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Abstract

We describe how certain permutation actions of large symmetric groups can be efficiently implemented
on a computer. Using a specially tailored adaptation of a general technique to enumerate huge orbits, and
substantial distributed computation on a cluster of workstations, we collect further evidence related to the
approach to Foulkes’ conjecture suggested in [Black and List, 1989].

1 Foulkes’ conjecture

To state Foulkes’ conjecture we first introduce some notation. LetN be the set of positive integers, letQ be
the set of rational numbers, and denote byMn := {1, 2, 3, . . . , n} for n ∈ N the set of natural numbers less
than or equal ton. We denote the symmetric group onn points bySn := {π : Mn → Mn | π bijective},
with concatenation of maps as product, which we denote asπ ◦ ϕ meaning “apply firstϕ, thenπ”.
Form,n ∈ N letSmoSn be the wreath product ofSm andSn, which is a semidirect product of then-fold direct
productSnm := Sm×· · ·×Sm of copies ofSm andSn, where the latter acts on the first by permuting the direct
factors. Note thatSnm can be identified with the set of maps{f : Mn → Sm}. Hence,Sm o Sn = Snm o Sn
with product

(f, π) · (f ′, π′) := (f · (f ′ ◦ π−1), π ◦ π′),

where we multiply mapsf : Mn → Sm pointwise using the product inSm.
The wreath productSm o Sn has order|Sm o Sn| = (m!)n · n!, and embeds intoSmn by letting thei-th direct
factor ofSnm, for i = 1, . . . , n, permute the points{(i− 1)m+ 1, . . . , im} and keep all other points inMmn

fixed, whileSn acts onMmn by permuting thesen blocks; for more details see [James and Kerber, 1981,
Section 4.1]. We denote byΩm,n the set{(Sm oSn) ◦ π | π ∈ Smn} of right cosets ofSm oSn in Smn, and by
QΩm,n the associated permutation rightQSmn-module.
It is easily seen by an induction argument that form ≥ n we have|Sn o Sm| ≤ |Sm o Sn|. Thus we have
|Ωm,n| ≤ |Ωn,m|. But in fact much more is conjectured to be true:

1.1 Conjecture ([Foulkes, 1950])
Let m,n ∈ N with m ≥ n. Then the permutation module QΩm,n is a QSmn-submodule of the permutation
module QΩn,m.

An outline of this note is as follows: In Section 2 we describe how the action ofSmn onΩm,n can be efficiently
implemented on a computer. This implementation will be used for calculations connected to the approach to
Foulkes’ conjecture suggested in [Black and List, 1989]. Our description uses the notion of Schur bases,
which are introduced in Section 3, while in Section 4 the approach of Black and List is discussed. In Sec-
tion 5 our particular computational techniques are explained, and in the final Section 6 actual computational
results are presented. There we also describe, for which values ofm andn the conjecture has been verified
computationally so far.
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2 Implementation of the action ofSmn on Ωm,n

For this section letm,n ∈ N be fixed. We consider the following set of maps:

Vm,n := {v : Mmn →Mn | v takes every value exactlym times} .

One can imagine these maps as tuples of lengthmn with entries inMn, each one occuring exactlym times.
Hence we will denote such maps as tuplesv = (v1, v2, . . . , vmn). On the computer they are stored exactly in
this way. By way of concatenation of maps, we have two transitive actions onVm,n, one on the left and one
on the right: The groupSn acts regularly on the left by renaming the entries:

Sn × Vm,n → Vm,n, (π, v) 7→ π ◦ v.

The groupSmn acts on the right by permuting the entries:

Vm,n × Smn → Vm,n, (v, ψ) 7→ v ◦ ψ.

