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Abstract

We describe how certain permutation actions of large symmetric groups can be efficiently implemented
on a computer. Using a specially tailored adaptation of a general technique to enumerate huge orbits, and
substantial distributed computation on a cluster of workstations, we collect further evidence related to the
approach to Foulkes’ conjecture suggested in [Black and List, 1989].

1 Foulkes’ conjecture

To state Foulkes’ conjecture we first introduce some notationNUa¢ the set of positive integers, [Btbe

the set of rational numbers, and denoteMy := {1,2,3,...,n} for n € N the set of natural numbers less
than or equal to:. We denote the symmetric group erpoints bysS,, := {r : M,, — M, | = bijective},
with concatenation of maps as product, which we denoteag meaning “apply firstp, thenz”.

Form,n € NletS,,0S,, be the wreath product &f,, andsS,,, which is a semidirect product of tmefold direct
productS}’ := S, x - - - x S, of copies ofS,,, andS,,, where the latter acts on the first by permuting the direct
factors. Note thab, can be identified with the set of magg : M, — S,,}. Hence,S,, 1 S, = S)}, x S,
with product

(fom) - (f i) = (f - (from™),mon),

where we multiply mapg : M,, — S,, pointwise using the product i, .

The wreath produc$,, @ S,, has ordetS,, 1 S, | = (m!)™ - n!, and embeds ints,,,,, by letting thei-th direct
factor of ST, fori = 1,...,n, permute the point§(i — 1)m + 1,...,im} and keep all other points i/,
fixed, while S,, acts onM,,,, by permuting these blocks; for more details see [James and Kerber, 1981,
Section 4.1]. We denote [y, ,, the set{(S,,,1.S,) o7 | ™ € Sy, } Of right cosets 0f5,, 1 .S, in S, @and by
Q€ , the associated permutation rigs,,,,-module.

It is easily seen by an induction argument thatfer> »n we have|S,, ! S,,| < |Sm 1 Sn|. Thus we have
10| < |24, |. Butin fact much more is conjectured to be true:

1.1 Conjecture ([Foulkes, 1950])
Let m,n € N withm > n. Then the permutation module QS2,,, ,, is a QS,,,,,-submodule of the permutation
module Q€, ,.

An outline of this note is as follows: In Section 2 we describe how the actidh,gfon(2,, ,, can be efficiently
implemented on a computer. This implementation will be used for calculations connected to the approach to
Foulkes’ conjecture suggested in [Black and List, 1989]. Our description uses the notion of Schur bases,
which are introduced in Section 3, while in Section 4 the approach of Black and List is discussed. In Sec-
tion 5 our particular computational techniques are explained, and in the final Section 6 actual computational
results are presented. There we also describe, for which valuesaoidr» the conjecture has been verified
computationally so far.



2 Implementation of the action of.S,,,, on 2, ,

For this section letn, n € N be fixed. We consider the following set of maps:
Vinn = {v : My, — M, | v takes every value exactty times} .

One can imagine these maps as tuples of lengthwith entries inM,,, each one occuring exactly times.
Hence we will denote such maps as tuples (v1, ve, ..., vm,). On the computer they are stored exactly in
this way. By way of concatenation of maps, we have two transitive actions,9y) one on the left and one
on the right: The group,, acts regularly on the left by renaming the entries:

Sn X Vinn — Vi, (m,0) = mov.
The groupsS,,,,, acts on the right by permuting the entries:
Vm,n X Spmn — Vm,m (Ua 77/}) = vo.

These actions commute because of the associativity of concaten@ation’) o ) = m o (v o ).

Therefore we obtain an induced action%f,, on theS,,-orbits inV;,, ,,. In the sequel we omit the>" symbol
in the notation ofS,, orbits, denote the s¢tS,v | v € V;,, 5, } of Sy,-orbits inV,, ,, by S,\V;,, », and the action
of Sy ON it by (Spv) o) := S, (v o 1).

