
Enumerating big orbits and an application:

B acting on the cosets of Fi23

Jürgen Müller a Max Neunhöffer a Robert A. Wilson b

aLehrstuhl D für Mathematik
RWTH Aachen

Templergraben 64
52056 Aachen

Germany
bSchool of Mathematical Sciences

Queen Mary, University of London
Mile End Road
London E1 4NS
United Kingdom

Abstract

We describe a novel technique to handle big permutation domains for large groups.
It is applied to the multiplicity-free action of the sporadic simple Baby Monster
group on the cosets of its maximal subgroup Fi23, to determine the character table
of the associated endomorphism ring.

Key words: permutation groups, orbit enumeration, multiplicity-free action,
character tables, sporadic simple Baby Monster group

1 Introduction

In recent years there has been increasing interest in dealing with large permu-
tation representations, in particular of the sporadic finite simple groups. The
aim of the present paper is to describe a novel technique to handle big permu-
tation domains for large groups, and to give a substantial example application.
The basic setup is as follows:

LetG = 〈G〉 be a finite group acting from the right on a finite setX. For a given
x1 ∈ X we want to enumerate the G-orbit x1G := {x1g ∈ X; g ∈ G} ⊆ X.
This can be achieved efficiently with the well-known orbit-stabiliser algorithm
given as Algorithm 1. As for its correctness recall that since only elements

Preprint submitted to Elsevier Science 24 March 2007

of G are applied, only points in x1G are put into D, and since x1G is finite,
Algorithm 1 indeed terminates. After termination all generators of G have
been applied to all points in D, therefore D contains all points in the G-orbit
x1G exactly once. Note that here we do not need to know the group order |G|,
nor whether G acts faithfully on X.

Require: G = 〈G〉 acting on X, x1 ∈ X
D ← [x1] {collects the orbit}
T ← [1G] {collects a transversal}
S ← [] {collects generators for the stabiliser}
i← 1
while i ≤ Length(D) do

for g ∈ G do
x← D[i] · g
if not (x in D) then

append x to D
append T [i] · g to T

else
j ← Position(D, x) {D[j] = x}
append T [i] · g · T [j]−1 to S {Schreier generator}

end if
end for
i← i+ 1

end while
return (D, T ,S) {orbit, transversal, stabiliser}

Algorithm 1: Orbit-Stabiliser

Moreover, S contains generators for the stabiliser StabG(x1), as is implied by
Schreier’s Theorem, see e. g. (Johnson, 1990, La.2.3.3), which we recall for
convenience: If T = {tx ∈ G;x ∈ x1G} ⊆ G is a transversal for the G-orbit
x1G with respect to x1, i. e. we have x1tx = x for all x ∈ x1G, and additionally
assume tx1 = 1, then the set S := {tg · (tx1tg)

−1 ∈ G; t ∈ T , g ∈ G} ⊆ G of
Schreier generators generates StabG(x1). Experience suggests that most of
the Schreier generators typically turn out to be superfluous for generating
StabG(x1).

To perform Algorithm 1 we have to be able to keep all points in x1G in the list
D in main memory, and we have to be able to recognise whether a given point
has already been stored. The necessary storing and recognising of points can
of course be done using hashing techniques, such that we only need a nearly
constant amount of time to look up a point, regardless of how many points
have been stored. But if the G-orbit x1G is too large to be stored completely
in main memory, Algorithm 1 is no longer feasible. In this paper we present
a novel technique allowing us to enumerate very big G-orbits being much too
large in this sense; instead we assume that we know the group order |G| and
some additional information about G in advance.

2

In the first part, consisting of Sections 2–5, we discuss the ideas behind this
technique and show how these lead to suitable generalisations of Algorithm 1.
The basic idea of using a helper subgroup U , recalled in Section 2, was already
considered by Richard Parker around 1995 (unpublished), and was indepen-
dently made explicit in Lübeck et al. (2001). Based on practical experience,
see e. g. Müller et al. (2002), Müller (2003), we were led to elaborate on this
idea, and to use a whole chain of helper subgroups instead of a single one. To
this end we first reconsider the basic idea in a more abstract context in Sec-
tions 2 and 3, and then allow for more than one helper subgroup in Section 4.
The first part concludes with Section 5, where we briefly indicate how the
situation needed to run these methods can be achieved in the most frequent
case of linear actions.

