{g_{i}}\right) \rightarrow \mathcal{C} l\left(\tilde{H}^{g_{i}}\right)
$$

we hence have
$f^{\prime \prime}\left(\mathcal{C l}\left(H^{\prime} \cap H^{g_{i}}\right)\right) \nsubseteq f_{g_{i}} \circ f_{\tilde{H}^{\prime}, \tilde{H}^{\circ}} \circ f_{g_{i}}^{-1}\left(\mathcal{C} l\left(\tilde{H}^{\prime g_{i}}\right)\right)$ and $f_{\tilde{H}} \circ f_{\tilde{H}^{\prime}, \tilde{H}} \circ f^{\prime}=f_{\tilde{H}} \circ f_{g_{i}}^{-1} \circ f^{\prime \prime}$.
We use the programs using ordinary character tables to find candidates for the natural maps between the conjugacy classes of a candidate subgroup and those of a given group available in GAP, to check whether such maps f^{\prime} and $f^{\prime \prime}$ exist for the index 2 subgroups $H^{\prime \prime}$ of the groups H_{i} not yet dealt with. Given $H^{\prime \prime}$, we compute the candidates for the natural map $\mathcal{C l}\left(H^{\prime \prime}\right) \rightarrow \mathcal{C l}(\tilde{H})$, and check whether we can find candidate maps f_{1} and f_{2}, such that f_{1} factors through some $f^{\prime}: \mathcal{C} l\left(H^{\prime \prime}\right) \rightarrow \mathcal{C} l\left(\tilde{H}^{\prime}\right)$ as $f_{1}=f_{\tilde{H}^{\prime}, \tilde{H}} \circ f^{\prime}$, where f^{\prime} and $f^{\prime \prime}:=$ $f_{g_{i}} \circ f_{2}: \mathcal{C l}\left(H^{\prime \prime}\right) \rightarrow \mathcal{C l}\left(\tilde{H}^{g_{i}}\right)$ fulfil the above conditions, which amount to

$$
f_{2}\left(\mathcal{C l}\left(H^{\prime \prime}\right)\right) \nsubseteq f_{\tilde{H}^{\prime}, \tilde{H}}\left(\mathcal{C} l\left(\tilde{H}^{\prime}\right)\right) \quad \text { and } \quad f_{\tilde{H}} \circ f_{1}=f_{\tilde{H}} \circ f_{2}
$$

We specify $\tilde{H}^{\prime}:=H^{\prime}$, hence $\tilde{H}=H$. The ordinary character tables of G as well as H and H^{\prime} are available in GAP. It turns out that there are 4 candidates for the natural map $f_{H}: \mathcal{C l}(H) \rightarrow \mathcal{C l}(G)$, which are exactly one orbit under the action
of the group of table automorphisms of G, hence we may choose one of them, and keep it fixed. The map $f_{H^{\prime}, H}: \mathcal{C l}\left(H^{\prime}\right) \rightarrow \mathcal{C l}(H)$ is uniquely determined.
Let $i=8$, hence we have $H_{8}=2^{2} \times{ }^{2} F_{4}(2)^{\prime}$. Thus all its index 2 subgroups are isomorphic to $2 \times{ }^{2} F_{4}(2)^{\prime}$, whose ordinary character table is available in GAP. It turns out that no pair of maps $f_{1,2}: \mathcal{C l}\left(2 \times{ }^{2} F_{4}(2)^{\prime}\right) \rightarrow \mathcal{C l}(H)$ fulfilling the above conditions exists.

Let $i=15$, hence we have $H_{15}=2 \times\left(A_{6} \times A_{6}\right): 2^{2}$. As we are looking for maps f_{1} factoring through $f_{H^{\prime}, H}$, we may restrict ourselves to the direct factor $\left(A_{6} \times A_{6}\right): 2^{2}$ of index 2 . Its ordinary character table can be determined using the Dixon-Schneider algorithm available in GAP. It turns out that no pair of maps $f_{1,2}: \mathcal{C l}\left(\left(A_{6} \times A_{6}\right): 2^{2}\right) \rightarrow \mathcal{C l}(H)$ fulfilling the above conditions exists.
Let $i=19$, hence we have $H_{19}=2 \times 2 . L_{3}(4) .2_{2}$. Again we may restrict ourselves to the direct factor $2 . L_{3}(4) .2_{2}$ of index 2 , whose ordinary character table is available in GAP. It turns out that no pair of maps $f_{1,2}: \mathcal{C l}\left(2 . L_{3}(4) .2_{2}\right) \rightarrow \mathcal{C l}(H)$ fulfilling the above conditions exists.
Let $i=23$, hence we have $H_{23}=2 \times\left(A_{5} \times A_{5}\right): 2^{2}$. Again we may restrict ourselves to the direct factor $\left(A_{5} \times A_{5}\right): 2^{2}$ of index 2 , whose ordinary character table can be determined using the Dixon-Schneider algorithm available in GAP. But it turns out that it would be too time-consuming to compute the candidates for the natural map $\mathcal{C l}\left(\left(A_{5} \times A_{5}\right): 2^{2}\right) \rightarrow \mathcal{C l}(H)$. Using GAP and the permutation representations of $\left(A_{5} \times A_{5}\right): 2^{2} \cong H_{23} / Z(G)$ and of $\left(A_{6} \times A_{6}\right): 2^{2} \cong H_{15} / Z(G)$ as subgroups of $F i_{23}=H / Z(G)$, we find that $\left(A_{5} \times A_{5}\right): 2^{2}$ is $F i_{23}$-conjugate to a subgroup of $\left(A_{6} \times A_{6}\right): 2^{2}$. Hence we may assume $\left(A_{5} \times A_{5}\right): 2^{2}<\left(A_{6} \times A_{6}\right): 2^{2}<$ H^{\prime}. Thus we specify $\tilde{H}^{\prime}:=\left(A_{6} \times A_{6}\right): 2^{2}$. We use the candidates for the natural $\operatorname{map} \mathcal{C l}\left(\tilde{H}^{\prime}\right) \rightarrow \mathcal{C l}(H)$ already found above, and as we keep $f_{H}: \mathcal{C l}(H) \rightarrow \mathcal{C l}(G)$ fixed, we find that the natural $\operatorname{map} \mathcal{C l}(\tilde{H}) \rightarrow \mathcal{C} l(G)$ is uniquely determined. Finally, it turns out that no pair of maps $f_{1,2}: \mathcal{C l}\left(\left(A_{5} \times A_{5}\right): 2^{2}\right) \rightarrow \mathcal{C} l(\tilde{H})$ fulfilling the above conditions exists.

Hence we have found the remaining 4 split suborbits to be $i \in\{8,15,19,23\}$, as is indicated in Table 27.
(17.12) Unfortunately, up to now it has not been possible to compute the character table of $E_{K}^{1 H^{\prime}}$, apart from the relations between the character values given in Remark (5.15). There are serious obstacles we are faced with.
It turns out that no suitable faithful representation of G is available to be used for a computational approach analogous to the one which has been used for $\Omega=H \mid G$, see Section (17.6). Furthermore, only the second smallest nontrivial suborbit $i=3$, where $k_{3}=86316516$, is a split suborbit. To find the character table of $E_{K}^{1_{H^{\prime}}}$, by Remark (5.15), we have to determine $\operatorname{Irr}_{K}\left(E_{K}^{1^{-}}\right)$, where $\mathcal{I}_{1-} \subset \mathcal{I}$ is the set of split suborbits. Applying a technique as was used in Section (17.10) would imply to run explicitly through the $k_{3}=86316516$ elements of Ω_{3}, instead of the $k_{2}=412896$ elements of Ω_{2}.

