
PEAKWORD CONDENSATION AND SUBMODULE LATTICES:
AN APPLICATION OF THE MEAT-AXE

KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

Abstract. We describe a new condensation method for computing the sub-

module lattice of a module for a finite dimensional algebra over a finite field,

which exploits the idea of condensation and extends it to the case of primitive
idempotents. The method has been implemented in the new C version of the

Meat-Axe developed at Aachen, and we give several examples which have
been analysed with our method.

Introduction

In this note we describe a new method for computing the submodule lattice of a
module for a finite dimensional algebra over a finite field. We felt the need for such
an algorithm while working on the problem of determining decomposition numbers
for finite sporadic simple groups. Our plan was to analyze permutation modules for
these groups along the lines of [14]. One of the major tasks was to acquire a detailed
knowledge of the submodule structure of these modules. Thus we asked ourselves
whether it might be possible to use the idea of condensation, see [14], to compute
submodule lattices. Since the dimension of a module is reduced considerably under
condensation, it is much easier to analyze the condensed module than the original
one. This approach is completely different from the one described in [15], which is
based on the computation of endomorphism rings.

We make use of a theorem of D. Benson and J. Conway, which shows how to
find the whole submodule lattice given enough information about the incidence
structure of the set of join-irreducible elements, see Section 1. In fact, we are able
to prove a version of the Benson-Conway Theorem requiring weaker assumptions.
No matrix operations are involved in applying the Benson-Conway Theorem. We
will show that the set of all join-irreducible elements of the submodule lattice can
be put into bijection with sets of submodules of a set of condensed modules, see
Section 2. This is the point where condensation comes into play.

If V is an A-module for some algebra A and e is an idempotent, then the connec-
tions between the submodule structures of the condensed module V e, which is an
eAe-module, and the A-module V are well-known. This dates back at least to [6].
In theory, it would be best to take e as a sum of pairwise orthogonal idempotents
such that there is a bijection between the summands and the set of isomorphism
types of irreducible A-modules. But it turns out that it is far more practical to use
a set of not necessarily orthogonal primitive idempotents, one for each irreducible
A-module. We will show how to exploit Meat-Axe techniques to compute the
action of eAe on V e, provided the primitive idempotent e is suitably chosen. The
choice we make is described in Section 3.

1991 Mathematics Subject Classification. 06C05, 15-04, 16G10, 20C40.

1

2 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

In Section 4 we present an algorithmic description of our method showing which
matrix operations are involved. The reader who is familiar with the Meat-Axe,
see [12], will readily recognize that all the steps can be done by standard Meat-

Axe programs. Our method has been implemented by one of us (Ringe) in the
new C version of the Meat-Axe, see [13], developed at Aachen. Of course, the C

Meat-Axe and the lattice package are available on request, our e-mail addresses
are given at the end of this note. The programs are also contained in the shared
library of the Aachen computer algebra system GAP, see [17].

Our aim in designing the programs was to automize the process as much as
possible. Given a module V , i. e., a finite set of matrices acting on their standard
row vector space, the first step of our method is to compute a list of all constituents
of the given module and their multiplicities. This has always been the standard task
for the Meat-Axe; now there is a single program which performs this task. Our
method then provides an efficient way to use the Meat-Axe to obtain a complete
overview on the module structure. Next, the programs compute a list of all join-
irreducible submodules of V and the incidences between them. This information
is used to compute a list of all submodules, the incidences between them, and the
isomorphism types of the irreducible subquotients. Furthermore the radical and
socle series as lists of submodules and a lattice-direct decomposition, if one exists,
are computed. Further details of the implementation are given in Section 5.

We conclude this note with a few examples which have been examined using our
method, see Section 6. We hope these are suitable to show that it is possible to
use our method to obtain valuable information in several areas of computational
representation theory.

Throughout the following text let F be a field and A be a finite-dimensional
algebra over F . Every module considered in the sequel will be a unital right mod-
ule of finite dimension unless something else is explicitly stated. For the theory
developed in Sections 1, 2, and 3 no finiteness condition on F is necessary. As soon
as we are going to describe the algorithm in detail, i. e., from Section 4 on, we will
assume F to be finite.

Acknowledgements

We wish to thank Lehrstuhl D für Mathematik at the RWTH Aachen for pro-
viding the necessary computer environment without which we would not have been
able to develop and test our ideas. We also want to thank the Deutsche Forschungs-
gemeinschaft for financial support granted in the framework of the joint research
project ‘Algorithmic Number Theory and Algebra’.

1. The Benson-Conway Theorem

In this section we collect the necessary facts from lattice theory. Since we are
interested in submodule lattices, they are stated in terms of submodules of a given
module. The notions from lattice theory, which are used here without further
explanation, can be found in [1].

