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Abstract

The moduli space of the ordinary non-singular quartic curves over fields of
characteristic 2 is isomorphic to a certain open subset of an affine variety,
whose coordinate ring in turn is given as the invariant algebra of a certain
module of the finite group GL3(F2). We derive a complete description of
this invariant algebra by combining theoretical analysis with application
of specially tailored computational techniques.
Mathematics Subject Classification: 13A50, 13P10, 20C20, 14H45

1 Introduction

Traditionally, non-singular curves of a fixed genus g are classified in two cat-
egories, those which are hyperelliptic and those which are not. The first ones
are usually considered to be the simplest, since their geometry relies on their
Weierstraß points and is condensed on a line. Thus, the hyperelliptic locusMh

g

of the corresponding moduli space Mg is easily described and well understood.
Seen from an invariant theoretical viewpoint, this is reflected by the fact that
one only needs to deal with binary forms. To the contrary, non-hyperelliptic
curves are more involved. Even in the simplest case, non-singular quartic curves
over C, no complete description of the relevant invariant algebra is known. More
precisely, for the invariant algebra of the natural action of SL3(C) on the vector
space of homogeneous polynomials of degree 4 in 3 variables a set of primary
invariants, see [6], but no complete algebra generating set is known; a conjec-
ture of Shioda says that the invariant algebra is generated as an algebra by 13
elements.

Hence the question arises whether we can describe the situation more precisely
over other fields? If F is a finite field of characteristic 2, in [10] a complete
classification of the F -isomorphism types of non-singular quartic curves defined
over F has been obtained. Moreover, the stratification of the non-hyperelliptic
locus Mnh

3 of the moduli space M3 with respect to the 2-rank of the Jacobian,
and the F -rational points on the various strata, have been described there. Here,
the generic case is the one of ordinary non-singular quartic curves, where the 2-
rank of the Jacobian is maximal, hence equal to 3. In [10], a precise description
of the ordinary non-singular quartic curves is given, and it is shown that the
invariant algebra associated to their moduli space Mord

3 is given by a linear
action of the finite group G := GL3(F2) on a certain 6-dimensional F2-vector
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space W ′∗. In the present paper we give a complete description of the invariant
algebra S[W ′∗]G, answering the corresponding question posed in [10].

Despite the precise description of G and W ′∗, being suitable to be handled by
computer algebra systems, brute force computer calculations to find primary and
secondary invariants of S[W ′∗]G, using the standard press-button algorithms
available in computer algebra systems as well as up to 2 Gigabytes of mem-
ory and several hours of computing time, had to be abandoned unsuccessfully.
Hence the strategy employed here is to intertwine theoretical and computational
analysis of S[W ′∗]G, which in effect leads both to some structural understanding
of S[W ′∗]G and finally to explicitly given invariants. Actually, the theoretical
analysis indicates how to combine ideas from computational invariant theory
and available tools to obtain specially tailored techniques applicable to the ex-
amples at hand. The computations have been carried out using the computer
algebra systems MAGMA [4] and GAP [8]. After all, to check the correctness of
the results only needs a few seconds of computing time and approximately 10
Megabytes of memory. More details of the computations, a MAGMA input file,
as well as the primary and secondary invariants calculated, can be found under
http://www.math.jussieu.fr/~ritzenth.

More precisely, W ′∗ turns out to be a trivial source G-module, and the algebra
S[W ′∗]G turns out to be Cohen-Macaulay. An optimal set of primary invari-
ants has degrees {2, 3, 3, 4, 6, 7}, and a corresponding minimal set of secondary
invariants has cardinality 18. Moreover, S[W ′∗]G is generated as an algebra by
at most 11 invariants, namely the 6 primary invariants and 5 of the secondary
invariants, the latter having degrees {4, 5, 5, 6, 7}. Hence in particular S[W ′∗]G

is generated by invariants of degree at most 7. By the way, the number of
generators rings a bell: The authors wonder whether there is a connection to
Shioda’s conjecture mentioned above.

This paper is organised as follows: In Section 2 we prepare the setting on
ordinary quartic curves, recall the necessary facts from [10], and exhibit the G-
module W ′∗ whose invariant algebra S[W ′∗]G we are interested in. In Section
3 we give a general description of the specially tailored techniques needed to
deal with S[W ′∗]G, whose analysis subsequently is carried out in Section 4. We
assume the reader familiar with the basic notions of commutative algebra, in
particular Cohen-Macaulay rings, and of the invariant theory of finite groups; as
general references see e. g. [2, 5]. We consider right group actions throughout,
in accordance with the assumptions in the computer algebra systems used.