We mention some more indirect ideas, which might be helpful, but still have to be elaborated further.
a) We could try to use a technique which was used in [29] for the groups B and $2 .{ }^{2} E_{6}(2) .2$ as well as $2 .{ }^{2} E_{6}(2)$. For the present case this involves finding the 1^{-}-weights $\zeta \in\{ \pm 1\}$ of the triangles in $\mathcal{T}_{i j k} \subseteq \Omega \times \Omega \times \Omega$, for $j, k \in \mathcal{I}_{1^{-}}$, and some fixed $i \in \mathcal{I}_{1^{-}}$, see Definition (1.15). This can be reduced to the sets $\Omega_{i j k}^{1^{-}, \zeta} \subseteq \Omega_{i}$, see Remark (1.16), which in turn are unions of H_{k}-orbits. We are tempted to choose $i=3$, the smallest non-trivial split suborbit, but still we are faced with $k_{3}=86316516$ elements, and the sets $\Omega_{3, j, k}^{1^{-}, \zeta} \subseteq \Omega_{3}$ in most cases seem to be far away from being single H_{k}-orbits.
b) By Remark (3.24), the matrix $\Gamma_{1} \in \mathbb{Z}^{\mathcal{I} \times|\mathcal{C l}(G)|}$ can be determined, see Definition (3.19). To find the character table of E_{K}^{1-}, it is sufficient, by Proposition (3.20), to find the matrix $\Gamma_{1-} \in \mathbb{Z}^{\mathcal{I}_{1}-\times|\mathcal{C} l(G)|}$. The matrix entries of Γ_{1} and $\Gamma_{1^{-}}$as well as $\Gamma_{1_{H^{\prime}}} \in \mathbb{Z}^{\mathcal{I}^{\prime} \times|\mathcal{C l}(G)|}$ are related, where the relations can be made precise. Furthermore, the rows of Γ_{1-} form an orthogonal K-basis of the K subspace of $K^{\mathcal{I}_{1}-\times|\mathcal{C l}(G)|}$ they span, where the latter can also be described in terms of values of the characters in $\operatorname{Irr}_{K}^{1^{-}}(G)$, see Remark (3.24).

18 The Thompson-Smith lattice

In Section 18 we give another application of the technique described in Section (10.6), to a problem related to the still open question of determining the minimum of the so-called Thompson-Smith lattice. We begin by fixing the setting and stating the problem we solve computationally.
(18.1) Let $G:=T h$ and $\mathcal{G} \subseteq G$ be a set of standard generators of G in the sense of [81]. Let V be the absolutely irreducible, even, unimodular $\mathbb{Z} G$-lattice of \mathbb{Z}-rank 248, the so-called Thompson-Smith lattice. Matrices for the action of the elements of \mathcal{G} and the Gram matrix of the scalar product $\langle\cdot, \cdot\rangle_{V}$ on V are known, see [62]. Let the minimum of V be defined as $\min V:=\min \left\{\langle v, v\rangle_{V} ; 0 \neq v \in V\right\}$. By [40] we have $\min V \geq 10$.

Let $H:=3 \times G_{2}(3)<N_{G}(H)=\left(3 \times G_{2}(3)\right): 2<G$, where $N_{G}(H)<G$ is a maximal subgroup. It turns out that $\operatorname{Fix}_{H}(V)=\left\langle v_{H}\right\rangle_{\mathbb{Z}}$ for some $v_{H} \in V$, while $v_{H} \cdot N_{G}(H)=\left\{ \pm v_{H}\right\}$. As $N_{G}(H)<G$ is a maximal subgroup, there is a G-set isomorphism between the G-orbit $v_{H} \cdot G \subseteq V$ and $\Omega:=H \mid G$, where $n=|\Omega|=7124544000$, and using GAP we find $|\mathcal{I}|=r=778$. Note that the G-orbit $v_{H} \cdot G \subseteq V$ is a symmetric orbit, hence we have $-v \in v_{H} \cdot G$ whenever $v \in v_{H} \cdot G$.
It turns out that $\left\langle v_{H}, v_{H}\right\rangle_{V}=12$. Hence we have $\min V \in\{10,12\}$. It is conjectured and still an open problem that $\min V=12$. Related to this problem, it has been conjectured [61] that

$$
\left\{\left\langle v, v_{H}\right\rangle_{V} ; v \in v_{H} \cdot G \subseteq V, v \neq \pm v_{H}\right\}=\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 6\}
$$

We prove the latter conjecture, see Table 33.
(18.2) Let \tilde{V} be the absolutely irreducible $\mathbb{F}_{3} G$-module obtained from V by 3 -modular reduction. Using the MeatAxe, we find that \tilde{V}_{H} has a uniquely determined trivial $\mathbb{F}_{3} H$-submodule. We pick one of the vectors $0 \neq \tilde{v}_{H} \in V_{H}$ in this submodule, and it turns out that $\tilde{v}_{H} \cdot N_{G}(H)=\left\{ \pm \tilde{v}_{H}\right\}$. Hence we conclude that there is a G-set isomorphism between the G-orbit $\tilde{v}_{H} \cdot G \subseteq \tilde{V}$ and Ω.
We enumerate the G-orbit $\Omega \cong \tilde{v}_{H} \cdot G$ piecewise, H-orbit by H-orbit, using the technique described in Section (10.6). As G acts by lattice automorphisms on V, and $H=\operatorname{Stab}_{G}\left(v_{H}\right)$, we have $\left\langle v, v_{H}\right\rangle_{V}=\left\langle v \cdot h, v_{H}\right\rangle_{V}$ for $v \in V$ and $h \in H$. Hence the level sets

$$
\left(v_{H} \cdot G\right)_{c}:=\left\{v \in v_{H} \cdot G \subseteq V ;\left\langle v, v_{H}\right\rangle_{V}=c\right\}
$$

for $c \in\{-12, \ldots, 12\}$, are unions of H-orbits. Hence to find out for which of these levels we have $\left(v_{H} \cdot G\right)_{c} \neq \emptyset$, we only have to compute $\left\langle v_{i}, v_{H}\right\rangle_{V}$ for a set of representatives $v_{i} \in V$, for $i \in \mathcal{I}$, for the H-orbits in $v_{H} \cdot G \cong \Omega$, where we have $|\mathcal{I}|=r=778$. This even yields further information, namely how the level sets decompose into H-orbits.

We choose the chain of subgroups

$$
U_{1}:=U_{3}(3): 2<U_{2}:=G_{2}(3)<U_{3}=U:=H=3 \times G_{2}(3)
$$

where $U_{1}<U_{2}$ is a maximal subgroup. A set of generators of $N_{G}(H)=(3 \times$ $\left.G_{2}(3)\right): 2$, given as words in \mathcal{G}, is available in [83]. Using the MeatAxe, we find a set of generators of H as well as a set of standard generators of U_{2}, in the sense of [81], as words in \mathcal{G}, and again a set of generators of U_{1} as words in the set of standard generators of U_{2} is available in [83].

Using the 3 -modular Brauer character table of $G_{2}(3): 2$, see [37], and GAP we find that $\tilde{V}_{N_{G}(H)}$ has the following constituents with multiplicities: $1 a, 2 \cdot 1 b$, $7 \cdot 14 a, 49 a, 2 \cdot 49 b$, where these are absolutely irreducible $\mathbb{F}_{3} N_{G}(H)$-modules of the indicated \mathbb{F}_{3}-dimensions, and the ordering is as in the 3 -modular Brauer character table of $G_{2}(3): 2$. Using the algorithms to compute submodule lattices described in [47] available in the MeatAxe, we find that $\tilde{V}_{N_{G}(H)}$ has a unique epimorphic image \tilde{V}_{2} of \mathbb{F}_{3}-dimension 63. We have $\tilde{V}_{2} \cong\left[\begin{array}{l}14 a \\ 49 b\end{array}\right]$ as $\mathbb{F}_{3} N_{G}(H)$ modules, a uniserial $\mathbb{F}_{3} N_{G}(H)$-module where the diagram indicates the radical and socle series of \tilde{V}_{2}. Furthermore, we have $\left(\tilde{V}_{2}\right)_{U_{2}} \cong\left[\begin{array}{c}7 a \oplus 7 b \\ 49 a\end{array}\right]$ as $\mathbb{F}_{3} U_{2^{-}}$ modules, where again the constituents are absolutely irreducible $\mathbb{F}_{3} U_{2}$-modules, and the the diagram indicates the radical and socle series. Using the 3-modular Brauer character table of $U_{1}=U_{3}(3): 2$, see [37], and GAP we find that $\left(\tilde{V}_{2}\right)_{U_{1}}$ has the following absolutely irreducible constituents: $1 b, 6 a, 7 a, 7 b, 12 a, 30 a$, all with multiplicity 1 . Again using the MeatAxe we find that $\left(\tilde{V}_{2}\right)_{U_{1}}$ has a unique epimorphic image $\tilde{V}_{1} \cong 6 a \oplus 7 b$ as $\mathbb{F}_{3} U_{1}$-modules, hence \tilde{V}_{1} has \mathbb{F}_{3}-dimension 13.