1.1. Notation: Let V be an A-module and S be a constituent of V . Then the set
of submodules of V defines a modular lattice of finite length M = M(V) whose
partial ordering ≤ is given by the natural set theoretic inclusion. LS denotes the
set of all submodules W ≤ V such that W/Rad(W) ∼= S as A-modules. In the

PEAKWORD CONDENSATION 3

sequel the elements of LS will be called local submodules with respect to S. The
union of the LS for all the constituents of V is denoted by L. Hence this is the
set of all join-irreducible elements of M. Similarly, LS⊕S denotes the set of all
submodules W ≤ V such that W/Rad(W) ∼= S ⊕ S as A-modules. This is exactly
the set of submodules which can be written as the sum of two different elements of
LS . Finally, MS denotes the set of all submodules W ≤ V such that W/Rad(W)
has S as its only constituent. MS becomes a lattice by restriction of the partial
ordering.

We are now going to state the Benson-Conway Theorem, which shows how to
rebuild a given modular lattice from the incidence structure of the subset L. The
notions used here are taken from [2].

1.2. Definition: A subset D of L is called a dotted-line, if it contains at least three
elements and is maximal subject to the following property: For all pairs X,Y of
different elements of D the equality X + Y =

∑
D holds.

1.3. Remark: If X, Y are elements of the dotted-line D, then neither of X, Y
is contained in the other. Furthermore, there exists a constituent S such that
X,Y ∈ LS . This means that

∑
D ∈ LS⊕S . Conversely, for each submodule

W ∈ LS⊕S there exists a dotted-line D, such that W =
∑
D. Finally, there is a

bijection from the elements of D to the set of maximal submodules of
∑
D. If F is

finite, we therefore have |D| = |F |[ES :F] + 1, where ES denotes the endomorphism
ring of the A-module S and | · | denotes the cardinality of a set.

1.4. Definition: Let M(L) be the set of all subsets X of L with the following
properties:
a) For each X ∈ X , Y ∈ L, Y ≤ X we have Y ∈ X .
b) For each dotted-line D and two different submodules X,Y ∈ D ∩ X we have
D ⊆ X .

1.5. Benson-Conway Theorem: M(L) is a lattice with respect to the natural
partial ordering on the set of all subsets of L, and the mapping τ : M→M(L) :
X 7→ {Y ∈ L;Y ≤ X} is an isomorphism of lattices. Its inverse is given by
τ−1 :M(L)→M : X 7→

∑
X .

Proof: See [2], Main Theorem.

1.6. Corollary: Let M(LS) be the subset of M(L) consisting of elements of LS .
Then the mapping σ :MS →M(LS) : X 7→ {Y ∈ LS ;Y ≤ X} is an isomorphism
of lattices. Its inverse is given by σ−1 :M(LS)→MS : X 7→

∑
X .

As it turns out, not all of the sometimes numerous dotted-lines which can be found
in the lattice have to be used to find all submodules. The next theorem shows how
to choose a suitable subset of dotted-lines which still suffices to reconstruct the
whole submodule lattice, thereby reducing the number of dotted-lines which have
to be computed explicitly for a given module and shortening the computations to
find M(L).

4 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

1.7. Theorem: For all constituents S and all submodules Z ∈ LS⊕S let a dotted-
line DZ be given, such that

∑
DZ = Z. Let ∆ be the set of these dotted-lines.

Then M(L) is the set of all subsets X of L which fulfill the following conditions:
a) For each X ∈ X , Y ∈ L, Y ≤ X we have Y ∈ X .
b) For each dotted-line D ∈ ∆ and two different submodules X,Y ∈ D∩X we have
D ⊆ X .

Proof: The existence of such a dotted-line DZ for each Z ∈ LS⊕S is assured by
Remark 1.3. Now let X be a subset of L fulfilling the conditions given in the
statement. We show X ∈ M(L) by induction on the composition length of

∑
X ,

the assertion being true if
∑
X has length one or two.

Let X1, X2 ∈ X such that X1 + X2 = X ∈ LS⊕S . Then we have Rad(X) =
Rad(X1) + Rad(X2). Let XRad := {Y ∈ X ;Y ≤ Rad(X)}. Then

∑
XRad =

Rad(X) and XRad also fulfills the conditions of the theorem. Hence we have
XRad ∈M(L), by induction.

Now we consider the maximal submodules Y1 := X1 + Rad(X) and Y2 := X2 +
Rad(X) of X. Again, the sets X1 := {Y ∈ X ;Y ≤ Y1} and X2 := {Y ∈ X ;Y ≤ Y2}
fulfill the conditions of the theorem and we have

∑
X1 = Y1,

∑
X2 = Y2, and

X1,X2 ∈M(L), by induction.
Now let Z1, Z2 ∈ DX ∈ ∆ such that Z1 ≤ Y1 and Z2 ≤ Y2. It follows that

Z1, Z2 ∈ X , hence DX ⊆ X .
Finally, let L ≤ X be an arbitrary local submodule. Then there is a maximal

submodule M of X such that L ≤ M . Letting XM := {Y ∈ X ;Y ≤ M}, we
conclude that

∑
XM = M and XM ∈M(L), also by induction. This shows L ∈ X

and completes the proof.

We conclude this section with a remark, which shows how to use Theorem 1.5
to decompose the submodule lattice of V as a direct sum of lattices, thereby re-
ducing the computation of the whole submodule lattice to the computation of the
submodule lattices of the direct summands.

