On p-groups forming Brauer pairs

Bettina Eick and Jürgen Müller

November 13, 2006

Abstract

For all primes $p \geq 5$ we describe p-groups of order p^{5} and exponent p^{2} which form Brauer pairs, and we show that these are Brauer pairs of smallest possible p-power order. All of them arise as cyclic extensions of a certain type and we discuss general criteria under which these cyclic extensions form Brauer pairs. Mathematics Subject Classification: 20C15, 20D15

1 Introduction

Two finite groups G and H form a Brauer pair if they are non-isomorphic, but their character tables including power maps are equivalent; that is, if there exists a bijection $\tau: \mathrm{Cl}(G) \rightarrow \mathrm{Cl}(H)$ on the conjugacy classes of these groups which induces a bijection on the complex characters $\sigma: \operatorname{Irr}(H) \rightarrow \operatorname{Irr}(G): \chi \mapsto \chi \circ \tau$ and satisfies $\tau \circ \pi_{n}^{G}=\pi_{n}^{H} \circ \tau$ for every $n \in \mathbb{Z}$, where $\pi_{n}^{G}: \mathrm{Cl}(G) \rightarrow \mathrm{Cl}(G)$ is the n-th powermap induced by $G \rightarrow G: g \mapsto g^{n}$.

Brauer [1] asked if there exist Brauer pairs of finite groups. Dade [2] proved that there are Brauer pairs by constructing a Brauer pair of order p^{7} and exponent p for all primes $p \geq 7$. Skrzipczyk [11, 8] used the computer algebra system Gap [4] and the classification [9] of all groups of order dividing 2^{8} to show that the smallest 2-groups forming Brauer pairs have order 2^{8}. A similar approach can be used to verify that the smallest 3 -groups forming Brauer pairs have order 3^{6}.

Here we present three new series of Brauer pairs of order p^{5} and exponent p^{2} for all primes $p \geq 5$. The structure of these Brauer pairs is different to the structure of the groups found by Dade [2]. For our investigation we used the classification of the groups of order dividing p^{5} by Girnat [3]. This implies that for $p \geq 5$ there are 15 groups of order p^{4} and $61+2 p+2 a+b$ groups of order p^{5} where $a=\operatorname{gcd}(p-1,3)$ and $b=\operatorname{gcd}(p-1,4)$. We prove the following.

1 Theorem: Let $p \geq 5$. Then there exist a Brauer pair, a Brauer b-tuple and, if $a>1$, a Brauer a-tuple of groups of order p^{5}. There is no Brauer pair of order p^{4}.

Thus many of the groups responsible for the residue classes a and b arising in the formula $61+2 p+2 a+b$ yield Brauer pairs. However, we note that if $a>1$, then the second a-tuple of groups of order p^{5} does not yield a Brauer pair.

The following list of groups contains the Brauer pairs for Theorem 1 as Series $1-3$ and the a-tuple of groups of order p^{5} which is not a Brauer pair as Series 4.

The groups are described by power commutator presentations and trivial power and commutator relations are omitted to shorten notation. Let v be a primitive root of the field \mathbb{F}_{p}.

```
Series 1: \(\left\langle g_{1} \ldots g_{5} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{4}, g_{1}\right]=g_{5},\left[g_{3}, g_{2}\right]=g_{5}, g_{1}^{p}=g_{5}^{w}\right\rangle\)
    with \(w \in\{1, v\}\)
Series 2: \(\left\langle g_{1} \ldots g_{5} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{4},\left[g_{4}, g_{1}\right]=g_{5},\left[g_{3}, g_{2}\right]=g_{5}, g_{1}^{p}=g_{5}^{w}\right\rangle\)
    with \(w \in\left\{v, \ldots, v^{b}\right\}\)
Series 3: \(\left\langle g_{1} \ldots g_{5} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{5},\left[g_{3}, g_{2}\right]=g_{4},\left[g_{4}, g_{2}\right]=g_{5}, g_{1}^{p}=g_{5}^{w}\right\rangle\)
    with \(w \in\left\{v, \ldots, v^{a}\right\}\)
Series 4: \(\left\langle g_{1} \ldots g_{5} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{2}\right]=g_{4},\left[g_{4}, g_{2}\right]=g_{5}, g_{1}^{p}=g_{5}^{w}\right\rangle\)
    with \(w \in\left\{v, \ldots, v^{a}\right\}\)
```

All of these groups arise as a certain type of extensions of a maximal subgroup by a cyclic group of order p. We present a general criterion under which such cyclic extensions form Brauer pairs in Section 3. Then in Section 4 we show that this criterion applies to the groups in Series $1-3$ and thus we obtain a proof that these form Brauer pairs.

In [3] it is shown that the groups in Series 1-4 are pairwise non-isomorphic. For completeness, we include a brief sketch for the non-isomorphism of the groups in Series 1 in Section 4.4. A proof for the other series follows with similar arguments. We remark that the groups in a fixed Series are mutually isoclinic.

In Section 5 we describe the explicit character tables of the groups in Series 1-4. Apart from being interesting in themselves, these tables can be used to observe that the groups in Series 4 are not Brauer pairs. We also comment briefly on the related notion of weak Cayley tables.

Finally, we show that there is no Brauer pairs of order p^{4} for $p \geq 5$ in Section 6 . This also completes our proof for Theorem 1.

Acknowledgment: We are grateful to Boris Girnat, whose computational results led us to have closer look at the groups in Series 1-4.

2 Preliminaries and Notation

Two finite groups G and H have equivalent character tables if there exist a bijection $\tau: \mathrm{Cl}(G) \rightarrow \mathrm{Cl}(H)$ on the conjugacy classes of these groups which induces a bijection on the complex characters $\sigma: \operatorname{Irr}(H) \rightarrow \operatorname{Irr}(G): \chi \mapsto \chi \circ \tau$. In this case the map τ is called a character table equivalence.

Thus a Brauer pair is a pair of non-isomorphic groups with equivalent character tables and equivalent power maps. Lemma 2 below gives a useful criterion to check whether a pair of groups with equivalent character tables is a Brauer pair. It requires some notation. For $m \in \mathbb{N}$ let $\zeta_{m}:=\exp \left(\frac{2 \pi \sqrt{-1}}{m}\right) \in \mathbb{C}$ a primitive m-th root of unity. For $n \in \mathbb{N}$ with $\operatorname{gcd}(n, m)=1$ we denote with $\gamma_{n} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$ the automorphism defined by taking n-th powers $\gamma_{n}: \zeta_{m} \mapsto \zeta_{m}^{n}$. For $\rho \in \mathbb{Q}\left(\zeta_{m}\right)$ we also
write $\rho^{* n}:=\gamma_{n}(\rho)$. Recall that π_{n}^{G} is the n-th power map on the conjugacy classes of G.

2 Lemma: Let G and H be finite groups and let $\tau: C l(G) \rightarrow C l(H)$ be a character table equivalence. Then it follows that $\tau \circ \pi_{n}^{G}=\pi_{n}^{H} \circ \tau$ for every $n \in \mathbb{Z}$ if and only if $\tau \circ \pi_{p}^{G}=\pi_{p}^{H} \circ \tau$ holds for all primes $p||G|$.

Proof: First note that $\tau\left(1^{G}\right)=1^{H}$ and hence $|G|=|H|$. For $n \in \mathbb{N}$ with $\operatorname{gcd}(n,|G|)=1$ it follows that $\chi \circ\left(\pi_{n}^{H} \circ \tau\right)=\left(\chi \circ \pi_{n}^{H}\right) \circ \tau=\left(\gamma_{n} \circ \chi\right) \circ \tau=\gamma_{n} \circ(\chi \circ \tau)=$ $(\chi \circ \tau) \circ \pi_{n}^{G}=\chi \circ\left(\tau \circ \pi_{n}^{G}\right)$ and hence $\pi_{n}^{H} \circ \tau=\tau \circ \pi_{n}^{G}$. Thus the result follows from writing $\pi_{n}^{G}=\pi_{p_{1}}^{G} \cdots \cdots \pi_{p_{k}}^{G}$, where $n=p_{1} \cdots \cdots p_{k}$ is a factorization into primes.

Next we introduce some notation for numbers which will be used in the determination of character tables later. For an odd prime p we define

$$
\rho_{p}:=\left(-\zeta_{p}\right)^{\frac{p^{2}-1}{8}} \cdot \sqrt{(-1)^{\frac{p-1}{2}}} \cdot \sqrt{p} \in \mathbb{C},
$$

where we use the positive branch of the square root function. The following Lemma shows that it arises from p-th roots of unity as a Gaussian sum.

