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Abstract

We define some purely lattice theoretic translations of algebraic notions

related to submodule lattices, leading to new structural features of mod-

ular lattices and to generalisations of the Benson-Conway Theorem.
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The starting point of the present work is a paper by Benson and Conway [2],
whose main result is the description of a modular lattice in terms of its join-
irreducible elements and their mutual inclusions. This has been used in [6] as
one of the ingredients of an algorithm to compute submodule lattices of finite-
dimensional modules for algebras over fields. The consideration of submodule
lattices showed how to translate certain algebraic notions into a purely lattice
theoretic setting, and how to use the new notions to prove statements about
arbitrary modular lattices. This might help to obtain a better structural un-
derstanding of modular lattices, and to learn which are the particular aspects
distinguishing submodule lattices from general modular lattices.

The present work is organised as follows: In Section 1 we recall some background
from lattice theory. In Section 2 we prove a generalisation and a refinement of
the Benson-Conway Theorem. In Section 3 we introduce the new notion of
blocks, which are a translation of a related algebraic notion, and apply the
Benson-Conway Theorem to obtain a description of the centre of a modular lat-
tice. In Section 4 we introduce the new notion of types, which are a translation
of the related notion of the algebraic isomorphism type associated to each sim-
ple subquotient of a submodule lattice, and we prove a purely lattice theoretic
version of the algebraic Jordan-Hölder Theorem. Moreover, we apply the notion
of types to prove a further generalisation of the Benson-Conway Theorem. In
Section 5 we finally consider submodule lattices, and discuss the relationship
between lattice theoretic types and algebraic types, as well as the relationship
between lattice theoretic blocks and algebraic blocks.

1 Modular lattices

We begin by fixing the setting we are working in, and then recall a few basic
notions and facts from lattice theory, which we assume the reader to be familiar
with. As general references see e. g. [1, Ch.2], [3], [4].

(1.1) Assumptions and notation. In the sequel letM 6= ∅ be a lattice whose
underlying partial order is denoted by ≤, and whose join and meet operations
are denoted by ∨ and ∧, respectively. We assume that M has a least element,
being denoted by 0 ∈M, but we do not in general assume thatM has a greatest
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element, unless otherwise specified, in which case it is denoted by 1 ∈ M.
Moreover, we assume that all chains in M between any two fixed elements
x < y ∈M are finite, and thatM is modular, i. e. for all x, y, z ∈M such that
z ≤ x we have the modular law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) = (x ∧ y) ∨ z.

For x ≤ y ∈M we let [x, y] := {z ∈M;x ≤ z ≤ y} denote the interval between
x and y. For x < y ∈ M we write x <· y, if for z ∈ M such that x < z ≤ y we
already have z = y. In particular, the elements 0 <· x ∈ M are called atoms.
Let L ⊆ M \ {0} be the set of join-irreducible elements z ∈ M, i. e. whenever
there are x, y ∈ M such that x ∨ y = z then we already have x = z or y = z.
Note that we have L = {z ∈M; |{y ∈M; y <· z}| = 1}.

Let lM : M→ N0 be the Jordan-Dedekind length function, defined by lM(0) = 0
and lM(y) = lM(x) + 1, whenever x <· y ∈ M. Moreover, each x ∈ M is the
join of finitely many join-irreducible elements, and if x =

∨r

i=1 xi ∈ M is
irredundant, where xi ∈ L for all i ∈ {1, . . . , r}, then the number r ∈ N0 is
independent of the particular choice of the irredundant representation, giving
rise to the rank function rM : M→ N0. Note that rM(x) ≤ lM(x) for x ∈M.

Let Z(M) denote the centre of M, i. e. the set of x ∈ M such that there is
x′ ∈ M such that M ∼= [0, x] × [0, x′]. Note that we have Z(M) 6= ∅ if and
only if M has a greatest element. In this case, Z(M) is a finite set such that
{0, 1} ⊆ Z(M). If Z(M) = {0, 1} then M is called indecomposable, otherwise
M is called decomposable. If {z1, . . . , zd} is the set of minimal elements of

Z(M) \ {0}, then M ∼=
∏d

i=1[0, zi] is the unique decomposition of M into
nontrivial indecomposable intervals.

(1.2) Complemented lattices. Let M have a greatest element. Then M is
called complemented, if for all x ∈ M there is a complement y ∈ M, i. e. we
have x ∨ y = 1 and x ∧ y = 0.

Recall that by [4, Thm.4.3] the latticeM is complemented if and only if 1 ∈M
is a join of atoms, which holds if and only if each element ofM is a join of atoms,
which in turn holds if and only if L consists entirely of atoms. We give another
characterisation of complemented lattices, which probably is well-known, but
for which we did not find an appropriate reference:

(1.3) Lemma. Let M have a greatest element. Then M is complemented if
and only if rM(1) = lM(1) ∈ N0.

Proof. We proceed by induction on rM(1) ∈ N0, the case rM(1) ≤ 1 being
trivial, let r = rM(1) ≥ 2. Let 1 =

∨r
i=1 xi ∈ M be irredundant, where xi ∈ L

for all i ∈ {1, . . . , r}, and let x :=
∨r−1

i=1 xi ∈M and y :=
∨r

i=2 xi ∈M.

If M is complemented, then by induction we have lM(x) = rM(x) = r − 1.
Since xr ∈M is an atom we have x ∧ xr = 0 and hence r = lM(x) + lM(xr) =
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lM(x ∨ xr) + lM(x ∧ xr) = lM(1). If conversely rM(1) = lM(1), then we have
r − 1 = rM(x) ≤ lM(x) < r, thus rM(x) = lM(x) = r − 1, and hence by
induction all the xi ∈M, for i ∈ {1, . . . , r−1}, are atoms. For y ∈M we argue
similarly, and hence 1 ∈M is a join of atoms. ]

(1.4) Radicals. For 0 6= x ∈ M the element x∗ :=
∧

{y ∈ M; y <· x} ∈ M is
called the radical of x; we let 0∗ := 0. The name ‘radical’ is motivated from the
case of submodule lattices, where it coincides with the notion of the Jacobson
radical of a module.

We recall a few properties of radicals: For y ≤ x ∈ M such that y ∨ x∗ = x we
already have y = x. Using the characterisation of complemented lattices in (1.2)
we conclude that for x ∈ M we have x∗ =

∧

{y ∈ M; [y, x] complemented}.
In particular we have L = {x ∈ M;x∗ <· x}. The following statements are
probably also well-known, but again we did not find an appropriate reference:

(1.5) Lemma. a) For x ∈M we have rM(x) = r[x∗,x](x).
b) For x, y ∈M we have (x ∨ y)∗ = x∗ ∨ y∗.