1.8. Remark: A subset L1 of L is called a Benson-Conway block, if L1 and its
complement L2 := L \ L1 are elements of M(L). Then the submodules which
correspond to L1 and L2 via Theorem 1.5 are direct summands of V , and each
submodule U of V has a unique representation U = U1⊕U2 where U1 ≤

∑
L1 and

U2 ≤
∑
L2.

2. Condensation with Primitive Idempotents

In Section 1 we have shown how to use the subsetsMS and LS ofM to find the
whole submodule lattice of V . The first aim of this section is, given an S-primitive
idempotent e ∈ A, i. e., a primitive idempotent, such that (eA)/Rad(eA) ∼= S
as A-modules, to obtain a canonical correspondence from the subset MS(V) of
A-submodules of V to the set M(V e) of all eAe-submodules of V e.

2.1. Lemma: Let e ∈ A be an arbitrary idempotent.
a) Let W be an A-submodule of V . Then We is an eAe-submodule of V e and we
have (V/W)e ∼= V e/We as eAe-modules. Conversely, let W̃ be an eAe-submodule
of V e. Then W := W̃ ·A is an A-submodule of V , such that We = W̃ .
b) If S is an irreducible A-module, then either Se = {0} or Se is an irreducible
eAe-module.

PEAKWORD CONDENSATION 5

Proof: See [6].

2.2. Lemma: Let e ∈ A be an S-primitive idempotent and W̃ be an eAe-module.
Furthermore let W := W̃ ⊗eAe eA. Then W/Rad(W) has S as its only constituent.

Proof: Let T be an irreducible A-module. Since eA is an eAe-A-bimodule, us-
ing the Adjointness Theorem [3], Theorem 2.19, and the eAe-module isomorphism
HomA(eA, T) ∼= Te gives HomeAe(Ṽ , T e) ∼= HomA(Ṽ ⊗eAe eA, T) as additive
groups.

2.3. Theorem: Let e ∈ A be an S-primitive idempotent. Then the mapping κ :
MS(V)→M(V e) : W 7→We is an isomorphism of lattices. Its inverse is given by
κ−1 :M(V e)→MS(V) : W̃ 7→ W̃ ·A.

Proof: Clearly W̃ ·A is an epimorphic image of W̃ ⊗eAe eA. So using Lemmas 2.1
and 2.2, κ and κ−1 are well-defined and κ ◦ κ−1 = id. Finally κ is clearly injective,
since for all W1,W2 ∈MS(V), W1 6= W2 either (W1 +W2)/W1 or (W1 +W2)/W2

has S as a constituent.

The second aim of this section is to give a characterization of the submodules
LS(V) of V and L(V e) of V e. For an irreducible A-module S let again ES denote
its endomorphism ring, which is a finite skew field extension of F . Let E∗S denote
its multiplicative group.

2.4. Theorem: Let e ∈ A be an idempotent, such that (eA)/Rad(eA) has S as its
only constituent.
a) [ES : F] divides dimF (Se). Equality holds, if and only if e is S-primitive.
b) If e is S-primitive, then E∗S acts transitively on Se \ {0}.

Proof: a) Let e =
∑r
i=1 ei be an orthogonal decomposition of e into S-primitive

idempotents. Then we have the following isomorphisms of F -vector spaces:

Se ∼= HomA(eA, S) ∼= ⊕ri=1HomA(eiA,S) ∼= ⊕ri=1ES .

Hence dimF (Se) = r · [ES : F].
b) Se can be regarded as a one-dimensional ES-vector space.

2.5. Theorem: Let e ∈ A be an S-primitive idempotent.
a) L(V e) is the set of eAe-submodules of V e which are of the form v · eAe for some
v ∈ V e \ {0}.
b) LS(V) is the set of A-submodules of V which are of the form v · A for some
v ∈ V e \ {0}.

Proof: a) Let W̃ := v·eAe. Choose a direct sum decomposition of W̃/Rad(W̃) into
irreducible summands and take the corresponding decomposition of v + Rad(W̃).
Then the assertion follows immediately using Theorem 2.4.
b) Let W ∈ LS(V). Take some v ∈ We \ Rad(W)e. Suppose vA ≤ Rad(W).
Then we have v ∈ vAe ≤ Rad(W)e, a contradiction. Now let W := v · A for some
v ∈ V e \ {0}. Then We ∈ L(V e) and W = We ·A ∈ LS(V) by Theorem 2.3.

We conclude this section by a short digression giving a generalisation of a theorem
due to R. Dilworth, see [4]. For a right A-module V , let V ∗ denote its dual, which is
a left A-module. Then the Dilworth Theorem states that the sets L(V) and L(V ∗)
have the same cardinality |L(V)| = |L(V ∗)|.

6 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

2.6. Theorem: Let V be an A-module and V ∗ be its dual. Furthermore, let S be
a constituent of V with dual module S∗. Then |LS(V)| = |LS∗(V ∗)|.

Proof: Let e ∈ A be an S-primitive idempotent. Then we have (V e)∗ ∼= eV ∗ as left
A-modules. By Corollary 1.6 we have |LS(V)| = |L(V e)| and |LS∗(V ∗)| = |L(eV ∗)|.
Finally, by the Dilworth Theorem, we have |L(V e)| = |L((V e)∗)| = |L(eV ∗)|.