3 Lemma: Let p be an odd prime. Then $\rho_{p}=\sum_{s=0}^{p-1} \zeta_{p}^{\binom{s}{2}} \in \mathbb{Q}\left(\zeta_{p}\right)$.
Proof: First we note that

$$
\left(-\zeta_{p}\right)^{-\frac{p^{2}-1}{8}} \cdot \sum_{s=0}^{p-1} \zeta_{p}^{\frac{s(s-1)}{2}}=(-1)^{\frac{p^{2}-1}{8}} \cdot \sum_{s=0}^{p-1} \zeta_{p}^{\frac{(2 s-1)^{2}-p^{2}}{8}} .
$$

By the quadratic reciprocity law [10, Thm.1.3.5], it follows that $2 \in\left(\mathbb{F}_{p}\right)^{* 2}$ if and only if $(-1)^{\frac{p^{2}-1}{8}}=1$. The latter holds if and only if $p \equiv \pm 1 \bmod 8$.

Let $p \equiv \pm 1 \bmod 8$. Then with s running through \mathbb{F}_{p} the exponent $\frac{(2 s-1)^{2}-p^{2}}{8}=$ $\frac{(2 s-1)^{2}}{2 \cdot 2^{2}} \in \mathbb{F}_{p}$ runs through $0 \in \mathbb{F}_{p}$, and twice through $\left(\mathbb{F}_{p}\right)^{* 2}$. Thus

$$
\sum_{s=0}^{p-1} \zeta_{p}^{\frac{(2 s-1)^{2}-p^{2}}{8}}=1+2 \cdot \sum_{s \in\left(\mathbb{F}_{p}\right) * 2} \zeta_{p}^{s} .
$$

By Gauss's Theorem [12, Cor.4.6] we have

$$
\sum_{s \in\left(\mathbb{F}_{p}\right)^{* 2}} \zeta_{p}^{s}=\frac{1}{2} \cdot\left(-1+\sqrt{(-1)^{\frac{p-1}{2}}} \cdot \sqrt{p}\right),
$$

and hence

$$
\sum_{s=0}^{p-1} \zeta_{p}^{\frac{(2 s-1)^{2}-p^{2}}{8}}=\sqrt{(-1)^{\frac{p-1}{2}}} \cdot \sqrt{p}
$$

Let $p \equiv \pm 3 \bmod 8$. Then with s running through \mathbb{F}_{p} the exponent $\frac{(2 s-1)^{2}-p^{2}}{8} \in \mathbb{F}_{p}$ runs through $0 \in \mathbb{F}_{p}$, and twice through $\left(\mathbb{F}_{p}\right)^{*} \backslash\left(\mathbb{F}_{p}\right)^{* 2}$. Thus

$$
\sum_{s=0}^{p-1} \zeta_{p}^{\frac{(2 s-1)^{2}-p^{2}}{8}}=1+2 \cdot \sum_{s \in\left(\mathbb{F}_{p}\right) * \backslash\left(\mathbb{F}_{p}\right)^{* 2}} \zeta_{p}^{s} .
$$

By Gauss's Theorem we have

$$
\sum_{s \in\left(\mathbb{F}_{p}\right) * \backslash\left(\mathbb{F}_{p}\right)^{* 2}} \zeta_{p}^{s}=\frac{1}{2} \cdot\left(-1-\sqrt{(-1)^{\frac{p-1}{2}}} \cdot \sqrt{p}\right),
$$

and hence

$$
\sum_{s=0}^{p-1} \zeta_{p}^{\frac{(2 s-1)^{2}-p^{2}}{8}}=-\sqrt{(-1)^{\frac{p-1}{2}}} \cdot \sqrt{p}
$$

3 Cyclic p-extensions and Brauer pairs

The groups in one of the Series 1-4 have a very similar structure: they are all cyclic p-extensions of a common subgroup as introduced below. The main aim of this section is a general criterion under which cyclic p-extensions form Brauer pairs.

3.1 Cyclic p-extensions

Let U be a p-group of exponent p such that $|U| \leq p^{p-1}$ and let $\alpha \in \operatorname{Aut}(U)$ have order p. Let $H=\langle h\rangle \cong C_{p^{2}}$ act on U via $u^{h}:=u^{\alpha}$ and let $H \ltimes_{\alpha} U$ be the associated semidirect product.

4 Definition: For $c \in Z(U)$ of order p with $c^{\alpha}=c$ we define the cyclic p-extension G_{c} of U as $G_{c}:=\left(H \ltimes{ }_{\alpha} U\right) /\left\langle\left(h^{p}, c^{-1}\right)\right\rangle$.

The groups U and H have natural embeddings into G_{c} and thus they can be identified with their natural images. Then $G_{c}=\langle H, U\rangle$ and $U \cap H=C:=\langle c\rangle \leq$ $Z\left(G_{c}\right)$ has order p. Thus it follows that G_{c} is an extension of U by the cyclic group H / C of order p.

5 Remark: The group G_{c} has the following structure:

- $\left|G_{c}\right|=p \cdot|U| \leq p^{p}$ and thus G_{c} is a regular p-group of exponent p^{2}, see [5, Ch.12.4].
- The subgroup U of G_{c} is the unique maximal subgroup of exponent p in G_{c} and hence U is characteristic.
- The factor group $G_{c} / C \cong C_{p} \ltimes_{\alpha}(U / C)$ only depends on C, but not on the particular choice of $c \in C$.
- G_{c} is a central extension of G_{c} / C by C.

As G_{c} is an extension of U by H / C, it follows that every element $g \in G_{c}$ can be uniquely written in the form $g=h^{i} u$ for some $u \in U$ and some $i \in\{0, \ldots, p-1\}$. This allows to describe the conjugacy structure of G_{c} as follows.

6 Remark: Conjugation in G_{c} is described by $\left(h^{i} u\right)^{\left(h^{j} v\right)}=h^{i} v^{-\alpha^{i}} u^{\alpha^{j}} v$, where $u, v \in U$ and $i, j \in\{0, \ldots, p-1\}$. Thus conjugation in G_{c} is independent of c.

3.2 Isomorphism of cyclic p-extensions

Let G_{d} also be a cyclic p-extension of U for some suitable $d \in Z(U)$. We consider the question when there is an isomorphism $\widehat{\beta}: G_{c} \rightarrow G_{d}$. If such an isomorphism exists, then $U^{\widehat{\beta}}=U$ follows and thus we have $\beta:=\left.\widehat{\beta}\right|_{U} \in \operatorname{Aut}(U)$. For $v \in U$ let κ_{v} be the inner automorphism of U induced by the conjugation action of v on U.

7 Lemma: $\beta \in \operatorname{Aut}(U)$ is extendible to an isomorphism $\widehat{\beta}: G_{c} \rightarrow G_{d}$ if and only if there exist $r \in\{1, \ldots, p-1\}$ and $v \in U$ such that $c^{\beta}=d^{r}$ and $\alpha \beta=\beta \alpha^{r} \kappa_{v}$ in Aut (U). In this case $h^{\widehat{\beta}}:=h^{r} v$ defines an isomorphism $\widehat{\beta}: G_{c} \rightarrow G_{d}$ extending β.

Proof: Let $\beta \in \operatorname{Aut}(U)$ be extendible to an isomorphism $\widehat{\beta}: G_{c} \rightarrow G_{d}$. Then $\widehat{\beta}$ induces an automorphism of $C_{p} \cong G_{c} / U \cong G_{d} / U$, hence there are $r \in\{1, \ldots, p-1\}$ and $v \in U$ such that $h^{\widehat{\beta}}=h^{r} v$. Thus we have $c^{\beta}=\left(h^{p}\right)^{\widehat{\beta}}=\left(h^{\widehat{\beta}}\right)^{p}=\left(h^{r} v\right)^{p}$. By regularity there is $w \in\left\langle h^{r}, v\right\rangle^{\prime} \leq U<G_{d}$ such that $\left(h^{r} v\right)^{p}=h^{r p} v^{p} w^{p} \in G_{d}$, and since U has exponent p, we conclude $c^{\beta}=d^{r}$. Moreover, for $u \in U$ we have $\left(u^{\alpha}\right)^{\beta}=\left(u^{h}\right)^{\beta}=\left(u^{\beta}\right)^{\left(h^{\widehat{\beta}}\right)}=\left(u^{\beta}\right)^{\left(h^{r} v\right)}=\left(\left(u^{\beta}\right)^{\alpha^{r}}\right)^{v}$, hence $\alpha \beta=\beta \alpha^{r} \kappa_{v} \in \operatorname{Aut}(U)$.