These actions commute because of the associativity of concatenation:(π ◦ v) ◦ ψ = π ◦ (v ◦ ψ).
Therefore we obtain an induced action ofSmn on theSn-orbits inVm,n. In the sequel we omit the “◦” symbol
in the notation ofSn orbits, denote the set{Snv | v ∈ Vm,n} of Sn-orbits inVm,n bySn\Vm,n, and the action
of Smn on it by (Snv) ◦ ψ := Sn(v ◦ ψ).
From now on letx ∈ Vm,n be the tuple

x := (1, . . . , 1︸ ︷︷ ︸
m times

, 2, . . . , 2︸ ︷︷ ︸
m times

, . . . , n, . . . , n︸ ︷︷ ︸
m times

),

i.e. the map, which mapsk ∈Mmn to dk/me, the smallest integer greater or equal tok/m. Then the stabilizer
StabSmn(x) of x in Smn is equal toSnm, and the stabilizerStabSmn(Snx) of Snx ∈ Sn\Vm,n in Smn is equal
toSm oSn. Thus the action ofSmn onSn\Vm,n is equivalent to the action ofSmn onΩm,n. Hence we identify
Ωm,n andSn\Vm,n in the sequel.
Passing fromSmn-sets toQSmn-modules, we can considerQVm,n as aQSn-QSmn-bimodule, and thus the
permutationQSmn-moduleQΩm,n is identified with theQSmn-submodule(QVm,n)Sn whose permutation
basis consists of the sumsSnv :=

∑
w∈Snv w overSn-orbitsSnv ⊆ Vm,n. Note that(QVm,n)Sn is the set of

elements inQVm,n invariant under the left action ofSn.

We introduce the following definition to distinguish one tuple in eachSn-orbit:

2.1 Definition (Sn-minimal tuples)
In the above situation we call the lexicographically smallest tuple in each Sn-orbit Sn-minimal. For each
v ∈ Vm,n we call the Sn-minimal tuple in the orbit Snv the Sn-minimalization of v. We denote by V min

m,n the
set of Sn-minimal tuples in Vm,n.

It follows readily from the above, that the action ofSmn on Ωm,n can be implemented on a computer by
identifying Ωm,n with V min

m,n , and acting with a mapψ ∈ Smn on v ∈ V min
m,n by justSn-minimalizingv ◦ ψ ∈

Vm,n. Note the runtime needed to compute anSn-minimalization, and hence theψ-image ofv, is proportional
to the lengthmn of the tuples.
We note the following characterization ofSn-minimality for later reference:

2.2 Proposition (Equivalent characterization ofSn-minimality)
A tuple v ∈ Vm,n is Sn-minimal, if and only if it has the following property: For all i, j with 1 ≤ i < j ≤ n
the first occurence of i in v is before the first occurence of j.

Proof: Let v beSn-minimal. If the above property would not hold, we could rename somei andj and get a
lexicographically smaller tuple in the sameSn-orbit, a contradiction.
Let v have the above property, and assumev is notSn-minimal. Then there is a tuplev′ in the sameSn-orbit
that is lexicographically smaller thanv: Let p be the first position where both tuples differ, and letvp = j and
v′p = i with i < j. Becausev andv′ are in the sameSn-orbit, p is the first position inv with valuej and the
first position inv′ with valuei. By the assumed property, the first occurence ofi in v is beforep. However,v
andv′ are equal at positions beforep, therefore we have a contradiction. �
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3 Schur bases

To describe the approach in [Black and List, 1989], we recall a few facts about permutation modules and
homomorphisms between them. For our purposes we give a slightly more general description as can be found
e.g. in [Landrock, 1983, Ch.II.12].

For this section letG be a finite group, acting transitively from the right on the setsΩ andΩ′. Letω1 ∈ Ω and
ω′1 ∈ Ω′ as well asH := StabG(ω1) andH ′ := StabG(ω′1) be the corresponding stabilizers. As above, letQΩ
andQΩ′ denote the associated permutation modules. The spaceHomQG(QΩ,QΩ′) of QG-homomorphisms
fromQΩ toQΩ′ has a distinguished basis, which can be described as follows:
We decomposeΩ′ intoH-orbits, by choosings1 = 1G, s2, . . . , sl ∈ G such that

Ω′ = ω′1s1H ∪ ω′1s2H ∪ · · · ∪ ω′1slH

is a disjoint union. Note that hence{s1, s2, . . . , sl} is a set ofH ′-H-double coset representatives inG.
Using the diagonal action ofG on Ω′ × Ω, and considering the intersection of eachG-orbit in Ω′ × Ω with
Ω′ × {ω1}, we get the decomposition ofΩ′ × Ω intoG-orbits by

Ω′ × Ω = (ω′1s1, ω1)G ∪ (ω′1s2, ω1)G ∪ · · · ∪ (ω′1sl, ω1)G.