3. Peakwords

It is clear that it would be very difficult to compute primitive idempotents ex-
plicitly. But this is in fact not necessary. It is sufficient to know the action of the
idempotent on V . We are now going to define a certain projection on V , which
later will be shown to be the action of a corresponding primitive idempotent.

For an A-module V let %V : A → EndF (V) : a 7→ aV be the corresponding
representation. For a ∈ A there exists N ∈ IN such that

{0} ≤ Ker(aV) < Ker(a2
V) < . . . < Ker(aNV) = Ker(aN+1

V).

This gives rise to the Fitting decomposition V = Ker(aNV)⊕Im(aNV) as vector spaces.
So the Fitting projection from V onto Ker(aNV) with respect to the complement
Im(aNV) is well-defined in EndF (V).

3.1. Theorem: Let V be a faithful A-module and a ∈ A. Then there exists an
element e ∈ A which induces the Fitting projection on V with respect to a. Fur-
thermore, e is uniquely determined and an idempotent.

Proof: Let N be as above, K := Ker(aNV), and I := Im(aNV). Furthermore, let
mK ,mI ∈ F [t] denote the minimum polynomials of aV on K and I. Then mK = tN

and there are P,Q ∈ F [t] such that 1 = P · mI + Q · mK ∈ F [t]. Now define
e := P (a) ·mI(a) ∈ A.

The main aim of this section is to show that the idempotent e corresponding
to the Fitting projection with respect to an element a ∈ A is indeed a primitive
idempotent if a is suitably chosen as a so-called peakword, see Definition 3.4.

3.2. Theorem: Let V be a faithful A-module, a ∈ A, and e ∈ A the corresponding
idempotent. Let S be a constituent of V and S = Ker(anS) ⊕ Im(anS) its Fitting
decomposition with respect to a. Then we have Se = Ker(anS).

Proof: As in the proof of Theorem 3.1 above, let mk,mi ∈ F [t] denote the mini-
mum polynomials of aS on k := Ker(anS) and i := Im(anS). We have mk = tn. Since
S is a subquotient of V , mk divides mK and mi divides mI . Hence

1 = P · mI

mi
·mi +Q · mK

mk
·mk ∈ F [t].

Now Ker(anS) = S(P (a) · mImi (a) ·mi(a)) = S(P (a) ·mI(a)) = Se.

3.3. Theorem: Let ES be the endomorphism ring of the constituent S of V and
a ∈ A.
a) [ES : F] divides dimF (Ker(aS)).
b) If [ES : F] = dimF (Ker(aS)), then E∗S acts transitively on Ker(aS) \ {0}.

Proof: Analogously to the proof of Theorem 2.4.

PEAKWORD CONDENSATION 7

3.4. Definition: Let V be a faithful A-module and S be a constituent of V . An
element a ∈ A is called an S-peakword, if the following conditions are fulfilled:
a) Ker(aT) = {0} for all constituents T of V which are not isomorphic to S.
b) dimF (Ker(a2

S)) = [ES : F].

3.5. Remark: As is seen from Theorem 2.4 the second condition in the Definition
above means, that

{0} 6= Ker(aS) = Ker(a2
S) = Ker(a3

S) =

Hence the Fitting-decomposition of S with respect to aS is given by S = Ker(aS)⊕
Im(aS); so n = 1 in the notation of Theorem 3.2.

3.6. Theorem: The idempotent e ∈ A corresponding to an S-peakword a ∈ A is
S-primitive.

Proof: First of all let T be an arbitrary irreducible A-module and f ∈ A a T -
primitive idempotent. Then V f 6= {0}, hence T is a constituent of V . Now using
Theorems 3.2 and 3.3, we have dimF (Te) = 0 for all irreducible A-modules T
which are not isomorphic to S, and dimF (Se) = [ES : F], hence e is S-primitive by
Theorem 2.4.

3.7. Corollary: From the regularity condition on a given in Definition 3.4 follows
that (eA)/Rad(eA) has S as its only constituent. Provided the regularity condition
on a is fulfilled, then the dimension condition is also fulfilled if and only if E∗S acts
transitively on Ker(aS) \ {0}.

4. The Algorithm

In this section we write down the method as a list of steps and show which
matrix operations are involved. Details concerning the implementation of several
of the steps will be given in Section 5. From now on we assume the field F to be
finite.

Let S denote the standard basis of V := F 1×n and m(B, α, C) ∈ Fn×n denote
the matrix of the F -linear mapping α corresponding to the bases B and C, the
mapping being written on the right hand side. Let the matrix algebra A be given
as a finite set of algebra generators {m(S, ai,S)} ⊆ Fn×n. Then V is the canonical
A-module.

Algorithm:
• Input: {m(S, ai,S)} ⊆ Fn×n.
• For every constituent S of V compute its multiplicity k and a set of matrices
{m(S, (ai)S ,S)} ⊆ FnS×nS , see 5.1.
• For each constituent S do:

• Repeat:
• Find an element w ∈ A such that Ker(wT) = {0} for all con-

stituents T 6∼= S, and l := Ker(wS) = Ker(w2
S).