From now on letr € V,,, ,, be the tuple

x:=(1,...,1,2,...,2, ... ,n,...,n),
——— N — N —
m times m times m times

i.e. the map, which magse M,,,, to [k/m], the smallest integer greater or equakfoen. Then the stabilizer
Stabg,,, (z) of z in S, is equal toS}},, and the stabilize$tabg,, , (Snx) of Spx € Sy \ Vi n iN Spyy iS equal
to S, 1.Sy. Thus the action of,,,,, on S, \V;, ,, is equivalent to the action &f,,,, on(2,, ,. Hence we identify
Q. andS, \ Vi, 5, in the sequel.

Passing fronS,,,,-sets toQS,,,-modules, we can consid&V,, ,, as aQ.S,-QS,,,-bimodule, and thus the
permutationQ.sS,,,,-moduleQS2,, ,, is identified with theQSmn-submodule(QV,,m)5n whose permutation
basis consists of the sumgv := ZwESnv w over Sy,-orbits S,,v C V;, ,. Note that(QVm,n)S" is the set of
elements irQQV,,, ,, invariant under the left action df,,.

We introduce the following definition to distinguish one tuple in e&gkorbit:

2.1 Definition (S,,-minimal tuples)

In the above situation we call the lexicographically smallest tuple in each S, -orbit S,,-minimal. For each
v € Vi, n we call the Sy, -minimal tuple in the orbit S,,v the Sy,-minimalization of v. We denote by V,?‘,? the
set of S,,-minimal tuples in Vy, .

It follows readily from the above, that the action 6f,,, on €,,,, can be implemented on a computer by
identifying €2,,, ,, with Vg“;; and acting with a map € S,,,,, onv € V,g{i,? by just.S,,-minimalizingv o ¢ €
Vin.n. Note the runtime needed to computeBaminimalization, and hence the-image ofv, is proportional

to the lengthmn of the tuples.

We note the following characterization 8f,-minimality for later reference:

2.2 Proposition (Equivalent characterization ofS,,-minimality)
Atuplev € Vi, , is Sp-minimal, if and only if it has the following property: For all i,j with1 <i < j <n
the first occurence of ¢ in v is before the first occurence of j.

Proof: Let v be S,,-minimal. If the above property would not hold, we could rename soaraj and get a
lexicographically smaller tuple in the sarfg-orbit, a contradiction.

Let v have the above property, and assumis not S,,-minimal. Then there is a tupl€ in the sameS,,-orbit
that is lexicographically smaller than Let p be the first position where both tuples differ, andigt= j and
v; = ¢ with 7 < j. Because andv’ are in the samé),-orbit, p is the first position iny with valuej and the
first position inv’ with valuei. By the assumed property, the first occurenceiofv is beforep. Howeverp
andv’ are equal at positions befopetherefore we have a contradiction. O
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3 Schur bases

To describe the approach in [Black and List, 1989], we recall a few facts about permutation modules and
homomorphisms between them. For our purposes we give a slightly more general description as can be found
e.g. in [Landrock, 1983, Ch.11.12].

For this section le€: be a finite group, acting transitively from the right on the se&nd(Y’. Letw; € Q and
wi € Q' aswellas := Stabg(wy) andH’ := Stabg(w]) be the corresponding stabilizers. As above(Jet
andQ<’ denote the associated permutation modules. The dpace,; (QQ2, Q') of QG-homomorphisms
from Q2 to Q€Y' has a distinguished basis, which can be described as follows:

We decompos€’ into H-orbits, by choosing; = 14, s9, ..., s; € G such that

V' =wisitHUwisoHU---Uwis H

is a disjoint union. Note that hende, so, . .., s;} is a set ofH’- H-double coset representatives(in
Using the diagonal action @ on Q' x Q, and considering the intersection of eagkorbit in ' x Q with
V' x {w1}, we get the decomposition 6F x  into G-orbits by

Q' x Q= (Ws1,w1)GU (Wisg,w1)GU--- U (Ws,wr)G.