2 Ordinary quartic curves

(2.1) Let F2 be the field with 2 elements, and let F2 be its algebraic closure. Let
M := F

3
2, considered as row vector space, and let M := M ⊗F2 F2. Let W := F

7
2

and W := W ⊗F2 F2, and let C := {Ca,b,c,d,e,f,g; 0 6= [a, b, c, d, e, f, g] ∈ W} be
the family of quartic curves given by

Ca,b,c,d,e,f,g : Q2
a,b,c,d,e,f = g2 · xyz(x+ y + z),
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where Qa,b,c,d,e,f := ax2 +by2 +cz2 +dxy+eyz+fzx. This family is important
because of the following

(2.2) Proposition. See [10, Prop.1.1].
Let C be a non-singular quartic curve defined over F2. Then the following
conditions are equivalent:
i) The Jacobian variety JC of C is ordinary, i. e. we have |JC [2](F2)| = 23.
ii) The curve C has 7 bitangents.
iii) The curve C is isomorphic to some curve Ca,b,c,d,e,f,g ∈ C such that

(∗) abcg(a+ b+ d)(b+ c+ e)(a+ c+ f)(a+ b+ c+ d+ e+ f + g) 6= 0. ]

Moreover, non-singular quartic curves C and C ′ are isomorphic, if and only if
there is an element γ ∈ GL3(F2) such that Cγ = C ′, where P(M) is considered
as the natural right module for the projective general linear group PGL3(F2)
of rank 3 over F2, and Cγ is the curve defined by

V (Cγ) := {[x, y, z] ∈ P(M); [x, y, z] · γ−1 ∈ V (C)},

where V (·) denotes the locus of points of the curve. Using the action on the 7
bitangents, the isomorphism issue is reduced to the finite group G := GL3(F2) =
PGL3(F2) < PGL3(F2). Indeed, non-singular curves Ca,b,c,d,e,f,g ∈ C and
Ca′,b′,c′,d′,e′,f ′,g′ ∈ C are isomorphic, if and only if there is an element γ ∈ G
such that (Ca,b,c,d,e,f,g)γ = Ca′,b′,c′,d′,e′,f ′,g′ , see [10].

(2.3) In the sequel let G := GL3(F2) be the general linear group of degree
3 over F2, which up to isomorphism is the unique simple group of order 168,
see [3, p.3]. Let A,B,C ∈ G be the elements of order 2, 3 and 7, respectively,
defined as

A :=

 1 . 1
. 1 .
. . 1

 , B :=

 . . 1
1 . .
. 1 .

 , C :=

 . 1 .
. . 1
1 1 .

 .
It is easily checked using GAP or MAGMA that G = 〈A,B〉. The F2-vector space
M can be considered as the natural right module for G. As the above action of
PGL3(F2) restricts to an action of G on C, it is easily checked that we get an
F2-linear action of G on W as

DW : A 7→



1 . . . . . .
. 1 . . . . .
1 . 1 . . . .
. . . 1 . . .
. . . 1 1 . .
1 . . . . 1 .
. . . 1 . . 1


, B 7→



. . 1 . . . .
1 . . . . . .
. 1 . . . . .
. . . . . 1 .
. . . 1 . . .
. . . . 1 . .
. . . . . . 1


.
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The F2-subspace W ′ := {[a, b, c, d, e, f, g] ∈ W ; g = 0} < W is a G-submodule
of W , and the above matrices show that W/W ′ ∼= F2 is the trivial G-module.
Hence we have an extension of G-modules

(∗∗) {0} →W ′ →W → F2 → {0}.

Moreover, there is a G-submodule W ′′ < W ′, such that dimF2(W ′′) = 3, as is
also indicated above. The characteristic polynomials of the action of C ∈ G on
W ′′ and W ′/W ′′ are t3 + t+1 ∈ F2[t] and t3 + t2 +1 ∈ F2[t], respectively, which
both are irreducible. Hence by [9, p.3] we conclude that W ′′ and W ′/W ′′ are
non-isomorphic absolutely irreducible G-modules, where W ′′ ∼= M is isomorphic
to the natural representation ofG, andW ′/W ′′ is obtained fromW ′′ by applying
the automorphism of G given by inverting and transposing matrices.

(2.4) Let η ∈ Z1(G,W ′) be the cocycle describing the extension (∗∗), and let
S4
∼= H < G be the subgroup permuting the set {x∗, y∗, z∗, (x + y + z)∗} ⊆

M∗, where M∗ := HomF2(M,F2) is the G-module contragredient to M and
{x∗, y∗, z∗} ⊆M∗ is the F2-basis dual to the standard basis of M .

By construction, for the restriction of η to the subgroup H we have η|H = 0 ∈
Z1(H,W ′). As [G : H] = 7 is invertible in F2, we by [1, Cor.3.6.18] conclude
that η = 0 ∈ H1(G,W ′) ∼= Ext1

G(F2,W
′). Thus the extension (∗∗) splits, and

we have W = W ′ ⊕ F2 as G-modules. More concretely, going over from the
standard basis of W to the F2-basis where the last standard basis vector is
replaced by [1, 1, 1, 1, 1, 1, 1] ∈W , we indeed obtain

D′W : A 7→



1 . . . . . .
. 1 . . . . .
1 . 1 . . . .
. . . 1 . . .
. . . 1 1 . .
1 . . . . 1 .
. . . . . . 1


, B 7→



. . 1 . . . .
1 . . . . . .
. 1 . . . . .
. . . . . 1 .
. . . 1 . . .
. . . . 1 . .
. . . . . . 1


.