• Until E∗S acts transitively on Ker(wS)\{0}. Hence w is an S-peakword,
see 5.2.
• Compute N such that ker(wN) = ker(wN+1) and let C be a basis for

ker(wN) given by m(C,S) ∈ F lk×n, see 5.3.

8 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

• Choose a linear independent subset B ⊆ V , such that V = im(wN)⊕
< B >. Let π be the corresponding projection of V onto < B > and
m(S, π,B) ∈ Fn×lk be its matrix. Furthermore, let π̃ := π|ker(wN).

• Compute m(C, π̃,B) ∈ F lk×lk.
• Compute M := m(C, π̃,B)−1 ·m(C,S) = m(B, π̃−1,S) ∈ F lk×n.
• For all i do:

• Compute Ai := M ·m(S, ai,S) ·m(S, π,B) ∈ F lk×lk. If e ∈ A is
the idempotent corresponding to w, then eπ = π, and hence

Ai = m(B, π̃−1aiπ,B)
= m(B, π̃−1, C) ·m(C, eaie, C) ·m(C, π̃,B)
∼ m(C, eaie, C).

• Compute generating vectors m(V,B) ∈ F s×lk for the cyclic
< {Ai} >-submodules of F 1×lk. Warning: < {Ai} > is a subalgebra
of eAe, but not necessarily equal to eAe, see 5.4.
• Compute RS := m(V,B) · M = m(V, π̃−1,S) ∈ F s×n. Hence this

matrix contains a set of generating vectors for the S-local submodules
of V , see 5.5.
• Delete redundant vectors inRS and compute all dotted-lines consisting

of S-local submodules, see 5.6.
• Form the union of all the RS and compute the inclusions among the local

submodules of V , see 5.7.
• ComputeM(L) and the isomorphism types of all irreducible subquotients,

see 5.8.

5. Implementation

The algorithm described in the preceding section has been implemented as a set
of computer programs written in C. This package is a part of the new C version
of the Meat-Axe, see [13], which has been developed from R. Parker’s original
FORTRAN programs, see [12], at Aachen. The programs run on several Unix

workstations, i. e., DEC-Station 3000 and 5000 series, DEC Alpha, HP 9000/730,
Sun 3, and Sun 4, and on the IBM PC under both Linux and MS-DOS.

Many functions as the finite field arithmetic and basic matrix operations were
already available in the Meat-Axe and could be used in the lattice package with
no or only slight changes. Actually, they constitute the first two parts of a four
layer architecture:

• Low level functions for finite field arithmetics, elementary row operations
on matrices, and file input and output.
• More complex procedures like matrix multiplication, null space and spin-

up. Many of these operations correspond to Meat-Axe programs, so the
only change was to convert the standalone programs into functions which
can be called from other programs.
• Executable programs which perform one major step of the algorithm, e. g.,

calculation of composition series.
• A shell script which invokes all the programs automatically.

5.1. Chop: The first step is to calculate a composition series of the given module.
This job, called chopping, was usually done ‘by hand’ via using several separate

PEAKWORD CONDENSATION 9

Meat-Axe programs. Even though the procedure is relatively simple, it may
become very tedious in practice. Now there is one single program which performs
this task.

The action of the generators on the module must be supplied to the program
as a set of matrices in Meat-Axe format. During the chopping, the module is
recursively split into a submodule and a quotient using the standard Meat-Axe

methods. Internally, the result of this procedure is stored as a binary tree. The
root corresponds to the given module, internal nodes are reducible modules and the
leaves are the constituents.

In order to split a given module or to prove its irreducibility the algorithm needs
an element of the algebra with a non-trivial but low-dimensional kernel. Such el-
ements are searched for by taking linear combinations of certain products of the
generators and examining their nullity. Each linear combination calculated in this
way may be identified with a finite sequence of coefficients. Concatenating these
numbers and treating them as digits mod q, where q is the field order, yields a
canonical number which is used to identify the element. In order to avoid scalar
multiples only those numbers which have a ‘1’ as first digit in their base q repre-
sentation are considered.

An example may make this clearer. Let a, b and c be the generators of the
algebra. Algebra elements are then computed as linear combinations of 1, a, b, c,
a2, ab, ac, ba, b2, bc, ca, cb, c2, a3, a2b, a2c, aba, . . . If the field is GF(3), say, the
first elements are:

Number Algebra element
decimal in base 3

1 1 1
3 10 a
4 11 a+ 1
5 12 a+ 2
9 100 b

10 101 b+ 1
...

...
...

469 122101 ab+ 2a2 + 2c+ b+ 1
...

...
...

This numbering scheme is the same as used by the Meat-Axe program ZSM.
The main loop of the Chop program simply calculates algebra elements 1, 2,

3, . . . , and examines their kernels. If an element with non-trivial kernel is found,
the program tries to split the module; one vector of the kernel is taken and the
smallest submodule containing this vector is calculated. This may be a proper
submodule, and in this case the action of the generators on the submodule as well
as on the quotient are calculated and the same procedure is applied recursively to
both submodule and quotient.

