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Abstract

We determine the Green vertices and sources of many of the simple mod-

ular representations of the finite symmetric group being parametrized by

hook partitions.

Mathematics Subject Classification: 20C30, 20C20.

1 Introduction and results

In recent years, one of the leading themes in the representation theory of finite
groups has been the question how far the p-modular representation theory of
a given group is determined by local data, i. e. by its p-subgroups and their
normalisers. In this framework, it is immediate to ask for Green vertices and
sources of simple modules. Astonishingly enough, only little seems to be known
as far as particular examples are concerned. The present work is concerned
with Green vertices and sources of simple modules of the symmetric group
parametrised by hook partitions. In particular, we are able to deal with the
natural module, which is the non-trivial constituent of the natural permutation
representation. This work was begun in [13], and further related results can be
found in [14].

The present paper is organised as follows: In Section 1 we fix some notation
and state our results, where in (1.2) and (1.3) we deal with vertices and sources
for general simple modules parametrised by hook partitions, while in (1.4) and
(1.5) we consider the natural module in even characteristic. In Section 2 we
give the proofs, subject to some propositions, which are subsequently proved in
Sections 3 and 4. We assume the reader to be familiar with the representation
theory of the symmetric group, see e. g. [8, 9], as well as with the theory of
Green vertices and sources, see e. g. [4, Ch.III.4], [1, Ch.2.19].

(1.1) Let p be a rational prime and let F be a field of characteristic p. For
n ∈ N0 let n = a · p + b ∈ N, where a, b ∈ N0 and 0 ≤ b < p. Let Pn be the set
of partitions of n. A partition λ = [n − r, 1r] ∈ Pn, for 0 ≤ r < n, is called a
hook partition. A partition λ ∈ Pn is called p-regular, if each of its parts occurs
with multiplicity strictly less than p. A hook partition λ = [n − r, 1r] ∈ Pn is
p-regular if and only if either r < p − 1 or r = p − 1 and n > p.

For n ∈ N let Sn be the symmetric group on n letters. The field F is a splitting
field of F [Sn], and the simple F [Sn]-modules Dλ are parametrised by the p-
regular partitions λ ∈ Pn. In particular, D[n] ∼= FSn

is the trivial F [Sn]-module,
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and for (n, p) 6= (2, 2) the module D := D[n−1,1] is called the natural F [Sn]-
module. For any λ ∈ Pn let Sλ be the associated Specht F [Sn]-module, and
finally let Pn ≤ Sn be a Sylow p-subgroup of Sn. We are now prepared to state
our results on simple F [Sn]-modules being parametrised by hook partitions:

(1.2) Theorem. Let λ = [n − r, 1r] ∈ Pn be a p-regular hook partition.
a) If b = 0 and r < p − 1, then Pn is a vertex of Dλ.
b) If r < b, then Pn is a vertex of Dλ.
c) If 1 ≤ b ≤ r, then P(a−1)p is a vertex of Dλ, and also a block defect group of

the p-block of F [Sn] containing Dλ.

(1.3) Theorem. Let λ = [n − r, 1r] ∈ Pn be a p-regular hook partition.
a) If b ≥ 1, then Dλ is a trivial source module.
b) If p is odd, b = 0 and r = 1, then the restriction resPn

(D) of the natural
module D to F [Pn] is a source of D.

A few comments are in order: An indecomposable module of a finite group is
called a trivial source module, if it has the trivial module of one of its vertices
as a source. For the cases in (1.2)a),b) by [4, Cor.III.6.8] the Sylow p-subgroups
also are the block defect groups of the p-block of F [Sn] containing Dλ, hence in
these cases the block defect groups coincide with the vertices of Dλ. If b ≥ 1,
then by [8, Thm.23.7] we have Dλ ∼= Sλ, and the assertions in (1.2)b),c) and
(1.3)a) also follow from [12]. Still, in (2.5) and (2.7) we include the proofs
already given in [13], avoiding the more involved machinery used in [12].

Now we consider one of the cases left open in (1.2) and (1.3), namely the case
p = 2, b = 0 and r = p − 1 = 1, i. e. the natural module D = D[n−1,1]:

(1.4) Theorem. Let p = 2 and n ∈ N be even.
a) If n ≥ 6, then Pn is a vertex of the natural module D.
b) If n = 4, then the normal subgroup V4 E S4 is the vertex of D = D[3,1].

(1.5) Theorem. Let p = 2 and n ∈ N be even.
a) If n ≥ 6, then resPn

(D) is a source of the natural module D.
b) If n = 4, then D = D[3,1] is a trivial source module.

Again a few comments are in order: For n ≥ 6 the Sylow 2-subgroups are the
block defect groups of the 2-block containing D, hence again the block defect
groups coincide with the vertices of D. But for the case n = 4 the vertex is
a proper subgroup of the Sylow 2-subgroups, which still are the relevant block
defect groups. Note that the assertions in (1.4)b) and (1.5)b) also follow from
[12], or can be checked by inspection; we include a proof for completeness.