Conversely, let $r \in\{1, \ldots, p-1\}$ and $v \in U$ be as in the assertion. Then extending β by $h^{\widehat{\beta}}:=h^{r} v$, a computation as above shows $\left(h^{p}\right)^{\widehat{\beta}}=c^{\widehat{\beta}}$ and $\left(u^{h}\right)^{\widehat{\beta}}=$ $\left(u^{\alpha}\right)^{\widehat{\beta}}$, for all $u \in U$, thus defining a homomorphism $\widehat{\beta}: G_{c} \rightarrow G_{d}$.

Thus verifying the criterion of Lemma 7 mainly requires an investigation of $\operatorname{Aut}(U)$. The following remark simplifies the outline of such computations and will be used later.

8 Remark: Let U be a group of exponent p with basis u_{1}, \ldots, u_{l}. Then there exists an injective map $\operatorname{Aut}(U) \rightarrow G L_{l}\left(\mathbb{F}_{p}\right): \alpha \mapsto\left(a_{i j}\right)$ where $u_{i}^{\alpha}=u_{1}^{a_{1, i}} \cdots u_{l}^{a_{l, i}}$. This map is not a homomorphism, unless U is abelian, but it provides a convenient way of describing automorphisms of U.

3.3 Character tables of cyclic p-extensions

We describe $\operatorname{Irr}\left(G_{c}\right)$ in terms of the action of α on $\operatorname{Irr}(U)$. For this purpose we define $\psi^{\alpha}:=\psi \circ \alpha^{-1}: u \mapsto \psi\left(u^{\alpha^{-1}}\right)$ for $\psi \in \operatorname{Irr}(U)$. Then either $\psi^{\alpha}=\psi$ or $\psi^{\alpha} \neq \psi$ holds and in the latter case $\left\{\psi, \psi^{\alpha}, \ldots, \psi^{\alpha^{p-1}}\right\}$ is an orbit of length p.

9 Remark: Clifford theory, see [6, Ch.6], yields the following.
(a) If $\psi^{\alpha}=\psi$ holds, then ψ has precisely p extensions to G_{c}. If $\widehat{\psi}_{G_{c}}$ is one of them, then the extensions can be described by $\lambda_{s} \widehat{\psi}_{G_{c}}$ for $s \in\{0, \ldots, p-1\}$, where $\lambda_{s} \in \operatorname{Irr}\left(G_{c} / U\right)$ is given as $\lambda_{s}(h)=\zeta_{p}^{s}$. In this case $\psi^{G_{c}}=\sum_{s \in\{0, \ldots, p-1\}} \lambda_{s} \widehat{\psi}_{G_{c}}$.
(b) If $\psi^{\alpha} \neq \psi$ holds, then the induced character $\psi^{G_{c}}$ is irreducible, and we have $\psi^{G_{c}}(g)=0$ for $g \notin U$ and $\left(\psi^{G_{c}}\right)_{U}=\sum_{j=0}^{p-1} \psi^{\alpha^{j}}$.
Next we give a criterion to check whether two cyclic p-extensions G_{c} and G_{d} with $\langle c\rangle=\langle d\rangle$ have equivalent character tables.

10 Theorem: Let $d:=c^{r}$ for some $r \in\{1, \ldots, p-1\}$. Assume that for all $\psi \in \operatorname{Irr}(U)$ with $C \not \leq \operatorname{ker}(\psi)$ there exists $u \in U$ and $t \in\{1, \ldots, p-1\}$ with $\psi(u) \neq 0$ and $u^{\alpha}=u \cdot c^{t}$. Then G_{c} and G_{d} have equivalent character tables.

Proof: Recall that every element of G_{c} and G_{d} can be written uniquely in the form $h^{i} u$ for $u \in U$ and $i \in\{0, \ldots, p-1\}$. Let $\widehat{\tau}: G_{c} \rightarrow G_{d}: h^{i} u \rightarrow h^{i} u$. As the conjugation action in G_{c} and G_{d} does not depend on the particular choice of a generator of C, this induces a map $\tau: \mathrm{Cl}\left(G_{c}\right) \rightarrow \mathrm{Cl}\left(G_{d}\right)$.

The characters of G_{c} are either induced or extended from characters of U. Thus they are either of the form $\lambda_{s} \widehat{\psi}_{G_{c}}$ for some $\psi \in \operatorname{Irr}(U)$ with $\psi=\psi^{\alpha}$ and some $s \in\{0, \ldots, p-1\}$ or they are of the form $\psi^{G_{c}}$ for some $\psi \in \operatorname{Irr}(U)$ with $\psi \neq \psi^{\alpha}$.

Let $\psi \in \operatorname{Irr}(U)$ with $C \not \leq \operatorname{ker}(\psi)$. Then $\psi(c) / \psi(1)$ is a primitive p-th root of unity. As there exists $u \in U$ with $\psi(u) \neq 0$ and $u^{\alpha}=u c^{t}$, it follows that $\psi^{\alpha}(u)=\psi\left(u^{\alpha^{-1}}\right)=\psi\left(u \cdot c^{-t}\right)=(\psi(c) / \psi(1))^{-t} \cdot \psi(u) \neq \psi(u)$. Hence $\psi^{\alpha} \neq \psi$ follows. Now we consider two cases.
(1) Let $\psi \in \operatorname{Irr}(U)$ with $\psi^{\alpha}=\psi$. Then $C \leq \operatorname{ker}(\psi)$ follows by the preceding argument and thus $C \leq \operatorname{ker}\left(\psi^{\alpha}\right)$ holds. Thus $C \leq \operatorname{ker}(\chi)$ for all extensions $\chi \in$ $\operatorname{Irr}\left(G_{c}\right)$ of ψ. As G_{c} / C is independent of c, this yields that all such χ are independent of c. More precisely, it follows that $\lambda_{s} \widehat{\psi}_{G_{d}} \circ \tau\left(h^{i} u\right)=\lambda_{s} \widehat{\psi}_{G_{d}}\left(h^{i} u\right)=\zeta_{p}^{i s} \cdot \widehat{\psi}_{G_{d}}\left(h^{i} u \cdot C\right)=$ $\lambda_{s} \widehat{\psi}_{G_{c}}\left(h^{i} u \cdot C\right)=\lambda_{s} \widehat{\psi}_{G_{c}}\left(h^{i} u\right)$.
(2) Let $\psi \in \operatorname{Irr}(U)$ with $\psi^{\alpha} \neq \psi$. Then $\psi^{G_{d}} \circ \tau\left(h^{i} u\right)=\psi^{G_{d}}\left(h^{i} u\right)=0=\psi^{G_{c}}\left(h^{i} u\right)$ for $i \in\{1, \ldots, p-1\}$ and $\psi^{G_{d}} \circ \tau(u)=\psi^{G_{d}}(u)=\sum_{j=0}^{p-1} \psi^{\alpha^{j}}(u)=\psi^{G_{c}}(u)$.

In summary, (1) and (2) yield that $\sigma\left(\lambda_{s} \widehat{\psi}_{G_{d}}\right)=\lambda_{s} \widehat{\psi}_{G_{c}}$ and $\sigma\left(\psi^{G_{d}}\right)=\psi^{G_{c}}$ and hence τ is a character table equivalence.

11 Theorem: In addition to the assumptions of Theorem 10, assume that there is a transversal $T \subseteq U$ of the left cosets of C in U such that for all $t \in T$ and for all $\psi \in \operatorname{Irr}(U)$ with $C \not \leq \operatorname{ker}(\psi)$ it follows that $\psi^{G_{c}}(t) \in \mathbb{Z}$. Then G_{c} and G_{d} have equivalent character tables including power maps.

Proof: We define $\widehat{\tau}: G_{c} \rightarrow G_{d}: h^{i} t c^{k} \rightarrow h^{i} t c^{k r}$ for $i, k \in\{0, \ldots, p-1\}$ and $t \in T$. As $c^{\alpha}=c$ holds, this induces a bijection $\tau: \mathrm{Cl}\left(G_{c}\right) \rightarrow \mathrm{Cl}\left(G_{d}\right)$. By Lemma 2, it is sufficient to prove that τ is compatible with the p-th power map and induces a character table equivalence.

First, we show that this bijection is compatible with the p-th power map. Since G_{c} is regular, it follows that $\left(h^{i} t c^{k}\right)^{p}=h^{i p}\left(t c^{k}\right)^{p} w^{p}=c^{i} \in G_{c}$ for some $w \in$
$\left\langle h^{i}, t c^{k}\right\rangle^{\prime} \leq U<G_{c}$. Similarly, it follows that $\left(h^{i} t c^{k}\right)^{p}=c^{i r} \in G_{d}$. This yields that $\tau \circ \pi_{p}^{G_{c}}\left(h^{i} t c^{k}\right)=\tau\left(c^{i}\right)=c^{i r}=\pi_{p}^{G_{d}}\left(h^{i} t c^{k r}\right)=\pi_{p}^{G_{d}} \circ \tau\left(h^{i} t c^{k}\right)$ and τ is compatible with the p-th power map.