Splitting the module again and again the program will eventually arrive at the
constituents. Norton’s criterion of irreducibility, see [12], is used to recognize this
situation. However, this requires an algebra element with a small kernel to be found,
because each vector in the kernel must be examined to see whether it generates the
whole module. What ‘small’ means exactly, depends on both the dimension and
the ground field. For this reason a ‘maximal admissible nullity’ m is maintained

10 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

by the program. Initially m is set to 3, but the user may choose a different value
at run-time. Any algebra element a with a kernel of a dimension not exceeding m
is used for the Norton test. If no algebra elements with small nullity appear m is
incremented up to a maximal value of m = 10. This strategy is rather simple, but
seems to be flexible enough in most cases.

Algebra elements with trivial kernel are useless for the algorithm, so an attempt
is made to avoid unnecessary computation of such elements. Once an element is
known to have a trivial kernel on a given module M , the program will mark it as
invertible and ignore it for all constituents of M . Internally this is done by keeping
at each node a list of invertible algebra elements identified by their number. The
Chop algorithm can then trace back through the parent nodes and find out which
numbers, i. e., elements, may be ignored.

5.2. Peakwords: The next step is to calculate a peakword for each of the con-
stituents. This is done by searching through the elements of the algebra using the
same ordering as in the Chop program.

If a constituent S is irreducible but not absolutely irreducible, the nullity of
any element in the algebra will be a multiple of [ES : F], where F is the ground
field and ES the splitting field of S, see Theorem 3.3. This situation is recognized
by calculating the greatest common divisor of all nullities which occur during the
search. If the number of nullities is sufficiently high, 50 say, the calculated greatest
common divisor is very likely to coincide with [ES : F].

To check this, we make use of Corollary 3.7. To decide for two vectors v1, v2 ∈
Ker(wS), whether there is an endomorphism of S which maps v1 to v2, we use the
standard basis algorithm, see [12]. Since S is irreducible, this results in a standard
basis for S and therefore in standard matrices for the action of the generators on
S. Now there is an endomorphism mapping v1 to v2 if and only if these standard
matrices corresponding to the standard bases afforded by v1 and v2 are equal.

5.3. Condensation: For each constituent, the peakword given by its canonical
number is evaluated as a matrix acting on V and then repeatedly raised to higher
powers until the nullity stabilizes. The stable nullity equals the multiplicity k of
the constituent times the degree [ES : F] of the splitting field. Having a power wN

of the peakword with stable nullity, the condensation onto its kernel, i. e., strictly
speaking, the projection of V onto V/im(wN), is determined in the same way as it is
also in the Meat-Axe program ZQT. This is the technical reason for introducing
the subset called B in the Algorithm given Section 4. The matrix M is computed
to assure that the canonical projection of ker(wN) onto V/im(wN) becomes the
identity.

5.4. Compute Cyclic Submodules: For each of the condensed modules a rep-
resentative of each cyclic submodule is found. This is done by spinning up each
vector, up to scalar multiples, and maintaining a list of different cyclic submodules.
As the dimension of the module grows, the number of vectors to spin up quickly
becomes very large. This poses an upper limit on the dimension of condensed
modules, i. e., on the multiplicity of the constituents.

A second limit concerns the number of cyclic submodules. Usually there are
many fewer cyclic submodules than one-dimensional subspaces. Sometimes, how-
ever, it may happen that the peakword found in 5.2 is ‘bad’, in the sense that the
condensed generators commute or may even be zero. In such a case one finds a

PEAKWORD CONDENSATION 11

large number of cyclic submodules and the subsequent steps will probably take too
much time. For this reason, the peakword program has an option to exclude one
or more specified peakwords from the search. So, if the peakword turns out to be
‘bad’, the user can try another one.

5.5. Uncondense: The representatives of cyclic submodules found in 5.4 are then
‘uncondensed’, i. e., multiplied by the matrix M , to obtain generators under spin-up
for the local submodules of V . Since the algebra generated by the condensed matrix
generators is not necessarily equal to the condensed algebra, one cannot expect to
find a one-to-one relation between cyclic submodules of the condensed module and
local submodules of V . In practice this means that different cyclic submodules can
uncondense to the same local submodule in the sense that more than one of the
uncondensed vectors can spin up to one and the same local submodule. At the end
of this step we have a list of local submodules together with the mapping of cyclic
submodules of the condensed module to local submodules of V . The latter yields
an equivalence relation among the cyclic submodules, where the equivalence classes
are labelled by the local submodules.

5.6. Dotted-lines: To find the dotted-lines, we have to know which pairs of lo-
cal submodules have the same sum. This could be done in the large module by
spinning up pairs of generating vectors and comparing the resulting submodules.
However, since dotted-lines never contain local submodules belonging to different
constituents, see the remarks after Definition 1.2, it is possible to do the calculation
in the condensed module, which is much faster due to its smaller dimension, see
Theorem 2.3. The only difference is, that instead of pairs of vectors one has to
consider pairs of equivalence classes of vectors in the sense explained in 5.5. The
amount of computation necessary is further reduced by using Theorem 1.7. For
a given pair of different S-local submodules, it is sufficient to find one dotted-line
containing them, instead all such dotted-lines, of which there can, in fact, be more
than one. Internally, a dotted-line is represented as a bit string, where a non-zero
entry at position i means that the ith local submodule belongs to the dotted-line.