As far as p-regular hook partitions are concerned, it remains to determine the
vertices of Dλ in the cases b = 0, where n 6= p 6= 2 and r = p − 1, as well as to
determine the sources of Dλ in the cases b = 0, where n 6= p 6= 2 and r > 1. We
have not been able to settle these cases, except for the special case in (2.6), but
we conjecture the following:
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(1.6) Conjecture. Let p be odd, let b = 0 and n 6= p.
a) Let r = p − 1. Then Pn is a vertex of Dλ.
b) Let r > 1. Then resPn

(Dλ) is a source of Dλ.

Using the computer algebra system GAP [5] and applying methods from com-
putational representation theory, this has been verified for p = 3 and n ≤ 18 in
[14]. Moreover, part a) is known to hold for the case a 6≡ 1 (mod p), a proof
will appear in [2].

2 Proofs

(2.1) Let Sn act naturally on the set Ω := {1, . . . , n}. For a partition λ =

[λ1, . . . , λl] ∈ Pn let Ω =
∐l

j=1 Ωj , where Ωj := {(
∑j−1

k=1 λk)+1, . . . , (
∑j

i=k λk)},

for 1 ≤ j ≤ l. Let Sλ :=
∏l

j=1 SΩj
≤ Sn be the corresponding Young subgroup,

and let Mλ denote the associated permutation F [Sn]-module.

(2.2) We proceed to state and prove (2.3), aiming to relate D[n−r,1r ] to D,
where [n − r, 1r] ∈ Pn is p-regular. Actually, (2.3)a) is well-known by folklore,
but since there is no suitable general reference known to us we include a proof;
note that in [6] only the case n = p for odd p is treated. Moreover, (2.3)b) is
implicit in [11], but we include an explicit proof for convenience:

Given any partition λ ∈ Pn, the Specht F [Sn]-module Sλ ≤ Mλ is described
as follows: Let T be a λ-tableau, and let RT ≤ Sn and CT ≤ Sn be the
corresponding row and column stabilisers. The orbit T of T under the action
of RT is called the associated λ-tabloid. The F -vector space generated by the
λ-tabloids is as an F [Sn]-module isomorphic to Mλ. For a λ-tableau T let eT :=
∑

g∈CT
sgn(g) · T g ∈ Mλ denote the associated λ-polytabloid, where for g ∈ Sn

we have eT ·g = eT g . A λ-tableau being called standard if its entries are strictly
increasing both along rows and columns, the set {eT ;T standard λ-tableau} ⊆
Mλ of standard λ-polytabloids is F -linearly independent, its F -span is F [Sn]-
invariant and called the Specht module Sλ.

For a hook partition λ = [n − r, 1r] ∈ Pn, where 0 ≤ r < n, a standard λ-
tableau T is described by its first column entries 1 < t1 < . . . < tr, allowing to
abbreviate T by 〈1, t1, . . . , tr〉. Thus {e〈1,t1,...,tr〉; 1 < t1 < . . . < tr ≤ n} is an

F -basis of S[n−r,1r]. In particular, {e〈1,t〉; 1 < t ≤ n} is an F -basis of S[n−1,1],
implying that {e〈1,t1〉 ∧ . . . ∧ e〈1,tr〉; 1 < t1 < . . . < tr ≤ n} is an F -basis of the

r-fold exterior power
∧r

S[n−1,1], for 0 < r < n.

(2.3) Proposition. Let 1 ≤ r < n and λ = [n−r, 1r] ∈ Pn be a hook partition.
a) The F -linear map

∧r
S[n−1,1] → Sλ : e〈1,t1〉 ∧ . . . ∧ e〈1,tr〉 7→ e〈1,t1,...,tr〉, for

all 1 < t1 < . . . < tr ≤ n, is an isomorphism of F [Sn]-modules.
b) If λ = [n−r, 1r] ∈ Pn is p-regular, then for the natural module D = D[n−1,1]

we have
∧r

D ∼= Dλ as F [Sn]-modules.
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Proof. a) As the elements si := (i, i+1) ∈ Sn, where 1 ≤ i < n, generate Sn, it
suffices to compare (e〈1,t1〉∧. . .∧e〈1,tr〉)·si ∈

∧r
S[n−1,1] and e〈1,t1,...,tr〉 ·si ∈ Sλ:

Let i > 1. Then we have e〈1,i〉 · si = e〈1,i+1〉 and e〈1,i+1〉 · si = e〈1,i〉, as well as
e〈1,t〉 · si = e〈1,t〉 for 1 < t ≤ n and t 6∈ {i, i + 1}. If both i, i + 1 6∈ {t1, . . . , tr},
then (e〈1,t1〉∧. . .∧e〈1,tr〉)·si = e〈1,t1〉∧. . .∧e〈1,tr〉 and e〈1,t1,...,tr〉 ·si = e〈1,t1,...,tr〉.
If i ∈ {t1, . . . , tr} but i + 1 6∈ {t1, . . . , tr}, then assuming i = tr for convenience
we have (e〈1,t1〉 ∧ . . . ∧ e〈1,tr−1〉 ∧ e〈1,i〉) · si = e〈1,t1〉 ∧ . . . ∧ e〈1,tr−1〉 ∧ e〈1,i+1〉

and e〈1,t1,...,tr−1,i〉 · si = e〈1,t1,...,tr−1,i+1〉. The case i + 1 ∈ {t1, . . . , tr} but
i 6∈ {t1, . . . , tr} is dealt with analogously. If both i, i + 1 ∈ {t1, . . . , tr}, then we
have (e〈1,t1〉 ∧ . . . ∧ e〈1,tr〉) · si = −(e〈1,t1〉 ∧ . . . ∧ e〈1,tr〉), and since in this case
si ∈ C〈1,t1,...,tr〉 we have e〈1,t1,...,tr〉 · si = sgn(si) · e〈1,t1,...,tr〉 = −e〈1,t1,...,tr〉.