Proof. a) Let x =
∨r

i=1 xi be irredundant, where xi ∈ L for all i ∈ {1, . . . , r},
and r = rM(x). Hence we have xi 6≤ x∗, and since [x∗, xi ∨ x∗] ∼= [xi ∧ x∗, xi]
is complemented, we have x∗ <· xi ∨ x∗. Assume that x =

∨

i∈I(xi ∨ x∗), for
some I ⊂ {1, . . . , r}, then we also have x =

∨

i∈I xi, a contradiction. Thus
x =

∨r

i=1(xi ∨ x∗) is irredundant in [x∗, x], hence r = r[x∗,x](x).

b) Let x =
∨r

i=1 xi and y =
∨s

j=1 yj be irredundant, where xi ∈ L for all
i ∈ {1, . . . , r}, and yj ∈ L for all j ∈ {1, . . . , s}. As [x∗ ∨ y∗, xi ∨ (x∗ ∨ y∗)] ∼=
[xi ∧ (x∗ ∨ y∗), xi] is complemented, we have either x∗ ∨ y∗ = xi ∨ (x∗ ∨ y∗) or
x∗ ∨ y∗ <· xi ∨ (x∗ ∨ y∗). A similar statement holds for the yj , and hence x ∨ y
is a join of atoms of [x∗ ∨ y∗, x ∨ y]. Thus we have (x ∨ y)∗ ≤ x∗ ∨ y∗.

Conversely, assume that we have x∗ 6≤ (x ∨ y)∗. Then [(x ∨ y)∗, x ∨ (x ∨ y)∗] ∼=
[(x ∨ y)∗ ∧ x, x] is not complemented. Since (x ∨ y)∗ ≤ x ∨ (x ∨ y)∗ ≤ x ∨ y this
a contradiction. Hence we have x∗ ≤ (x ∨ y)∗ and similarly y∗ ≤ (x ∨ y)∗. ]

This leads to the definition of certain subsets of modular lattices, which will turn
out to convey interesting structural features. Later on we give a finer structural
partition of these sets, see (4.9).

(1.6) Definition. For r ∈ N0 let

Mr := {x ∈M; rM(x) = r} = {x ∈M; r[x∗,x](x) = r} ⊆ M

as well as Lr := {x ∈Mr; [x∗, x] indecomposable} ⊆ Mr.

Hence in particular we have M0 = L0 = {0} and M1 = L1 = L.
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2 The Benson-Conway Theorem

The Benson-Conway Theorem, originally stated and proved in [2], gives a de-
scription of a modular latticeM in terms of certain subsets of L, called complete
subsets, in whose definition the set L2 plays a central role. Our approach be-
gins with having a closer look at the set L2, which first leads to the notion of
dotted-lines and subsequently to the notion of complete subsets. Our definition
of dotted-lines is slightly more structural than the one in [2], but we proceed to
show equivalence of both definitions. We prove a slightly more general version
of the Benson-Conway Theorem, inasmuch lattices are not assumed to have a
greatest element; still our proof is similar to the original one. We proceed to
prove a refinement, and in (4.10) we give a further generalisation.

(2.1) The set L2. For an element z ∈ M we have rM(z) = 2, if and only if
there are x1, x2 ∈ L such that x1 6≤ x2 6≤ x1 and z = x1 ∨ x2. In this case
we have l[z∗,z](z) = 2. Hence the elements of [z∗, z] are its least element z∗, its
greatest element z, and further elements z∗ <· zi <· z, for i ∈ Iz, where Iz is
a suitable index set. In particular, for zi := xi ∨ z∗ we have z∗ <· zi <· z and
z1 6= z2, hence |Iz| ≥ 2.

If |Iz| = 2, then we have [z∗, z] ∼= [z∗, z1]× [z∗, z2], hence [z∗, z] is decomposable.
Conversely, let [z∗, z] ∼= [z∗, z

′] × [z∗, z
′′] be a nontrivial decomposition. Since

l[z∗,z](z) = 2, we have l[z∗,z](z
′) = l[z∗,z](z

′′) = 1, hence z∗ <· z′, z′′, and thus
|Iz| = 2. Hence [z∗, z] is indecomposable if and only if |Iz| ≥ 3. Thus in
conclusion we have L2 = {z ∈M2; |Iz| ≥ 3}.

(2.2) Definition. Let z ∈ L2, and let Iz as in (2.1). A setD = {xi ∈ L; i ∈ Iz},
such that xi ∨ z∗ = zi for all i ∈ Iz, is called a dotted-line for z.

Note that dotted-lines always exist: Given z ∈ L2, each zi is the join of the join-
irreducible elements contained in zi, and since z∗ <· zi we may choose xi ∈ L
such that xi ≤ zi and xi 6≤ z∗. Dotted-lines are characterised as follows, where
(2.3)b) actually is the original definition given in [2].

(2.3) Proposition. a) Let z ∈ L2 and let D = {xi ∈ L; i ∈ Iz} be a dotted-
line for z. Then we have xi 6≤ xj and xi ∨ xj = z, for all i 6= j ∈ Iz, and D ⊆ L
is maximal having this property. In particular, we have |D| = |Iz| ≥ 3 and
∨

D = z is well-defined.
b) Let D = {xi ∈ L; i ∈ I} be a subset of L, for an index set I, such that
|D| = |I| ≥ 3 and xi ∨ xj ∈ M is independent of the choice of i 6= j ∈ I, and
such that D ⊆ L is maximal having this property. Then z :=

∨

D ∈ L2 ⊆M is
well-defined and D is a dotted-line for z.

Proof. a) For all i ∈ Iz let zi = xi ∨ z∗ <· z. As zi 6≤ zj , for all i 6= j ∈ Iz, we
also have xi 6≤ xj . Since z = zi ∨ zj = xi ∨ xj ∨ z∗ we have xi ∨ xj = z. Finally,
assume that there is x0 ∈ L \ D such that x0 ∨ xi = z for all i ∈ Iz, and let
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z0 := x0∨ z∗. Hence we have z∗ <· z0 <· z, and there is i ∈ Iz such that z0 = zi,
thus x0 ∨ z∗ = xi ∨ z∗. Hence z = x0 ∨ xi ∨ z∗ = x0 ∨ z∗ = x0, a contradiction,
proving the maximality property.
b) Assume that we have xi ≤ xj , for some i 6= j ∈ I, and let k ∈ I such
that i 6= k 6= j. Hence we have xi ∨ xk = xi ∨ xj = xj ∈ L, a contradiction.
Thus we have xi 6≤ xj for all i 6= j ∈ I. Hence for z := xi ∨ xj =

∨

D
we have rM(z) = l[z∗,z](z) = 2. Let zi := xi ∨ z∗ for all i ∈ I, hence we
have z∗ <· zi <· z. Assume that zi = zj for some i 6= j ∈ I, then we have
z = xi ∨ xj ∨ z∗ = zi ∨ zj = zi, a contradiction. Thus we have I ⊆ Iz. Assume
that there is k ∈ Iz \ I, and choose xk ∈ L such that zk = xk ∨ z∗. Hence for
all i ∈ I we have xi ∨ xk ∨ z∗ = zi ∨ zk = z and thus xi ∨ xk = z, contradicting
the maximality property. Hence we have I = Iz and D is a dotted-line for z. ]

(2.4) Definition. Let X ⊆ L be an ideal, i. e. whenever we have x ∈ X and
y ∈ L such that y ≤ x, we also have y ∈ X . The ideal X ⊆ L is called complete,
if X is bounded in M, i. e. there is z ∈ M such that x ≤ z for all x ∈ X , and
if for each dotted-line D ⊆ L such that |D ∩ X | ≥ 2 we already have D ⊆ X .