Table 33: Level sets and H-orbits.

c	$\left\|\left(v_{H} \cdot G\right)_{c}\right\|$	$\left\|\mathcal{I}_{c}\right\|$
0	3712825584	380
1	1587081600	158
2	117615888	32
3	1106560	4
4	53703	2
5	.\cdot	.
6	1456	2
7	.	.
8	.	.
9	.	.
10	.	.
11	.	.
12	1	1

c	H-orbit lengths
6	728,728
4	9477,44226
3	$5824,157248,471744,471744$

(18.3) We enumerate the orbit $\tilde{v}_{H} \cdot G$, using the technique described in Section (10.6), and find the H-orbits in $\tilde{v}_{H} \cdot G$, where there are $r=778$ of them. Additionally, for each such H-orbit $\left(\tilde{v}_{H} \cdot G\right)_{i} \cong \Omega_{i}$, for $i \in \mathcal{I}$, we compute an element $g_{i} \in G$, as a word in the set of generators \mathcal{G}, mapping \tilde{v}_{H} to an element of $\left(\tilde{v}_{H} \cdot G\right)_{i}$. As we have $\tilde{v}_{H} \cdot G \cong \Omega \cong v_{H} \cdot G$ as G-sets, we apply the $g_{i} \in G$, for $i \in \mathcal{I}$, to v_{H}, and collect the data on the scalar products $\left\langle v_{H} g_{i}, v_{H}\right\rangle_{V}$ and the suborbit lengths $\left|v_{H} g_{i} \cdot H\right|=\left|\Omega_{i}\right|=\left|\tilde{v}_{H} g_{i} \cdot H\right|$.
The result is shown in Table 33, where for each level $c \in\{0, \ldots, 12\}$ we give the cardinality $\left|\left(v_{H} \cdot G\right)_{c}\right|$ and the number $\left|\mathcal{I}_{c}\right|$ of H-orbits comprising the level set $\left(v_{H} \cdot G\right)_{c}$. For $c \in\{-12, \ldots,-1\}$ we have $\left|\left(v_{H} \cdot G\right)_{c}\right|=\left|\left(v_{H} \cdot G\right)_{-c}\right|$ and $\left|\mathcal{I}_{c}\right|=$ $\left|\mathcal{I}_{-c}\right|$. In particular, the non-empty level sets are as stated in the conjecture in Section (18.1). For given $c \in\{-12, \ldots, 12\}$ the lengths of the H-orbits comprising the level set $\left(v_{H} \cdot G\right)_{c}$ are also known. This seems to be particularly interesting for $c \in\{3,4,6\}$, where the lengths of the H-orbits comprising these level sets are also given in Table 33.

19 The Harada-Norton group $H N$ in characteristic 3

In Section 19 we present by example a new technique to use condensation results to determine decomposition numbers for finite groups. Historically, finding decomposition numbers was the very problem condensation techniques have been
invented for, see [77]. Since then, these techniques have been applied by various people, see for example $[26,38,57,59]$.

Keeping the notation of Section 9, and letting $\lambda=1$ and $\epsilon=\epsilon_{1} \in A:=F G$, we consider $V:=\epsilon A$, which is a projective A-module. Hence the criterion in Section (9.12) is applicable as well as Proposition (9.13), see Remark (9.14). The information thus obtained is used to find projective indecomposable characters. We need some preparations first.
(19.1) Let $G:=H N$ and $p:=3$. Let K, R and F be as in Section (2.10), where K is a splitting field of $K G$ and F is a splitting field of $F G$ of characteristic $p=3$. Let $5^{1+4}: 2^{1+4} .5 .4 \cong H:=N_{G}(5 b)<G$, where $5 b \in C_{5 B} \in \mathcal{C} l(G)$, where the latter in turn denotes the $5 B$-conjugacy class of G; the ordinary character table of H is available in GAP.

Using GAP we find the following data on the 3 -modular blocks B_{i} of G, where $d_{B_{i}} \in \mathbb{N}_{0}$ denotes the defect of B_{i}, while $k_{B_{i}}:=\left|\operatorname{Irr}_{K}\left(B_{i}\right)\right| \in \mathbb{N}$ and $l_{B_{i}}:=$ $\left|\operatorname{Irr}_{F}\left(B_{i}\right)\right|=\left|\operatorname{IBr}_{F}\left(B_{i}\right)\right| \in \mathbb{N}$ denote the number of irreducible ordinary and irreducible 3-modular Brauer characters of B_{i}, respectively. The last column corresponds to the union of the blocks of defect 0 .

i	1	2	3	
$d_{B_{i}}$	6	2	1	0
$k_{B_{i}}$	33	9	3	9
$l_{B_{i}}$	20	7	2	9

Nothing has to be done for block B_{3} of defect 1 . We partly analyse block B_{2} of defect 2. This is part of a full analysis of block B_{2} and the principal block B_{1} currently being work in progress [31]. We assume the reader familiar with the notion of basic sets, see [30].

Using GAP we find that the set

$$
\mathcal{B} S:=\{8910 a, 16929 a, 270864 a, 1185030 a, 1354320 a, 1575936 a, 4561920 a\}
$$

of irreducible ordinary characters in B_{2} is a basic set of Brauer characters in B_{2}, as is indicated by the underlined entries in the first column in Table 34. We also give there a basic set $\mathcal{P} S:=\left\{\Psi_{1}, \ldots, \Psi_{7}\right\} \subseteq \mathbb{Z} \operatorname{Irr}_{K}\left(B_{2}\right)$ of projective characters in $\mathbb{Z} \operatorname{Irr}_{K}\left(B_{2}\right)$, decomposed into the irreducible ordinary characters B_{2}, and indicate the origin of the Ψ_{i}, for $i \in\{1, \ldots, 7\}$. The characters $\{69255 a, 1066527 a, 3878280 a\} \subseteq \operatorname{Irr}_{K}(G)$ are ordinary characters of defect 0 . Since $|H|$ is not divisible by 3 , all the irreducible ordinary characters in $\operatorname{Irr}_{K}(H)$ are projective characters, where $1^{-}, \lambda \in \operatorname{Irr}_{K}(H)$ denote linear characters of order 2 and 4 , respectively, and $5 b \in \operatorname{Irr}_{K}(H)$ is one of the rational-valued characters of degree 5 . It turns out that $\left\langle\frac{1}{2} \cdot(5 b)^{G}, \chi\right\rangle \in \mathbb{Z}$, for all $\chi \in \mathcal{B} S$, hence the B_{2}-component of $\frac{1}{2} \cdot(5 b)^{G}$ is a projective character in B_{2}.
Thus Ψ_{7} is a projective indecomposable character. We consider the possible projective summands of Ψ_{6}. These are sums of a multiple of Ψ_{7} and the characters

Table 34: Basic set $\mathcal{P} S$ of projective characters in B_{2} for $G:=H N$ and $p:=3$.