Let i = 1. Then we have e〈1,2〉 · s1 = e〈2,1〉 = −e〈1,2〉, while for 2 < t ≤ n

using the Garnir relation for the set {2, t}
.
∪ {1}, see [8, Ch.7], we obtain

e〈1,t〉 · s1 = e〈2,t〉 = e〈1,t〉 − e〈1,2〉. If t1 > 2 then (e〈1,t1〉 ∧ . . . ∧ e〈1,tr〉) · s1 =
(e〈1,t1〉∧ . . .∧e〈1,tr〉)−

∑r

k=1(e〈1,t1〉∧ . . .∧e〈1,tk−1〉∧e〈1,2〉∧e〈1,tk+1〉 . . .∧e〈1,tr〉),
where the summands are e〈1,t1〉 ∧ . . . ∧ e〈1,tk−1〉 ∧ e〈1,2〉 ∧ e〈1,tk+1〉 . . . ∧ e〈1,tr〉 =

(−1)k+1 · (e〈1,2〉 ∧ e〈1,t1〉 ∧ . . .∧ e〈1,tk−1〉 ∧ e〈1,tk+1〉 . . .∧ e〈1,tr〉). Moreover, using

the Garnir relation for the set {2, t1, . . . , tr}
.
∪ {1} we obtain e〈1,t1,...,tr〉 · s1 =

e〈2,t1,...,tr〉 = e〈1,t1,...,tr〉 −
∑r

k=1 e〈1,t1,...,tk−1,2,tk+1,...,tr〉, where using the fact
that (2, t1, . . . , tk−1) ∈ C〈1,t1,...,tk−1,2,tk+1,...,tr〉, the summands can be rewritten

as e〈1,t1,...,tk−1,2,tk+1,...,tr〉 = (−1)k+1 · e〈1,2,t1,...,tk−1,tk+1,...,tr〉.

If finally t1 = 2, then we analogously obtain (e〈1,2〉 ∧ e〈1,t2〉 ∧ . . . ∧ e〈1,tr〉) · s1 =
−(e〈1,2〉∧e〈1,t2〉∧. . .∧e〈1,tr〉) and e〈1,2,t2,...,tr〉 ·s1 = e〈2,1,t2,...,tr〉 = −e〈1,2,t2,...,tr〉.

b) If b ≥ 1, then by [8, Thm.23.7] we have Dλ = Sλ anyway. Thus we may
assume b = 0. By [11], see also [8, Ch.11, Thm.24.1], and noting that p = 2
implies r = 1 anyway, Sλ is a uniserial F [Sn]-module of composition length 2,

having socle soc(Sλ) ∼= D[n−r+1,1r−1] and head Sλ/rad(Sλ) = Sλ/soc(Sλ) ∼=
Dλ. In particular, we have soc(S[n−1,1]) ∼= FSn

and S[n−1,1]/rad(S[n−1,1]) ∼=
D, facilitating an F [Sn]-epimorphism Sλ ∼=

∧r
S[n−1,1] →

∧r
D. Since 0 <

dimF (
∧r

D) =
(

n−2
r

)

<
(

n−1
r

)

= dimF (Sλ), by the structure of Sλ we conclude
that the latter induces an isomorphism Dλ ∼=

∧r
D of F [Sn]-modules. ♯

(2.4) Remark. Let M := M [n−1,1] denote the natural permutation F [Sn]-
module, and let {γ1, . . . , γn} denote its permutation F -basis. If n > 1 and
b 6= 0, then we have M ∼= FSn

⊕ D as F [Sn]-modules.

If b = 0, then M is uniserial. More precisely, the only proper submodules of M
are M ′ := rad(M) = {

∑n

i=1 aiγi ∈ M ;
∑n

i=1 ai = 0} ≤ M and M ′′ := soc(M) =
〈γ+〉F ≤ M , where γ+ :=

∑n

i=1 γi ∈ M , and we have M ′′ ∼= FSn
∼= M/M ′.

Let : M → M/M ′′ be the natural epimorphism. We have M ′′ ≤ M ′, where
equality holds if and only if p = n = 2, and for n > 2 we have D ∼= M ′/M ′′ as
F [Sn]-modules.

(2.5) Proof of (1.2).
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a), b) By (2.3) and (2.4), for b = 0 and r < p−1 we have dimF (Dλ) =
(

n−2
r

)

=
∏r−1

i=0
(n−2−i)

r! , while for r < b, which implies b ≥ 1, we have dimF (Dλ) =
(

n−1
r

)

=
∏r−1

i=0
(n−1−i)

r! . In these cases p does not divide the numerator of the above
fractions, and thus p does not divide dimF (Dλ) either. By [1, Thm.2.19C.26]
we conclude that Pn is a vertex of Dλ.

c) Let 1 ≤ b ≤ r. Again we have dimF (Dλ) =
(

n−1
r

)

=
∏r−1

i=0
(n−1−i)

r! . As r < p
the denominator of this fraction is not divisible by p, and n − 1 − (b − 1) is
the only factor of the numerator being divisible by p, hence for the p-part of
dimF (Dλ) we have (dimF (Dλ))p = (n − b)p.