LetM(L) be the partially ordered set of complete ideals of L, where the partial
order is given by set theoretic inclusion. Hence M(L) is closed under taking
intersections, and thus becomes a lattice by letting X ∧ X ′ := X ∩ X ′ and

X ∨ X ′ :=
⋂

{Y ∈ M(L);X ∪ X ′ ⊆ Y} ∈ M(L).

(2.5) Theorem: Benson-Conway.
The following maps are a pair of mutually inverse isomorphisms of lattices:

β : M→M(L) : x 7→ {y ∈ L; y ≤ x} and β−1 : M(L)→M : X 7→
∨

X .

Proof. The maps β and β−1 are well-defined and order-preserving, and we have
β−1◦β = idM. Hence we have to show that β◦β−1 = idM(L) also holds. Assume
to the contrary that there are X ∈ M(L) and y ∈ L \ X such that y ≤

∨

X .
Let ny := min{|Y|;Y ⊆ X , y ≤

∨

Y}; note that ny ∈ N is well-defined. As X
is an ideal we have ny ≥ 2, and we may choose y such that ny is minimal. Let
Y = {y1, . . . , yny} ⊆ X ⊆ L, and we may choose Y such that y ∨ y1 is minimal.

By modularity we have

y ∨ y1 = (y ∨ y1) ∧ (y1 ∨
∨

i>1

yi) = y1 ∨ ((y ∨ y1) ∧
∨

i>1

yi).

Let z := (y∨y1)∧
∨

i>1 yi, and let zj ∈ L such that z =
∨r

j=1 zj , for some r ∈ N0.
Assume that zj 6∈ X for some j ∈ {1, . . . , r}, then we have zj ≤ y ∨ y1 ≤

∨

X
and zj ≤

∨

i>1 yi, contradicting the minimality of ny. Hence we have zj ∈ X
for all j ∈ {1, . . . , r}. Assume that y ∨ y1 ≤ z, then we have y ≤

∨

i>1 yi,
again contradicting the minimality of ny. Hence we have y ∨ y1 6≤ z. Since
y ∨ y1 = y1 ∨ z = y1 ∨

∨r
j=1 zj , we have y ∨ y1 = y1 ∨ zj , for some j ∈ {1, . . . , r}.
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In particular we have y ≤ y1 ∨ zj , and thus ny = 2 and y1 6= zj . Moreover we
have y∨zj ≤ y∨y1, and by the minimality of y∨y1 we conclude y∨zj = y∨y1.
Hence by (2.3) there is a dotted-line D such that {y, y1, zj} ⊆ D, and since
y1, zj ∈ X completeness implies y ∈ X , the final contradiction. ]

The refined version we prove next is based on the observation that in general
there is more than one dotted-line for a given element of L2, see (4.8). To decide
whether a given ideal of L, which is bounded inM, is complete, the completeness
property by definition has to be checked with respect to all dotted-lines. We
proceed to show that it actually is sufficient to check it with respect to a single
fixed dotted-line for each element of L2.

(2.6) Definition. For each z ∈ L2 choose a dotted-line Dz ⊆ L for z. An
ideal X ⊆ L is called weakly complete with respect to {Dz; z ∈ L2}, if X is
bounded in M, and if for each z ∈ L2 such that |Dz ∩X | ≥ 2 we have Dz ⊆ X .

(2.7) Theorem. Let {Dz; z ∈ L2} be chosen as in (2.6). Then a subset X ⊆ L
is complete if and only if it is weakly complete with respect to {Dz; z ∈ L2}.

Proof. Let X be weakly complete, and we proceed by induction on lM(
∨

X ).
If lM(

∨

X ) ≤ 1, then X = {0,
∨

X} is complete. Hence let lM(
∨

X ) ≥ 2. Let
x1, x2 ∈ X such that z := x1∨x2 ∈ L2. It is sufficient to show that for all x ∈ L
such that x ≤ z we already have x ∈ X :

Let Z∗ := {y ∈ X ; y ≤ z∗}, let zi := xi ∨ z∗ <· z and Zi := {y ∈ X ; y ≤ zi}, for
i ∈ {1, 2}. Since X is an ideal and z∗ = (x1)∗ ∨ (x2)∗, we have

∨

Z∗ = z∗, and
hence we have

∨

Zi = zi <· z ≤
∨

X . Moreover, the Zi are weakly complete,
and since lM(

∨

Zi) < lM(
∨

X ) the sets Zi are complete by induction.

Let yi ∈ Dz such that zi = yi∨z∗, for i ∈ {1, 2}. Since the Zi are complete such
that

∨

Zi = zi, by (2.5) we have yi ∈ Zi ⊆ X , and as X is weakly complete we
have Dz ⊆ X . Let k ∈ Iz such that x ≤ zk <· z, and let Zk := {y ∈ X ; y ≤ zk}.
Since we have Dz ⊆ X and

∨

Z∗ = z∗, we obtain
∨

Zk = zk <· z ≤
∨

X .
Moreover, Zk is weakly complete, and since lM(

∨

Zk) < lM(
∨

X ) the set Zk is
complete by induction. As

∨

Zk = zk by (2.5) we finally have x ∈ Zk ⊆ X . ]

As an application, (2.5) can be used for the computation of submodule lattices.
There are computational techniques to determine the set L, and having found L
it remains to enumerate the complete sets, where by the refined version (2.7) the
necessary amount of checking is reduced significantly. Actually, (2.7) is moti-
vated by this application, and has already been proved for the particular case of
submodule lattices in [6], where also the algorithmic details of the computation
of submodule lattices are given.

We conclude this section by briefly commenting on distributive lattices, whose
basic structure theorem is Birkhoff’s Representation Theorem, which is a special
case of (2.5) and sheds some further light on the significance of the set L2.
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(2.8) Corollary: Birkhoff’s Representation Theorem.
The lattice M is distributive, i. e. for all x, y, z ∈ M we have x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z), if and only if L2 = ∅. In this case the following maps are a
pair of mutually inverse isomorphisms of lattices:

β : M→ {X ⊆ L;X finite ideal} : x 7→ {y ∈ L; y ≤ x},

β−1 : {X ⊆ L;X finite ideal} →M : X 7→
∨

X .

Proof. If z ∈ L2 6= ∅, then [z∗, z] is not distributive, hence neither M is.
Conversely, if L2 = ∅ then M(L) is the set of ideals of L which are bounded in
M, and whose join and meet operations are given by taking set theoretic unions
and intersections, respectively. Hence M(L) is distributive, and thus by (2.5)
M also is.

IfM is distributive, then the join-irreducible elements ofM(L) are the singleton
subsets of L. As the elements ofM(L) are bounded inM, we concludeM(L) =
{X ⊆ L;X finite ideal}. ]

3 Blocks

As a consequence of (2.5) we derive a description of the centre of a modular
lattice, being based on a certain graph, called the block graph, having the
join-irreducible elements as its vertices. The name ‘block’ is reminiscent of the
related algebraic notion, see (5.5).