i	χ_{i}	Ψ_{1}	Ψ_{2}	Ψ_{3}	Ψ_{4}	Ψ_{5}	Ψ_{6}	Ψ_{7}	1^{G}	Ψ_{6}^{1}	Ψ_{6}^{2}	Ψ_{6}^{3}
$\underline{8}$	8910a	1	2	.	.	
$\underline{10}$	16929a	.	1	1	.	.	
$\underline{19}$	270864a	.	.	1	
$\underline{32}$	1185030a	1	1	.	1	3	1	.	4	1	.	
$\underline{33}$	$1354320 a$	2	2	.	2	2	1	.	2	.	1	
$\underline{37}$	1575936a	1	2	1	1	2	1	.		.	.	1
43	2784375a	2	2	1	3	5	2		3	1	1	
$\underline{49}$	4561920a	1	2	2	6	9	4	1	2	a	b	c
50	4809375a	1	3	3	5	9	4	1	3	a	$b-1$	$c+1$
	1^{G} in $\mathcal{P} S$	2	1			5	-14	9				

Ψ_{i}	origin
1	$\left(1^{-}\right)^{G}$
2	$1066527 a \cdot 133 b$
3	λ^{G}
4	$\frac{1}{2} \cdot(5 b)^{G}$
5	$3878280 a \cdot 133 a$
6	$69255 a \cdot 3344 a$
7	$69255 a \cdot 760 a$

Table 35: Basic set $\mathcal{P} S^{\prime}$ of projective characters in B_{2}.

i	χ_{i}	Ψ_{1}^{\prime}	Ψ_{2}^{\prime}	Ψ_{3}^{\prime}	Ψ_{4}^{\prime}	Ψ_{5}^{\prime}	Ψ_{6}^{\prime}	Ψ_{7}^{\prime}
$\underline{8}$	$8910 a$	1
$\underline{10}$	$16929 a$.	1
$\underline{19}$	$270864 a$.	.	1
$\underline{32}$	$1185030 a$	1	1	.	1	1	.	.
$\underline{37}$	$1354320 a$	1	.	.	2	.	1	.
$1575936 a$.	.	1	1	.	1	.	
$\underline{49}$	$2784375 a$	1	.	1	3	1	1	.
50	$4561920 a$	1	2	2	6	3	1	1
	1^{G} in $\mathcal{P} S^{\prime}$	2	1	.	.	1	.	-5
	$\left(1^{-}\right)^{G}$ in $\mathcal{P} S^{\prime}$	1	1	-1

$\Psi_{6}^{1,2,3}$ shown in Table 34, where $a+b+c \leq 4$. Using the decomposition of the B_{2}-component of the projective character 1^{G}, where $1 \in \operatorname{Irr}_{K}(H)$ is the trivial character, into the basic set $\mathcal{P} S$ of projective characters, as is also shown in Table 34, we conclude that the projective indecomposable summand of Ψ_{6} containing Ψ_{6}^{1} is a 3-fold summand of Ψ_{5}. Hence Ψ_{6}^{1} is a projective indecomposable character, and we have $a \in\{0, \ldots, 3\}$. Furthermore, both the projective indecomposable summands of Ψ_{6} containing Ψ_{6}^{2} and Ψ_{6}^{3}, respectively, are summands of Ψ_{1}. Hence we have $b+c \leq 1$. From that we conclude that both $\Psi_{1}-\Psi_{6}^{2}-\Psi_{6}^{3}$ and $\Psi_{2}-2 \cdot \Psi_{6}^{2}-2 \cdot \Psi_{6}^{3}$ are projective characters. Hence we obtain the basic set $\mathcal{P} S^{\prime}$ of projective characters as shown in Table 35 , where $\Psi_{i}^{\prime}=\Psi_{i}$, for $i \in\{1,2,3,4,7\}$, as well as $\Psi_{5}^{\prime}:=\Psi_{5}-2 \cdot \Psi_{6}+2 \cdot \Psi_{7}$ and $\Psi_{6}^{\prime}:=3 \cdot \Psi_{6}-\Psi_{5}-2 \cdot \Psi_{7}$, while $\Psi_{1}^{\prime}:=\Psi_{1}-\Psi_{6}^{\prime}+\Psi_{7}$ and $\Psi_{2}^{\prime}:=\Psi_{2}-2 \cdot \Psi_{6}^{\prime}+2 \cdot \Psi_{7}$.

In Table 35 we also show the decomposition of the B_{2}-component of the projective characters 1^{G} and $\left(1^{-}\right)^{G}$ into the basic set $\mathcal{P} S^{\prime}$ of projective characters. From this it follows that $\Psi_{5}^{\prime \prime}:=\Psi_{5}^{\prime}-\Psi_{7}^{\prime}$ is a projective character, and we obtain the basic set $\mathcal{P} S^{\prime \prime}$ of projective characters as shown in Table 36 , where $\Psi_{i}^{\prime \prime}=\Psi_{i}^{\prime}$, for $i \in\{1,2,3,4,6,7\}$. In Table 36 we also show the decomposition of the $B_{2^{-}}$ components of the projective characters 1^{G} and $\left(1^{-}\right)^{G}$ into the basic set $\mathcal{P} S^{\prime \prime}$ of projective characters.
(19.2) We are prepared to apply the technique described in Section (10.3) to $\Omega:=H \mid G$ and $U:=H$, yielding the action of $\epsilon \mathbb{F}_{3} G \epsilon$ on $\mathbb{F}_{3} \Omega \epsilon$, where the latter $\epsilon \mathbb{F}_{3} G \epsilon$-module is isomorphic to the regular $\epsilon \mathbb{F}_{3} G \epsilon$-module $\epsilon \mathbb{F}_{3} G \epsilon$.

Using the decomposition of 1^{G} into $\operatorname{Irr}_{K}(G)$ shown in Table 37, where the distribution of $\operatorname{Irr}_{K}(G)$ into the blocks B_{1}, B_{2}, B_{3} and the characters of defect 0 is indicated as well, we obtain $\left\langle 1^{G}, 1^{G}\right\rangle_{G}=127$, while $\left\langle 1^{G} \cdot \epsilon_{B_{1}}, 1^{G}\right\rangle_{G}=62$ as

Table 36: Basic set $\mathcal{P} S^{\prime \prime}$ of projective characters in B_{2}.

i	χ_{i}	$\Psi_{1}^{\prime \prime}$	$\Psi_{2}^{\prime \prime}$	$\Psi_{3}^{\prime \prime}$	$\Psi_{4}^{\prime \prime}$	$\Psi_{5}^{\prime \prime}$	$\Psi_{6}^{\prime \prime}$	$\Psi_{7}^{\prime \prime}$	1^{G}
$\underline{8}$	$8910 a$	1	2
$\underline{10}$	$16929 a$.	1	1
$\underline{32}$	$270864 a$.	.	1
$\underline{33}$	$1185030 a$	1	1	.	1	1	.	.	4
$\underline{37}$	$1354320 a$	1	.	.	2	.	1	.	2
$1575936 a$.	.	1	1	.	1	.	.	
$\underline{49}$	$2784375 a$	1	.	1	3	1	1	.	3
50	$4561920 a$	1	2	2	6	2	1	1	2
	1^{G} in $\mathcal{P} S^{\prime \prime}$	2	1	.	.	1	.	-4	
	$\left(1^{-}\right)^{G}$ in $\mathcal{P} S^{\prime \prime}$	1	1	-1	

well as $\left\langle 1^{G} \cdot \epsilon_{B_{2}}, 1^{G}\right\rangle_{G}=47$ and $\left\langle 1^{G} \cdot \epsilon_{B_{3}}, 1^{G}\right\rangle_{G}=2$, where $\epsilon_{B_{i}} \in K G$ denote the central block idempotents of $K G$, for $i \in\{1,2,3\}$, see Remark (9.2).
We choose