5.7. Incidences: The next step is to compute all incidences between the local
submodules. This information is stored in an incidence matrix, which contains a
non-zero entry at position (i, k) if the ith local submodule is contained in kth local
submodule. Internally, the incidence matrix is represented as an array of bit strings.

One way of computing the incidences would be to compare directly the local
submodules which have been obtained in the preceding step. However, since it is
in general not possible to hold all local subspaces simultaneously in memory or in
an external file, we would have to spin up the local submodules each time they are
needed, a very time-consuming task for large modules.

For this reason, a different strategy is used. In order to check whether the S-
local submodule X contains the T -local submodule Y for another constituent T of
V , it is sufficient to consider the condensation X̃ with respect to the T -peakword
and to check whether the cyclic submodules belonging to Y in the sense of 5.5 are
contained in X̃. The submodule X is condensed in the same way as is described in
5.3. As the dimensions of the condensed modules are usually much smaller than the
dimension of the given module, one can hold all modules in memory at the same
time.

12 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

5.8. Compute All Submodules: The knowledge of all incidences and dotted-
lines of local submodules is sufficient to calculate the complete submodule lattice.
In this final step no matrix operations are involved. Instead the program works with
bit strings representing the incidences and dotted-lines. A submodule is uniquely
determined by the local submodules it contains, see Theorem 1.5, and can therefore
also be represented as a bit string. As Theorem 1.5 states, submodules correspond
to sets of local submodules which fulfill conditions which are easily checked on the
bit string level.

As an option, the program allows the user to compute ‘blocks’ of the incidence
matrix, where a block is defined as a connected component of the incidence graph
with the additional condition, that all local submodules with respect to one and the
same constituent are contained in the same block. Then all blocks are closed under
the forming of dotted-lines, see Remark 1.3, and under forming subsets of local
submodules according to Theorem 1.5. Hence these blocks are Benson-Conway
blocks in the sense of Remark 1.8 and correspond to uniquely determined direct
summands of V . Each submodule of V is then given as a direct sum of submodules
lying in different blocks.

Submodules are calculated generation by generation, the first generation con-
sisting of all submodules generated by one local submodule. In the nth generation
all submodules generated by a submodule of generation n − 1 plus one local sub-
module are calculated. If no more submodules appear, the algorithm terminates.
All results, i. e.,

• a list of all local submodules with their dimensions,
• the incidence matrix of local submodules,
• a list of dotted-lines,
• a list of all submodules giving for each submodule the local submodules it

contains and its maximal submodules, and
• the elements of the radical series,

are written to a text file.
Optionally, the program computes only the submodule lattices of the direct

summands of V corresponding to the blocks described above.

6. Examples

6.1. Left cell representations. In the modular representation theory of finite
groups of Lie type the notion of Hecke algebras has become very important in recent
times. It might be possible that the examination of the left cell representations of
Hecke algebras using a computer may lead to results which are also of theoretical
interest. As references for Hecke algebras and left cell representations take, e. g.,
[10] and [18]. As a reference for the notation used here, see [5].

Below, the submodule structures of p-modular reductions of the left cell repre-
sentation 721 of the Hecke algebra of type F4 over some prime fields GF (p) are
given. As it turns out, the submodule structure is already determined by giving
the decomposition of the p-modular reduced module into irreducible summands and
their socle series. The different constituents are denoted by their degrees and by
lower case letters, if necessary.

PEAKWORD CONDENSATION 13

e = 2 GF (5) 1⊕ 4⊕ 12⊕ 16⊕ 16⊕ 5⊕

 2b
5
2a

⊕
 2a

5
2b


e = 3 GF (7) 6⊕ 9a⊕ 9b⊕ 12⊕

 1a
1b⊕ 1c

1d

⊕
 4a

4b⊕ 4c
4d

⊕
 4a

4b⊕ 4c
4d


e = 4 GF (17) 6⊕ 9a⊕ 9b⊕ 16⊕ 16⊕ 4b⊕

 4c
4b
4a


e = 6 GF (13) 4⊕ 6⊕ 16⊕ 16⊕

 1b
5a⊕ 5b

1a

⊕
 2a

5a
2d

⊕
 2c

5b
2b


e = 8 GF (17) 4⊕ 6⊕ 9a⊕ 9b⊕ 12⊕

[
8b
8a

]
⊕
[

8b
8a

]
e = 12 GF (73) 4⊕ 9a⊕ 9b⊕ 12⊕ 16⊕ 16⊕

[
3b
3a

]
6.2. The automorphism group of the 4-dimensional cube. The following
example is mentioned in [11], where it is used to construct a binary group code
of type (32, 17, 8), which has been discovered by Y. Cheng and N. Sloane. Let
G ∼= C2 o S4 be the automorphism group of the 4-dimensional cube, acting on the
32 edges of the cube. The 2-modular reduction of this permutation representation
has two constituents 1a and 2a with multiplicity 12 and 10, respectively. Note
that this is not the best case since the dimensions of the constituents are small
in comparison to the dimension of the module. This module is found to have 70
local submodules, 128 dotted-lines, and 373 submodules, hence we are not going
to print the submodule lattice in any more detail here. The programs need 36
seconds of CPU-time on a DEC-Station 5300 to chop the module and to compute
its local submodules, the incidences between them, and the dotted-lines. Finally,
104 seconds are spent to find all the submodules using Theorem 1.5, where no
matrix operations are involved.