We describe a homomorphismϕ ∈ HomQG(QΩ,QΩ′) by a matrix with respect to the natural bases ofQΩ
andQΩ′, respectively, where the rows are indexed byΩ′ and the columns are indexed byΩ. Denoting the
(ω′, ω)-entry of the matrix ofϕ by ϕω′,ω, we getϕω′,ωg = ϕω′g−1,ω, or equivalentlyϕω′g,ωg = ϕω′,ω, for all
ω ∈ Ω, ω′ ∈ Ω′ andg ∈ G, becauseϕ is aQG-module homomorphism. Thus, the matrix ofϕ is a unique
Q-linear combination of the matricesA(1), A(2), . . . , A(l) defined by

A
(i)
ω′,ω =

{
1 if (ω′, ω) ∈ (ω′1si, ω1)G,
0 if (ω′, ω) /∈ (ω′1si, ω1)G.

We callA := (A(1), A(2), . . . , A(l)) and the associatedQG-module homomorphisms(ϕ(1), ϕ(2), . . . , ϕ(l))
theSchur basisof HomQG(QΩ,QΩ′), which hence is in bijection with theG-orbits inΩ′ × Ω. In particular
for ω = ω1g ∈ Ω, whereg ∈ G, and thusHg = StabG(ω1g), we have:

ϕ(i) : ω = ω1g 7→
∑

ω′∈ω′1sigHg

ω′.

We now turn to the concatenation of homomorphisms. For aG-set Ω′′ let H ′′ := StabG(ω′′1) for some
ω′′1 ∈ Ω′′, and as above we choose a set{t1 = 1G, t2, . . .} of H ′′-H ′-double coset representatives inG,
and a set{u1 = 1G, u2, . . .} of H ′′-H-double coset representatives inG. Let B := (B(1), B(2), . . .) and
C := (C(1), C(2), . . .) denote the Schur bases ofHomQG(QΩ′,QΩ′′) andHomQG(QΩ,QΩ′′), respectively.
We can now write the concatenationB(j) ◦ A(i), i.e. the matrix product, in terms of the Schur basisC of
HomQG(QΩ,QΩ′′):

(B(j) ◦A(i))ω′′1 uk,ω1
=

∑
ω′∈Ω′

B
(j)
ω′′1 uk,ω

′ ·A
(i)
ω′,ω1

=
∣∣{ω′ ∈ Ω′ | (ω′′1uk, ω′) ∈ (ω′′1 tj , ω

′
1)G and(ω′, ω1) ∈ (ω′1si, ω1)G

}∣∣
=

∣∣{ω′ ∈ ω′1siH | (ω′′1uk, ω′) ∈ (ω′′1 tj , ω
′
1)G

}∣∣
=

∣∣∣{ω′ ∈ ω′1siH | (ω′′1 , ω′u−1
k ) ∈ (ω′′1 , ω

′
1t
−1
j )G

}∣∣∣
=

∣∣∣ω′1siHu−1
k ∩ ω

′
1t
−1
j H ′′

∣∣∣
=

∣∣∣ω′1siH ∩ ω′1t−1
j H ′′uk

∣∣∣ .
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4 The approach of Black and List