Actually, this basis change amounts to substituting the curves Ca,b,c,d,e,f,g ∈ C
by curves defined by

(ax2 + by2 + cz2 + dxy + eyz + fzx)2 = g2 · CK(x, y, z),

where CK(x, y, z) = x4+y4 +z4+(xy)2 +(yz)2+(zx)2 +xyz(x+y+z). We have
x∗4 + y∗4 + z∗4 + (x∗y∗)2 + (y∗z∗)2 + (z∗x∗)2 + x∗y∗z∗(x∗ + y∗ + z∗) ∈ S[M∗]G

by construction, where S[M∗]G ⊆ S[M∗] denotes the algebra of G-invariants
in the symmetric algebra S[M∗] over M∗. As for the homogeneous component
S[M∗]G4 of S[M∗]G of degree 4 we have dimF2(S[M∗]G4 ) = 1, see [7], the curve
CK ⊆ P(M) is a twist of the Klein quartic curve.

As the extension (∗∗) splits, for the corresponding contragredient G-modules we
have W ∗ ∼= W ′∗⊕F∗2. With respect to the F2-basis {a∗, b∗, c∗, d∗, e∗, f∗} ⊆W ′∗
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dual to the standard basis of W ′, the G-action on W ′∗ is given as

DW ′∗ : A 7→


1 . 1 . . 1
. 1 . . . .
. . 1 . . .
. . . 1 1 .
. . . . 1 .
. . . . . 1

 , B 7→


. . 1 . . .
1 . . . . .
. 1 . . . .
. . . . . 1
. . . 1 . .
. . . . 1 .

 .

Let W ′∗ := W ′∗ ⊗F2 F2 and W ′ := W ′ ⊗F2 F2. Moreover, let S[W ′∗]G be the
algebra of G-invariants in the symmetric algebra S[W ′∗] over W ′∗. Hence we
have S[W ′∗] ∼= S[W ′∗]⊗F2 F2, and by (3.1) we have S[W ′∗]G ∼= S[W ′∗]G⊗F2 F2.
The embedding of affine algebras S[W ′∗]G ⊆ S[W ′∗] defines a morphism W ′ →
W ′/G of affine varieties over F2, which as G is finite is a geometric quotient,
see [5, Ch.2.3]. Hence we have proved the following

(2.5) Proposition. See [10, Prop.1.3].
The moduli spaceMord

3 of the ordinary quartic curves is isomorphic to the open
subset of the affine variety Spec(S[W ′∗]G ⊗F2 F2) given by the non-singularity
conditions (∗) in (2.2). ]

3 Computing with invariant algebras

Let F be a field, let V be a finite-dimensional F -vector space, let G be a finite
group acting F -linearly on V , and let S[V ]G denote the algebra of G-invariants
in the symmetric algebra S[V ] over V .

(3.1) Remark. For d ∈ N0 we have S[V ]Gd =
⋂
σ∈G kerS[V ]d(σ − 1), where

S[V ]d ⊆ S[V ] denotes the the homogeneous component of S[V ] of degree d.
Hence for a field extension F ⊆ L we have dimF (S[V ]Gd ) = dimL(S[V ⊗F L]Gd ),
for all d ∈ N0, and thus we conclude S[V ]G ⊗F L ∼= S[V ⊗F L]G.

(3.2) To compute primary invariants in the particular situation occurring in
Section 4, we exploit the following setting.

Let {0} → U ′
α→ U

β→ V → {0} be an extension of G-modules. Hence α induces
an embedding S[U ′] ⊆ S[U ], and β induces an isomorphism S[U ]/U ′S[U ] →
S[V ]. Hence we have S[U ′]G ⊆ S[U ]G and (S[U ]/U ′S[U ])G ∼= S[V ]G, where
U ′S[U ] C S[U ] is a G-submodule. In general, we only have an embedding
S[U ]G/(U ′S[U ])G ⊆ (S[U ]/U ′S[U ])G but not an isomorphism, and in general
(U ′S[U ])G C S[U ]G is not generated by the irrelevant ideal S[U ′]G+ C S[U ′]G.

Let us assume that the above extension splits, and let γ : V → U such that
γβ = idV . Hence γ induces an embedding S[V ] ⊆ S[U ], and we have S[U ] =
S[V ] ⊕ U ′S[U ] as G-modules. Thus from S[U ]G = S[V ]G ⊕ (U ′S[U ])G we
conclude that β induces an isomorphism S[U ]G/(U ′S[U ])G ∼= S[V ]G.
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Let us moreover assume that U ′ ∼= F is the trivial G-module, and let 0 6= f̂ ∈
U ′ ⊆ S[U ]G1 . Then we have (U ′S[U ])G = f̂ ·S[U ]GCS[U ]G, and thus β induces
an isomorphism S[U ]G/f̂S[U ]G ∼= S[V ]G. As f̂ ∈ S[U ] is not a zero-divisor, for
the corresponding Hilbert series we obtain HS[V ]G(t) = (1−t)·HS[U ]G(t) ∈ Q(t).