6.3. The structure of a projective indecomposable module. We will give
the complete submodule lattice of the projective cover P of the trivial module
for the sporadic simple Rudvalis group in characteristic 5. This is a module of
dimension 41875 over GF (5). Note that it is not possible to examine P directly
on todays computers. But using the condensation technique which is described in
[14], it is possible to construct a module M of dimension 348 over GF (5), such that
there is an isomorphism of the submodule lattices of M and P which respects the
isomorphism types of irreducible subquotients, see [7]. M has constituents 1a, 1b,
9a, 24a, 30a, and 238a with multiplicities 4, 4, 2, 1, 2, and 1, respectively. These
constituents correspond to irreducible modules for the Rudvalis group which have
degrees 1, 273, 783, 2219, 3380, and 30234, respectively.

The submodule lattice contains 18 local submodules, one dotted-line, and 60
submodules. It is depicted in the diagram below, where the elements of the socle
series are denoted by circles and the local submodules are denoted by bold boxes
or circles. Each submodule gets a number when it occurs during the computation
of all submodules, these numbers are also depicted. The diagram has also been

14 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

generated by one of the programs in the submodule lattice package. The programs
need 1516 seconds of CPU-time on a DEC-Station 5300 to chop M and to compute
its submodule lattice.

PEAKWORD CONDENSATION 15

16 KLAUS LUX, JÜRGEN MÜLLER, MICHAEL RINGE

6.4. The structure of another projective indecomposable module. Finally,
let P denote the projective cover of the trivial module for the sporadic simple
Mathieu group M12 in characteristic 2. This example has also been considered in
[16]. P is a module of dimension 704 over GF (2) and has constituents 1a, 10a, and
44a with multiplicities 16, 16, and 12, respectively. P is found to have 1559 local
submodules and 78807 dotted-lines. The programs need 81812 seconds, i. e., 22
hours, 43 minutes, and 32 seconds, of CPU-time on a HP 9000/730 to chop P and
to compute its local submodules, the incidences between them, and the dotted-lines.

References

[1] M. Aigner: Combinatorial Theory, Springer, 1976.

[2] D. Benson, J. Conway: Diagrams for Modular Lattices, J. Pure Appl. Alg., 37, 1985.
[3] C. Curtis, I. Reiner: Methods of Representation Theory I, Wiley, 1981.

[4] R. Dilworth: Proof of a Conjecture on Finite Modular Lattices, Ann. Math., 60, 1954.
[5] M. Geck, K. Lux: The Decomposition Numbers of the Hecke Algebra of Type F4, Man. Math.,

70, 1991.
[6] J. Green: Polynomial Representations of GLn, Lecture Notes in Mathematics, 830, Springer,

1980.
[7] G. Hiss, J. Müller: The 5-modular Irreducible Characters of the Sporadic Simple Rudvalis

Group and its Double Cover, in preparation.

[8] B. Huppert: Endliche Gruppen I, Springer, 1983.
[9] M. Isaacs: Character Theory of Finite Groups, Academic Press, 1976.

[10] D. Kazhdan, G. Lusztig: Representations of Coxeter Groups and Hecke Algebras, Invent.

Math., 53, 1979.
[11] G. Michler: Ring Theoretical and Computational Methods in Group Representation Theory,

Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, vol. 18.

[12] R. Parker: The Computer Calculation of Modular Characters, in: M. Atkinson (Ed.): Com-
putational Group Theory, 1984.

[13] M. Ringe: The C Meat-Axe, Manual, RWTH Aachen, 1993.
[14] A. Ryba: Condensation Programs and their Application to the Decomposition of Modular

Representations, J. Symb. Comp., 1990.

[15] G. Schneider: Oral communication.
[16] G. Schneider: The Structure of the Projective Indecomposable Modules of the Mathieu Group

M12 in Characteristic 2 and 3, Arch. Math., 60, 1993.
[17] M. Schönert: (ed.) GAP-3.3, Manual, RWTH Aachen, 1993.

[18] J. Shi: The Kazhdan-Lusztig Cells in certain Affine Weyl Groups, Lecture Notes in Mathe-

matics, 1179, Springer, 1980.

(Jürgen Müller) Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, D-

52062 Aachen, Germany

(Klaus Lux) Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, D-52062

Aachen, Germany

(Michael Ringe) Institut für Theoretische Physik, Lehrstuhl E, RWTH Aachen, Tem-

plergraben 64, D-52062 Aachen, Germany

E-mail address, Jürgen Müller: jmueller@tiffy.math.rwth-aachen.de

E-mail address, Klaus Lux: klux@tiffy.math.rwth-aachen.de

E-mail address, Michael Ringe: mringe@thphys.physik.rwth-aachen.de