Let B be the p-block of F [Sn] containing Dλ, whose basic invariant by [9,
Thm.6.1.21] is the p-core λ of the partition λ = [n − r, 1r] ∈ Pn. Since b 6= 0
and r < p, we have λ = [p + b − r, 1r] ∈ Pp+b, and hence the p-weight of B
equals a− 1. By [9, Thm.6.2.39] a Sylow p-subgroup P(a−1)p of S(a−1)p ≤ Sn is

a defect group of B, where we have |P(a−1)p| = ( n!
ap

)p. By [4, Cor.III.6.8] there

is a subgroup Q ≤ P(a−1)p being a vertex of Dλ. By [1, Thm.2.19C.26] the

index [Pn : Q] divides (n − b)p = (ap)p, and thus ( n!
ap

)p divides |Q|. ♯

(2.6) Remark. In the case b = 0, where n 6= p 6= 2, and r = p − 1 we analo-

gously observe that ( n!
(a−1)p )p divides the order |Q| of a vertex Q of D[n−p+1,1p−1].

But since λ = [] ∈ P0, the p-weight of the p-block B containing D[n−p+1,1p−1]

equals a, implying that the Sylow p-subgroups Pap = Pn ≤ Sn are the block
defect groups of B. Hence applying the technique of (2.5) is in general not

sufficient to determine the vertices of D[n−p+1,1p−1].

Still, for the case a = 2, i. e. n = 2p 6= 4, and r = p−1 we may argue as follows:
Assume that Q < P2p, thus |Q| = p and Q is cyclic. By [3] Q is a block defect

group of B, a contradiction. Thus P2p is a vertex of D[p+1,1p−1]. ♯

We proceed to prove (1.3), (1.4) and (1.5). The proofs are given in (2.7) and
(2.8), and depend on (3.7), (4.2) and (4.5), which are proved subsequently.

(2.7) Proof of (1.3).
a) Let b ≥ 1, and we may assume r ≥ 1. By (2.4) we have M ∼= FSn

⊕ D
as F [Sn]-modules. Now D being a direct summand of a permutation module,
by [10, La.II.12.5] is a trivial source module. For r ≥ 2 by (2.3) we have
∧r

M ∼=
∧r−1

D ⊕
∧r

D ∼= D[n−r+1,1r−1] ⊕ Dλ. The symmetric group Sr acts
on the r-fold tensor product M⊗r by permuting the tensor factors, while Sn

acts diagonally, hence M⊗r becomes an F [Sn ×Sr]-module. As r < p, applying
the idempotent 1

r! ·
∑

g∈Sr
sgn(g) · g ∈ F [Sr], which by [9, 5.2.18] projects M⊗r

onto
∧r

M , shows that
∧r

M is an F [Sn]-direct summand of the permutation
module M⊗r. This shows that Dλ is a trivial source module.

b) Let p be odd, b = 0 and r = 1. Then by (1.2) Pn is a vertex of D. As by
(3.7) resPn

(D) is indecomposable, the assertion follows from [4, La.III.4.6]. ♯
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(2.8) Proof of (1.4) and (1.5).
a) Let n ≥ 6. By [4, La.III.4.4] D is relatively Pn-projective. By (3.7) resPn

(D)
is indecomposable, and by [4, La.III.4.6] each vertex of resPn

(D) is a vertex
of D. Assume resPn

(D) is relatively Q-projective for a maximal subgroup
Q < Pn. Then by [4, La.III.4.2] there is an indecomposable direct summand
V of resQ(D) such that resPn

(D) is a direct summand of the induced module
indPn

(V ). We may assume that the F [Q]-module V is absolutely indecompos-
able, otherwise by [4, La.I.18.7] we replace the field F by a suitable finite field
extension. By Green’s indecomposability theorem, see [4, Thm.III.3.8], we con-

clude resPn
(D) ∼= indPn

(V ) as F [Pn]-modules, implying dimF (V ) = dimF (D)
2 .

But by (4.2) and (4.5) resQ(D) does not have such an indecomposable direct
summand, a contradiction, implying that Pn is a vertex of D. Finally, by [4,
La.III.4.2] the sources of D are direct summands of resPn

(D), and since the
latter is indecomposable it is the source of D.

b) Let n = 4. The restriction resV4
(D) of D to the normal subgroup V4 E S4

being semisimple, we have resV4
(D) ∼= FV4

⊕FV4
as F [V4]-modules. As S4/V4

∼=
S3 and dimF (D) = 2, the F [S4]-module D can be considered as a projective
simple F [S3]-module, as such having the trivial subgroup of S3 as its vertex.
By [4, Cor.III.4.13] we conclude that V4 E S4 is a vertex of D. Finally, by [4,
La.III.4.2] again we see that FV4

is the source of D. ♯

3 Restriction to Sylow subgroups

(3.1) For a rational prime p ∈ N let n =
∑

i∈N0
bip

i ∈ N, be the p-adic
expansion of n ∈ N, where 0 ≤ bi < p. Compared to the notation in (1.1) we
have b := b0 and a := n−b0

p
. Let l :=

∑

i∈N0
bi ∈ N be the number of parts, and

n1 ≥ n2 ≥ . . . ≥ nl be the sequence of p-powers occurring in the above p-adic
expansion, i. e. the p-power pi occurs bi times in the sequence n1, n2, . . . , nl, for
i ∈ N0. Note that the maximum p-power dividing the group order |Sn| is given

as logp((n!)p) =
∑

i∈N0
bi ·

pi−1
p−1 .