The strategy described here has been implemented in GAP (GAP (2005)).
Altogether, the implementation of the various orbit enumeration algorithms
and hashing techniques needs some 3000 lines of code and will be published
soon in a GAP package ORB (Müller et al. (2006)), including explicit input
data for several examples, in particular the one considered below.

In the second part, consisting of Sections 6–9, we consider a particular appli-
cation, which actually was part of the original motivation to develop the novel
technique presented here, see Müller (2003): the multiplicity-free action of the
sporadic simple Baby Monster group B on the cosets of its maximal subgroup
Fi23, one of the sporadic simple Fischer groups.

Multiplicity-freeness of permutation actions, by way of the associated or-
bital graphs, is intimately related to the notions of distance-transitivity and
distance-regularity, see Ivanov et al. (1995), Brouwer et al. (1989) as well as to
spectra and the Ramanujan property, see Davidoff et al. (2003), in algebraic
graph theory. A lot of information is encoded in concise form in the character
table of the endomorphism ring of the underlying permutation module; the
necessary facts for this paper are recalled in Section 6.

The multiplicity-free actions of the sporadic simple groups have been classified
in Breuer et al. (1996), and the associated character tables, including the one
computed in this paper, have been collected from various sources in Müller
(2007), Breuer et al. (2005). In particular, for the Baby Monster group B there
are four multiplicity-free actions: on the cosets of 2.2E6(2).2, of 2.2E6(2), of
21+22.Co2, and of Fi23. The character tables for the former two actions have
been determined in Higman (1976), while the character table for the third
one has been computed in Müller (2003), Müller (2006), also applying the
computational techniques described here.

The aim of the second part now is to determine the character table for the
fourth and largest multiplicity-free action of B, on the cosets of Fi23, which has

3

degree ∼ 1015. This action is particularly interesting, since not even the sizes
of the associated Fi23-orbits have been known before, and since it is related to
the conjugation action of the sporadic simple Fischer–Griess Monster group
M on its 6-transpositions, see Ivanov et al. (1995).

In Section 7 we provide the infrastructure, consisting of helper subgroups and
associated helper sets, to apply the strategy described in Section 4. In Section 8
a combination of the novel computational technique and a group theoretical
analysis, using the action of M on its 6-transpositions, is applied to determine
the Fi23-orbits and the associated stabilisers, the result being given in Table 2.
Finally, in Section 9 the character table of the associated endomorphism ring
is computed, and given in Tables 7–10.

2 Archiving suborbits

The basic idea of the techniques described here is not to store single points in
the G-orbit x1G, but to archive the G-orbit in bigger chunks. To this end, we
use a helper subgroup U < G: to enumerate x1G we may as well enumerate
the set of U -orbits contained in x1G. Thus we want to be able to perform the
following two tasks:

(1) Given a point x ∈ X, determine the size |xU | and store appropriate pieces
of the U -orbit xU , such that we can later perform (2).

(2) Given a point x ∈ X, decide whether or not x lies in one of the already
stored U -orbits from (1).

This of course means that this should be done in a better way than just
storing all points in xU separately. This is achieved using the following idea,
see also Lübeck et al. (2001): let Y be another finite U -set and let :X → Y
be a homomorphism of U -sets, i. e. we have xu = xu ∈ Y for all x ∈ X and
u ∈ U .

We then do the following preparations: after enumerating Y completely, using
Algorithm 1, in every U -orbit in Y we arbitrarily choose a point and call it
U-minimal. Furthermore, for each U -minimal point y ∈ Y we store generators
for the stabiliser StabU(y) together with its order, and for each point y ∈ Y
which is not U -minimal we store an element uy ∈ U such that yuy ∈ Y is
the U -minimal point in the U -orbit yU . Here we have to assume that is
efficiently computable, and that U and Y are small enough such that we can
perform these preparations.