Let F̂ := {f̂0, . . . , f̂n−1} ⊆ S[U ]G be a set of primary invariants, such that
f̂0 = f̂ , and let fi := f̂iβ ∈ S[V ]G, for i ∈ {1, . . . , n − 1}, as well as F :=
{f1, . . . , fn−1}. Note that by [2, Cor.1.4.6] for the Krull dimensions we have
n = dim(S[U ]G) = dimF (U) and n − 1 = dim(S[V ]G) = dimF (V ). As F̂ ⊆
S[U ]G is a set of primary invariants, using the Graded Nakayama Lemma, see
[5, La.3.5.1], we conclude dim(S[U ]G/F̂S[U ]G) = 0. Hence using β we find
dim(S[V ]G/FS[V ]G) = 0, where |F| ≤ n− 1. Hence by the Graded Nakayama
Lemma again we conclude that F ⊆ S[V ]G is set of primary invariants.

Finally, as f̂ ∈ S[U ]G is not a zero-divisor and hence regular, see [2, Ch.4.3],
we conclude that S[U ]G is Cohen-Macaulay, if and only if S[V ]G is. Moreover,
if S[V ]G is Cohen-Macaulay, then there is a maximal regular homogeneous se-
quence in S[U ]G beginning with f̂ , which thus is a set of primary invariants of
S[U ]G, and the above construction indeed yields a a set of primary invariants of
S[V ]G, which is optimal in the sense of [5, Ch.3.3.2], i. e. with respect to degree
product, if the used set of primary invariants of S[U ]G is.

(3.3) To compute secondary invariants in the particular situation occurring
in Section 4, we use a special adaptation of the method typically used in the
non-modular case, see [5, Ch.3.5].

Let us assume that R := S[V ]G is known to be Cohen-Macaulay, and that the
Hilbert series HR ∈ Q(t) and a set F ⊆ R+ of primary invariants are known;
here again R+ CR denotes the irrelevant ideal. Hence by [5, Ch.3.5.1] we have
f :=

∏n
i=1(1 − tdi) · HR ∈ Z≥0[t], and hence the cardinality of any minimal

homogeneous F [F ]-module generating set G of R is given as f(1), while the
degrees of its elements can be determined from the monomials occurring in f .

Let G ⊆ R be a set of the appropriate cardinality, containing homogeneous ele-
ments of the appropriate degrees. By the Graded Nakayama Lemma G generates
the F [F ]-module R if and only if G generates the F -vector space R/F [F ]+R. By
the assumptions made we conclude that G is a generating set of the F [F ]-module
R if and only if G ⊆ R/F [F ]+R is F -linearly independent.

As we are developing a method to find secondary invariants, the ring R and
hence R/F [F ]+R are not yet known. Thus we proceed as follows. Let H ≤ G
be a subgroup such that char(F ) does not divide [G : H], and let S := S[V ]H .
As we have F [F ] ⊆ R ⊆ S, we may consider the natural map π : R → S →
S/(
∑n
i=1 fiS) of F -algebras. Hence we have F [F ]+R ⊆ ker(π). Conversely, let

h ∈ ker(π) E R, hence we have h =
∑n
i=1 fihi, where hi ∈ S. Thus we have

h = RGH(h) =
∑n
i=1 fi · RGH(hi) ∈ F [F ]+R, and hence ker(π) = F [F ]+R. Thus

we have an embedding π : R/F [F ]+R→ S/(
∑n
i=1 fiS). Hence G ⊆ R/F [F ]+R

is F -linearly independent, if and only if π(G) ⊆ S/(
∑n
i=1 fiS) is.
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Let us finally assume that S = S[V ]H is Cohen-Macaulay, and that G′ ⊆ S
is a minimal set of secondary invariants; note that F ⊆ S is a set of primary
invariants. As S is the free F [F ]-module generated by G′, a description of
S as a finitely presented commutative F -algebra can be derived using linear
algebra techniques, see [5, Ch.3.6]. From that, a description of S/(

∑n
i=1 fiS)

as a finitely presented commutative F -algebra is immediately derived. Hence
the F -linear independence of π(G) ⊆ S/(

∑n
i=1 fiS) is easily verified or falsified

using Gröbner basis techniques, see [5, Ch.3.5].

4 The invariant algebra S[W ′∗]G

Let again G := GL3(F2). We are prepared to analyse the structure of the
invariant algebra S[W ′∗]G introduced in (2.4). We begin with the following

(4.1) Proposition. The G-module W is a transitive permutation module.

Proof. If W were a transitive permutation module, the corresponding point
stabiliser would be a subgroup of order 24, leading to the following sensible guess.
As in (2.4) let S4

∼= H < G be the subgroup permuting the set {x∗, y∗, z∗, (x+
y + z)∗} ⊆ M∗. Hence H fixes w0 = [0, 0, 0, 0, 0, 0, 1] ∈ W , and we are led to
conjecture that H = StabG(w0) and that w0 ·G ⊆W is an F2-basis of W being
permuted by G. To check this, let C ∈ G be as in (2.3). Its action on W is
given as

DW : C 7→



. . 1 . . . .
1 . 1 . . . .
. 1 . . . . .
. . 1 . . 1 .
. . . 1 1 . .
. . . . 1 . .
. . . . 1 . 1


.