We describe a homomorphisg € Homgq (Q€2, Q') by a matrix with respect to the natural base€)st
andQ(Y', respectively, where the rows are indexed{byand the columns are indexed by Denoting the
(w', w)-entry of the matrix ofp by ¢,/ ., We geto, g = -1, OF €quivalentlyp, g g = Yo ., for all
we Qe andg € G, because is aQG-module homomorphism. Thus, the matrixeis a unique
Q-linear combination of the matrice$"), A® ..., A" defined by

A0 _ 1 if (W,w) € (W)si,w1)G,
Whe 0 if (W w) ¢ (wsi,w1)G.

We call A := (A, A®) . AW) and the associate@G-module homomorphismge™), () ... 1)
the Schur basisof Homg¢ (Qf2, Q€Y’), which hence is in bijection with th@-orbits inQ2’ x €. In particular
forw = wig € Q, whereg € G, and thusH9 = Stabg(wi1g), we have:

0D w=wig E W'
W' €W s;gHY

We now turn to the concatenation of homomorphisms. Fét-setQ)” let H” := Stabg(w]) for some
Wi € Q”, and as above we choose a $et = 14, t2,...} of H”-H’-double coset representativesah
and a sef{u; = lg,us,...} of H”-H-double coset representativesGh Let B := (B B® ) and
C := (CcW,c® . .)) denote the Schur basesibmgc(QQ', Q") andHomgg (QQ, QQ”), respectively.
We can now write the concatenatid?) o A(®, i.e. the matrix product, in terms of the Schur bagisf
HOIHQG (QQ, QQH)Z

_ () (i)
wug,wr T Bwl’uk,w’ ’ Aw’,wl
w'eQY
= o' € Q| (Wfug,w') € (Wt;,w])G and(w',wi) € (w)si,wi)G}|
= [{v' e wisiHl | (Wug,o') € (Wtj,0))GY|

— Hw' € wis;H | (w’f,w'ulzl) € (w’f,wit;l)GH

(B o AG))

_ ’wgsiHu,;l Nuwit; 1 H"

= ‘w’lsiH ﬂwitj_lH”uk‘ .



4 The approach of Black and List

In [Black and List, 1989], an approach to prove Foulkes’ conjecture is described which is based on a certain
QS,n-module homomorphisn;v(mv”) : Q€ — Q0 . Using the language of the previous section, we
first introduce aQs,,,-module homomorphisrﬁo(mv") : QVin — QVim, with a view towards efficient
implementation.

For a tuplev € V,,,,, let o := (91,02, ...,0mn), Wherevy, := |{l € M | v = v }|. The tupled has the
following property (x): In those positions where has the numbet, for i € M, all the numbers from

M,, occur exactly once iw; hence we have < V, ,,. Obviously, the set of all such tuples coincides with

v o Stabg,,. (v) C V,, m, anduv is the lexicographically smallest of them. In particular we have

z=(1,2,...,m,1,2,....m, ... ,1,2,...,m).
—_——
n times
Forv e Viypandi =1,...,nletl <p;; <pi2 <--- < pim < mn be the positions such thaf, ; = i,
and lety, € Sy, defined asp, : p; j — (i —1)m +j,fori =1,...,nandj = 1,...,m. Hence we have

x o1, = v andz o ¢, = 0. Thus we conclude that all pai(s, v), for v € V,,, ,,, belong to one and the same
G-orbitinV,, ,,, x Vi, », @and hence lep(mn) e Homgg, ., (QVi 0, QV;, ) be the corresponding Schur basis
element. AStabg,, . (z) = S}, acts regularly on its orbit o S}, C V;, ., forv € V,,, , we have

U= Z w = Z von.

wedoStabg,,,, (v) n€eStabg,,,,, (v)

5(m.n)