(3.1) Proposition. Let x ∈M and X := β(x) ∈M(L), where β is as in (2.5).
Then we have x ∈ Z(M) if and only if X ′ := L \ X ∈ M(L). In this case,
letting x′ := β−1(X ′) ∈M, we have M∼= [0, x]× [0, x′].

Proof. Let x ∈ Z(M), let M ∼= [0, x] × [0, x′] for some suitable x′ ∈ M, and
let X ′ := β(x′) ∈ M(L). Hence for z ∈ L we have z ≤ x or z ≤ x′, and thus
L = {z ∈ L; z ≤ x}

.
∪ {z ∈ L; z ≤ x′} = X

.
∪ X ′, hence X ′ = L \ X .

Let conversely X ′ := L \ X ∈ M(L), and let Y,Y ′ ∈ M(L) such that Y ⊆ X
and Y ′ ⊆ X ′. Then Y

.
∪ Y ′ ⊆ L is an ideal which is bounded in M. Let

D ⊆ L be a dotted-line such that |D ∩ (Y
.
∪ Y ′)| ≥ 2. Since |D| ≥ 3 we have

|D ∩X | ≥ 2 or |D ∩X ′| ≥ 2, and hence either D ⊆ X or D ⊆ X ′. Thus we have
either |D ∩ Y| ≥ 2 or |D ∩ Y ′| ≥ 2, and hence either D ⊆ Y or D ⊆ Y ′. Thus
Y

.
∪ Y ′ ∈M(L) and hence Y ∨ Y ′ = Y

.
∪ Y ′.

Let x′ := β−1(X ′) ∈ M, and σ : [0, x] × [0, x′] → M : [y, y′] 7→ y ∨ y′. Hence
σ is order-preserving. By the above we have β(y ∨ y′) = β(y)

.
∪ β(y′), hence

β(y) = β(y∨y′)∩X and β(y′) = β(y∨y′)∩X ′, thus σ is injective. For z ∈M and
Z := β(z) ∈M(L) we have Z∩X ,Z∩X ′ ∈M(L) and Z = (Z∩X )

.
∪ (Z∩X ′).

Hence z = β−1(Z) = y ∨ y′, where y := β−1(Z ∩ X ) = β−1(Z) ∧ β−1(X ) =
z ∧ x ∈ M and y′ := β−1(Z ∩ X ′) = β−1(Z) ∧ β−1(X ′) = z ∧ x′ ∈ M. Thus σ
is surjective as well. ]
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(3.2) Definition. The block graph of M is defined as the undirected simple
graph having vertex set L, where vertices x, y ∈ L are adjacent if and only if
x < y or y < x or x ∨ y ∈ L2. Vertices being in the same connected component
of the block graph are called to be in the same block, giving rise to the disjoint
union L =

∐d
i=1 Zi, where d ∈ N0 is the number of blocks occurring.

Note that Zi ⊆ L is an ideal, and for each dotted-line D ⊆ L we have either
D ∩ Zi = ∅ or D ⊆ Zi, in general Zi is not bounded in M. Hence if M has a
greatest element, then we have Zi ∈M(L).

(3.3) Theorem. Let M have a greatest element, let L =
∐d

i=1 Zi be the
disjoint union of blocks, and let zi := β−1(Zi) ∈ M, for all i ∈ {1, . . . , d},
where β is as in (2.5). Then, given x ∈ M, we have x ∈ Z(M) if and only if

x =
∨

i;zi≤x zi holds. In particular,M∼=
∏d

i=1[0, zi] is the unique decomposition
of M into nontrivial indecomposable intervals.

Proof. Let x ∈ Z(M) and X := β(x) ∈M(L) as well as X ′ := L \ X ∈M(L)
and x′ := β−1(X ′) ∈ M. Let X ∩ Zi 6= ∅ and y ∈ X ∩ Zi, and let y′ ∈ Zi. If
y′ < y, then by completeness we have y′ ∈ X as well. If y′ > y, assume that
y′ 6∈ X , hence we have y′ ∈ X ′, thus by completeness y ∈ X ′, a contradiction,
showing y′ ∈ X . If y ∨ y′ ∈ L2, assume again that y′ 6∈ X , hence we have
y′ ∈ X ′, thus there is a dotted-line D ⊆ L such that {y, y′} ⊆ D, hence we have
D ∩X 6= ∅ and D ∩X ′ 6= ∅. Since |D| ≥ 3 we have |D ∩X | ≥ 2 or |D ∩X ′| ≥ 2,
and hence either D ⊆ X or D ⊆ X ′, a contradiction, again showing y′ ∈ X .

Hence we have shown that X ∩ Zi 6= ∅ already implies Zi ⊆ X . Thus we
have

∨

i;X∩Zi 6=∅
zi ≤ x and

∨

j;X ′∩Zj 6=∅
zj ≤ x′. Since M ∼= [0, x] × [0, x′] and

∨d

i=1 zi = 1 = x ∨ x′ we conclude x =
∨

i;zi≤x zi.

Let conversely {1, . . . , d} = I
.
∪ J as well as x :=

∨

i∈I zi ∈ M and x′ :=
∨

j∈J zj ∈M. Since for each dotted-line D ⊆ L we have D∩Zi = ∅ or D ⊆ Zi,
we conclude that β(x) =

∨

i∈I Zi =
∐

i∈I Zi ∈ M(L) and β(x′) =
∨

j∈J Zj =
∐

j∈J Zj ∈M(L). Since L = (
∐

i∈I Zi)
.
∪ (

∐

j∈J Zj) we have x ∈ Z(M). ]

These observations lead to a simple proof of Maeda’s Theorem, which relates
the atoms and the centre of a complemented lattice.

(3.4) Corollary: Maeda’s Theorem.

Let M be complemented, and let M ∼=
∏d

i=1[0, zi] be the decomposition of M
into nontrivial indecomposable intervals. Then for atoms x 6= y ∈ M we have
x∨y ∈ L2 if and only if there is i ∈ {1, . . . , d} such that both x ≤ zi and y ≤ zi.

Proof. Note that there are unique i, j ∈ {1, . . . , d} such that x ≤ zi and y ≤ zj .
If i 6= j, then since [0, zi ∨ zj ] ∼= [0, zi]× [0, zj ] we have [0, x∨ y] = [0, x]× [0, y],
thus x ∨ y 6∈ L2. If i = j, then by (3.3) let Zi := β−1(zi) ⊆ L be the block x
and y belong to. As Zi is a connected component of the block graph, there is a
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chain x = x0, x1, . . . , xs = y in L such that xi−1 ∨xi ∈ L2, for all i ∈ {1, . . . , s}.
Hence by [3, La.IV.6.1, La.IV.6.2] we conclude x ∨ y ∈ L2 as well. ]

4 Types

We consider a certain subgraph of the block graph, called the L2-graph, which
still has the join-irreducible elements as vertices, but now adjacency is governed
by the set L2 alone. In the light of the Benson-Conway Theorem, this graph
should indeed convey interesting information about the underlying modular lat-
tice. This leads to the definition of so-called types for a modular lattice, where
again this notion is motivated by an algebraic counterpart: For submodule lat-
tices each simple subquotient of a module has an algebraic isomorphism type
attached to it, see (5.1). Lattice theoretic types generalise this and even turn
out to be slightly finer than algebraic types. In particular we prove a purely
lattice theoretic version of the algebraic Jordan-Hölder Theorem. Having the
lattice theoretic notion of types at hand, we finally proceed to obtain a further
generalisation of (2.5).