Next, we prove that τ induces a character table equivalence using a similar approach as in the proof of Theorem 10 . We consider the following cases.
(1) Let $\psi=\psi^{\alpha} \in \operatorname{Irr}(U)$. Then $C \leq \operatorname{ker}(\psi)$ and $C \leq \operatorname{ker}\left(\psi^{\alpha}\right)$ holds as in the proof of Theorem 10. Thus for $s \in\{0, \ldots, p-1\}$ we find that $\lambda_{s} \widehat{\psi}_{G_{d}} \circ \tau\left(h^{i} t c^{k}\right)=$ $\lambda_{s} \widehat{\psi}_{G_{d}}\left(h^{i} t c^{k r}\right)=\zeta_{p}^{i s} \cdot \widehat{\psi}_{G_{d}}\left(h^{i} t \cdot C\right)=\lambda_{s} \widehat{\psi}_{G_{c}}\left(h^{i} t \cdot C\right)=\lambda_{s} \widehat{\psi}_{G_{c}}\left(h^{i} t c^{k}\right)$.
(2) Let $\psi \neq \psi^{\alpha} \in \operatorname{Irr}(U)$. Then for $i \in\{1, \ldots, p-1\}$ it follows that $\psi^{G_{d}} \circ$ $\tau\left(h^{i} t c^{k}\right)=\psi^{G_{d}}\left(h^{i} t c^{k r}\right)=0=\psi^{G_{c}}\left(h^{i} t c^{k}\right)$. Thus it remains to consider the case $i=0$. If $C \leq \operatorname{ker}(\psi)$, then $\psi^{G_{d}} \circ \tau\left(t c^{k}\right)=\psi^{G_{d}}\left(t c^{k r}\right)=\sum_{j=0}^{p-1} \psi^{\alpha^{j}}(t \cdot C)=\psi^{G_{c}}\left(t c^{k}\right)$ holds. If $C \not \leq \operatorname{ker}(\psi)$, then denote $\zeta:=\psi(c) / \psi(1)$ and use the integrality assumption to observe $\psi^{G_{d}} \circ \tau\left(t c^{k}\right)=\psi^{G_{d}}\left(t c^{k r}\right)=\sum_{j=0}^{p-1} \psi^{\alpha^{j}}\left(t c^{k r}\right)=\zeta^{k r} \cdot \psi^{G_{c}}(t)=\gamma_{r}\left(\zeta^{k} \cdot \psi^{G_{c}}(t)\right)=$ $\left.\gamma_{r} \circ \psi^{G_{c}}\left(t c^{k}\right)\right)$.

In summary, (1) and (2) yield that $\sigma\left(\lambda_{s} \widehat{\psi}_{G_{d}}\right)=\lambda_{s} \widehat{\psi}_{G_{c}}$, while $\sigma\left(\psi^{G_{d}}\right)=\psi^{G_{c}}$ for $C \leq \operatorname{ker}(\psi)$, and $\sigma\left(\psi^{G_{d}}\right)=\gamma_{r} \circ \psi^{G_{c}}$ for $C \not \leq \operatorname{ker}(\psi)$. Hence τ is a character table equivalence.

4 The groups in Series 1-3 are Brauer pairs

In this section we show that the groups in Series 1-3 form Brauer pairs. First, we show that the groups in Series $1-3$ have equivalent character tables including power maps using Theorems 10 and 11. To apply these Theorems, we express the considered groups as cyclic p-extensions of a common subgroup U and we determine the character table of the relevant groups U. Secondly, we briefly discuss the nonisomorphism of the groups in the series.

For all groups G_{w} in the Series $1-4$ we use $U:=\left\langle g_{2}, \ldots, g_{5}\right\rangle<G_{w}$ and we let $c:=g_{5}^{w} \in Z(U)$ and $h:=g_{1} \in G_{w}$. Then as $p \geq 5$ and $|U|=p^{4}$, it follows that all groups are cyclic p-extensions of the form G_{c}. The subgroups U for the groups in Series 1 and 2 and in Series 3 and 4 coincide.

4.1 The character table of U in Series 1 and 2

Here $U=U_{1} \times U_{2}$ with $U_{1}=\left\langle g_{2}, g_{3}, g_{5}\right\rangle \cong\left\langle g_{2}, g_{3}, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{5}\right\rangle$ extraspecial of order p^{3} and $U_{2}=\left\langle g_{4}\right\rangle$ cyclic of order p. The character theory for U_{1} and U_{2} is well-known and the character table of U can be obtained as product of the tables of these two subgroups, see Figure 1.

4.2 The character table of U in Series 3 and 4

Here $U \cong\left\langle g_{2}, \ldots, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{4},\left[g_{4}, g_{2}\right]=g_{5}\right\rangle$ and $C=\left\langle g_{5}\right\rangle$. Thus U / C is extraspecial of order p^{3} and exponent p and the character theory for U / C is wellknown. In particular, the group U / C has p^{2} linear irreducible characters and $p-1$ irreducible characters of degree p. These characters inflate to irreducible characters

centralizer			p^{4}	p^{3}
representative			$g_{4}^{k} g_{5}^{l}$	$g_{2}^{i} g_{3}^{j} g_{4}^{k}$
parameter			$0 \leq k, l<p$	$\begin{gathered} 0 \leq i, j, k<p \\ (i, j) \neq(0,0) \end{gathered}$
\#	parameter	\#	p^{2}	$p\left(p^{2}-1\right)$
p^{3}	$0 \leq a, b, c<p$	$\chi_{a, b, c}$	$\zeta_{p}^{k c}$	$\zeta_{p}^{i a+j b+k c}$
$p(p-1)$	$\begin{aligned} & 0 \leq c<p \\ & 1 \leq d<p \\ & \hline \end{aligned}$	$\chi_{c, d}$	$p \cdot \zeta_{p}^{k c+l d}$	0

Figure 1: The character table of $U=\left\langle g_{2}, \ldots, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{5}\right\rangle$
of U and it remains to determine those irreducible characters of U which do not have C in their kernel.

For this purpose we consider $V=\left\langle g_{3}, g_{4}, g_{5}\right\rangle \triangleleft U$. Then V is elementary abelian of order p^{3} and thus has p^{3} linear irreducible characters $\chi_{b, c, d}$. Let $\kappa \in \operatorname{Aut}(V)$ be the automorphism of V induced by the conjugation action of $g_{2} \in U$ on V. Then with respect to the basis $\left\{g_{3}, \ldots, g_{5}\right\}$ this automorphism is given as

$$
\kappa \mapsto\left(\begin{array}{ccc}
1 & 1 & \cdot \\
. & 1 & 1 \\
. & . & 1
\end{array}\right) \in G L_{3}\left(\mathbb{F}_{p}\right) .
$$

The automorphism κ acts on $\operatorname{Irr}(V) \cong V^{*}:=\operatorname{Hom}(V, \mathbb{C})$, with orbits of length 1 and p. Amongst others, there are orbits $\left\{\left.\chi_{b+\binom{t}{2} d, t d, d} \right\rvert\, t \in\{0, \ldots, p-1\}\right\}$ for $0 \leq b \leq p-1$ and $1 \leq d \leq p-1$, where $\left\{\chi_{1,0,0}, \chi_{0,1,0}, \chi_{1,0,0}\right\}$ is the associated dual basis of V^{*}. Thus defining $\chi_{b, d}:=\chi_{b, 0, d}^{U} \in \operatorname{Irr}(U)$, we obtain that $\chi_{b, d}\left(g_{5}^{l}\right)=p \cdot \zeta_{p}^{l d}$ and $\chi_{b, d}\left(g_{4}^{k}\right)=\sum_{t=0}^{p-1}\left(\zeta_{p}^{k d}\right)^{t}=0$ and, using Lemma 3,

$$
\chi_{b, d}\left(g_{3}^{j} g_{5}^{l}\right)=\sum_{t=0}^{p-1} \chi_{b+\left(\frac{t}{2}\right) d, t d, d}\left(g_{3}^{j} g_{5}^{l}\right)=\zeta_{p}^{j b+l d} \cdot \sum_{t=0}^{p-1}\left(\zeta_{p}^{(t)}\right)^{j d}=\zeta_{p}^{j b+l d} \cdot \rho_{p}^{* j d} .
$$

This completes the character table of U, see Figure 2.

4.3 The equivalence of character tables including power maps

Now we can read off that the groups in Series 1-3 have equivalent character tables including power maps. We give an outline in the following lemmas.