¥

Note that, ifo,, , € Sy is defined s, ,, : (i —1)m+j — (j—1)n+i,fori=1,...,nandj =1,...,m,
theng(™™ is the Schur basis element corresponding taSfjeS-double coses?, o o, 0 S iN Sy
Next we conside(2,,, , = (QVm,n)Sn andQV,, ., = (QVn,m)Sm. By the descriptior{x) of the elements of
0o Stabg,, . (v) C Vym, forv € V,, ,,, we conclude that o Stabg, ., (v) is a union ofS,,-orbits. Hence by
restriction we obtain &5,,,,,-homomorphism

I m,n
(p(mm,) = 90( ’ )’QQm,n : QQm,n - QQn,m

n!
Moreover, as fon’ := 7 o v, for = € S, we haver’ = & andStabg,,, (v) = Stabg,,, (v/), we conclude
that g(m™) (v/) = gp(m ™ (v). In particular we haveo"™™(S,z) = 3, _qn & o 1, and hencep™ ™ ¢
Homygg,,,, (QQ n, Q€ 1) is the Schur basis element corresponding '[C(H’Jﬁ n)-(Sn 1Sm)-double coset
(Sm 1Sn) © Omm © (Sp USm) IN Sy
In other words, ifv € Vj,, is anS,-minimal tuple, theno(™™ (S, v) € QQ,,,, is the sum of aliS,,w,
for S,,-minimal tuples inw € V;, ,, which have the propertyx). This is the original description given in
[Black and List, 1989], where as the main result the following is proved:

4.1 Proposition ([Black and List, 1989])
Let m > n. If (™™ js injective, then ¢

mn=1) s also injective. Thus it would be enough for proving

Foulkes’ conjecture to show that (™™ Endgs_, (Qm,m) is injective for all m € N. O

It has already been observed in [Black and List, 1989], #at) andx(®3) indeed are injective. Moreover,

it has been shown in [Jacob, 2004, 4.2] th&t?) is injective. In the rest of this note we will concentrate on
the question how to decide computationally wheth€¥® is injective or not. Due to the sheer size of this
problem, it can only be tackled using particular techniques, and the answer will be given at the very end.

5 The computational approach

Sincedimg(QQy m) = [Qmm| = )m)+1 , the representing matrices of the eIementEmfﬂ@S 2 (QQn m)
for their natural action o2, ,, are extremely big even for smalt; e.g. form = 5 we have|(),, ,,,| =
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5194672859376 ~ 5 - 10'2. Hence to examine these endomorphisms, it is necessary to work in a much
smaller representation &fndgs_, (Q2m,m). As long as the latter is a faithful representation, the minimum
polynomials of the elements d#ndgs , (QS2,,,m) are retained, and hence injectivity can be decided using
the smaller representation. Motivated by the ideas ifil[&f, 2003], for our computations we use the left
regular representation éfndgs , (Q€2m,m), Which drastically reduces the size of the representing matrices:
Using the fact thalimg (Endgs_, (Q€2,,,)) equals the character theoretic scalar product of the permutation
character associated b, ,,, with itself, which can be evaluated with little effort using the computer algebra
systemGAP [GAP, 2002], we e.g. fom = 5 find the quite moderate sizémg(Endgs_, (Q€2m,m)) = 1856.

According to the description of the concatenation of homomorphisms given in Section 3, we can determine the
representing matrix af(™™ for its left regular action, with respect to the Schur baskEofgs , (QQm),
by counting. More precisely, we 1€t = Q' = Q" = Q,, , andw; = w] = W} = Sz, as well agE = 9,2
andH = H' = H" = S,, 1 Sm, ands; = t; = u; and thusA® = BO) = 00 for1 < i <[ =

dimg (Endge(QRQ)). Letting sg := 0ynm € Sy,2, we havep(™™) = »(2) and thus

l
A(2)0A(i):Z‘wlosioHﬁwlosgloHosk‘-A(k).
k=1

Hence we have reduced the problem to sty to the following tasks:

e Classify theH -orbits of theG-orbit ©,, ,,,, and thereby find corresponding representatiegsss, . .., s}

of the H-H-double cosets i/, wheres; = 1¢ andsy = o0y, 1,,; NOte thato,, ,,, is an involution.

e Determings ; j, := [ Sy 0 s; 0 H N Sy 0 sy o H o s3], by running through thél-orbit S,,zos; ' H =
ST 0T moH = Unesm S on, applying all representatives respectively, and classifying the resulting
elements into thé7-orbits. Note that in the computer implementation, this is done Wjthminimal tuples
representing,,,-orbits.

e Decide whether the resulting mati := [ps ; ;]

Ixl
ii=12,. € Z7" has fullQ-rank.