A point x ∈ X is called U-minimal if x ∈ Y is U -minimal. Note that in a U -
orbit xU ⊆ X there may be more than one U -minimal point. More precisely,

4

if x ∈ X is U -minimal, the set of U -minimal points in xU is exactly xS, where
S := StabU(x), because by definition x is the only U -minimal point in xU and

is a homomorphism of U -sets.

Equipped with the above data, we now archive U -orbits xU ⊆ X by only
storing their U -minimal points. Given any point x ∈ X, we find a U -minimal
point in xU by looking up x ∈ Y : if x is U -minimal, then x′ := x is already
U -minimal and we are done. Otherwise we have computed and stored an
element ux ∈ U such that xux is U -minimal. But then x′ := xux ∈ xU is
U -minimal, because by it is mapped to xux = xux. The point x′ is called
the U-minimalisation of x.

Then to find the set x′S of all U -minimal points in x′U we look up the stored
generators for the stabiliser S and compute the set xS by an application of
Algorithm 1.

Since is a homomorphism of U -sets we have StabU(x′) = StabS(x′), and thus
once we know |x′S|, we also know |StabS(x′)| = |S|/|x′S| and thus |x′U | =
|U |/|StabU(x′)|. Therefore, both parts of task (1) are done.

If we are now given a point x ∈ X, we can decide whether we already know the
U -orbit xU , by U -minimalising x and looking up its U -minimalisation x′. If
we already know xU , then we have stored the U -minimal point x′. Otherwise,
the U -orbit xU is new. Thus task (2) is done as well.

We now turn to the question of what we gain using this idea: to enumerate X
completely using Algorithm 1, all points in X have to be stored. In contrast, to
enumerate X as described above, for each U -orbit in Y we pick its U -minimal
point, y ∈ Y say, and only store the points in {x ∈ X;x = y} ⊆ X, i. e. the
points in the fibre of over y. Since only the U -orbits yU being in the image
of are needed, we may assume that :X → Y is surjective. Since maps
U -orbits in X to U -orbits in Y we have

|{x ∈ X;x = y}| =
∑

xU∈X/U,xU=yU

|StabU(y)|/|StabU(x)|.

Hence the number of U -minimal points in X to be stored is

NX :=
∑

yU∈Y/U
|{x ∈ X;x = y}|

=
∑
y∈Y

1/|yU | · |{x ∈ X;x = y}|

= 1/|U | ·
∑
y∈Y
|StabU(y)| · |{x ∈ X;x = y}|

5

= 1/|U | ·
∑
y∈Y

∑
xU∈X/U,xU=yU

|StabU(y)|2/|StabU(x)|.

We have NX ≥ 1/|U | ·∑y∈Y |{x ∈ X;x = y}| = |X|/|U |, with equality if and
only if |StabU(y)| = 1 for all y ∈ Y . Thus the saving factor is |X|/NX ≤ |U |,
where equality is achieved if and only if Y entirely consists of regular U -orbits.

Letting νY be the number of U -orbits in Y , and λY := |Y |/νY be the average
length of the U -orbits in Y , we have

|X|/NX = λY ·
1/|Y | ·∑y∈Y |{x ∈ X;x = y}|

1/νY ·
∑
yU∈Y/U |{x ∈ X;x = y}|

.

The fraction on the right hand side can be understood as a quotient of average
cardinalities of fibres, where in the numerator we average over Y , while in the
denominator we average over the U -orbits in Y . Actually, for the common
cases discussed in Section 5, where X and Y are linear structures and the
homomorphism :X → Y of U -sets is derived from a linear map, the fibres
{x ∈ X;x = y} ⊆ X all have one and the same cardinality, which hence equals
|X|/|Y |. Thus in this case we indeed get a saving factor of |X|/NX = λY . In
general, the numerator of course always equals |X|/|Y |, but in practice the
denominator does not seem to be under good control.