By [9, 4.1.24] a Sylow p-subgroup Pn ≤ Sn is given as follows: Still letting Ω :=

{1, . . . , n}, we have Ω =
∐l

j=1 Ωj , where Ωj := {(
∑j−1

k=1 nk)+1, . . . ,
∑j

k=1 nk} ⊆
Ω. Let Pnj

be a Sylow p-subgroup of SΩj
, for 1 ≤ j ≤ l, where we make a specific

choice for Pnj
in (3.2). Note that for p odd we might have j 6= j′ such that nj =

nj′ , but still we distinguish Pnj
and Pnj′

, which act non-trivially on different

subsets of Ω, to avoid notational overload. Now we have Pn
∼=

∏l

j=1 Pnj
, and

we let pj : Pn → Pnj
be the corresponding projections. Moreover, we have

Pnj
∼= (· · · (Cp ≀ Cp) ≀ Cp) · · · ≀ Cp), where the right hand side is an (j−1)-fold

iterated regular wreath product, Cp denoting the cyclic group of order p, and
the 0-fold and (−1)-fold wreath products are defined as Cp and {1}, respectively.

(3.2) Let n = pm, where m ∈ N0. Let w1 := 1 ∈ S1, and for m ≥ 1 let

wn :=

n
p

∏

i=1

(i, i +
n

p
, i +

2n

p
, . . . , i +

(p − 1)n

p
) ∈ Sn,
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in particular wn ∈ Sn has cycle type [p
n
p ]. By (3.1) the set {wpj ; 1 ≤ j ≤ m}

generates a Sylow p-subgroup of Pn ≤ Sn, which specifies Pn in the p-power
case n = pm. Moreover, let y1 := 1, and for m ≥ 1 let

yn := wn · yn
p

= wpm · wpm−1 · · · · · wp ∈ Pn.

(3.3) Lemma. Let m ∈ N0 and n = pm. Then yn ∈ Sn has cycle type [n].

Proof. We may assume that m ≥ 1. We first order Ω = {1, . . . , n} as follows:

For c ∈ Ω let c − 1 =
∑m−1

i=0 cip
i be the p-adic expansion of c − 1, where

0 ≤ ci < p. This associates to any c ∈ Ω the coefficient vector [c0, . . . , cm−1] of
length m. We order these vectors lexicographically, i. e. we get the sequence

[0, . . . , 0, 0], [0, . . . , 0, 1], . . . , [0, . . . , 0, p−1], [0, . . . , 1, 0], . . . , [p−1, . . . , p−1, p−1],

which translates to order Ω as follows: 1, 1 + n
p
, . . . , 1 + (p−1)n

p
, 1 + n

p2 , . . . , n,
where for the sake of completeness we let 1 be the successor of n. We now show
that yn = wn · yn

p
∈ Sn is an n-cycle respecting this ordering:

By induction we may assume that the assertion holds for yn
p
∈ Sn

p
, with respect

to the analogous ordering on {1, . . . , n
p
} afforded by coefficient vectors of length

m − 1. Since yn
p
∈ Sn fixes all the elements of Ω \ {1, . . . , n

p
}, i. e. those c ∈ Ω

such that cm−1 > 0, we distinguish two cases: If cm−1 < p − 1, then we have
c·yn = (c·wn)·yn

p
= (c+ n

p
)·yn

p
= c+ n

p
∈ Ω, which is the successor of c ∈ Ω in the

above ordering. If cm−1 = p−1, then c ·yn = (c ·wn) ·yn
p

= (c− (p−1)n
p

) ·yn
p
∈ Ω,

which by induction again is the successor of c ∈ Ω in the above ordering. ♯

(3.4) Let Yn := 〈yn〉 ∼= Cn. The trivial module is the only simple F [Yn]-
module up to isomorphism, and there are precisely n isomorphism types of
indecomposable F [Yn]-modules Ui, for 1 ≤ i ≤ n, all of which are uniserial,
see [1, Prop.2.20B.11]. They can be distinguished by their F -dimension, and we
assume notation to be chosen such that dimF (Ui) = i. In particular, the regular
module Un

∼= F [Yn] is the only projective indecomposable F [Yn]-module. For
the action of Yn on Ui we have dimF kerUi

(yn − 1)j = j, for 1 ≤ j ≤ i, thus the
minimum polynomial of the action of yn on Ui is (T − 1)i ∈ F [T ].

(3.5) Lemma. Let n = pm, where m ∈ N. Then resYn
(D) is uniserial.