(4.1) Definition. The L2-graph of M is defined as the undirected simple
graph having vertex set L, where vertices x, y ∈ L are adjacent if and only if
x ∨ y ∈ L2. Hence the L2-graph can be considered as a weighted graph, where
L2 is the set of weights, and the edge connecting the vertices x and y has weight
x ∨ y. Vertices being in the same connected component of the L2-graph are
called to be of the same type. This gives rise to the type map tM : L → T ,
where T is a suitable index set, and where we assume tM to be surjective.

Given z ∈ L2, we show that the subgraph of the L2-graph induced by the edges
of weight z is connected: Let x, x′, y, y′ ∈ L such that x ∨ y = z = x′ ∨ y′,
i. e. both x and y as well as x′ and y′ are connected by an edge of weight
z. The elements x ∨ z∗ 6= y ∨ z∗ and x′ ∨ z∗ 6= y′ ∨ z∗ are atoms of [z∗, z].
Interchanging x′ and y′ if necessary, we may assume that x∨ z∗ 6= x′ ∨ z∗ holds,
thus z = x ∨ x′ ∨ z∗ = x ∨ x′. Hence x and x′ are also connected by an edge of
weight z.

Since the subgraph induced by the edges of weight z is connected, it belongs
to a single connected component of the L2-graph. Thus the type map can be
extended to a map tM : L

.
∪ L2 → T , such that for x ∈ L being incident to an

edge of weight z ∈ L2 we have tM(x) = tM(z). Moreover, the type map can be
extended to the set of dotted-lines by letting tM(D) := tM(z), where D ⊆ L is
a dotted-line for z ∈ L2.

A complete subgraph of the L2-graph all of whose edges have weight z ∈ L2

is called a clique of weight z. Hence given z ∈ L2, by (2.3) the maximal
cliques of weight z are in bijection with the dotted-lines for z. Moreover, if M
is distributive, then by (2.8) the L2-graph has no edges at all, and hence the
type map tM : L → T is a bijection.
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(4.2) Proposition. Let y <· z ∈ M, and let x, x′ ∈ L such that x 6= x′ and
x ∨ y = z = x′ ∨ y. Then we have tM(x) = tM(x′).

Proof. We have x ∧ y = x∗ and x′ ∧ y = (x′)∗. Assume that x′ < x, then
x′ ∧ y = x′ ∧ x ∧ y = x′ ∧ x∗ = x′, a contradiction. Thus we conclude x′ 6≤ x,
and similarly x 6≤ x′. Let v := x ∨ x′ ∈ M, hence we have rM(v) = 2. Since
[y, z] = [y, y ∨ v] ∼= [v ∧ y, v], we have v∗ <· v ∧ y <· v. Moreover, we have
x∨v∗ 6= x′∨v∗, as well as v∗ <· x∨v∗ <· v and v∗ <· x′∨v∗ <· v. Since x, x′ 6≤ y
we have x∨ v∗ 6= v∧ y and x′ ∨ v∗ 6= v∧ y, thus we conclude that v ∈ L2. Hence
x and x′ are adjacent in the L2-graph. ]

(4.3) Definition. a) Let y <· z ∈ M and let x ∈ L such that x ∨ y = z. As
z is the join of the join-irreducible elements contained in z, such an element x
indeed exists, and by (4.2) the type tM(x) is independent of the choice of such
an x ∈ L. Hence the type tM([y, z]) := tM(x) ∈ T is well-defined.

b) Let x ≤ y ∈M, and let x = x0 <· x1 <· · · · <· xl = y be a maximal chain in
M, where l = l[x,y](y) = lM(y)− lM(x) ∈ N0. Letting τi := tM([xi−1, xi]) ∈ T ,
for all i ∈ {1, . . . , l}, we obtain the type sequence [τ1, . . . , τl] ⊆ T associated to
the pair x ≤ y. By (4.4) below, up to reordering the type sequence only depends
on the endpoints x and y, but not on the particular choice of the maximal chain
between them. Hence there is a multiset of types tM([x, y]) ∼ [τ1, . . . , τl]
associated to the pair x ≤ y, where ∼ indicates equality of multisets. In par-
ticular, for x ∈ L we have tM([x∗, x]) ∼ tM(x), where we do not distinguish
between a singleton multiset and its single element.

Moreover, if rτ ∈ N0 is the multiplicity with which the type τ ∈ T occurs in
the multiset of types [τ1, . . . , τl], then we also use the notation [τ1, . . . , τl] ∼
[τ rτ ; τ ∈ T ], and thus the multiset of types [τ1, . . . , τl] is equivalently described

by the multiplicity vector [rτ ; τ ∈ T ] ∈ N|T |0 .

(4.4) Theorem. Let x ≤ y ∈ M and let x = x0 <· x1 <· · · · <· xl = y
and x = x′0 <· x′1 <· · · · <· x′l = y be maximal chains in M, with associated
type sequences [τ1, . . . , τl] ⊆ T and [τ ′1, . . . , τ

′
l ] ⊆ T , respectively. Then we have

[τ1, . . . , τl] ∼ [τ ′1, . . . , τ
′
l ] as multisets, i. e. the type sequence [τ ′1, . . . , τ

′
l ] is a

reordering of the type sequence [τ1, . . . , τl].

Proof. We proceed by induction on l = lM(y) − lM(x) ∈ N0. The case l ≤ 1
being trivial, let l ≥ 2. If x1 = x′1, then we are done by induction. Hence let
x1 6= x′1 and z := x1 ∨ x′1 ∈ M. Thus [x1, z] = [x1, x1 ∨ x′1]

∼= [x1 ∩ x′1, x
′
1] =

[x, x′1], and similarly [x′1, z]
∼= [x, x1]. In particular, we have lM(y)− lM(x1) =

lM(y) − lM(x′1) = l − 1 and lM(y) − lM(z) = l − 2. Moreover, if w ∈ L such
that w∨x = x1, then w∨x′1 = w∨x∨x′1 = x1∨x′1 = z, thus τ1 = tM([x, x1]) =
tM([x′1, z]), and similarly τ ′1 = tM([x, x′1]) = tM([x1, z]).

Let [τ ′′1 , . . . , τ ′′l−2] ⊆ T be a type sequence associated to a maximal chain for
z ≤ y in M. Hence [τ ′1, τ

′′
1 , . . . , τ ′′l−2] ⊆ T and [τ1, τ

′′
1 , . . . , τ ′′l−2] ⊆ T are type
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sequences associated to maximal chains for x1 ≤ y and x′1 ≤ y in M, re-
spectively. By induction we have [τ2, . . . , τl] ∼ [τ ′1, τ

′′
1 , . . . , τ ′′l−2] as multisets,

thus [τ1, . . . , τl] ∼ [τ1, τ
′
1, τ

′′
1 , . . . , τ ′′l−2] as multisets, and similarly [τ ′1, . . . , τ

′
l ] ∼

[τ ′1, τ1, τ
′′
1 , . . . , τ ′′l−2] as multisets. ]

We derive a few immediate consequences, showing that lattice theoretic types
indeed behave as natural generalisations of algebraic types.