$$
V \cong\left[\begin{array}{c}
1 a \\
132 a
\end{array}\right]
$$

a uniserial $\mathbb{F}_{4} G$-module with composition series as indicated, where the constituents are absolutely irreducible $\mathbb{F}_{4} G$-modules of the respective dimensions, which is the 2-modular reduction of an absolutely irreducible $\mathbb{Q}(\sqrt{5}) G$-module. Representing matrices for the action of a set of standard generators of G, in the sense of [81], are available in [83]. Furthermore, a generating set of H given as words in the set of standard generators of G is also available there. We find $V_{H} \cong 1 a \oplus 32 a \oplus 100 a$ as $\mathbb{F}_{4} H$-modules, where the summands are absolutely irreducible $\mathbb{F}_{4} H$-modules of the respective dimensions. Choosing $0 \neq v \in 1 a \leq V_{H}$, as $H<G$ is a maximal subgroup, we obtain that Ω is as a G-set isomorphic to the G-orbit $\langle v\rangle_{\mathbb{F}_{4}} \cdot G$ of 1-dimensional \mathbb{F}_{4}-subspaces of V. Furthermore we choose $C_{25} \cong U_{1} \leq H$. As U_{1} is a cyclic group, the centrally primitive idempotents of $\mathbb{F}_{4} U_{1}$ are straightforwardly determined. This yields the decomposition of the semisimple $\mathbb{F}_{4} U_{1}$-module $V_{U_{1}}$ into its $\mathbb{F}_{4} U_{1}$-isotypic components. A standard MeatAxe technique then allows to find an irreducible $\mathbb{F}_{4} U_{1}$-epimorphic image V_{1} of $V_{U_{1}}$ of \mathbb{F}_{4}-dimension 10 .

This yields the orbit counting numbers with respect to $\Omega=\coprod_{i \in \mathcal{I}} \Omega_{i}$. By Proposition (9.5) we obtain representing matrices for the action of a few randomly chosen elements $\left\{\epsilon \tilde{g}_{k} \epsilon \in \epsilon \mathbb{F}_{3} G \epsilon ; k \in\{1,2, \ldots\}\right\}$, on $\mathbb{F}_{3} \Omega \epsilon$, where the above set is chosen such the criterion in Section (9.12) is fulfilled. Using the MeatAxe we find the constituents of the $\epsilon \mathbb{F}_{3} G \epsilon$-module $\mathbb{F}_{3} \Omega \epsilon$, their multiplicities, and the \mathbb{F}_{3}-dimensions of the endomorphism algebras of the simple $\epsilon \mathbb{F}_{3} G \epsilon$-modules as follows, see Remark (9.14).

Table 37: Characters 1^{G} and $\left(1^{-}\right)^{G}$ decomposed into $\operatorname{Irr}_{K}(G)$.

\imath	χ_{i}	1	1^{-}	i	χ_{i}	1	1^{-}	i	χ_{i}	1	$1-$
1	$1 a$	1		25	$656250 a$	1		32	$1185030 a$	4	1
2	$133 a$.	1	26	$656250 b$	1		33	1354320a	2	2
3	$133 b$.	1	27	$718200 a$	1	2	37	1575936a		1
4	$760 a$.		28	$718200 b$	1	2	43	2784375a	3	2
5	$3344 a$.		29	1053360a			49	4561920a	2	1
6	8778 a			34	1361920a	1	1	50	$4809375 a$	3	1
7	$8778 b$			35	$1361920 b$.		23	406296a		
9	9405a		2	36	1361920c			38	1625184a	1	1
11	$35112 a$			40	2375000a	3	3	39	$2031480 a$	1	1
12	$35112 b$			41	2407680a	2	2	15	$69255 a$	1	
13	65835a	1		42	$2661120 a$	4	4	16	$69255 b$	1	
14	$65835 b$	1		45	3200000a	1	2	30	1066527a		1
17	214016a	1		46	3424256a	3	3	31	$1066527 b$		1
18	267520a	1	1	48	4156250a	1		44	$2985984 a$	2	2
20	$365750 a$	2	3	54	$5878125 a$	2	2	47	$3878280 a$	2	4
21	$374528 a$.		8	8910a	2	1	51	$5103000 a$	1	1
22	$374528 b$			10	16929a	1		52	$5103000 b$	1	1
24	$653125 a$	2	1	19	$270864 a$.		53	5332635a	2	4

$1 a$	$1 b$	$1 c$	$1 d$	$1 e$	$1 f$	$1 g$	$1 h$	$2 a$	$2 b$	$2 c$	$2 d$	$2 e$
12	8	5	1	2	22	40	1	2	2	2	1	11
1	1	1	1	1	1	1	1	1	1	1	2	1

Let $\chi \in \operatorname{Irr}_{K}(G)$ be a character of defect 0 , and let $\widehat{S_{\chi}}$ be an R-free $R G$ module affording χ. Then the 3 -modular reduction $\widetilde{\widehat{S_{\chi}}}$ of $\widehat{S_{\chi}}$ is a projective simple $F G$-module. If $\widetilde{S_{\chi}} \cdot \epsilon \neq\{0\}$, then by Propositions (6.7) and (6.15) the $\epsilon F G \epsilon$-module $\widetilde{\widetilde{S_{\chi}}} \cdot \epsilon$ is a projective simple $\epsilon F G \epsilon$-module. Using Table 37 we conclude by Proposition (9.13) that in this sense $\{69255 a, 69255 b\}$ correspond to $\{1 d, 1 h\}$, that $\{2985984 a, 3878280 a, 5332635 a\}$ correspond to $\{2 a, 2 b, 2 c\}$, and that $\{5103000 a, 5103000 b\}$ correspond to $2 d$, where the 3 -modular character field of the characters $5103000 a, b$ is \mathbb{F}_{9}, yielding a projective simple $\mathbb{F}_{3} G$-module S such that $\operatorname{End}_{\mathbb{F}_{3} G}(S) \cong \mathbb{F}_{9}$. By Corollary (6.12) we conclude that $S \epsilon$ is a projective simple $\epsilon \mathbb{F}_{3} G \epsilon$-module such that $\operatorname{End}_{\epsilon \mathbb{F}_{3} G \epsilon}(S \epsilon) \cong \mathbb{F}_{9}$.
As the block B_{3} is of defect 1, using the Brauer-Dade theory of blocks of cyclic defect, see [18, Ch.VII], we find from Table 37 that the B_{3}-component of the $\mathbb{F}_{3} G$-module 1^{G} is a projective indecomposable $\mathbb{F}_{3} G$-module P. As $\left\langle 1^{G} \cdot \epsilon_{B_{3}}, 1^{G}\right\rangle_{G}=2$, using Propositions (6.19) and (9.13) we conclude that P corresponds to $1 e$.
Using Table 36 we find that the B_{2}-component of the $\mathbb{F}_{3} G$-module 1^{G} has at least three different projective indecomposable $\mathbb{F}_{3} G$-summands, where at least one of them occurs with multiplicity 2. Again by Proposition (9.13) we conclude that $2 e$ corresponds to a projective indecomposable $\mathbb{F}_{3} G$-module in B_{2}. From $\left\langle 1^{G} \cdot \epsilon_{B_{2}}, 1^{G}\right\rangle_{G}=47$ we conclude that $\{1 a, 1 b, 1 c\}$ also correspond to projective indecomposable $\mathbb{F}_{3} G$-modules in B_{2}, while $\{1 f, 1 g\}$ correspond to projective indecomposable $\mathbb{F}_{3} G$-modules in B_{1}.