In [Black and List, 1989], an approach to prove Foulkes’ conjecture is described which is based on a certain
QSmn-module homomorphismϕ(m,n) : QΩm,n → QΩn,m. Using the language of the previous section, we
first introduce aQSmn-module homomorphism̃ϕ(m,n) : QVm,n → QVn,m, with a view towards efficient
implementation.
For a tuplev ∈ Vm,n let ṽ := (ṽ1, ṽ2, . . . , ṽmn), whereṽk := |{l ∈Mk | vl = vk}|. The tupleṽ has the
following property(?): In those positions wherev has the numberi, for i ∈ Mn, all the numbers from
Mm occur exactly once iñv; hence we havẽv ∈ Vn,m. Obviously, the set of all such tuples coincides with
ṽ ◦ StabSmn(v) ⊆ Vn,m, andṽ is the lexicographically smallest of them. In particular we have

x̃ = (1, 2, . . . ,m︸ ︷︷ ︸, 1, 2, . . . ,m︸ ︷︷ ︸, . . . , 1, 2, . . . ,m︸ ︷︷ ︸︸ ︷︷ ︸
n times

).

For v ∈ Vm,n andi = 1, . . . , n let 1 ≤ pi,1 < pi,2 < · · · < pi,m ≤ mn be the positions such thatvpi,j = i,
and letψv ∈ Smn defined asψv : pi,j 7→ (i − 1)m + j, for i = 1, . . . , n andj = 1, . . . ,m. Hence we have
x ◦ ψv = v andx̃ ◦ ψv = ṽ. Thus we conclude that all pairs(ṽ, v), for v ∈ Vm,n, belong to one and the same
G-orbit in Vn,m×Vm,n, and hence let̃ϕ(m,n) ∈ HomQSmn(QVm,n,QVn,m) be the corresponding Schur basis
element. AsStabSmn(x) = Snm acts regularly on its orbit̃x ◦ Snm ⊆ Vn,m, for v ∈ Vm,n we have

ϕ̃(m,n) : v 7→
∑

w∈ṽ◦StabSmn (v)

w =
∑

η∈StabSmn (v)

ṽ ◦ η.

Note that, ifσm,n ∈ Smn is defined asσm,n : (i−1)m+j 7→ (j−1)n+i, for i = 1, . . . , n andj = 1, . . . ,m,
thenϕ̃(m,n) is the Schur basis element corresponding to theSnm-Smn -double cosetSnm ◦ σm,n ◦ Smn in Smn.
Next we considerQΩm,n = (QVm,n)Sn andQVn,m = (QVn,m)Sm . By the description(?) of the elements of
ṽ ◦ StabSmn(v) ⊆ Vn,m, for v ∈ Vm,n, we conclude that̃v ◦ StabSmn(v) is a union ofSm-orbits. Hence by
restriction we obtain aQSmn-homomorphism

ϕ(m,n) :=
1
n!
· ϕ̃(m,n)|QΩm,n : QΩm,n → QΩn,m.

Moreover, as forv′ := π ◦ v, for π ∈ Sn, we haveṽ′ = ṽ andStabSmn(v) = StabSmn(v′), we conclude
that ϕ̃(m,n)(v′) = ϕ̃(m,n)(v). In particular we haveϕ(m,n)(Snx) =

∑
η∈Snm x̃ ◦ η, and henceϕ(m,n) ∈

HomQSmn(QΩm,n,QΩn,m) is the Schur basis element corresponding to the(Sm oSn)-(Sn oSm)-double coset
(Sm o Sn) ◦ σm,n ◦ (Sn o Sm) in Smn.
In other words, ifv ∈ Vm,n is anSn-minimal tuple, thenϕ(m,n)(Snv) ∈ QΩn,m is the sum of allSmw,
for Sm-minimal tuples inw ∈ Vn,m which have the property(?). This is the original description given in
[Black and List, 1989], where as the main result the following is proved:

4.1 Proposition ([Black and List, 1989])
Let m ≥ n. If ϕ(m,n) is injective, then ϕ(m,n−1) is also injective. Thus it would be enough for proving
Foulkes’ conjecture to show that ϕ(m,m) ∈ EndQSm2 (QΩm,m) is injective for all m ∈ N. �

It has already been observed in [Black and List, 1989], thatϕ(2,2) andϕ(3,3) indeed are injective. Moreover,
it has been shown in [Jacob, 2004, 4.2] thatϕ(4,4) is injective. In the rest of this note we will concentrate on
the question how to decide computationally whetherϕ(5,5) is injective or not. Due to the sheer size of this
problem, it can only be tackled using particular techniques, and the answer will be given at the very end.