(4.5) Corollary. a) If M has a greatest element, then T is a finite set.
b) For x, y ∈M we have tM([x ∧ y, x]) ∼ tM([y, x ∨ y]) as multisets.
c) Let x =

∨r

i=1 xi ∈ M be irredundant, where xi ∈ L for all i ∈ {1, . . . , r}.
Then we have tM([x∗, x]) ∼ [tM(x1), . . . , tM(xr)] as multisets.

Proof. a) Let τ ∈ T , and let x ∈ L such that tM(x) = τ . Choosing a maximal
chain 0 = x′0 <· · · · <· x′r = x∗ <· x = x0 <· · · · <· xs = 1 in M shows that the
type τ occurs in some, and hence any, maximal chain for 0 ≤ 1 in M.
b) Let x ∧ y = x0 <· x1 <· · · · <· xl = x be a maximal chain in M, and
let zi ∈ L such that zi ∨ xi−1 = xi, for all i ∈ {1, . . . , l}. Hence we have
tM([xi−1, xi]) = tM(zi). Thus y = (x0 ∨ y) <· (x1 ∨ y) <· · · · <· (xl ∨ y) = x∨ y
is a maximal chain in M. Since zi ∨ (xi−1 ∨ y) = xi ∨ y, for all i ∈ {1, . . . , l},
we conclude tM([xi−1 ∨ y, xi ∨ y]) = tM(zi).
c) We have l[x∗,x](x) = r, and x∗ <· xi ∨ x∗ for all i ∈ {1, . . . , r}. Hence
x∗ <· x1 ∨ x∗ <· (x1 ∨ x2) ∨ x∗ <· · · · <· (

∨r

i=1 xi) ∨ x∗ = x is a maximal chain
in M. ]

(4.6) Proposition. Let r ∈ N0 and x ∈ Lr. Then there is τ ∈ T such that
tM([x∗, x]) ∼ [τ r] as multisets.

Proof. Let x =
∨r

i=1 xi ∈ Lr be irredundant, where xi ∈ L for all i ∈
{1, . . . , r}. Hence we have x∗ <· xi ∨ x∗, and x =

∨r
i=1(xi ∨ x∗) is irredun-

dant in [x∗, x], in particular we have xi ∨ x∗ 6= xj ∨ x∗ for all i 6= j. Hence by
(3.4) we have (xi ∨ xj) ∨ x∗ ∈ L2([x∗, x]), thus [x∗, (xi ∨ xj) ∨ x∗] is indecom-
posable. Since [x∗, (xi ∨xj)∨x∗] ∼= [(xi ∨xj)∧x∗, xi ∨xj ] is complemented, we
conclude that (xi∨xj)∗ ≤ (xi∨xj)∧x∗ ≤ xi∨xj , hence (xi∨xj)∧x∗ = (xi∨xj)∗,
and thus xi ∨ xj ∈ L2. Hence tM(xi) = tM(xj) ∈ T for all i 6= j, and thus
tM([x∗, x]) ∼ [tM(x1), . . . , tM(xr)] ∼ [tM(x1)

r] as multisets. ]

(4.7) Remark. If again x =
∨r

i=1 xi ∈ Lr is irredundant, where xi ∈ L for
all i ∈ {1, . . . , r}, then an argument similar to the one in the proof of (4.6)
shows that xJ :=

∨

i∈J xi ∈ L|J |, for all J ⊆ {1, . . . , r}. Moreover, we have
[(xJ )∗, xJ ] ∼= [x∗, xJ ∨ x∗], and as [x∗, x] is complemented and indecomposable
by [3, Thm.IV.7.11] the isomorphism type of [x∗, xJ ∨ x∗] only depends on |J |.
In particular, for all i, j ∈ {1, . . . , r} such that i 6= j, the cardinality |Ixi∨xj | is
independent of the particular choice of i 6= j, where Ixi∨xj is as in (2.1).
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Hence the L2-graph can be considered as the 1-dimensional skeleton of a simpli-
cial complex, whose (r − 1)-dimensional simplices, for r ∈ N, are the r-subsets
{x1, . . . , xr} ⊆ L such that

∨r

i=1 xi ∈ Lr. Thus in particular, if z, z′ ∈ L2

are 1-dimensional faces of an r-dimensional simplex, where r ≥ 2, then we
have |Iz| = |Iz′ |. Moreover, (4.6) allows to extend the type map to a map
t :

∐

r∈N
Lr → T compatible with incidence in this simplicial complex.

But note that the converse of (4.6) does not hold in general, i. e. for x ∈ Mr

such that tM([x∗, x]) ∼ [τ r], for some τ ∈ T , in general we do not have x ∈ Lr,
see (4.8). Moreover, being in the same connected component of the L2-graph,
i. e. we have tM(z) = tM(z′), in general does not suffice to imply equality of
|Iz| and |Iz′ |, see again (4.8). Actually, in both respects algebraic types for
submodule lattices behave more smoothly, see (5.3).

(4.8) Example. Let M be the modular lattice whose Hasse diagram is as
follows:

A
Z

C E

B

1

G H

X

D

Y

F

0

We have
L = {A,B,C,D,E, F,G,H} and L2 = {X,Y, Z},

where |IX | = 3 = |IY | and |IZ | = 4, while M2 = L2

.
∪ {1} and M3 = ∅. The

unique dotted-line for Z is {C,D,E, F}, while X and Y each have 3 dotted-lines

{{A,B,D}, {A,B,E}, {A,B, F}} and {{C,G,H}, {D,G,H}, {E,G,H}},

respectively. Finally, as X = A∨D and Y = D∨H we have tM(A) = tM(D) =
tM(H) and hence |tM(L)| = 1, but we have A ∨H = 1 ∈M2 \ L2. ]

We are prepared to derive a further generalisation of (2.5). Actually, again it is
motivated by an algebraic counterpart for submodule lattices, see (5.4).

(4.9) Definition. a) For τ ∈ T let

Mτ :=
∐

r∈N0

{x ∈Mr; tM([x∗, x]) ∼ [τ r]} and Lτ := {x ∈ L; tM(x) = τ}.
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For x, x′ ∈Mτ let x =
∨r

i=1 xi and x′ =
∨s

j=1 x′j be irredundant, where xi, x
′
j ∈

L. for all i ∈ {1, . . . , r} and j ∈ {1, . . . , s}. Then by (4.5) we have tM(xi) =
τ = tM(x′j), and hence x∨ x′ = (

∨r

i=1 xi)∨ (
∨s

j=1 x′j) ∈Mτ as well. Thus Mτ

is closed under taking joins, and becomes a lattice by x ∨τ x′ := x ∨ x′ and

x ∧τ x′ :=
∨

{y ∈Mτ ; y ≤ x ∧ x′} ∈ Mτ .

b) An ideal X ⊆ Lτ is called τ-complete, if X is bounded in M, and if for
each dotted-line D ⊆ Lτ such that |D ∩ X | ≥ 2 we already have D ⊆ X . Note
that by (4.1) for each dotted-line D ⊆ L we have D ⊆ Lt(D).