12 Lemma: The assumptions of Theorem 10 are satisfied for the groups in Series 1-3, but not for the groups in Series 4.

Proof: This can be verified by direct inspection for each individual case using the character tables in Figures 1 and 2. For the groups in Series 1 and 2, one can use $u=g_{4}$ and $t=1$ to obtain the desired result. For the groups in Series 3, possible

centralizer			p^{4}	p^{3}	p^{3}	p^{2}
representative			g_{5}^{l}	g_{4}^{k}	$g_{3}^{j} g_{5}^{l}$	$g_{2}^{i} g_{3}^{j}$
parameter			$0 \leq l<p$	$1 \leq k<p$	$\begin{aligned} & 1 \leq j<p \\ & 0 \leq l<p \end{aligned}$	$\begin{aligned} & 1 \leq i<p \\ & 0 \leq j<p \end{aligned}$
\#	parameter	\#	p	$p-1$	$p(p-1)$	$p(p-1)$
p^{2}	$0 \leq a, b<p$	$\chi a, b$	1	1	$\zeta_{p}^{j b}$	$\zeta_{p}^{i a+j b}$
$p-1$	$1 \leq c<p$	χ_{c}	p	$p \cdot \zeta_{p}^{k c}$	0	0
$p(p-1)$	$\begin{aligned} & 0 \leq b<p \\ & 1 \leq d<p \end{aligned}$	$\chi_{b, d}$	$p \cdot \zeta_{p}^{l d}$	0	$\zeta_{p}^{j b+l d} \cdot \rho_{p}^{* j d}$	0

Figure 2: The character table of $U=\left\langle g_{2}, \ldots, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{4},\left[g_{4}, g_{2}\right]=g_{5}\right\rangle$
choices are $u=g_{3}$ and $t=1$. For the groups in Series 4, note that u has to be of the form $u=g_{3}^{j} g_{5}^{l}$ for some j and l. But then $u^{\alpha}=u$ holds and hence the assumptions of Theorem 10 are not satisfied.

13 Lemma: The assumptions of Theorem 11 hold for the groups in Series 1-3.
Proof: By Lemma 12 it is sufficient to check the additional assumption in Theorem 11. Again, this can be verified by direct inspection for each individual case using the character tables in Figures 1 and 2 and the conjugation action of $g_{1} \in G_{w}$ on U. As transversal T for the left cosets of C in U we use $T=\left\{g_{2}^{i} g_{3}^{j} g_{4}^{k} \mid 0 \leq i, j, k \leq p-1\right\}$ in all cases. Then it is straightforward to determine for every $\psi \in \operatorname{Irr}(U)$ with $C \not \leq \operatorname{ker}(\psi)$ that $\psi^{G_{c}}(t)=0$ holds and hence the additional assumption of Theorem 11 is satisfied.

4.4 Non-Isomorphism of the groups in Series 1

We include a brief sketch for a proof that the groups described in Series 1 are pairwise non-isomorphic. The non-isomorphism for the groups in Series 2-4 can be proved with a similar approach.

Let $G_{w}=\left\langle g_{1} \ldots g_{5} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{4}, g_{1}\right]=g_{5},\left[g_{3}, g_{2}\right]=g_{5}, g_{1}^{p}=g_{5}^{w}\right\rangle$ for some $w \in \mathbb{F}_{p}^{*}$ and let $U=\left\langle g_{2}, \ldots, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{5}\right\rangle$. We want to apply Lemma 7 to this setup. For this purpose we first investigate Aut (U) using Remark 8 to describe automorphisms with respect to the basis g_{2}, \ldots, g_{5} of U.

First, note that $Z(U)=\left\langle g_{4}, g_{5}\right\rangle$ and $U^{\prime}=\left\langle g_{5}\right\rangle \leq Z(U)$ are Aut (U)-invariant subgroups. Hence any $\beta \in \operatorname{Aut}(U)$ has the form

$$
\beta \mapsto\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
0 & 0 & i & j \\
0 & 0 & 0 & k
\end{array}\right) \in G L_{4}\left(\mathbb{F}_{p}\right)
$$

where $i, k \neq 0$. Further, as $\left[g_{3}, g_{2}\right]=g_{5}$, it follows that $k=a f-b e$ holds. The inner automorphisms $\operatorname{Inn}(U)=\left\langle\kappa_{g_{3}}^{-1}, \kappa_{g_{2}}\right\rangle$ are given by

$$
\kappa_{g_{3}}^{-1} \mapsto\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } \kappa_{g_{2}} \mapsto\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

The concatenation $\beta \beta^{\prime} \in \operatorname{Aut}(U)$ is described as

$$
\beta \beta^{\prime} \mapsto\left(\begin{array}{cccc}
a a^{\prime}+b e^{\prime} & a b^{\prime}+b f^{\prime} & a c^{\prime}+b g^{\prime}+c i^{\prime} & * \\
e a^{\prime}+f e^{\prime} & e b^{\prime}+f f^{\prime} & e c^{\prime}+f g^{\prime}+g i^{\prime} & * \\
0 & 0 & i i^{\prime} & i j^{\prime}+j k^{\prime} \\
0 & 0 & 0 & k k^{\prime}
\end{array}\right)
$$

where $a^{\prime}, \ldots, k^{\prime} \in \mathbb{F}_{p}$ are the matrix entries associated to $\beta^{\prime} \in \operatorname{Aut}(U)$. We note that for the application of Lemma 7 it is sufficient to compute modulo $\operatorname{Inn}(U)$ and hence it is not necessary to determine the matrix entries ' $*$ ' explicitly.

Let α be the automorphism induced by the conjugation action of g_{1} on U. Then for $r \in\{1, \ldots, p-1\}$ it follows that

$$
\alpha^{r} \mapsto\left(\begin{array}{cccc}
1 & r & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 1
\end{array}\right),
$$

and hence

$$
\alpha \beta \mapsto\left(\begin{array}{cccc}
a+e & b+f & c+g & * \\
e & f & g & * \\
0 & 0 & i & j+k \\
0 & 0 & 0 & k
\end{array}\right) \quad \text { and } \beta \alpha^{r} \mapsto\left(\begin{array}{cccc}
a & r a+b & c & * \\
e & r e+f & g & * \\
0 & 0 & i & r i+j \\
0 & 0 & 0 & k
\end{array}\right)
$$

Thus, by Lemma 7, two groups G_{w} and G_{v} are isomorphic if and only if $w k=v r$ and $e=g=0$ and $r a=f$ and $r i=k$ holds. Since $k=a f-b e$ holds, this implies that $r i=a f=r a^{2}$ and hence $i=a^{2}$ and $r a^{2}=k$, thus $w^{-1} v=a^{2} \neq 0$ follows. If conversely $w^{-1} v=a^{2} \neq 0$, then we can choose an arbitrary $r \neq 0$ and use $f:=r a$ and $i:=a^{2}$ as well as $k:=r a^{2}$ to find that the above conditions are satisfied.

5 Explicit character tables

We determine the explicit character tables for the groups in Series 1-4. We use the same general strategy in all four cases: we first determine the characters of G_{w} / C and inflate them to G_{w} and then we construct the remaining irreducible characters from characters of normal subgroups of G_{w}. In particular, the irreducible characters of the maximal subgroups U as described in Figures 1 and 2 are useful for this purpose. As a preliminary step, we describe a method to determine the conjugacy classes of G_{w}.

5.1 The conjugacy classes of G_{w}

As G_{w} is a central extension of G_{w} / C by the cyclic group $C=\langle c\rangle$ of order p, the conjugacy classes of G_{w} can be described in terms of the conjugacy classes of G_{w} / C : The preimage of a conjugacy class of G_{w} / C either is a single conjugacy class, or splits into p pairwise distinct conjugacy classes of the same cardinality, whose representatives differ by a power of c. Hence in the non-split case the corresponding centralizer orders in G_{w} / C and G_{w} are the same, while in the split case these differ by a factor of p.

The factor group G_{w} / C is a semidirect product of the form $G_{w} / C \cong C_{p} \ltimes_{\alpha}(U / C)$, where $\alpha \in \operatorname{Aut}(U / C)$ induced by the conjugacy action of $g_{1} C$ on U / C. Conjugation in G_{w} / C is described by

$$
\left(\alpha^{m}, u\right)^{\left(\alpha^{n}, v\right)}=\left(\alpha^{m}, v^{-\alpha^{m}} u^{\alpha^{n}} v\right)=\left(\alpha^{m},\left(\widetilde{v}^{-\alpha^{m}} u \widetilde{v}\right)^{\alpha^{n}}\right)
$$

where $\widetilde{v}:=v^{\alpha^{-n}} \in U / C$. We denote the action of U / C on itself by $u \mapsto v^{-\alpha} u v$ as α-conjugation action. Then the conjugacy classes of G_{w} / C fall into cohorts parameterized by $m \in\{0, \ldots, p-1\}$. The m-th cohort is in bijection with the set of α^{m}-conjugacy classes of α-orbits on G_{w} / C which equals the set of α-orbits of α^{m}-conjugacy classes of G_{w} / C. Thus the 0 -th cohort is the set of the α-orbits on the conjugacy classes of U / C and the classes in this cohort are called the inner conjugacy classes. The other classes are called outer conjugacy classes.