Some numerical data are given in Table 4 below: e. g. letting X be the subset
of the Fi23-orbit Xπ

23 ⊆ M4 enumerated as described at the end of Section 8,
we have |X| = 281 092 626 984 960 ∼ 2.8 · 1014, and for its image Y ⊆ M3 we
have |Y | = 4 397 288 393 040 ∼ 4.4 · 1012 and νY = 471, hence λY ∼ 9.3 · 109,
where |U | = 47 377 612 800 ∼ 4.7 · 1010. Hence we have |X|/|Y | ∼ 64, while
it turns out that 1/νY ·

∑
yU∈Y/U |{x ∈ X;x = y}| ∼ 3 038, yielding a saving

factor, compared to λY , of only |X|/NX ∼ 196 455 480 ∼ 2 · 108.

Recall that the price we pay for this saving is that we need structural informa-
tion about G, to build up the additional infrastructure with U and :X → Y ,
and to be able to compute stabiliser orders efficiently.

3 Orbit enumeration by suborbits

The algorithm presented in this section is the heart of the whole method. For
the enumeration of an orbit x1G it outperforms a standard orbit algorithm
like Algorithm 1, because it can save up to a factor of ∼ |U | in space usage
under good conditions. It is also used in a crucial way in the generalisation
of the trick from Section 2 to a chain of helper subgroups that is described in
Section 4.

6

We first describe how U -orbits are archived in the slightly more abstract situa-
tion in this section, then we present Algorithm 2 and explain all the procedures
called in it, before we proceed to define a certain transversal to use Schreier’s
Theorem and then prove termination and correctness.

We keep the notation from Section 2, that is U < G and :X → Y is a
homomorphism of U -sets, we assume that we have chosen a U -minimal point
in each U -orbit in Y and again a point x ∈ X is called U -minimal, if x is the
chosen U -minimal point in xU .

Now we can perform the following tasks, which are an abstraction of what was
described in Section 2, allowing us to formulate Algorithm 2:

(a) For every x ∈ X, find u ∈ U such that xu is U -minimal.
(b) For every U -minimal point x ∈ X, find generators for S := StabU(x) and

the order |S|.

In the sequel let MinimaliserU(x) be the result of a procedure returning an
element u ∈ U as in (a), where we assume that MinimaliserU(x) = 1U whenever
x already is U -minimal. Moreover, let BarStabiliserU(x) be the result of a
procedure returning |S| and generators for S as in (b). Having (a) and (b) at
hand, we can devise procedures StoreSuborbit and LookupSuborbit performing
tasks (1) and (2) exactly as described in Section 2:

Information on the U -orbits is collected in a database D. If x ∈ x1tU is U -
minimal, where t ∈ G, then StoreSuborbit(D, x, t) invokes BarStabiliserU(x),
enumerates the orbit xS using Algorithm 1 thereby determining |xU | exactly
as described in Section 2. Then it stores the set xS of U -minimal points
x′ ∈ xU in the database D together with |xU |. Hence this allows us to keep
track of the total number Size(D) of points in all U -orbits already stored in
the database D. In addition, an element t ∈ G with x1tU = xU representing
the U -orbit is stored as a word in the generators of G. This is used below to
define a right transversal of StabG(x1) in G.

The procedure LookupSuborbit(D, x), where x ∈ X is U -minimal, returns ei-
ther true or false, depending on whether xU is already stored in D or not.
This is just done by looking up x itself, exactly as in Section 2. If x is already
stored, we also have access to a representative t ∈ G with x1tU = xU stored
above.

Note that for both procedures (1) and (2) task (a) was crucial to first reach
a U -minimal x at all. Also, as in Section 2, we have to be able to compute
orders of any subgroup 〈S〉 ≤ G generated by some subset S ⊆ G, usually
by using a relatively small permutation representation for G. Note that the
ability to compute subgroup orders also facilitates membership testing for 〈S〉.
Moreover, to save memory, all group elements of G which arise are stored as

7

words in the given generators G and U .