Let M(Lτ ) be the partially ordered set of τ -complete subsets of Lτ , where the
partial order is given by set theoretic inclusion. Hence M(Lτ ) is closed under
taking intersections, and becomes a lattice by letting X ∧τ X

′ := X ∩ X ′ and

X ∨τ X
′ :=

∧

{Y ∈ M(Lτ );X ∪ X
′ ⊆ Y} ∈ M(Lτ ).

(4.10) Theorem. Let τ ∈ T . ThenMτ is a modular lattice, and the following
maps are a pair of mutually inverse isomorphisms of lattices:

βτ : Mτ→M(Lτ ) : x 7→ {y ∈ Lτ ; y ≤ x} and β−1
τ : M(Lτ )→Mτ : X 7→

∨

X .

Proof. We show that for all x, y, z ∈ Mτ such that z ≤ x the modular law
x ∧τ (y ∨τ z) = (x ∧τ y) ∨τ z holds: We have

x ∧τ (y ∨τ z) =
∨

{v ∈Mτ ; v ≤ x ∧ (y ∨ z) = (x ∧ y) ∨ z}

and x ∧τ y =
∨

{w ∈Mτ ;w ≤ x ∧ y}, hence

(x ∧τ y) ∨τ z =
(

∨

{w ∈Mτ ;w ≤ x ∧ y}
)

∨ z ≤ x ∧τ (y ∨τ z).

Conversely, let v ∈ Mτ such that v ≤ (x ∧ y) ∨ z, where we may assume that
v ∈ Lτ and v 6≤ z. Hence we have v∨z ∈ L([z, (x∧y)∨z]), where z ≤ v∗∨z <· v∨z
and tM([v∗ ∨ z, v∨ z]) = τ . Since we have [z, (x∧ y)∨ z] ∼= [y∧ z, x∧ y], there is
w ∈ Lτ such that w ≤ x∧ y and w ∨ z = v ∨ z. Hence we have v ≤ (x∧τ y)∨ z,
thus x ∧τ (y ∨τ z) ≤ (x ∧τ y) ∨τ z, showing that Mτ is modular.

For the isomorphisms, replacing ∧ by ∧τ and ∨ by ∨τ , as well as L by Lτ and
and completeness by τ -completeness, the proof of (2.5) holds literally. ]

Note that by (2.5) we have im (βτ ) ⊆ {X ∩ Lτ ;X ∈ M(L)} ⊆ M(Lτ ), and
hence by (4.10) we conclude M(Lτ ) = {X ∩ Lτ ;X ∈M(L)}.

5 Submodule lattices

We finally consider submodule lattices and the algebraic notions which have
motivated the machinery developed in the present work. We assume the reader
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to be familiar with the basic notions of the theory of rings and their modules.
As a general reference see e. g. [5, Ch.I]. The basic observation relating the
set L2 and algebraic types is (5.2), which immediately leads to the statements
for algebraic types already promised in (4.7). Subsequently, we comment on the
algebraic counterparts of the setsMτ and on the notion of blocks. While in gen-
eral lattice theoretic blocks are slightly finer than their algebraic counterparts,
it turns out that under a natural technical condition these notions coincide.

(5.1) Algebraic types. Let A be a right Artinian ring with non-zero identity
element. By an A-module we will mean throughout this section a unital right A-
module. Let M be a finitely generated A-module, and letM(M) be the lattice
of A-submodules of M . Recall thatM(M) is a modular lattice, whose join and
meet operations are given by sum and intersection of submodules, respectively,
being denoted by + and ∩. Moreover,M(M) has the least element {0} and the
greatest element M , and all chains in M(M) are finite. Hence M(M) satisfies
the assumptions of (1.1). We keep the notation of (1.1), but also indicate the
dependence on M , e. g. for the join-irreducible elements we write L(M).

Let SA be the set of simple A-modules up to isomorphism; recall that SA is
a finite set. For Y <· Z ≤ M let the algebraic type sA(Y,Z) ∈ SA be the
isomorphism type of the simple A-module Z/Y . This defines the algebraic type
map, where radA(·) denotes the Jacobson radical of an A-module,

sA : L(M)→ SA : X 7→ sA(X∗, X) = sA(radA(X), X).

By (5.2) below, the type map tM : L(M) → T (M) is constant on the fibres of
sA. Hence there is a map σM : T (M)→ SA such that sA = σM ◦ tM . Thus by
(4.3) for Y <· Z ≤M we have sA(Y,Z) = σM ◦ tM ([Y,Z]).

The algebraic type map can be extended to a map sA : L(M)
.
∪ L2(M)→ SA, by

letting sA(Z) := sA(X) ∈ SA, for all Z = X+Y ∈ L2(M), where X,Y ∈ L(M).
Moreover, the algebraic type map can be extended to the set of dotted-lines by
letting sA(D) := sA(Z), where D ⊆ L(M) is a dotted-line for Z ∈ L2(M).

Note that in general σM is not injective: If e. g. M(M) is distributive, then
tM : L(M)→ T (M) is a bijection, while still different elements of L(M) might
have the same algebraic type. The minimal possible example of this situation is
as follows: The 2-dimensional algebra A ⊆ F2×2

2 over the field F2 generated by

[

1 1
. 1

]

∈ F2×2
2

has a unique simple module, up to isomorphism, hence we have |SA| = 1. The
natural A-module M = F2

2 is uniserial, i. e. M(M) has a unique maximal chain.
Thus M(M) is distributive, and we have |L(M)| = 2. Hence the elements of
L(M) have different types, but the same algebraic type.
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(5.2) Theorem. Let X,Y ∈ L(M) such that X 6≤ Y 6≤ X, and let Z :=
X + Y ∈M(M). Then we have Z ∈ L2(M) if and only if sA(X) = sA(Y ).

In this case we have IZ = ES

.
∪ {∞}, where ES := EndA(S) denotes the division

ring of A-endomorphisms of S, and∞ ∈ IZ just is an additional element disjoint
from ES .

Proof. If Z ∈ L2(M), then let Z∗ <· Z ′ <· Z such that X +Z∗ 6= Z ′ 6= Y +Z∗.
Hence we have sA(X) ∼= (X + Z∗)/Z∗ ∼= Z ′/Z∗ ∼= (Y + Z∗)/Z∗ ∼= sA(Y ) as A-
modules. If conversely S := sA(X) = sA(Y ) ∈ SA, then we have Z/Z∗ ∼= S ⊕ S
as A-modules, and the submodules 0 <· T <· S ⊕ S are described as follows:

Let π1, π2 : S ⊕ S → S be the natural A-module projections onto the first and
second direct summand, respectively. If Tπ1 = {0}, then we have T = T∞ :=
{0} ⊕ S. Hence let Tπ1 6= {0}, then we have Tπ1 = S. Assume that for some
v ∈ S we have both [v, w] ∈ T and [v, w′] ∈ T for some w,w′ ∈ S such that w 6=
w′. Then [0, w−w′] ∈ T as well, and thus {0}⊕S ≤ T , a contradiction. Hence
there is a map π : S → S such that T = Tπ := {[v, vπ] ∈ S ⊕ S; v ∈ S}, where
it is immediate that π ∈ ES . Conversely, for π ∈ ES we have 0 <· Tπ <· S ⊕ S.
Hence we have a bijection ES

.
∪ {∞} → {0 <· T <· S ⊕ S} : π 7→ Tπ. ]

(5.3) Corollary. a) Let X ∈ Mr(M) such that tM ([X∗, X]) ∼ [τ r] for some
τ ∈ T (M). Then we have X ∈ Lr(M).
b) Let Z,Z ′ ∈ L2(M) such that tM (Z) = tM (Z ′) ∈ T (M). Then there is a
bijection IZ → IZ′ .