5.2 The character table of G_{w} in Series 1

In this case the character table of G_{w} can be determined quite easily. From the power commutator presentation of G_{w} one can read off that $G_{w} / C \cong U$ holds and hence the character tables of G_{w} / C and of U are given by Figure 1. The irreducible characters of G_{w} / C inflate to irreducible characters of G_{w}. Hence it remains to determine the irreducible characters of G_{w} not having C in their kernels.

For this purpose we consider the characters $\chi_{0, d} \in \operatorname{Irr}(U)$ with $d \in\{1, \ldots, p-1\}$ in the notation of Figure 1. Inducing these characters to G_{w} yields $p-1$ characters $\chi_{d} \in \operatorname{Irr}\left(G_{w}\right)$ with $\chi_{d}\left(g_{5}^{l}\right)=p^{2} \cdot \zeta_{p}^{l d}$ for $l \in\{0, \ldots, p-1\}$ and $\chi_{d}(g)=0$ whenever $g \notin C$; see Figure 3 .

5.3 The character table of G_{w} in Series 2

The character tables of the groups in this Series can be determined with the same approach as in Section 5.2. In this case, one can read off from the power commutator presentation of G_{w} that the factor G_{w} / C is isomorphic to the maximal subgroup U in Series 3. Hence the character table of G_{w} / C is available in Figure 2. The remaining irreducible characters of G_{w} can be found by inducing characters of U to G_{w} as in Section 5.2. The resulting character table of G_{w} is displayed in Figure 4.

centralizer			p^{5}	p^{4}	p^{3}
representative			g_{5}^{l}	$g_{3}^{j} g_{4}^{k}$	$g_{1}^{m} g_{2}^{i} g_{4}^{k}$
parameter			$0 \leq l<p$	$\begin{gathered} 0 \leq j, k<p \\ (j, k) \neq(0,0) \end{gathered}$	$\begin{gathered} 0 \leq m, i, k<p \\ (i, m) \neq(0,0) \\ \hline \end{gathered}$
\#	parameter	\#	p	$p^{2}-1$	$p\left(p^{2}-1\right)$
p^{3}	$0 \leq a, c, e<p$	$\chi_{a, c, e}$	1	$\zeta_{p}^{k c}$	$\zeta_{p}^{m e+i a+k c}$
$p(p-1)$	$\begin{aligned} & 1 \leq b<p \\ & 0 \leq c<p \\ & \hline \end{aligned}$	$\chi_{b, c}$	p	$p \cdot \zeta_{p}^{j b+k c}$	0
$p-1$	$1 \leq d<p$	χ_{d}	$p^{2} \cdot \zeta_{p}^{l d}$	0	0

Figure 3: The character table of G_{w} in Series 1.

centralizer			p^{5}	p^{4}	p^{3}	p^{3}	p^{2}
representative			g_{5}^{l}	g_{4}^{k}	g_{3}^{j}	$g_{2}^{i} g_{4}^{k}$	$g_{1}^{m} g_{2}^{i}$
parameter			$0 \leq l<p$	$1 \leq k<p$	$1 \leq j<p$	$\begin{aligned} & 1 \leq i<p \\ & 0 \leq k<p \end{aligned}$	$\begin{gathered} 1 \leq m<p \\ 0 \leq i<p \end{gathered}$
\#	parameter		p	$p-1$	$p-1$	$p(p-1)$	$p(p-1)$
p^{2}	$\begin{aligned} & 0 \leq a<p \\ & 0 \leq e<p \end{aligned}$	χ a,e	1	1	1	$\zeta_{p}^{i a}$	$\zeta_{p}^{m e+i a}$
$p-1$	$1 \leq b<p$	$\chi{ }_{b}$	p	p	$p \cdot \zeta_{p}^{j b}$	0	0
$p(p-1)$	$\begin{aligned} & 0 \leq a<p \\ & 1 \leq c<p \end{aligned}$	$\chi a, c$	p	$p \cdot \zeta_{p}^{k c}$	0	$\zeta_{p}^{i a+k c} \cdot \rho_{p}^{* i c}$	0
$p-1$	$1 \leq d<p$	χ_{d}	$p^{2} \cdot \zeta_{p}^{l d}$	0	0	0	0

Figure 4: The character table of G_{w} in Series 2.

5.4 The character table of G_{w} in Series 3

In this case we have $G_{w} / C=\left\langle h_{1}, \ldots, h_{4} \mid\left[h_{2}, h_{1}\right]=h_{3},\left[h_{3}, h_{2}\right]=h_{4}\right\rangle$ and $U=$ $\left\langle g_{2}, \ldots, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{4},\left[g_{4}, g_{2}\right]=g_{5}\right\rangle$. Thus $\varphi: G_{w} / C \rightarrow U$ defined by

$$
\varphi\left(h_{1}\right)=g_{3}, \quad \varphi\left(h_{2}\right)=g_{2}, \quad \varphi\left(h_{3}\right)=g_{4}^{-1}, \quad \varphi\left(h_{4}\right)=g_{5}^{-1}
$$

defines an isomorphism between G_{w} / C and U. Hence the character tables for G_{w} / C and U are given in Figure 2. The irreducible characters of G_{w} / C inflate to irreducible characters of G_{w}. The remaining irreducible characters of G_{w} can be found by inducing characters of U to G_{w} as in Section 5.2. The resulting character table of G_{w} is given in Figure 5.

5.5 The character table of G_{w} in Series 4

As in Section 5.4, we have $G_{w} / C=\left\langle h_{1}, \ldots, h_{4} \mid\left[h_{2}, h_{1}\right]=h_{3},\left[h_{3}, h_{2}\right]=h_{4}\right\rangle$ and $U=\left\langle g_{2}, \ldots, g_{5} \mid\left[g_{3}, g_{2}\right]=g_{4},\left[g_{4}, g_{2}\right]=g_{5}\right\rangle$ and thus $U \cong G_{w} / C$. The character

centralizer			p^{5}	p^{4}	p^{3}	p^{3}	p^{2}
representative			g_{5}^{l}	g_{4}^{k}	g_{3}^{j}	$g_{1}^{m} g_{4}^{k}$	$g_{1}^{m} g_{2}^{i}$
parameter			$0 \leq l<p$	$1 \leq k<p$	$1 \leq j<p$	$\begin{aligned} 1 & \leq m<p \\ 0 & \leq k<p \end{aligned}$	$\begin{gathered} 0 \leq m<p \\ 1 \leq i<p \end{gathered}$
\#	parameter		p	$p-1$	$p-1$	$p(p-1)$	$p(p-1)$
p^{2}	$\begin{aligned} & 0 \leq a<p \\ & 0 \leq e<p \end{aligned}$	$\chi_{a, e}$	1	1	1	$\zeta_{p}^{m e}$	$\zeta_{p}^{m e+i a}$
$p-1$	$1 \leq b<p$	χ_{b}	p	p	$p \cdot \zeta_{p}^{j b}$	0	0
$p(p-1)$	$\begin{aligned} & 1 \leq c<p \\ & 0 \leq e<p \end{aligned}$	$\chi_{c, e}$	p	$p \cdot \zeta_{p}^{k c}$	0	$\begin{aligned} & \zeta_{p}^{m e+k c .} \\ & \rho_{p}^{*(-m c)} \end{aligned}$	0
$p-1$	$1 \leq d<p$	χ_{d}	$p^{2} \cdot \zeta_{p}^{l d}$	0	0	0	0

Figure 5: The character table of G_{w} in Series 3.
tables of G_{w} / C and U are displayed in Figure 2. The irreducible characters of G_{w} / C inflate to irreducible characters of G_{w} and it remains to determine the remaining irreducible characters of G_{w}.