Hence {Ci ∈ G; i = 0, . . . , 6} ⊆ G is a set of representatives of the right cosets
H|G, and Ω := {w0 ·Ci ∈W ; i = 0, 6, 1, 2, 3, 4, 5} ⊆W is given as follows, where
the rows indicate the elements of Ω in terms of the standard basis of W ,

. . . . . . 1

. . . . . 1 1

. . . . 1 . 1

. . . 1 . . 1

. . 1 . 1 1 1

. 1 . 1 1 . 1
1 . . 1 . 1 1


.

Hence Ω is an F2-basis of W , and it is easily checked that it is permuted by G,
where in particular A 7→ (1, 4)(2, 7) ∈ S7 and B 7→ (2, 4, 3)(5, 7, 6) ∈ S7. ]
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Thus the G-module W ′∗ is a direct summand of the permutation module W ∗.
Note that direct summands of permutation modules are also called trivial
source modules, see [5, Ch.3.10.4].

(4.2) Proposition. The Hilbert series HS[W ′∗]G ∈ Q(t) of S[W ′∗]G is given as

HS[W ′∗]G(t) =
1+t4+2t5+t6+t7+t8+2t9+2t10+t11+t12+t13+2t14+t15+t19

(1− t2) · (1− t3)2 · (1− t4) · (1− t6) · (1− t7)
.

Proof. As the G-module W ′∗ is a trivial source module, by [1, Cor.3.11.4] the
G-module W ′∗ has a unique lift to a trivial source Z2G-module Ŵ ′∗, where
Z2 ⊆ Q2 is the integral closure of Z in the 2-adic completion Q2 of Q. Let
W̃ ′∗ := Ŵ ′∗ ⊗Z2 Q2. By [5, Prop.3.10.15] we have HS[W ′∗]G(t) = H

S[W̃ ′∗]G
(t) ∈

Q(t), where by Molien’s Theorem, see [2, Thm.2.5.2], the latter is given as

H
S[W̃ ′∗]G

(t) =
1
|G|
·
∑
σ∈G

1
det

W̃ ′∗
(1− tσ)

∈ Q2(t).

Moreover, we have det
W̃ ′∗

(1−tσ) =
∏7
i=1(1−λi(σ)·t), where {λ1(σ), . . . , λ7(σ)}

are the eigenvalues of the action of σ ∈ G in a suitable extension field of Q2.
Hence det

W̃ ′∗
(1− tσ) can be evaluated from the ordinary character table of G,

see [3, p.3], and the character χ
W̃ ′∗

of W̃ ′∗, see [2, Ch.2.5]. This method and
the ordinary character table of G are available in GAP.

Hence it remains to find the character χ
W̃ ′∗

. Thus we have to determine the
trivial source lift Ŵ ′∗. By (4.1) we have (F2)GH ∼= W ∼= W ′ ⊕ F2, where F2

denotes the trivial G-module. Hence we have the trivial source lifts (Z2)GH ∼=
Ŵ ∼= Ŵ ′ ⊕ Z2, where again Z2 denotes the trivial G-module. Since we have
(Ŵ )∗ ∼= Ŵ ∗ as G-modules, we obtain ((Z2)GH)∗ ∼= Ŵ ∗ ∼= Ŵ ′∗ ⊕ Z2, Moreover,
we conclude ((Q2)GH)∗ ∼= Ŵ ∗ ⊗Z2 Q2

∼= W̃ ′∗ ⊕ Q2. By [3, p.3] the character
1GH of the permutation G-module (Q2)GH is given as 1G + χ6, where χ6 is the
unique irreducible character of degree 6 and 1G is the trivial character. As χ6

is real-valued we have χ
W̃ ′∗

= 1GH − 1G = χ6. ]

(4.3) Proposition. The invariant algebra S[W ′∗]G is Cohen-Macaulay.

Proof. Let D < G be a 2-Sylow subgroup of G, hence we have |D| = 8. Using
the standard methods to compute primary invariants, see [5, Ch.3.3], and sec-
ondary invariants in the modular case, see [5, Ch.3.5], available in MAGMA, we
find primary invariants {f ′1, . . . , f ′6} ⊆ S[W ′∗]D having degrees {1, 1, 2, 2, 2, 4},
and a minimal set of secondary invariants G′ := {g′0, . . . , g′3} ⊆ S[W ′∗]D having
degrees {0, 3, 3, 6}, where of course g′0 = 1. As we moreover have |G′| · |D| =∏6
i=1 deg(f ′i), by [5, Thm.3.7.1] we conclude that S[W ′∗]D is Cohen-Macaulay,

and thus by [5, Rem.3.4.2] the algebra S[W ′∗]G also is. ]
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(4.4) We are prepared to compute primary invariants of S[W ′∗]G. To do this,
we first consider the permutation module W ∗ = W ′∗ ⊕ F2, and compute the
homogeneous components S[W ∗]Gd for d ≤ 7 as follows, see also [5, Ch.3.10].
Let Ω∗ = {ω∗1 , . . . , ω∗7} ⊆W ∗ be the F2-basis of W ∗ dual to the F2-basis Ω ⊆W
given in (4.1). As S[W ∗]d also is a permutation module, whose F2-basis (Ω∗)d

consisting of the monomials of degree d in the indeterminates Ω∗ is permuted
by G. Hence (Ω∗)d is partitioned into G-orbits (Ω∗)d =