Using Proposition (6.19) again, we find $\left\langle\Psi_{1}^{\prime \prime}, 1^{G}\right\rangle_{G}=16$ and $\left\langle\Psi_{2}^{\prime \prime}, 1^{G}\right\rangle_{G}=18$ as well as $\left\langle\Psi_{5}^{\prime \prime}, 1^{G}\right\rangle_{G}=17$ and $\left\langle\Psi_{7}^{\prime \prime}, 1^{G}\right\rangle_{G}=5$. As was shown in Section (19.1), the character $\Psi_{7}^{\prime \prime}$ is projective indecomposable, and the character $\Psi_{5}^{\prime \prime}-a \cdot \Psi_{7}^{\prime \prime}$ is a projective indecomposable character for some $a \in\{0,1,2\}$. Hence by Proposition (9.13) we conclude that the projective indecomposable $\mathbb{F}_{3} G$-module affording $\Psi_{7}^{\prime \prime}$ corresponds to $1 c$, and that $\Psi_{5}^{\prime \prime \prime}:=\Psi_{5}^{\prime \prime}-\Psi_{7}^{\prime \prime}$ is a projective indecomposable character afforded by a projective indecomposable $\mathbb{F}_{3} G$-module corresponding to $1 a$. Hence from Table 36 we obtain the projective characters $\Psi_{1}^{\prime \prime \prime}:=\Psi_{1}^{\prime \prime}-\Psi_{7}^{\prime \prime}$ and $\Psi_{2}^{\prime \prime}-\Psi_{7}^{\prime \prime}$. As $\Psi_{1}^{\prime \prime \prime}$ occurs with multiplicity 2 in 1^{G} and $\left\langle\Psi_{1}^{\prime \prime \prime}, 1^{G}\right\rangle_{G}=11$, we conclude that $\Psi_{1}^{\prime \prime \prime}$ is a projective indecomposable character, being afforded by a projective indecomposable $\mathbb{F}_{3} G$-module corresponding to $2 e . \mathrm{As}\left\langle\Psi_{2}^{\prime \prime}-\Psi_{7}^{\prime \prime}, 1^{G}\right\rangle_{G}=13$, the character $\Psi_{2}^{\prime \prime}-\Psi_{7}^{\prime \prime}$ is not a projective indecomposable character. A consideration of the possible projective summands of $\Psi_{2}^{\prime \prime}-\Psi_{7}^{\prime \prime}$ shows that $\Psi_{2}^{\prime \prime \prime}:=\Psi_{2}^{\prime \prime}-2 \cdot \Psi_{7}^{\prime \prime}$ is a projective indecomposable character, being afforded by a projective indecomposable $\mathbb{F}_{3} G$-module corresponding to $1 b$. Hence we obtain the basic set $\mathcal{P} S^{\prime \prime \prime}$ of projective characters as shown in Table

Table 38: Basic set $\mathcal{P} S^{\prime \prime \prime}$ of projective characters in B_{2}.

i	χ_{i}	$\Psi_{1}^{\prime \prime \prime}$	$\Psi_{2}^{\prime \prime \prime}$	$\Psi_{3}^{\prime \prime \prime}$	$\Psi_{4}^{\prime \prime \prime}$	$\Psi_{5}^{\prime \prime \prime}$	$\Psi_{6}^{\prime \prime \prime}$	$\Psi_{7}^{\prime \prime \prime}$	1	$1-$
8	8910a	1							2	1
$\underline{10}$	16929a	.	1		.				1	
$\underline{19}$	270864a			1				.		
$\underline{32}$	1185030a	1	1		1	1			4	1
$\underline{33}$	1354320a	1			2		1		2	2
$\underline{37}$	1575936a	.		1	1		1			1
43	2784375a	1		1	3	1	1	.	3	2
$\underline{49}$	$4561920 a$.		2	6	1	1	1	2	1
50	$4809375 a$		1	3	5	1	1	1	3	1
	($\begin{gathered}1^{G} \text { in } \mathcal{P} S^{\prime \prime \prime} \\ \left(1^{-}\right)^{G} \text { in } \mathcal{P} S^{\prime \prime \prime}\end{gathered}$	2 1	1				1			

38 , where $\Psi_{i}^{\prime \prime \prime}=\Psi_{i}^{\prime \prime}$, for $i \in\{3,4,6,7\}$.
(19.3) Let $H^{\prime}<H$ be the unique subgroup of index 2 . We apply the technique described in Section (10.3) to $\Omega:=H^{\prime} \mid G$ and $U:=H^{\prime}$, yielding the action of $\epsilon^{\prime} \mathbb{F}_{3} G \epsilon^{\prime}$ on $\mathbb{F}_{3} \Omega^{\prime} \epsilon^{\prime}$, where $\epsilon^{\prime} \in \mathbb{F}_{3} H^{\prime} \subseteq \mathbb{F}_{3} G$ is the centrally primitive idempotent belonging to $1_{H^{\prime}}$. Using the decomposition of $1_{H^{\prime}}^{G}=1^{G}+\left(1^{-}\right)^{G}$ into $\operatorname{Irr}_{K}(G)$ shown in Table 37 , we obtain $\left\langle 1_{H^{\prime}}^{G}, 1_{H^{\prime}}^{G}\right\rangle_{G}=460$, as well as $\left\langle 1_{H^{\prime}}^{G} \cdot \epsilon_{B_{1}}, 1_{H^{\prime}}^{G}\right\rangle_{G}=250$ and $\left\langle 1_{H^{\prime}}^{G} \cdot \epsilon_{B_{2}}, 1_{H^{\prime}}^{G}\right\rangle_{G}=102$ and $\left\langle 1_{H^{\prime}}^{G} \cdot \epsilon_{B_{3}}, 1_{H^{\prime}}^{G}\right\rangle_{G}=8$.
We choose as V one of the absolutely irreducible $\mathbb{F}_{9} G$-modules of \mathbb{F}_{9}-dimension 133 ; it is the 3 -modular reduction of an absolutely irreducible $\mathbb{Q}(\sqrt{5}) G$-module. Representing matrices for the action of a set of standard generators of G on V are available in [83]. A generating set of H^{\prime} as words in the generating set of H is found by a standard application of the MeatAxe. Using this we find $V_{H^{\prime}} \cong 1 a \oplus 32 a \oplus 100 a$ as $\mathbb{F}_{9} H^{\prime}$-modules, where the constituents are absolutely irreducible $\mathbb{F}_{9} H^{\prime}$-modules of the respective dimensions. Furthermore, all the $\mathbb{F}_{9} H^{\prime}$-submodules of $V_{H^{\prime}}$ are invariant under the action of H on V, where $1 a$ extends to a linear \mathbb{F}_{9}-representation of $\mathbb{F}_{9} H$ of order 2 . Hence choosing $0 \neq$ $v \in 1 a \leq V_{H^{\prime}}$ we obtain that Ω^{\prime} is as a G-set isomorphic to the G-orbit \cong $v \cdot G \subset V$. Furthermore, by a random search, we choose $5^{2}: D_{8} \cong U_{1} \leq H^{\prime}$. A standard MeatAxe technique yields an epimorphic image V_{1} of the semisimple $\mathbb{F}_{9} U_{1}$-module $V_{U^{\prime}}$ of \mathbb{F}_{9}-dimension 4.

Proceeding as in Section (19.2), we find the constituents of the $\epsilon^{\prime} \mathbb{F}_{3} G \epsilon^{\prime}$-module $\mathbb{F}_{3} \Omega^{\prime} \epsilon^{\prime}$, their multiplicities and the \mathbb{F}_{3}-dimensions of the endomorphism algebras of the simple $\epsilon^{\prime} \mathbb{F}_{3} G \epsilon^{\prime}$-modules as follows.