5 The computational approach

SincedimQ(QΩm,m) = |Ωm,m| = (m2)!
(m!)m+1 , the representing matrices of the elements ofEndQSm2 (QΩm,m)

for their natural action onQΩm,m are extremely big even for smallm; e.g. form = 5 we have|Ωm,m| =
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5 194 672 859 376 ∼ 5 · 1012. Hence to examine these endomorphisms, it is necessary to work in a much
smaller representation ofEndQSm2 (QΩm,m). As long as the latter is a faithful representation, the minimum
polynomials of the elements ofEndQSm2 (QΩm,m) are retained, and hence injectivity can be decided using
the smaller representation. Motivated by the ideas in [Müller, 2003], for our computations we use the left
regular representation ofEndQSm2 (QΩm,m), which drastically reduces the size of the representing matrices:
Using the fact thatdimQ(EndQSm2 (QΩm,m)) equals the character theoretic scalar product of the permutation
character associated toΩm,m with itself, which can be evaluated with little effort using the computer algebra
systemGAP [GAP, 2002], we e.g. form = 5 find the quite moderate sizedimQ(EndQSm2 (QΩm,m)) = 1856.

According to the description of the concatenation of homomorphisms given in Section 3, we can determine the
representing matrix ofϕ(m,m) for its left regular action, with respect to the Schur basis ofEndQSm2 (QΩm,m),
by counting. More precisely, we letΩ = Ω′ = Ω′′ = Ωm,m andω1 = ω′1 = ω′′1 = Smx, as well asG = Sm2

andH = H ′ = H ′′ = Sm o Sm, andsi = ti = ui and thusA(i) = B(i) = C(i), for 1 ≤ i ≤ l =
dimQ(EndQG(QΩ)). Lettings2 := σm,m ∈ Sm2 , we haveϕ(m,m) = ϕ(2) and thus

A(2) ◦A(i) =
l∑

k=1

∣∣ω1 ◦ si ◦H ∩ ω1 ◦ s−1
2 ◦H ◦ sk

∣∣ ·A(k).

Hence we have reduced the problem to studyϕ(m,m) to the following tasks:
• Classify theH-orbits of theG-orbit Ωm,m, and thereby find corresponding representatives{s1, s2, . . . , sl}
of theH-H-double cosets inG, wheres1 = 1G ands2 = σm,m; note thatσm,m is an involution.
•Determinep2,i,k :=

∣∣Smx ◦ si ◦H ∩ Smx ◦ s−1
2 ◦H ◦ sk

∣∣, by running through theH-orbitSmx◦s−1
2 ◦H =

Smx ◦σm,m ◦H =
⋃
η∈Smm Smx̃ ◦ η, applying all representativessk respectively, and classifying the resulting

elements into theH-orbits. Note that in the computer implementation, this is done withSm-minimal tuples
representingSm-orbits.
• Decide whether the resulting matrixM := [p2,i,j ]i,j=1,2,...,l ∈ Z

l×l has fullQ-rank.

As the numerical data for the casem = 5 given below indicate, the subtask of classifying points intoH-orbits
is still considerable. Its solution deserves a particular technique, which is a specially tailored adaptation of
ideas in [L̈ubeck and Neunḧoffer, 2001] and [M̈uller, 2003].
Let U = Smm < Sm o Sm = H be as in Section 1. Thus, everyH-orbit of Ωm,m or Vm,m is comprised of
U -orbits. The basic idea now is to defineU -minimal points in eachU -orbit and store only those. To recognize
theH-orbit of a point, we first find itsU -minimalization and look that one up. To define the concept of
U -minimality we first go back to tuples inVm,m again:

5.1 Definition (U -minimal tuple)
In Vm,m we call the lexicographically smallest tuple in each U -orbit U -minimal. For any v ∈ Vm,m we call
the U -minimal tuple in v ◦ U the U -minimalization of v.