Require: G = 〈G〉 acting on X, U = 〈U〉 ≤ G, x1 ∈ X U -minimal, 0 ≤ f ≤ 1
D ← empty database of U -orbits
StoreSuborbit(D, x1, 1G)
R← [1G]
S ← [] {collects generators for the stabiliser}
p← 1
loop
i← 1
while i ≤ Length(R) do
r ← R[i]
for g ∈ G do
u← MinimaliserU(x1rg)
l← LookupSuborbit(D, x1rgu)
if l = false then

StoreSuborbit(D, x1rgu, rg) {with determining its size}
append rg to R

end if
if l = true or p > 1 then
s← SchreierGenerator(D, x1r, g)
if s 6∈ 〈S〉 then

append s to S
end if

end if
if Size(D) · | 〈S〉 | ≥ f · |G| then

return (D,S) {database, stabiliser}
end if

end for
i← i+ 1

end while
p← p+ 1
R0 ← R
R← []
for t in R0 do

for u ∈ U do
append tu to R

end for
end for

end loop

Algorithm 2: Orbit-Stabiliser by Suborbits

We now proceed to prove termination and correctness of Algorithm 2. To use
Schreier’s Theorem from the introduction, we have to define a right transversal
of StabG(x1) in G. As this would be too big to be kept in memory completely,

8

we define the transversal by means of an algorithm that, given x ∈ x1G,
produces an element tx ∈ G with x1tx = x. Remember that for every U -orbit
xU in our database we have stored an element t ∈ G such that xU = x1tU ,
and by U -minimalisation we can find an element u ∈ U with x1tu being U -
minimal.

Given x ∈ x1G, we let v := MinimaliserU(x) and then look up xv in the
database finding t ∈ G such that xvU = xU = x1tU .

With u := MinimaliserU(x1t) we have that xv and x1tu are both U -minimal
and lie in the same U -orbit, thus there is an s ∈ S := StabU(x1tu) with
x1tus = xv. To compute and uniquely define s we perform Algorithm 1 with
the stored and thus fixed generators of S and set s to be the first element
found with the above property. We then define tx := tusv−1. Note that this
uniquely defines tx using our stored data.

This definition has two important consequences: firstly because the stored
representative for the very first stored U -orbit x1U is the identity, we have
tx1 = 1G. Secondly, if t is the stored representative for a U -orbit x1tU then
tx1t = t and tx1tu = tu for u := MinimaliserU(x1t).

Now we explain what the procedure SchreierGenerator in Algorithm 2 does
to compute generators of StabG(x1): during the execution of Algorithm 2 we
constantly apply a generator g ∈ G to some point x1r, where r = tw with t
being the stored representative of the U -orbit x1tU , and w being some element
of U that comes from the last two for loops in the main loop. Then we try to
look up the U -orbit x1twgU .

In such a situation, x1twgU either is a newly found U -orbit, in which case it
is stored with twg as its representative, or it is already known. If in the latter
case we have w = 1, which happens in the first iteration of the outer loop, the
Schreier generator tx1tgt

−1
x1tg is trivial, because t is the stored representative for

x1tU and tg is the one for x1tgU . Therefore Algorithm 2 does not calculate a
Schreier generator in that case.

In all other cases x1twgU is then known as a stored U -orbit x1t
′U . The proce-

dure call SchreierGenerator(D, x1t, g) then returns ttwgt
−1
twg by calculating the

two transversal elements as described above from stored data.

We now address the question of correctness: Algorithm 2 by construction only
stores U -orbits that are contained in x1G, thus at any time Size(D) ≤ |x1G|.
Moreover, in S only elements of the stabiliser StabG(x1) are collected, thus at
any time | 〈S〉 | is a divisor of |StabG(x1)|.