∐nd
i=1Oi, where nd =

dimF2(S[W ∗]Gd ). Letting O+
i :=

∑
f∈Oi f ∈ S[W ∗]Gd denote the corresponding

orbit sums, the set {O+
i ; i ∈ {1, . . . , nd}} forms an F2-basis of S[W ∗]Gd .

As by (3.2) we have HS[W∗]G = 1
1−t · HS[W ′∗]G ∈ Q(t), we look for primary

invariants having degrees {1, 2, 3, 3, 4, 6, 7}. By [5, Prop.3.3.1], a set F̂ =
{f̂0, . . . , f̂6} ⊆ S[W ∗]G of homogeneous elements is a set of primary invariants,
if and only if dim(S[W ∗]/F̂S[W ∗]) = 0. Krull dimensions can be computed
using Gröbner basis techniques, which are available in MAGMA, and we indeed
find the following set of primary invariants of S[W ∗]G, consisting of orbit sums,

f̂0 := ω∗1 + ω∗2 + ω∗3 + ω∗4 + ω∗5 + ω∗6 + ω∗7 ,

f̂1 := ω∗1ω
∗
2 + ω∗1ω

∗
3 + ω∗1ω

∗
4 + ω∗1ω

∗
5 + ω∗1ω

∗
6 + ω∗1ω

∗
7 + ω∗2ω

∗
3+

ω∗2ω
∗
4 + ω∗2ω

∗
5 + ω∗2ω

∗
6 + ω∗2ω

∗
7 + ω∗3ω

∗
4 + ω∗3ω

∗
5 + ω∗3ω

∗
6+

ω∗3ω
∗
7 + ω∗4ω

∗
5 + ω∗4ω

∗
6 + ω∗4ω

∗
7 + ω∗5ω

∗
6 + ω∗5ω

∗
7 + ω∗6ω

∗
7 ,

f̂2 := ω∗1ω
∗
2ω
∗
3 + ω∗1ω

∗
2ω
∗
4 + ω∗1ω

∗
2ω
∗
5 + ω∗1ω

∗
2ω
∗
7 + ω∗1ω

∗
3ω
∗
4 + ω∗1ω

∗
3ω
∗
5+

ω∗1ω
∗
3ω
∗
6 + ω∗1ω

∗
4ω
∗
6 + ω∗1ω

∗
4ω
∗
7 + ω∗1ω

∗
5ω
∗
6 + ω∗1ω

∗
5ω
∗
7 + ω∗1ω

∗
6ω
∗
7+

ω∗2ω
∗
3ω
∗
5 + ω∗2ω

∗
3ω
∗
6 + ω∗2ω

∗
3ω
∗
7 + ω∗2ω

∗
4ω
∗
5 + ω∗2ω

∗
4ω
∗
6 + ω∗2ω

∗
4ω
∗
7+

ω∗2ω
∗
5ω
∗
6 + ω∗2ω

∗
6ω
∗
7 + ω∗3ω

∗
4ω
∗
5 + ω∗3ω

∗
4ω
∗
6 + ω∗3ω

∗
4ω
∗
7 + ω∗3ω

∗
5ω
∗
7+

ω∗3ω
∗
6ω
∗
7 + ω∗4ω

∗
5ω
∗
6 + ω∗4ω

∗
5ω
∗
7 + ω∗5ω

∗
6ω
∗
7 ,

f̂3 := ω∗1ω
∗
2ω
∗
6 + ω∗1ω

∗
3ω
∗
7 + ω∗1ω

∗
4ω
∗
5 + ω∗2ω

∗
3ω
∗
4+

ω∗2ω
∗
5ω
∗
7 + ω∗3ω

∗
5ω
∗
6 + ω∗4ω

∗
6ω
∗
7 ,

f̂4 := ω∗1ω
∗
2ω
∗
3ω
∗
5 + ω∗1ω

∗
2ω
∗
4ω
∗
7 + ω∗1ω

∗
3ω
∗
4ω
∗
6 + ω∗1ω

∗
5ω
∗
6ω
∗
7+

ω∗2ω
∗
3ω
∗
6ω
∗
7 + ω∗2ω

∗
4ω
∗
5ω
∗
6 + ω∗3ω

∗
4ω
∗
5ω
∗
7 ,

f̂5 := ω∗1ω
∗
2ω
∗
3ω
∗
4ω
∗
5ω
∗
6 + ω∗1ω

∗
2ω
∗
3ω
∗
4ω
∗
5ω
∗
7 + ω∗1ω

∗
2ω
∗
3ω
∗
4ω
∗
6ω
∗
7+

ω∗1ω
∗
2ω
∗
3ω
∗
5ω
∗
6ω
∗
7 + ω∗1ω

∗
2ω
∗
4ω
∗
5ω
∗
6ω
∗
7 + ω∗1ω

∗
3ω
∗
4ω
∗
5ω
∗
6ω
∗
7+

ω∗2ω
∗
3ω
∗
4ω
∗
5ω
∗
6ω
∗
7 ,

f̂6 := ω∗1ω
∗
2ω
∗
3ω
∗
4ω
∗
5ω
∗
6ω
∗
7 .

It turns out that there is no set of primary invariants of S[W ∗]G having a strictly
smaller degree product, hence F̂ is optimal in the sense of [5, Ch.3.3.2]. As
f̂0 ∈ S[W ∗]G1 , using the method described in (3.2), we find an optimal set F =
{f1, , . . . , f6} ⊆ S[W ′∗]G of primary invariants, having degrees {2, 3, 3, 4, 6, 7}.

(4.5) Next we compute secondary invariants of S[W ′∗]G. Since the algebra