The following Lemma links the concepts ofSm-minimality andU -minimality in Vm,m:

5.2 Lemma
If v ∈ Vm,m is an Sm-minimal tuple, then its U -minimalization is again Sm-minimal.

Proof: By Proposition 2.2 the tuplev is Sm-minimal, if and only if for alli, j with 1 ≤ i < j ≤ m the first
occurence ofi in v is before the first occurence ofj in v. As the subgroupU just permutes the entries within
them-blocks, the process ofU -minimalization just sorts the entries in eachm-block into ascending order.
Let v′ be theU -minimalization ofv and1 ≤ i < j ≤ m. If the first occurence ofi and that ofj in v are in
the samem-block, then the same will be true after the sorting within them-blocks andSm-minimality is not
violated. If they are in differentm-blocks, the same holds, because their relative order is not changed at all.�

5.3 Definition (U -minimal Sm-orbits)
An Sm-orbit Smv ⊆ Vm,m is called U -minimal, if its representing Sm-minimal tuple is a U -minimal tuple.
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As theSm-orbits inVm,m are identified withΩm,m, this also definesU -minimal elements ofΩm,m. But note
that this does not mean that everyU -orbitSmv ◦U in Vm,m contains exactly oneU -minimalSm-orbit; e.g. for
m = 5, there are2 298 891 tuples inV5,5 which areS5-minimal andU -minimal at the same time, and therefore
representU -minimalS5-orbits inΩ5,5, while there are only190 131 U -orbits inΩ5,5 altogether. But still, the
strategy sketched above works:

6 Actual computations

From here on, we concentrate on the casem = 5, and letG = S25 andU = S5
5 < S5 o S5 = H. It turns

out that there are623 360 743 125 120 ∼ 6 · 1014 tuples inV5,5 and5 194 672 859 376 ∼ 5 · 1012 points in
Ω5,5. TheH-orbit S5x ◦ s−1

2 ◦ H has(5!)4 = 207 360 000 ∼ 2 · 108 points. The number ofH-orbits in
Ω5,5 is equal todimQ(EndQG(QΩ5,5)) = 1856. Thus it is feasible, at least by distributed computing, to run
through theH-orbitS5x◦ s−1

2 ◦H, and to apply theH-H-double coset representativess1, s2, . . . , s1856, once
we have found them. However, as already mentioned above, we have to recognize in whichH-orbit a point
S5x ◦ s−1

2 ◦ h ◦ sk lies. Apart from the fact that we can not enumerateΩ5,5 completely, we could not even
store anH-orbit number for each such point, as this would need at least2 · 5 194 672 859 376 ∼ 1013 Bytes.
If we had to store every single tuple ofΩ5,5, the situation would be even worse. To circumvent this the notion
of U -minimality comes into play:

In a precomputation, we classify all2 298 891 tuples inV5,5 which areS5-minimal andU -minimal at the same
time, into the1856 H-orbits inΩ5,5, build up a database containing these tuples and the associatedH-orbit
number, and determine suitable group elementss1, s2, . . . , s1856 ∈ G.
A note on the classification of theS5-minimal andU -minimal tuples into theH-orbits in Ω5,5 might be of
interest: We first enumerate all these tuples by a standard backtrack method. Then we start with putting each
of these into a class of its own and begin applying generators ofH to tuples, followed byS5-minimalization
andU -minimalization. Whenever we observe that two tuples representS5-orbits in the sameH-orbit in Ω5,5,
we merge their classes. We repeat this, until there are only1856 classes left. This hence is the distribution of
S5-minimal andU -minimal tuples into theH-orbits inΩ5,5, This approach turns out to work quite efficiently,
and from this classification we can read off suitable elementss1, . . . , s1856 ∈ S25.
The precomputation is implemented in the computer algebra systemGAP, and takes a few minutes on a
modern PC. The resulting database, and the elementss1, . . . , s1856 are written out.