For this purpose we consider $V:=\left\langle g_{1}, g_{3}, g_{4}\right\rangle \triangleleft G_{w}$ and we note that $V \cong$ $C_{p^{2}} \times C_{p} \times C_{p}$. Let $\kappa \in \operatorname{Aut}(V)$ be the automorphism of V induced by the conjugation action of $g_{2} \in G$ and let $w^{\prime} \in \mathbb{F}_{p}^{*}$ be such that $w w^{\prime}=1 \in \mathbb{F}_{p}^{*}$. Then it follows that $g_{5}=g_{1}^{p w^{\prime}} \in V$. Identifying V with $\mathbb{Z} / p^{2} \mathbb{Z} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$ using the basis $\left\{g_{1}, g_{3}, g_{4}\right\}$ shows that κ is given as

$$
\kappa \mapsto\left(\begin{array}{rrr}
1 & -1 & . \\
\cdot & 1 & 1 \\
p w^{\prime} & \cdot & 1
\end{array}\right) \in G L_{3}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)
$$

Identifying V^{*} with $\mathbb{Z} / p^{2} \mathbb{Z} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$ and using the associated dual basis of V^{*} shows that κ acts on V^{*} by

$$
\kappa \mapsto\left(\begin{array}{rrr}
1 & \cdot & w^{\prime} \\
-p & 1 & \cdot \\
\cdot & 1 & 1
\end{array}\right) \in G L_{3}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)
$$

For $f \in\left\{0, \ldots, p^{2}-1\right\}$ such that $p \nmid f$ and $b, c \in\left\{0, \ldots, p^{2}-1\right\}$ in particular there are the following κ-orbits of length p on V^{*} :

$$
\left\{\chi_{f-p t b-p\binom{t}{3} w^{\prime} f, b+\binom{t}{2} w^{\prime} f, t w^{\prime} f} ; t \in\{0, \ldots, p-1\}\right\}
$$

(Note that here we explicitly need $p \geq 5$.) Thus we obtain $\chi_{f, b, 0}^{G_{w}}\left(g_{5}\right)=p \cdot \zeta_{p}^{w^{\prime} f}$ and for $j \in\{1, \ldots, p-1\}$

$$
\chi_{f, b, 0}^{G_{w}}\left(g_{3}^{j}\right)=\zeta_{p}^{j b} \cdot \sum_{t=0}^{p-1}\left(\zeta_{p}^{\binom{t}{2}}\right)^{j w^{\prime} f}=\zeta_{p}^{j b} \cdot \rho_{p}^{* j w^{\prime} f}
$$

Now let $d \in\{1, \ldots, p-1\}$ and $e \in\{0, \ldots, p-1\}$ such that $f \equiv w d+p e \bmod p^{2}$. Then $w^{\prime} f \equiv d \bmod p$ and this yields the characters $\chi_{b, d, e}$ of G_{w} of degree p, where for $m \in\{1, \ldots, p-1\}$ and $k, l \in\{0, \ldots, p-1\}$ we get

$$
\begin{aligned}
\chi_{b, d, e}\left(g_{1}^{m} g_{4}^{k} g_{5}^{l}\right) & =\chi_{f, b, 0}^{G_{w}}\left(g_{1}^{m} g_{4}^{k} g_{5}^{l}\right) \\
& =\sum_{t=0}^{p-1} \chi_{f-p t b-p\binom{t}{3} w^{\prime} f, b+\binom{t}{2} w^{\prime} f, t w^{\prime} f}\left(g_{1}^{m} g_{4}^{k} g_{5}^{l}\right) \\
& =\zeta_{p^{2}}^{m f} \cdot \zeta_{p}^{l w^{\prime} f} \cdot \sum_{t=0}^{p-1} \zeta_{p}^{-m\left(t b+\binom{t}{3} w^{\prime} f\right)+k t w^{\prime} f} \\
& =\zeta_{p^{2}}^{m w d} \cdot \zeta_{p}^{m e+l d} \cdot \sum_{t=0}^{p-1} \zeta_{p}^{-m\left(t b+\binom{t}{3} d\right)+t k d}
\end{aligned}
$$

Note that the irreducible characters of G_{w} which are not inflated from G_{w} / C are not induced from U in this example, so the standard strategy of the examples in Sections 5.2-5.4 does not work here.

centralizer			p^{5}	p^{4}	p^{4}	p^{4}	p^{2}
representative			g_{5}^{l}	g_{4}^{k}	$g_{3}^{j} g_{5}^{l}$	$g_{1}^{m} g_{4}^{k} g_{5}^{l}$	$g_{1}^{m} g_{2}^{i}$
parameter			$0 \leq l<p$	$1 \leq k<p$	$\begin{aligned} & 1 \leq j<p \\ & 0<l<p \end{aligned}$	$\begin{aligned} & 1 \leq m<p \\ & 0 \leq k, l<p \end{aligned}$	$\begin{gathered} 0 \leq m<p \\ 1 \leq i<p \end{gathered}$
\#	param.	\#	p	$p-1$	$p(p-1)$	$p^{2}(p-1)$	$p(p-1)$
p^{2}	$\begin{aligned} & 0 \leq a<p \\ & 0 \leq e<p \end{aligned}$	χ a,e	1	1	1	$\zeta_{p}^{m e}$	$\zeta_{p}^{\text {me+ia }}$
$p-1$	$1 \leq b<p$	χ_{b}	p	p	$p \cdot \zeta_{p}^{j b}$	0	0
$p(p-1)$	$\begin{aligned} & 1 \leq c<p \\ & 0 \leq e<p \end{aligned}$	$\chi_{c, e}$	p	$p \cdot \zeta_{p}^{k c}$	0	$\zeta_{p}^{m e+k c} \cdot \rho_{p}^{*(-m c)}$	0
$p^{2}(p-1)$	$\begin{array}{r} 0 \leq b, e<p \\ 1 \leq d<p \end{array}$	$\chi_{b, d, e}$	$p \cdot \zeta_{p}^{l d}$	0	$\begin{gathered} \zeta_{p}^{j b+l d .} . \\ \rho_{p}^{* j d} \\ \hline \end{gathered}$	$\begin{gathered} \zeta_{p^{2}}^{m w d} \cdot \zeta_{p}^{m e+l d} . \\ \sum_{t=0}^{p-1} \zeta_{p}^{-m\left(t b+\left({ }_{3}^{4}\right) d\right)+t k d} \end{gathered}$	0

Figure 6: The character table of G_{w} in Series 4.

5.6 The groups in Series 4 are not Brauer pairs - some comments

The character tables for the groups in Series 4 are the only character tables determined in this Section which depend on the parameter w. This yields directly that the groups in Series 1-3 have equivalent character tables and it indicates that the groups in Series 4 are different from the Series 1-3 in this respect.

Based on the character table determined in Figure 6 one can now show that G_{w} and G_{v} in Series 4 have equivalent character tables if and only if $G_{w} \cong G_{v}$ holds. However, the proof for this fact is rather technical and lengthy and we omit the
explicit arguments here. A similar, but much simpler proof of the same type is given in Section 6 to show that there is no Brauer pair of order p^{4}.

We finally comment briefly on weak Cayley tables, for more details see e. g. [7]: The rows and columns of the weak Cayley table of a finite group G are indexed by the elements of G, and the (g, h)-entry is the conjugacy class of $g h \in G$. Two finite groups G and H have equivalent weak Cayley tables if there exist a bijection $\tau: G \rightarrow H$ respecting conjugacy classes, such that $\tau(g h)$ and $\tau(g) \tau(h)$ are conjugate in H, for all $g, h \in G$. Thus in this case G and H have equivalent character tables.

Hence groups G_{w} and G_{v} in Series 4 have equivalent weak Cayley tables if and only if $G_{w} \cong G_{v}$. For groups G_{w} and G_{v} in one of Series $1-3$, by the parametrization of the conjugacy classes given in Figures $3-5$, the assumptions of [7, Thm.3.1] are fulfilled with respect to the normal subgroup C. Hence G_{w} and G_{v} also have equivalent weak Cayley tables.

6 The groups of order p^{4}

There are 15 groups of order p^{4} for $p \geq 5$. Power commutator presentations for the non-abelian groups of order p^{4} are given as follows. Let v be a primitive root of \mathbb{F}_{p} :

$$
\begin{aligned}
G_{1} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{4}, g_{1}^{p}=g_{3}\right\rangle \\
G_{2} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{4}, g_{1}^{p}=g_{3}, g_{2}^{p}=g_{4}\right\rangle \\
G_{3} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{4}, g_{1}^{p}=g_{3}, g_{3}^{p}=g_{4}\right\rangle \\
G_{4} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{4}\right\rangle \\
G_{5} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{4}, g_{1}^{p}=g_{4}\right\rangle \\
G_{6} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{4}, g_{2}^{p}=g_{4}\right\rangle \\
G_{7} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{4}, g_{2}^{p}=g_{4}^{v}\right\rangle \\
G_{8} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{4}\right\rangle \\
G_{9} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{4}, g_{2}^{p}=g_{4}\right\rangle \\
G_{10} & =\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{4}, g_{3}^{p}=g_{4}\right\rangle
\end{aligned}
$$

There are pairs of groups in this list having equivalent character tables, but none of them form a Brauer pair as we prove in the following.