S[W ′∗]G is Cohen-Macaulay and a set of primary invariants is known, from the
Hilbert series HS[W ′∗]G we conclude that there is a minimal set of 18 secondary
invariants, having degrees {0, 4, 5, 5, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13, 14, 14, 15, 19},
see [5, Ch.3.5.1]. To find such a set of secondary invariants, we first com-



10

pute the homogeneous components S[W ′∗]Gd for d ≤ 7, using linear algebra
techniques available in MAGMA, see [5, Ch.3.1]. We then consider products of
the homogeneous invariants thus found, having appropriate degrees. Thus we
successively generate homogeneous elements G := {g1, g2, . . . , g18} ∈ S[W ′∗]G,
repeatedly using the method described in (3.3) to make sure that we have
dimF2(〈π(gj); j ∈ {1, . . . , k}〉F2) = k, for k ∈ {1, . . . , 18}.
To apply the method described in (3.3), we again consider the invariant alge-
bra S[W ′∗]D, see (4.3). As S[W ′∗]D is Cohen-Macaulay, using linear algebra
techniques available in MAGMA, we obtain the finite presentation S[W ′∗]D ∼=
〈F1, . . . , F6, G1, . . . , G3|R1, . . . , R3〉 as commutative F2-algebras, where

R1 := (F1 + F2)2(F1F2F4 + F3F5 + F 2
4 + F4F5) + (F3 + F4)F 2

5 +
(F 3

1 + F1F
2
2 + F1F5 + F2F5) ·G1 + (F 2

1F2 + F 3
2 ) ·G2 +G2

1,
R2 := (F1F2 + F 2

2 + F3)F3F4 + (F1F
2
2 + F1F3 + F 3

2 + F2F5) ·G1+
(F1F

2
2 + F1F5 + F 3

2 + F2F5) ·G2 +G1G2 +G3,
R3 := (F 2

2F6 + F 2
3F5) + F2F3 ·G2 +G2

2,

the isomorphism from the finitely presented algebra to S[W ′∗]D being given
by Fi 7→ f ′i and Gj 7→ g′j , where {f ′1, . . . , f ′6} ⊆ S[W ′∗]D and {g′1, . . . , g′3} ⊆
S[W ′∗]D are as in (4.3). Decomposing the set of primary invariants F ⊆
S[W ′∗]G ⊆ S[W ′∗]D into the F2-algebra generators {f ′1, . . . , f ′6}∪{g′1, . . . , g′3} of
S[W ′∗]D, again using linear algebra techniques available in MAGMA, yields the
finite presentation

S[W ′∗]D/(
6∑
i=1

fiS[W ′∗]D) ∼= 〈F1, . . . , F6, G1, . . . , G3|R1, , . . . , R3, R
′
1, . . . , R

′
6〉

as commutative F2-algebras, where the additional relations are given as

R′1 := F 2
2 + F4 + F5,

R′2 := F1F4 + F2F5 +G1 +G2,
R′3 := F2F4 +G1,
R′4 := F 2

1 (F1 + F2)2+F1(F1 + F2)(F4 + F5)+F3(F3 + F4)+F6+F1 ·G1,
R′5 := F 2

1 (F 2
3 + F3F4 + F6) + F1F2(F 2

2F4F3F4 + F4F5 + F6)+
F 2

2 (F3F4 + F3F5 + F 2
4 ) + (F3 + F4)(F 2

5 + F6) + F 2
4F5+

(F1F3 + F1F5 + F 3
2 + F2F4) ·G1+

(F1F
2
2 + F1F3 + F1F4 + F1F5) ·G2 +G3,

R′6 := F1F6(F3 + F4).