$1 a$	$1 b$	$1 c$	$1 d$	$1 e$	$1 f$	$2 a$	$2 b$	$2 c$	$2 d$	$2 e$	$3 a$	$4 a$	$4 b$	$6 a$	$6 b$
17	10	10	1	74	1	1	4	7	42	46	17	2	4	6	6
1	1	1	1	1	1	2	1	1	2	1	1	2	1	1	1

Using Table 37, and proceeding as in Section (19.2), we conclude that the constituents $\{1 d, 1 f, 2 a, 4 a, 4 b, 6 a, 6 b\}$ correspond to the irreducible ordinary characters of defect 0 occurring in $1_{H^{\prime}}^{G}$. Furthermore, the B_{3}-component of the $\mathbb{F}_{3} G$ module $1_{H^{\prime}}^{G}$ is the direct sum $P \oplus P$, where P is the projective indecomposable $\mathbb{F}_{3} G$-module as in Section (19.2). Hence $2 b$ corresponds to P. As all irreducible ordinary characters in $\operatorname{Irr}_{K}\left(B_{2}\right)$ are rational-valued, we conclude that \mathbb{F}_{3} is the character field of all irreducible characters in $\operatorname{Irr}_{F}\left(B_{2}\right)$, hence \mathbb{F}_{3} is a splitting field for all simple $F G$-modules affording a character in $\operatorname{Irr}_{F}\left(B_{2}\right)$. From this and Table 38 we conclude that all projective indecomposable $\epsilon^{\prime} \mathbb{F}_{3} G \epsilon^{\prime}$-submodules of $\mathbb{F}_{3} \Omega^{\prime} \epsilon^{\prime} \cdot \epsilon_{B_{2}}$ have an \mathbb{F}_{3}-dimension at most 17. Hence $\{1 a, 1 b, 1 c, 2 c, 3 a\}$ are the constituents of $\mathbb{F}_{3} \Omega^{\prime} \epsilon^{\prime}$ corresponding to projective indecomposable $\mathbb{F}_{3} G$ summands of $1_{H^{\prime}}^{G} \cdot \epsilon_{B_{2}}$.
We have already shown that the characters $\Psi_{1}^{\prime \prime \prime}$ and $\Psi_{2}^{\prime \prime \prime}$ as well as $\Psi_{5}^{\prime \prime \prime}$ and $\Psi_{7}^{\prime \prime \prime}$ are projective indecomposable, see Table 38 . As $\left\langle\Psi_{1}^{\prime \prime \prime}, 1_{H^{\prime}}^{G}\right\rangle_{G}=17$ and $\left\langle\Psi_{2}^{\prime \prime \prime}, 1_{H^{\prime}}^{G}\right\rangle_{G}=10$ as well as $\left\langle\Psi_{5}^{\prime \prime \prime}, 1_{H^{\prime}}^{G}\right\rangle_{G}=17$ and $\left\langle\Psi_{6}^{\prime \prime \prime}, 1_{H^{\prime}}^{G}\right\rangle_{G}=17$, while $\left\langle\Psi_{7}^{\prime \prime \prime}, 1_{H^{\prime}}^{G}\right\rangle_{G}=7$, we conclude that $3 a$ corresponds to a projective indecomposable $\mathbb{F}_{3} G$-module affording $\Psi_{1}^{\prime \prime \prime}$, one of $\{1 b, 1 c\}$ corresponds to $\Psi_{2}^{\prime \prime \prime}$, while $1 a$ corresponds to $\Psi_{5}^{\prime \prime \prime}$, and $2 c$ corresponds to $\Psi_{7}^{\prime \prime \prime}$. Hence we conclude that $\Psi_{6}^{\prime \prime \prime \prime}:=\Psi_{6}^{\prime \prime \prime}-\Psi_{7}^{\prime \prime \prime}$ is a projective indecomposable character, being afforded by a projective indecomposable $\mathbb{F}_{3} G$-module corresponding to the other one of $\{1 b, 1 c\}$.
Note that we could determine which of $\{1 b, 1 c\}$ corresponds to $\Psi_{2}^{\prime \prime \prime}$ and which to $\Psi_{6}^{\prime \prime \prime \prime}$ by an analysis of the submodule structure of the $\epsilon^{\prime} \mathbb{F}_{3} G \epsilon^{\prime}$-modules $\mathbb{F}_{3} \Omega^{\prime} \epsilon^{\prime}$, using the algorithms to compute submodule lattices described in [47] available in the MeatAxe. Anyway, we obtain the basic set $\mathcal{P} S^{\prime \prime \prime \prime}$ of projective characters as shown in Table 39 , where $\Psi_{i}^{\prime \prime \prime \prime}=\Psi_{i}^{\prime \prime \prime}$, for $i \in\{1,2,3,4,5,7\}$.

Hence for block B_{2} it remains to find the projective indecomposable summands of $\Psi_{3}^{\prime \prime \prime \prime}$ and $\Psi_{4}^{\prime \prime \prime \prime}$. This requires different tools as well and will be done elsewhere, together with an analysis of the principal block $B_{1}[31]$.

IV References

[1] M. Auslander, I. Reiten, S. Smalø: Representation theory of Artin algebras, Cambridge studies in advanced mathematics 36, Cambridge Univ. Press, 1995.
[2] E. Bannai, T. Ito: Algebraic combinatorics I: Association schemes, Benjamin, 1984.

Table 39: Basic set $\mathcal{P} S^{\prime \prime \prime \prime}$ of projective characters in B_{2}.

i	χ_{i}	$\Psi_{1}^{\prime \prime \prime \prime}$	$\Psi_{2}^{\prime \prime \prime \prime}$	$\Psi_{3}^{\prime \prime \prime \prime}$	$\Psi_{4}^{\prime \prime \prime \prime}$	$\Psi_{5}^{\prime \prime \prime \prime}$	$\Psi_{6}^{\prime \prime \prime \prime}$	$\Psi_{7}^{\prime \prime \prime \prime}$
$\underline{8}$	8910a	1						
10	16929a	.	1					
$\underline{19}$	270864a			1				
$\underline{32}$	1185030a	1	1	.	1	1		
$\underline{33}$	1354320a	1	.	.	2	.	1	
$\underline{37}$	1575936a			1	1		1	
43	2784375a	1		1	3	1	1	
$\underline{49}$	4561920a			2	6	1		1
50	4809375a		1	3	5	1		1