In the main computation, every time anS5-orbit S5v, represented by anS5-minimal tuplev, occurs we com-
pute theS5-minimal tuplev′ ∈ S5v by S5-minimalization, then we determine theU -minimalizationv′′ of
v′, which also is aS5-minimal tuple by Lemma 5.2. The tuplev′′ is in our database, so we can look up the
H-orbit number ofS5v

′′, and becauseS5v
′′ is in the sameU -orbit asS5v, we have determined theH-orbit

number ofS5v by this method.
The main computation is done in a specially tailored C program. In this part we use distributed computing,
because different instances of the program on different machines can apply different elementssk, each having
the precomputed database available. After some14 hours of computation on about11 modern PCs, i.e. about
150 hours of CPU time, we get the resulting matrixM ∈ Z1856×1856, representingϕ(5,5) in the left regular
represention ofEndQG(QΩ5,5).

The source code of theGAP and C programs used can be downloaded from the following web page:

http://www.math.rwth-aachen.de/˜Max.Neunhoeffer/Mathematics/foulkes.html

Finally, it remains to decide whetherM has fullQ-rank. Actually, determining theQ-rank or even the kernel
of an integer matrix of size1856 × 1856 is not a completely trivial task. An approach to find a vector
0 6= v ∈ Q1×1856 with v ·M = 0 is by reducingM modulop, wherep is a suitable prime, and findingp-adic
approximations ofv inductively, until a rational lift is equal tov. This has been described in [Dixon, 1982]; an
implementation e.g. is available through the functionRationalSolutionIntMat in the GAP package
EDIM [L übeck, 2004].
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It turns out that the matrixM does not have fullQ-rank. Actually, using theGAP packageIntegralMeatAxe
[Müller, 2004], which also employsp-adic techniques, it is possible to compute the kernel ofM , which turns
out to haveQ-dimension15.

Thereforeϕ(5,5) is not invertible, and hence the approach in [Black and List, 1989] in general does not work.
Note that this does not imply a counterexample to Foulkes’ conjecture. Actually Foulkes’ conjecture has al-
ready been verified in [Foulkes, 1950] for all casesn < m = 5. In addition, we have used the SYMMETRICA
program (see [Kerber and Kohnert, 1992]) to verify the conjecture for all cases withm ≤ 14 andn ≤ 4 and
for all cases withm ≤ 12 andn + m ≤ 17 as well. For bigger cases, some multiplicities of simple modules
in the permutation modules are greater than231, such that integer overflows occur on our32 bit machines.

Addendum: In the meantime we have learned that this by [Briand, 2004, Prop.3.9] is a counterexample to
Howe’s conjecture [Howe, 1987], which is a strengthening of Foulkes’ conjecture, and moreover also is a
counterexample to Stanley’s conjecture [Stanley, 2000, p.304], which is a generalisation of Foulkes’ conjec-
ture. We would like to thank Malek Abdesselam for pointing us in that direction.
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Universidad de Cantabria.http://emmanuel.jean.briand.free.fr/publications/ .

[Dixon, 1982] Dixon, J. D. (1982). Exact solution of linear equations usingp-adic expansions.Numer. Math.,
40(1):137–141.

[Foulkes, 1950] Foulkes, H. O. (1950). Concomitants of the quintic and sextic up to degree four in the
coefficients of the ground form.J. London Math. Soc., 25:205–209.

[GAP, 2002] GAP (2002).GAP – Groups, Algorithms, and Programming, Version 4.3. The GAP Group.
http://www.gap-system.org .

[Howe, 1987] Howe, R. (1987).(GLn,GLm)-duality and symmetric plethysm.Proc. Indian Acad. Sci. Math.
Sci., 97(1-3):85–109 (1988).

[Jacob, 2004] Jacob, J. (2004).Representation theory of association schemes. PhD thesis, RWTH Aachen.

[James and Kerber, 1981] James, G. and Kerber, A. (1981).The representation theory of the symmetric group,
volume 16 ofEncyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading,
Mass. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson.

[Kerber and Kohnert, 1992] Kerber, A. and Kohnert, A. (1992).Symmetrica 1.0.

http://www.mathe2.uni-bayreuth.de/axel/symneu_engl.html

[Landrock, 1983] Landrock, P. (1983).Finite group algebras and their modules, volume 84 ofLondon Math-
ematical Society Lecture Note Series. Cambridge Univ. Press.
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