We end up with secondary invariants G := {g1, . . . , g6} ∪ {g7, . . . , g18}, where
g1 = 1 and {g1, . . . , g6} have degrees {0, 4, 5, 5, 6, 7}, while

g7 := g2
2 (8),

g8 := g2g3 (9),
g9 := g2g4 (9),
g10 := g2g5 (10),

g11 := g3g4 (10),
g12 := g2g6 (11),
g13 := g3

2 (12),
g14 := g2

2g3 (13),

g15 := g2
2g5 (14),

g16 := g2g3g4 (14),
g17 := g2

2g6 (15),
g18 := g3

2g6 (19),
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where the bracketed numbers indicate the degrees. Hence in particular we con-
clude that {f1, . . . , f6} ∪ {g1, . . . , g6} ⊆ S[W ′∗]G is a minimal F2-algebra gener-
ating set of S[W ′∗]G, and in particular S[W ′∗]G is as an F2-algebra generated
by invariants of degree at most 7.

(4.6) Remark. In conclusion we note the following observations.
a) As W is a transitive permutation module of odd degree in characteristic 2,
there is a non-zero G-invariant quadratic form on W . Indeed, this form coincides
with the primary invariant f̂1 ∈ S[W ∗]G of degree 2. Moreover, we have

f1 = a∗e∗ + b∗f∗ + c∗d∗ + d∗e∗ + d∗f∗ + e∗f∗ + d∗2 + e∗2 + f∗2 ∈ S[W ′∗]G.

Hence this shows that DW ′ is an embedding DW ′ : G → SO+
6 (F2), where

SO+
6 (F2) denotes the special orthogonal group of degree 6 over F2 of maximal

Witt index type, see [3, p.22].

b) We have {0} → (W ′/W ′′)∗ → W ′∗ → W ′′∗ → {0}, see (2.3). Assume that
this extension splits. Then we also have W ′ ∼= W ′′⊕W ′/W ′′, and hence (F2)GH ∼=
W ∼= W ′′ ⊕W ′/W ′′ ⊕ F2 is semisimple, and thus dimF2(EndG((F2)GH)) = 3. By
(4.2) we have dimQ2(EndG((Q2)GH)) = 2, a contradiction to [1, Thm.3.11.3].
Hence this extension does not split.

Still we are tempted to apply the method described in (3.2), yielding an embed-
ding S[W ′∗]G/((W ′/W ′′)∗S[W ′∗])G → S[W ′′∗]G. The question arises whether
this map is still surjective. While the authors do not see a structural reason
why this should be the case, from the primary invariants {f4, f5, f6} ⊆ S[W ′∗]G

of degrees {4, 6, 7} we obtain {c0, c1, c2} ⊆ S[W ′′∗]G, where

c2 := a∗4 + b∗4 + c∗4 + a∗2b∗2 + a∗2c∗2 + b∗2c∗2+
a∗2b∗c∗ + a∗b∗2c∗ + a∗b∗c∗2,

c1 := a∗4b∗2 + a∗2b∗4 + a∗4c∗2 + a∗2c∗4 + b∗4c∗2 + b∗2c∗4+
a∗4b∗c∗ + a∗b∗4c∗ + a∗b∗c∗4 + a∗2b∗2c∗2,

c0 := a∗4b∗2c∗ + a∗4b∗c∗2 + a∗2b∗4c∗ + a∗b∗4c∗2 + a∗2b∗c∗4 + a∗b∗2c∗4.

It turns out that these are the Dickson invariants of S[W ′′∗]G, see [2, Ch.8.1].
By Dickson’s Theorem, see [2, Thm.8.1.1], the set {c0, c1, c2} ⊆ S[W ′′∗]G is
algebraically independent, and we have S[W ′′∗]G = F2[c0, c1, c2]. Hence the
above map S[W ′∗]G/((W ′/W ′′)∗S[W ′∗])G → S[W ′′∗]G indeed is surjective.

c) Using the method described in (3.2), we may also find an optimal set of
primary invariants of the invariant algebra S[W̃ ′∗]G, which by the Hochster-
Eagon Theorem, see [2, Thm.4.3.6], is Cohen-Macaulay. These optimal primary
invariants turn out to have degrees {2, 3, 3, 4, 4, 7}. Indeed, the Hilbert series
H
S[W̃ ′∗]G

(t) = HS[W ′∗]G(t) can be rewritten as

H
S[W̃ ′∗]G

(t) =
1 + 2t5 + 2t6 + t7 + t10 + 2t11 + 2t12 + t17

(1− t2) · (1− t3)2 · (1− t4)2 · (1− t7)
.

Since the optimal set F of primary invariants has degrees {2, 3, 3, 4, 6, 7}, there
is no set of primary invariants of S[W ′∗]G having degrees {2, 3, 3, 4, 4, 7}. This
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shows, although S[W̃ ′∗]G and S[W ′∗]G do have the same Hilbert series, that
their algebra structures are different. Still, as the underlying modules W ′∗ and
W̃ ′∗ are closely related, the corresponding invariant algebras should be closely
related as well. But how this relationship might look like, for the time being
remains mysterious to the authors.
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