Proof. a) Let X =
∑r

i=1 Xi be irredundant, where Xi ∈ L(M) for all i ∈
{1, . . . , r}. Hence we have sA(X∗, Xi + X∗) = sA(X∗, Xj + X∗), and thus
[X∗, Xi + Xj + X∗] is indecomposable for all i 6= j. Hence by (3.4) [X∗, X]
is indecomposable as well, and thus we have X ∈ Lr(M).
b) We have S := sA(Z) = sA(Z

′) ∈ SA, hence IZ = ES

.
∪ {∞} = IZ′ . ]

(5.4) The set MS(M). Let S ∈ SA and let eS ∈ A be a primitive idempo-
tent such that for the projective indecomposable A-module eSA ≤ A we have
eSA/(eSA)∗ = eSA/radA(eSA) ∼= S. The set eSAeS := {eSaeS ∈ A; a ∈ A} ⊆
A again is an Artinian ring. Let MeS ⊆ M denote the image of the action of
eS ∈ A on M , then MeS is a finitely generated eSAeS-module.

Note that more formally the process of mapping a finitely generated A-module
M to the eSAeS-module MeS is described by a Schur functor; for more details
on Schur functors and how they are used in the computational treatment of
modules, see [6], [7].

Let

MS(M) :=
∐

τ∈σ−1

M
(S)

Mτ (M) = {X ∈M(M); sM (Y,X) = S for all Y <· X}.
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Then by [6, Thm.2.3] the following maps are a pair of mutually inverse isomor-
phisms of lattices:

κ : MS(M)→M(MeS) : X 7→ XeS and κ−1 : M(MeS)→MS(M) : Y 7→ Y ·A,

where for an eSAeS-submodule Y ≤MeS we let Y ·A := {ma ∈M ;m ∈ Y, a ∈
A} ≤ M . Note that in [6] the ring A is assumed to be a finite-dimensional
algebra over a field, but the proof given there holds literally for the general case
of Artinian rings considered here.

(5.5) Algebraic blocks. Let ε1, . . . , εd ∈ A be the centrally primitive idempo-
tents in A, and let Ai := εiAεi E A be the associated block ideals of A. Hence
we have A ∼=

⊕d

i=1 Ai as rings. Moreover, letting Mi := Mεi ≤ M be the

algebraic block components of M , for all i ∈ {1, . . . , d}, we have M =
⊕d

i=1 Mi

as A-modules, where Mi ·Aj = {0} for all i, j ∈ {1, . . . , d} such that i 6= j. The
computation of algebraic block components is of practical importance, see [6].

Since for allX ≤M we also haveX =
⊕d

i=1 Xεi =
⊕d

i=1(X∩Mi) as A-modules,

we have Mi ∈ Z(M(M)), for all i ∈ {1, . . . , d}, and M(M) ∼=
∏d

i=1M(Mi) as
lattices. Thus by (3.3) we have Mi =

∑

j;Zj≤Mi
Zj , where {Z1, . . . , Zr} ⊆

M(M) is the set of minimal elements of Z(M(M)) \ {{0}}.

Note that in general the algebraic block components Mi ∈ M(M) are not
indecomposable lattices: Let e. g. S3 := 〈(1, 2), (2, 3)〉 be the symmetric group
on 3 letters, being generated by the adjacent transpositions, and let A := F3S3

be the associated group algebra over the field F3. Then we have SA = {T, S},
where T and S are 1-dimensional A-modules given by

T : (1, 2), (2, 3)→
[

1
]

∈ F1×1
3 and S : (1, 2), (2, 3)→

[

−1
]

∈ F1×1
3 .

Let M := T ⊕ S as A-modules. Then M(M) ∼= [{0}, T ]× [{0}, S], thus M(M)
is a decomposable lattice. But there is a 2-dimensional A-module R given by

R : (1, 2)→

[

1 .
. −1

]

∈ F2×2
3 , (2, 3)→

[

1 1
. −1

]

∈ F2×2
3 .

Hence R is a uniserial A-module, having constituents T and S. Hence T and
S belong to the same block ideal of A, and thus M consists of a single alge-
braic block component. In view of (5.6) below, note that for the kernel of the
associated representation we have ker(A→ EndF3

(M)) = radA(A) 6= {0}.

(5.6) Proposition. Let M be a faithful A-module, i. e. for the kernel of the
associated representation we have ker(A → EndZ(M)) = {0} E A, and let

M =
⊕d

i=1 Mi be the decomposition of the A-module M into its algebraic block

components. ThenM(M) ∼=
∏d

i=1[{0},Mi] is the decomposition ofM(M) into
nontrivial indecomposable intervals.
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Proof. For S ∈ SA let eS ∈ A be as in (5.4). Since M is a faithful A-module,
we have HomA(eSA,M) ∼= MeS 6= {0}, i. e. S is a constituent of M . Hence
the algebraic type map sA : L(M)→ SA is surjective.

We may assume that d = 1, i. e. A is a block algebra. Hence we have to show
thatM(M) is indecomposable: Assume that there are A-submodules Z,Z ′ ≤M
such that Z 6= {0} 6= Z ′ and M(M) ∼= [{0}, Z] × [{0}, Z ′] as lattices. Hence
for X,X ′ ∈ L(M) such that X ≤ Z and X ′ ≤ Z ′ we have X + X ′ 6∈ L2(M),
and thus sA(X) 6= sA(X

′). Hence letting S := {S ∈ SA;ZeS 6= {0}} and
S ′ := {S ∈ SA;Z

′eS 6= {0}} we have S ∩ S ′ = ∅ and S 6= ∅ 6= S ′. Thus from
the surjectivity of sA : L(M)→ SA we conclude that SA = S

.
∪ S ′.

For S ∈ S and S′ ∈ S ′ we have M · eSAeS′ = (Z ⊕ Z ′) · eSAeS′ ≤ ZeS′ = {0}.
Since M is a faithful A-module, we from this conclude that HomA(eS′A, eSA) ∼=
eSAeS′ = {0}. Thus for all S ∈ S all constituents of the projective indecom-
posable A-module eSA are in S, while for all S ∈ S ′ all constituents of eSA are
in S ′. Hence by [5, Thm.I.13.11] the ring A is not a block, a contradiction. ]

Note that in a computational setting M typically is just given by a set of rep-
resenting matrices. Hence if we let A be the algebra generated by the given
matrices, then M indeed is a faithful A-module.
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