As the numerical data for the case= 5 given below indicate, the subtask of classifying points iHt@rbits

is still considerable. Its solution deserves a particular technique, which is a specially tailored adaptation of
ideas in [Lilbeck and Neurifffer, 2001] and [Miller, 2003].

LetU = S < St Sm = H be as in Section 1. Thus, evefj-orbit of €2,,, ,,, or V;,, ,,, is comprised of
U-orbits. The basic idea now is to defibleminimal points in eacli/-orbit and store only those. To recognize

the H-orbit of a point, we first find itd/-minimalization and look that one up. To define the concept of
U-minimality we first go back to tuples W, ,,, again:

5.1 Definition (U-minimal tuple)
In Vi, m, we call the lexicographically smallest tuple in each U -orbit U -minimal. For any v € V., ,,, we call
the U -minimal tuple in v o U the U -minimalization of v.

The following Lemma links the concepts 8f,-minimality andU-minimality in V,,, ,,:

5.2 Lemma
Ifv € V1 is an Sy, -minimal tuple, then its U-minimalization is again .S,,-minimal.

Proof: By Proposition 2.2 the tuple is S,,,-minimal, if and only if for alli, j with 1 < i < 5 < m the first
occurence of in v is before the first occurence ¢fin v. As the subgroufy just permutes the entries within
them-blocks, the process éf-minimalization just sorts the entries in eaehblock into ascending order.

Let v" be theU-minimalization ofv and1 < i < j < m. If the first occurence of and that of;j in v are in
the samen-block, then the same will be true after the sorting within#tdlocks andsS,,,-minimality is not
violated. If they are in different:-blocks, the same holds, because their relative order is not changedzt all.

5.3 Definition (U-minimal S,,-orbits)
An Sy,-orbit S;,,v C Vi, 1, is called U -minimal, if its representing S,,-minimal tuple is a U -minimal tuple.



As the S,,-orbits inV;,, ,,, are identified witht2,,, ,,,, this also define#/-minimal elements of?,,, ,,,. But note
that this does not mean that evéryorbit .S,,,vo U in V,, ,,, contains exactly on&-minimal S,,-orbit; e.g. for

m = 5, there are 298 891 tuples inV; 5 which areSs-minimal andlU-minimal at the same time, and therefore
represent/-minimal Ss-orbits in(25 5, while there are only90 131 U-orbits in(25 5 altogether. But still, the
strategy sketched above works:

6 Actual computations

From here on, we concentrate on the case- 5, and letG = Sy; andU = S2 < S51.55 = H. It turns

out that there ar623 360 743125120 ~ 6 - 10'* tuples inVs 5 and5 194672859376 ~ 5 - 1012 points in
Q55. The H-orbit S5z o 32‘1 o H has(5!)* = 207360000 ~ 2 - 10® points. The number off-orbits in
Q5,5 is equal todimg (Endga (Q€255)) = 1856. Thus it is feasible, at least by distributed computing, to run
through theH -orbit S5z o 52‘1 o H, and to apply thé?- H-double coset representativas so, . . . , s1s56, ONce

we have found them. However, as already mentioned above, we have to recognize iixbibh a point
Ssx 05, o ho sy lies. Apart from the fact that we can not enumer@tg; completely, we could not even
store ani -orbit number for each such point, as this would need at 2a5t194 672 859 376 ~ 10'3 Bytes.