14 Theorem: Let $p \geq 5$. Then there exists no Brauer pair of order p^{4}.

Proof: Let G and H two non-isomorphic groups of order p^{4} and assume that G and H form a Brauer pair. Then there exists a bijection $\tau: \mathrm{Cl}(G) \rightarrow \mathrm{Cl}(H)$ such that $\sigma: \operatorname{Irr}(H) \rightarrow \operatorname{Irr}(G): \chi \mapsto \chi \circ \tau$ is also a bijection and $\tau \circ \pi_{n}^{G}=\pi_{n}^{H} \circ \tau$ holds for $n \in \mathbb{Z}$.

Then the linear characters of G and H are in bijection with each other, as σ respects degrees of characters. Hence $G / G^{\prime} \cong H / H^{\prime}$ follows. Further the number of conjugacy classes of elements of order p coincides in G and in H, since $\tau \circ \pi_{p}^{G}=\pi_{p}^{H} \circ \tau$ holds. Also, as τ respects centralizer orders, the number of elements of order p
coincides in G and in H, and $Z(G) \cong Z(H)$ holds. In summary, this yields that the only remaining candidates for a Brauer pair are G_{6} and G_{7}.

We prove that G_{6} and G_{7} have non-equivalent character tables. For this purpose we write $G_{6}=G_{v^{0}}$ and $G_{7}=G_{v}$ where v is a primitive root of \mathbb{F}_{p} and

$$
G_{w}:=\left\langle g_{1}, \ldots, g_{4} \mid\left[g_{2}, g_{1}\right]=g_{3},\left[g_{3}, g_{1}\right]=g_{4}, g_{2}^{p}=g_{4}^{w}\right\rangle \text { for } w \in \mathbb{F}_{p}^{*}
$$

Thus G_{w} is a cyclic p-extension with a common maximal subgroup $U:=\left\langle g_{1}, g_{3}, g_{4}\right\rangle$ and central subgroup $C=\left\langle g_{4}\right\rangle$. The character table of G_{w} can be determined as in Section 5. First, note that G_{w} has p^{2} linear characters. The remaining irreducible characters of G_{w} can be induced from the subgroup $V=\left\langle g_{2}, g_{3}\right\rangle \cong C_{p^{2}} \times C_{p}$ of G_{w}. It is straightforward to determine that there are p characters in $\operatorname{Irr}(V)$ which are invariant under the action of G_{w} and the remaining $p\left(p^{2}-1\right)$ characters in $\operatorname{Irr}(V)$ fall into $p^{2}-1$ orbits of length p. Thus G_{w} has $p^{2}-1$ characters of degree p; see Figure 7.

Now suppose that there exists a bijection $\tau: \mathrm{Cl}\left(G_{w}\right) \rightarrow \mathrm{Cl}\left(G_{v}\right)$ which induces a bijection $\sigma: \operatorname{Irr}\left(G_{w}\right) \rightarrow \operatorname{Irr}\left(G_{v}\right)$. Then τ respects the conjugacy class types displayed in Figure 7 and hence, using Galois automorphisms, we may assume that $\tau\left(g_{2}^{G_{w}}\right)=$ $g_{2}^{G_{v}}$. Moreover, we have $\tau\left(g_{4}^{G_{w}}\right)=\left(g_{4}^{\lambda}\right)^{G_{v}}$ for some $\lambda \in\{1, \ldots, p-1\}$. Thus for the faithful character $\chi_{1,0}^{v}$ of G_{v} there exists $e \in\{0, \ldots, p\}$ such that $\left(\chi_{1,0}^{v}\right)^{\tau}=\chi_{\lambda, e}^{w}$. Hence we have that $\zeta_{p^{2}}^{w \lambda} \cdot \zeta_{p}^{e} \cdot \rho_{p}^{* \lambda}=\zeta_{p^{2}}^{v} \cdot \rho_{p}$ and this implies $\zeta_{p^{2}}^{v-w \lambda} \in \mathbb{Q}\left(\zeta_{p}\right)$ and thus $\lambda=v / w \in \mathbb{F}_{p}^{*}$. We denote

$$
\sigma_{p}:=\sqrt{(-1)^{\frac{p-1}{2}} \cdot p} \in \mathbb{Q}\left(\zeta_{p}\right)
$$

Then it follows that

$$
\left(\zeta_{p}^{\frac{\left(p^{2}-1\right) \lambda}{8}} \cdot \sigma_{p}^{* \lambda}\right) /\left(\zeta_{p}^{\frac{\left(p^{2}-1\right)}{8}} \cdot \sigma_{p}\right)=\rho_{p}^{* \lambda} / \rho_{p}=\zeta_{p^{2}}^{v-w \lambda} \cdot \zeta_{p}^{-e}
$$

and hence $\sigma_{p}^{* \lambda} / \sigma_{p}$ is a root of unity. Since σ_{p} is a quadratic irrationality, it follows that $\sigma_{p}^{* \lambda}=\sigma_{p}$ and hence $v / w=\lambda \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)^{2} \cong\left(\mathbb{F}_{p}^{*}\right)^{2}$. But then G_{v} and G_{w} are isomorphic.

References

[1] R. Brauer: in T. Saaty (ed.): Lectures on modern mathematics, vol. I, Wiley, 1963, 138-138.
[2] E. Dade: Answer to a question of R. Brauer, J. Algebra 1, 1964, 1-4.
[3] B. Girnat: Klassifikation der Gruppen bis zur Ordnung p^{5}, Staatsexamensarbeit, TU Braunschweig, 2003.
[4] The GAP Group: GAP-4 - Groups, algorithms and programming, Version 4, 2005.

centralizer			p^{4}	p^{3}	p^{3}	p^{2}
representative			g_{4}^{l}	g_{3}^{k}	$g_{2}^{j} g_{4}^{l}$	$g_{2}^{j} g_{1}^{i}$
parameter			$0 \leq l<p$	$1 \leq k<p$	$\begin{aligned} & 1 \leq j<p \\ & 0 \leq l<p \end{aligned}$	$\begin{aligned} & 1 \leq i<p \\ & 0 \leq j<p \end{aligned}$
\#	parameter		p	$p-1$	$p(p-1)$	$p(p-1)$
p^{2}	$0 \leq a, b<p$	$\chi_{a, b}$	1	1	$\zeta_{p}^{j b}$	$\zeta_{p}^{j b+i a}$
$p-1$	$1 \leq c<p$	χ_{c}	p	$p \cdot \zeta_{p}^{k c}$	0	0
$p(p-1)$	$\begin{aligned} & 1 \leq d<p \\ & 0 \leq e<p \end{aligned}$	$\chi_{d, e}$	$p \cdot \zeta_{p}^{l d}$	0	$\zeta_{p^{2}}^{j w d} \cdot \zeta_{p}^{j e+l d} \cdot \rho_{p}^{* j d}$	0

Figure 7: The character table of G_{w} of order p^{4}.
[5] M. Hall: The theory of groups, reprinting of the 2. edition, AMS Chelsea Publishing Co., 1999.
[6] M. IsaAcS: Character theory of finite groups, corrected reprint of the 1976 original, Dover Publications, 1994.
[7] K. Johnson, S. Mattarei, S. Sehgal: Weak Cayley tables, J. London Math. Soc. (2) 61, 2000, 395-411.
[8] K. Lux, H. Pahlings: Computational aspects of representation theory of finite groups II, in M. Greuel, G. Hiss (eds.): Abschlusstagung des DFGSchwerpunktes Algorithmische Algebra und Zahlentheorie in Heidelberg, Proceedings, Springer, 1998, 381-389.
[9] E. O'Brien: The groups of order dividing 256, PhD Thesis, Australian National University, 1988.
[10] J. Serre: A course in arithmetic, Graduate Texts in Mathematics 7, Springer, 1973.
[11] E. SkRZIPCZYK: Charaktertafeln von p-Gruppen, Diplomarbeit, RWTH Aachen, 1992.
[12] L. WAShington: Introduction to cyclotomic fields, second edition, Graduate Texts in Mathematics 83, Springer, 1997.

Bettina Eick

Institut 'Computational Mathematics', TU Braunschweig
Pockelsstrasse 14, 38106 Braunschweig, Germany
beick@tu-bs.de
Jürgen Müller
Lehrstuhl D für Mathematik, RWTH Aachen
Templergraben 64, D-52062 Aachen, Germany
Juergen.Mueller@math.rwth-aachen.de