[3] D. Benson: Representations and cohomology I, Cambridge studies in advanced mathematics 30, Cambridge Univ. Press, 1983.
[4] N. Biggs: Algebraic graph theory, Cambridge Univ. Press, 1974.
[5] T. Brever: Multiplicity-free permutation characters in GAP, part 2, Preprint, 2003.
[6] T. Breuer, K. Lux: The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra 24, 1996, 2293-2316.
[7] T. Breuer, J. MüLler: The character tables of endomorphism rings of multiplicity-free permutation modules of the sporadic simple groups, their automorphism groups, and their cyclic central extension groups, http://www.math.rwth-aachen.de/~Juergen.Mueller/mferctbl/mferctbl.html.
[8] A. Brouwer, A. Cohen, A. Neumaier: Distance-regular graphs, Springer, 1989.
[9] A. Brouwer, J. van Lint: Strongly regular graphs and partial geometries, in: D. Jackson, S. Vanstone (eds.): Enumeration and design, Waterloo, 1982, 85-122, Academic Press, 1984.
[10] M. Cabanes: A criterion for complete reducibility and some applications, Astérisque 181-182, 1990, 93-112.
[11] R. Carter: Simple groups of Lie type, Wiley, 1989.
[12] H. Cohen: A course in computational algebraic number theory, Springer, 1993.
[13] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson: Atlas of finite groups, Clarendon Press, 1985.
[14] C. Curtis, I. Reiner: Representation theory of finite groups and associative algebras, Wiley, 1962.
[15] C. Curtis, I. Reiner: Methods of representation theory I, Wiley, 1981.
[16] C. Curtis, I. Reiner: Methods of representation theory II, Wiley, 1987.
[17] J. Dixon: High speed computations of group characters, Numer. Math. 10, 1967, 446-450.
[18] W. Feit: The representation theory of finite groups, North-Holland, 1982.
[19] P. Fleischmann: Projective simple modules of symmetric algebras and their specializations with application to Hecke algebras, Arch. Math. 55, 1990, 247-258.
[20] J. Frame: The degrees of the irreducible components of simply transitive permutation groups, Duke Math. J. 3, 1937, 8-17.
[21] J. Frame: The double cosets of a finite group, Bull. Amer. Math. Soc. 47, 1941, 458-467.
[22] The GAP Group: GAP - Groups, Algorithms, and Programming, Version 4.2, Aachen, St. Andrews, 2000,
http://www-gap.dcs.st-and.ac.uk/gap/.
[23] M.Geck: Beiträge zur Darstellungstheorie von Iwahori-Hecke-Algebren, Habilitationsschrift, RWTH Aachen, 1994.
[24] C. Godsil, G. Royle: Algebraic graph theory, Springer, 2001.
[25] J. Green: Polynomial representations of $G L_{n}$, Lecture Notes in Mathematics 830, Springer, 1980.
[26] A. Henke, G. Hiss, J. Müller: The 7-modular decomposition matrices of the sporadic O'Nan group, J. London Math. Soc. (2) 60, 1999, 58-70.
[27] D. Higman: Coherent configuration I: Ordinary representation theory, Geom. Dedicata 4, 1975, 1-32.
[28] D. Higman: Coherent configuration II: Weights, Geom. Dedicata 5, 1976, 413-424.
[29] D. Higman: A monomial character of Fischer's Baby Monster, in: F. Gross, W. Scott (eds.): Proc. of the conference on finite groups, 277283, Academic Press, 1976.
[30] G. Hiss, C. Jansen, K. Lux, R. Parker: Computational modular character theory, Preprint, http://www.math.rwth-aachen.de/LDfM/homes/MOC/CoMoChaT/.
[31] G. Hiss, J. MüLler: Unpublished.
[32] I. HöHLER: Vielfachheitsfreie Permutationsdarstellungen und die Invarianten zugehöriger Graphen, Examensarbeit, RWTH Aachen, 2001.
[33] X. Hubaut: Strongly regular graphs, Discrete Math. 13, 1975, 357-381.
[34] A. Ivanov, S. Linton, K. Lux, J. Saxl, L. Soicher: Distancetransitive representations of the sporadic groups, Comm. Algebra 23, 1995, 3379-3427.
[35] A. Ivanov, U. Meierfrankenfeld: A computer-free construction of J_{4}, J. Algebra 219, 1999, 113-172.
[36] B. Iversen: Cohomology of sheaves, Springer, 1986.
[37] C. Jansen, K. Lux, R. Parker, R. Wilson: An atlas of Brauer characters, Clarendon Press, 1995.
[38] C. Jansen, J. Müller: The 3-modular decomposition numbers of the sporadic simple Suzuki group, Comm. Algebra 25 (8), 1997, 2437-2458.
[39] P. Landrock: Finite group algebras and their modules, London Mathematical Society Lecture Note Series 84, Cambridge Univ. Press, 1983.
[40] W. Lempken, B. Schröder, P. Tiep: Symmetric squares, spherical designs, and lattice minima, J. Algebra 240, 2001, 185-208.
[41] S. Linton: Private communication.
[42] S. Linton, K. Lux, L. Soicher: The primitive distance-transitive representations of the Fischer groups, Experiment. Math. 4, 1995, 235-253.
[43] S. Linton, Z. Mpono: Multiplicity-free permutation characters of covering groups of sporadic simple groups, Preprint, 2001.
[44] A. Lubotzky: Discrete groups, expanding graphs and invariant measures, Birkhäuser, 1994.
[45] F. LÜbeck, M. Neunhöffer: Enumerating large orbits and direct condensation, Experiment. Math. 10, 2001, 197-205.
[46] K. Lux: Algorithmic methods in modular representation theory, Habilitationsschrift, RWTH Aachen, 1997.
[47] K. Lux, J. Müller, M. Ringe: Peakword condensation and submodule lattices: an application of the MeatAxe, J. Symb. Comput. 17, 1994, 529544.
[48] K. Lux, M. Wiegelmann: Condensing tensor product modules, in: The atlas of finite groups: ten years on, Birmingham, 1995, 174-190, London Math. Soc. Lecture Note Ser. 249, Cambridge Univ. Press, 1998.
[49] K. Lux, M. Wiegelmann: Determination of socle series using the condensation method, in: Computational algebra and number theory, Milwaukee, 1996, J. Symb. Comput. 31, 2001, 163-178.
[50] D. Marcus: Number fields, Springer, 1987.
[51] V. Mazurov, N. Mazurova: Minimal permutation representation of the Thompson group (in Russian), in: Topics in Algebra 4, Minsk, 1989, 115123.
[52] J. MÜLLER: 5-modulare Zerlegungszahlen für die sporadische einfache Gruppe Co_{3}, Diplomarbeit, RWTH Aachen, 1991.
[53] J. MüLLER: Zerlegungszahlen für generische Iwahori-Hecke-Algebren von exzeptionellem Typ, Dissertation, RWTH Aachen, 1995.
[54] J. MÜLLER: Enumerating ultra-long orbits, in preparation.
[55] J. MüLler: Design and use of an IntegralMeatAxe package in GAP, in preparation.
[56] J. Müller, M. Neunhöffer: Unpublished.
[57] J. Müller, M. Neunhöffer, F. Röhr, R. Wilson: Completing the Brauer trees for the sporadic simple Lyons group, LMS J. Comput. Math. 5, 2002, 18-33.
[58] J. MÜller, M. Ringe: Unpublished.
[59] J. Müller, J. Rosenboom: Condensation of induced representations and an application: the 2-modular decomposition numbers of Co_{2}, in: Proc. of the Euroconference on computational methods for representations of groups and algebras, Essen, 1997, 309-321, Progr. Math. 173, Birkhäuser, 1999.
[60] R. Musil: Der Mann ohne Eigenschaften, Roman, 2 Bde., Rowohlt, 1981.
[61] G. Nebe: Private communication.
[62] G. Nebe, N. Sloane: A catalogue of lattices, http://www.research.att.com/~njas/lattices/.
[63] S. Norton: F and other simple groups, Ph.D. Thesis, Univ. of Cambridge, 1975.
[64] S. Norton: The uniqueness of the Fischer-Griess Monster, Contemp. Math. 45, 1985, 271-285.
[65] M. Ottensmann: Vervollständigung der Brauerbäume von 3.ON in Charakteristik 11, 19 und 31 mit Methoden der Kondensation, Diplomarbeit, RWTH Aachen, 2000.
[66] R. Parker: An integral meataxe, in: The atlas of finite groups: ten years on, Birmingham, 1995, 215-228, London Math. Soc. Lecture Note Ser. 249, Cambridge Univ. Press, 1998.
[67] R. Parker, R. Wilson: Private communication.
[68] C. Praeger, L. Soicher: Low rank representations and graphs for sporadic groups, Cambridge Univ. Press, 1997.
[69] M. Ringe: The C-MeatAxe, Version 2.4, Manual, RWTH Aachen, 2000.
[70] F. RÖHR: Die Brauer-Charaktere der sporadisch einfachen RudvalisGruppe in den Charakteristiken 13 und 29, Diplomarbeit, RWTH Aachen, 2000.
[71] G. Schneider: Dixon's character table algorithm revisited, J. Symbolic Comput. 9, 1990, 601-606.
[72] I. Schur: Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte der Preußischen Akademie der Wissenschaften, 1933, 598623.
[73] L. Scott: Some properties of character products, J. Algebra 45, 1977, 259-265.
[74] M. SzŐKE: Examining Green correspondents of simple modules, Dissertation, RWTH Aachen, 1998.
[75] O. Tamaschke: Schur-Ringe, BI Hochschulskripten 735, 1970.
[76] A. Terras: Fourier analysis on finite groups and applications, London Mathematical Society Student Texts 43, Cambridge Univ. Press, 1999.
[77] J. Thackray: Modular representations of some finite groups, Ph.D. Thesis, Univ. of Cambridge, 1981.
[78] J. Thackray: Private communication.
[79] M. Wiegelmann: Fixpunktkondensation von Tensorproduktmoduln, Diplomarbeit, RWTH Aachen, 1994.
[80] H. Wielandt: Finite permutation groups, Academic Press, 1964.
[81] R. Wilson: Standard generators for sporadic simple groups, J. Algebra 184, 1996, 505-515.
[82] R. Wilson: Private communication.
[83] R. Wilson et al.: Atlas of finite group representations, http://www.mat.bham.ac.uk/atlas/.