Proof. By (3.3) the element yn ∈ Pn has cycle type [n]. The minimum poly-
nomial of the action of yn on the natural permutation module M := M [n−1,1] is
Tn−1 = (T −1)n ∈ F [T ], and thus resYn

(M) ∼= Un is a uniserial F [Yn]-module.
As D is an F [Sn]-constituent of M , the assertion follows. ♯

(3.6) Let again n ∈ N be arbitrary. Keeping the notation of (3.1), for the per-

mutation module M := M [n−1,1] we have resPn
(M) ∼=

⊕l

j=1 resPnj
(M [nj−1,1])
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as F [Pn]-modules, where the action on the j-th summand is given by the pro-
jection pj : Pn → Pnj

, for 1 ≤ j ≤ l.

As in (3.2) let ynj
∈ Pnj

≤ Snj
and Ynj

:= 〈ynj
〉 ≤ Pnj

, for 1 ≤ j ≤ l,
where again for p odd we might have j 6= j′ such that nj = nj′ , but again we

distinguish Ynj
and Ynj′

. Letting Yn :=
∏l

j=1 Ynj
≤ Pn ≤ Sn, from the proof of

(3.5) we get resYn
(M) ∼=

⊕l

j=1 resYnj
(M [nj−1,1]) ∼=

⊕l

j=1 F [Ynj
], where again

the action on the j-th summand is given by the projection pj |Yn
: Yn → Ynj

.

(3.7) Proposition. Let b = 0. Then resPn
(D) is indecomposable.

Proof. By (3.5) we may assume that n ∈ N is not a p-power, i. e. the p-adic
expansion of n has l ≥ 2 parts. Let v ∈ M such that 0 6= v ∈ soc(resYn

(M/M ′′)),
where is as in (2.4). For 1 ≤ j ≤ l we have vynj

= v + a · γ+, for some a ∈ F .
As Ynj

fixes Ω \ Ωj 6= ∅ elementwise, it follows that a = 0 and vynj
= v.

Letting γ+
j :=

∑

i∈Ωj
γi ∈ M ′, for 1 ≤ j ≤ l, we have γ+ =

∑l

j=1 γ+
j , and

{γ+
j ∈ D; 1 ≤ j ≤ l − 1} is an F -basis of soc(resYn

(D)).

For 1 ≤ j ≤ l − 1 let vj := (γn1+n2+...+nj
) − (γn1+n2+...+nj+1) ∈ M ′, and let

vl := γn − γ1 ∈ M ′. Letting y+
nj

:= (ynj
− 1)nj−1 =

∑nj−1
i=0 yi

nj
∈ F [Ynj

] ⊆

F [Yn], for 1 ≤ j ≤ l, we have y+
nj

· (ynj
− 1) = 0 ∈ F [Yn] and vjy

+
nj

= γ+
j 6∈

M ′′, hence vjy
+
nj

= γ+
j 6= 0 ∈ D. As for the action of Ynj

on M we have

dimF kerM (y+
nj

) = n−1, we conclude that dimF kerM ′(y+
nj

) ≥ dimF (M ′)−1. For

the action of Ynj
on D ∼= M ′/M ′′ we conclude dimF kerD(y+

nj
) ≥ dimF (D)− 1,

and dimF kerD(y+
nj

) = dimF (D) − 1, for 1 ≤ j ≤ l.

We fix a direct sum decomposition of resYn
(D). For 1 ≤ j ≤ l let Vj ≤ resYn

(D)
be the uniquely determined summand on which y+

nj
does not act by the zero

map, where the Vj need not be pairwise distinct. Indeed, we have γ+
j ∈ Vj , and

from
∑l

j=1 γ+
j = γ+ = 0 ∈ D we conclude that V1 = V2 = . . . = Vl holds. Thus

soc(resYn
(D)) ≤ V1 = V2 = . . . = Vl, and even resYn

(D) is indecomposable. ♯

4 The case p = 2

(4.1) Let p = 2 and let n = 2m ∈ N for some m ∈ N0. We keep the notation
of (3.2), and for m ≥ 1 let

xn := y2
n = (w−1

n · yn
2
· wn) · yn

2
∈ Pn.

As wn ∈ Sn interchanges {1, . . . , n
2 } and {n

2 + 1, . . . , n}, we by (3.3) conclude

that xn ∈ Sn has cycle type [(n
2 )2] and orbits {1, . . . , n

2 }
.
∪ {n

2 + 1, . . . , n}, on
the latter still respecting the ordering introduced in the proof of (3.3).

Let Xn := 〈xn〉 ∼= Cn
2
. By [7, Thm.III.3.14] we have Xn ≤ P 2

n = Φ(Pn), where
Φ(Pn) denotes the Frattini subgroup of Pn.



9

(4.2) Proposition. Let n = 2m ≥ 8 and let Q < Pn be a maximal subgroup.
Then resQ(D) is an indecomposable F [Q]-module.