If we had to store every single tuple f 5, the situation would be even worse. To circumvent this the notion
of U-minimality comes into play:

In a precomputation, we classify &lR98 891 tuples inV; 5 which areSs-minimal andU-minimal at the same
time, into thel856 H-orbits in Qs 5, build up a database containing these tuples and the assotlapebit
number, and determine suitable group elements,, ..., sis56 € G.

A note on the classification of th&s-minimal andU-minimal tuples into thef-orbits in Q25 5 might be of
interest: We first enumerate all these tuples by a standard backtrack method. Then we start with putting each
of these into a class of its own and begin applying generatofs @f tuples, followed bySs-minimalization
andU-minimalization. Whenever we observe that two tuples repreSgorbits in the samél -orbit in €25 5,

we merge their classes. We repeat this, until there arel®%l§ classes left. This hence is the distribution of
Ss-minimal andU-minimal tuples into theZ-orbits in(2s 5, This approach turns out to work quite efficiently,
and from this classification we can read off suitable elements ., s1g56 € Sos.

The precomputation is implemented in the computer algebra sySt&Rm and takes a few minutes on a
modern PC. The resulting database, and the elements. , s1g5¢ are written out.

In the main computation, every time &3-orbit Ssv, represented by afi;-minimal tuplev, occurs we com-

pute theSs-minimal tuplev’ € Ssv by Ss-minimalization, then we determine tfi&-minimalizationv” of

v/, which also is aS5-minimal tuple by Lemma 5.2. The tupt¢’ is in our database, so we can look up the
H-orbit number ofS5v”, and becausgsv” is in the samd/-orbit asSsv, we have determined thE-orbit
number ofSsv by this method.

The main computation is done in a specially tailored C program. In this part we use distributed computing,
because different instances of the program on different machines can apply different elgmeatt having

the precomputed database available. After sbdnleours of computation on about modern PCs, i.e. about

150 hours of CPU time, we get the resulting matfix € 7!856x1856 representing(>®) in the left regular
represention oEndgq (Q€2s5 5).

The source code of thHeAP and C programs used can be downloaded from the following web page:
http://www.math.rwth-aachen.de/"Max.Neunhoeffer/Mathematics/foulkes.html

Finally, it remains to decide whethér has fullQ-rank. Actually, determining th@-rank or even the kernel
of an integer matrix of siz&856 x 1856 is not a completely trivial task. An approach to find a vector
0 # v € QUX1856 with v - M = 0 is by reducingl/ modulop, wherep is a suitable prime, and findingadic
approximations ob inductively, until a rational lift is equal to. This has been described in [Dixon, 1982]; an
implementation e.g. is available through the functiRetionalSolutionIintMat in the GAP package
EDIM [L ilbeck, 2004].



It turns out that the matrid/ does not have fulQ-rank. Actually, using th&AP packagdntegralMeatAxe
[Mller, 2004], which also employsadic techniques, it is possible to compute the kerndl/ofwhich turns
out to haveQ-dimensionl 5.

Thereforep(®5) is not invertible, and hence the approach in [Black and List, 1989] in general does not work.
Note that this does not imply a counterexample to Foulkes’ conjecture. Actually Foulkes’ conjecture has al-
ready been verified in [Foulkes, 1950] for all cages m = 5. In addition, we have used the SYMMETRICA
program (see [Kerber and Kohnert, 1992]) to verify the conjecture for all casesmwithi4 andn < 4 and

for all cases withn < 12 andn + m < 17 as well. For bigger cases, some multiplicities of simple modules

in the permutation modules are greater tBah such that integer overflows occur on @2rbit machines.

Addendum: In the meantime we have learned that this by [Briand, 2004, Prop.3.9] is a counterexample to
Howe’s conjecture [Howe, 1987], which is a strengthening of Foulkes’ conjecture, and moreover also is a
counterexample to Stanley’s conjecture [Stanley, 2000, p.304], which is a generalisation of Foulkes’ conjec-
ture. We would like to thank Malek Abdesselam for pointing us in that direction.
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