Proof. i) Assume to the contrary that resQ(D) is decomposable. As we have
Xn ≤ Φ(Pn) ≤ Q, we first consider resXn

(D). By (2.4) and (3.5) we have
resYn

(D) ∼= Un−2 as F [Yn]-modules. As xn = y2
n we have dimF kerD(xn − 1)j =

dimF kerD(yn − 1)2j = 2j, for 1 ≤ j ≤ n
2 − 1, and resXn

(D) ∼= U ′
n
2
−1 ⊕ U ′

n
2
−1,

where U ′
i denotes the uniserial F [Xn]-module such that dimF (U ′

i) = i, for 1 ≤
i ≤ n

2 . This implies that resQ(D) is the direct sum of two uniserial F [Q]-
modules, thus soc(resQ(D)) = soc(resXn

(D)) and soc(resQ(D)/soc(resQ(D))) =
soc(resXn

(D)/soc(resXn
(D))).

Let s1 :=
∑

n
2

i=1 γi ∈ M ′ and s2 :=
∑

n
4

i=1 γi +
∑

3n
4

i= n
2
+1 γi ∈ M ′. By (4.1)

we have s1(xn + 1) = s1(yn
2

+ 1) = 0. Furthermore, for 1 ≤ i ≤ n
4 we have

γi(xn + 1) = γi(wn
2
yn

4
+ 1) = γi + γi+ n

4
∈ M , while for n

2 + 1 ≤ i ≤ 3n
4 we have

γi(xn+1) = γi(w
−1
n wn

2
yn

4
wn+1) = γi+γi+ n

4
∈ M . Hence we have s2(xn+1) =

γ+ ∈ M ′′, and {s1, s2} ⊆ D is an F -basis of soc(resXn
(D)) = soc(resQ(D)). For

g ∈ Q and i = 1, 2 we either have sig = si ∈ M or sig = si + γ+ ∈ M .

Therefore both {1, . . . , n
2 }

.
∪ {n

2 + 1, . . . , n} and {1, . . . , n
4 , n

2 + 1, . . . , 3n
4 }

.
∪

{n
4 + 1, . . . , n

2 , 3n
4 + 1, . . . , n} are block systems for the permutation action of

Q. Letting Γi := { in
4 + 1, . . . , (i+1)n

4 }, for i ∈ {0, . . . , 3}, we see that
∐3

i=0 Γi

is a block system for Q as well, and we conclude that Q is isomorphic to a
2-subgroup of the wreath product Sn

4
≀ S4, where Sn

4
acts on Γ0 and S4 acts on

{Γ0, . . . ,Γ3}. Furthermore, if g ∈ Q fixes one of the Γi, then it fixes all of them,
implying that Q is isomorphic to a 2-subgroup of Sn

4
≀V4, where V4ES4. By (3.1)

the 2-part of the group order |Sn
4
≀V4| is given as |Sn

4
≀V4|2 = (2

n
4
−1)4 ·22 = 2n−2.

As we have |Pn| = 2n−1 and |Q| = 2n−2, we conclude that Q = Pn ∩ (Sn
4
≀ V4).

ii) Let s3 :=
∑

n
8

i=1 γi +
∑

3n
8

i= n
4
+1 γi +

∑

5n
8

i= n
2
+1 γi +

∑

7n
8

i= 3n
4

+1
γi ∈ M ′, as well as

s3 := s3 + M ′′ ∈ M ′/M ′′ ∼= D and s3 := s3 + soc(resQ(D)) ∈ D/soc(resQ(D)).
Hence we have s3 6= 0. Furthermore, for 1 ≤ i ≤ n

8 we have γi(xn + 1) =
γi(wn

2
yn

4
+ 1) = γi + γi+ n

4
, while for n

4 + 1 ≤ i ≤ 3n
8 we have γi(xn + 1) =

γi(wn
2
wn

4
yn

8
+ 1) = γi + γi−n

4
· wn

4
yn

8
= γi + γi−n

8
. For n

2 + 1 ≤ i ≤ 5n
8

and 3n
4 + 1 ≤ i ≤ 7n

8 we argue analogously. Hence we have s3(xn + 1) = s2

and s3(xn + 1) = 0, and we conclude s3 ∈ soc(resQ(D)/soc(resQ(D))), and
s3(g + 1) = 0 for all g ∈ Q.

We have yn
4
∈ Pn∩Sn

4
≤ Q. But s3(yn

4
+1) =

∑

n
8

i=1(γi+γi ·wn
4
yn

8
) =

∑

n
4

i=1 γi 6∈

〈γ+, s1, s2〉F implies s3(yn
4

+ 1) 6= 0, a contradiction. ♯

(4.3) Remark. Note that part i) of the above proof even holds for n = 2m ≥ 4,
while the assumption n = 2m ≥ 8 is needed in part ii) to ensure the existence
of s3 ∈ M , which eventually contradicts the indecomposability of resQ(D). For
n = 4 the analysis in part i) yields Q = V4 E S4, where resQ(D) by (1.4)b) and
(2.8) indeed is decomposable.
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(4.4) Let still p = 2, but let now n ∈ N be even but not a 2-power. We keep
the notation of (3.1) and (3.6). In particular, the 2-adic expansion of n has
l ≥ 2 parts, and the smallest occurring 2-power is nl ≥ 2.

Let Ω1 = Ω′
1

.
∪ Ω′′

1 , where Ω′
1 := {1, . . . , n1

2 } and Ω′′
1 := {n1

2 + 1, . . . , n1}.
Furthermore, the Sylow 2-subgroup Pn1

≤ SΩ1
is a semidirect product Pn1

=
(P ′

n1
× P ′′

n1
) ⋊ 〈wn1

〉, where P ′
n1

≤ SΩ′

1
and P ′′

n1
≤ SΩ′′

1
are Sylow 2-subgroups.

We have P ′
n1

∼= Pn1
2

∼= P ′′
n1

and 〈wn1
〉 ∼= C2. Let q1 : Pn1

→ 〈wn1
〉 ∼= C2 denote

the natural group epimorphism with kernel ker(q1) = P ′
n1

× P ′′
n1

.

As in (4.1) let xnj
∈ Pnj

≤ Snj
and Xnj

:= 〈xnj
〉 ≤ Pnj

, for 1 ≤ j ≤ l, as

well as Xn :=
∏l

j=1 Xnj
≤ Pn ≤ Sn. By [7, Exc.III.3.9] we have Φ(Pn) =

∏l

j=1 Φ(Pnj
), and Xnj

≤ Φ(Pn), for 1 ≤ j ≤ l. Furthermore, by (3.6) we have

resXn
(M) ∼=

⊕l

j=1 resXnj
(F [Ynj

]) ∼=
⊕l

j=1(F [Xnj
] ⊕ F [Xnj

]), where again the

action on the j-th summand is given by the projection pj |Xn
: Xn → Xnj

.

(4.5) Proposition. Let n ∈ N be even, but not a 2-power, and let Q < Pn be
a maximal subgroup. Then resQ(D) does not have a direct F [Q]-summand of

F -dimension dimF (D)
2 .

Proof. Let x+
nj

:= (xnj
+ 1)

nj

2
−1 =

∑

nj

2
−1

i=0 xi
nj

∈ F [Xn], for 1 ≤ j ≤ l,

yielding x+
nj

· (xnj
+ 1) = 0 ∈ F [Xn]. Let γ+

1′ :=
∑

i∈Ω′

1
γi ∈ M ′ and γ+

1′′ :=
∑

i∈Ω′′

1
γi ∈ M ′, implying γ+

1′ + γ+
1′′ = γ+

1 ∈ M ′. Let u := γn1
+ γn1+1 ∈ M ′ and

v := γ1 + γn1
2

+1 ∈ M ′, hence we have ux+
n1

= γ+
1′ 6∈ M ′′ and vx+

n1
= γ+

1 6∈ M ′′.

As for the action of Xn1
on M we have dimF kerM (x+

n1
) = n − 2, we conclude

that dimF kerM ′(x+
n1

) ≥ dimF (M ′) − 2 and dimF kerD(x+
n1

) ≥ dimF (D) − 2.

Thus dimF kerD(x+
n1

) = dimF (D) − 2 and Dx+
n1

= 〈γ+
1′ , γ

+
1′′〉F .

We fix a direct sum decomposition of resQ(D). By the above there either is a
uniquely determined summand U ≤ resQ(D) on which x+

n1
∈ F [Xn] does not

act by the zero map, or there are exactly two of them, U ′ and U ′′ say. In the
first case, the projective F [Xn1

]-module F [Xn1
]⊕F [Xn1

] is a direct summand of
resXn1

(U). As we have n ≤ 2n1−2, we conclude dimF (U) ≥ 2·dimF (F [Xn1
]) =

n1 ≥ n+2
2 > n−2

2 = dimF (D)
2 . We may assume that there are two summands

U ′ and U ′′ of resQ(D) on which x+
n1

∈ F [Xn] does not act by the zero map,

and there are a′, a′′, b′, b′′ ∈ F such that 0 6= u′ := a′ · γ+
1′ + a′′ · γ+

1′′ ∈ U ′ and

0 6= u′′ := b′ ·γ+
1′ +b′′ ·γ+

1′′ ∈ U ′′; in particular {u′, u′′} is F -linearly independent.

We first consider the case q1p1(Q) = 〈wn1
〉, see (4.4). There is g ∈ Q such

that γ+
1′g = γ+

1′′ and γ+
1′′g = γ+

1′ . If a′ 6= a′′ then using g we conclude that

0 6= (a′ +a′′) ·γ+
1 ∈ U ′, while if a′ = a′′ then we have γ+

1 ∈ U ′ anyway. Similarly

we have γ+
1 ∈ U ′′ and γ+

1 ∈ U ′ ∩ U ′′, a contradiction. We may assume that

q1p1(Q) = {1}. By [7, Thm.III.3.14] we have |Q| = |Pn|
2 = | ker(q1p1)|, and

Q = ker(q1p1) = (P ′
n1

× P ′′
n1

) ×
∏l

j=2 Pnj
. In particular we have Ynj

≤ Q for
2 ≤ j ≤ l. Similarly to the proof of (3.7) let Vj ≤ resQ(D) be the uniquely
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determined F [Q]-summand on which y+
nj

∈ F [Q] does not act by the zero map;

we have γ+
j ∈ Vj , for 2 ≤ j ≤ l. As {u′, u′′} is F -linearly independent there are

a, b ∈ F such that γ+
1 = a · u′ + b · u′′ ∈ D. Since a · u′ + b · u′′ +

∑l

j=2 γ+
j =

γ+ = 0 ∈ D, we conclude U ′ = U ′′ = V2 = . . . = Vl, a contradiction. ♯
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