Let first f := 1. In the while loop we first apply the generators G of G to
representatives of known U -orbits. At the end of the outer loop the generators

9

U of U are then applied to these representatives, such that in the next iteration
of loop new points in the same U -orbits are used. Thus the algorithm will
eventually apply all generators of G to all points in all enumerated U -orbits
and thus will eventually find all U -orbits. Similarly, all Schreier generators will
eventually be found, which by Schreier’s Theorem implies 〈S〉 = StabG(x1).
Since |x1G| · |StabG(x1)| = |G|, this implies that Algorithm 2 terminates, and
returns a database D containing all U -orbits in x1G, as well as generators for
StabG(x1).

The above analysis shows that Algorithm 2 also terminates for any 0 ≤ f < 1,
and returns part of x1G and a subgroup 〈S〉 ≤ StabG(x1). The idea behind
this is as follows: as soon as we have Size(D) · | 〈S〉 | > |G|/2, we conclude that
indeed 〈S〉 = StabG(x1), and in particular we know the size |x1G|. Hence if we
specify f > 1/2, then Algorithm 2 only computes the fraction f of the whole
G-orbit x1G, which is often enough for applications, see Section 8.

The above correctness proof shows that in the worst case the running time
of Algorithm 2 is no better than the running time of Algorithm 1. Still, in
practice a rather small subset of Schreier generators suffices to generate the
full stabiliser StabG(x1), hence typically StabG(x1) is already reached after a
small fraction of the whole computation. Moreover, the counter p typically
assumes only very small values, in particular if we enumerate only part of the
orbit by specifying f < 1; see also Table 4. Hence in practice the computation
is dominated by enumerating U -orbits, which is done by applying the elements
of G only to the stored U -orbit representatives, instead of applying them to
all elements of x1G. Thus if the infrastructure is set up optimally we are able
to obtain a time saving factor of ∼ |U | as well.

4 Iterating orbit enumeration by suborbits

To archive U -orbits we had to assume that U is small enough such that enu-
meration of the U -orbits in the helper U -set can be done by Algorithm 1. For
large groups G this tends to imply that U is too small to be helpful. Now the
idea is to use a larger helper subgroup U < V < G, together with a helper
V -set, to enumerate a G-orbit by V -orbits using Algorithm 2, where in turn
orbit enumeration in the helper V -set is done by U -orbits, for some small
helper subgroup U < V . This is done in a way that we can iterate it to use a
chain of subgroups totally ordered by inclusion.

Recall that to perform an orbit enumeration by U -orbits we need a definition
of U -minimality and we need to be able to do tasks (a) and (b) from Section 3,
that is we need procedures MinimaliserU and BarStabiliserU . We now present
the setup for building this infrastructure for V , using the same infrastructure

10

already in place for U .

Let X be a finite G-set, let Z be a finite V -set, and let Y be a finite U -set,
together with a homomorphism of V -sets :̃X → Z and a homomorphism of
U -sets :Z → Y . By abuse of notation we denote the composition of ˜ and
, mapping X to Y , also by : it is a homomorphism of U -sets. We can now

use the definition of U -minimality for both the group V acting on Z and the
group G acting on X.

In a precomputation we first calculate a transversal L for the left cosets of U
in V , that is a subset L ⊆ V of size |L| = [V :U] such that V =

⋃
t∈L tU , where

we assume the index [V :U] to be small enough such that this is feasible, and
that 1V ∈ L.

Then we enumerate all of Z by U -orbits. Note that when the U -infrastructure
is set up optimally, this saves a factor of ∼ |U | in space usage. In every V -orbit
of Z we arbitrarily choose one U -minimal point z and call it V -minimal. We
run the V -orbit by U -orbit enumeration of that V -orbit with starting point
z using Algorithm 2, such that we get as an additional result the order and
generators for StabV (z), which we store together with z. Note that during this
calculation we store every U -minimal point in zV .

Further, for every U -minimal point w ∈ zU , w 6= z, we store a word in the
generators of StabU(z) = StabU(w) mapping w to z. For every U -minimal
point w ∈ zV \ zU we compute and store the number of an element of L
mapping w into the U -orbit zU . Note that this is possible, because for every
point w ∈ zV there is an element of V mapping it to z and thus an element
of L mapping it into zU .

We now define similarly to the above a point x ∈ X to be V -minimal if x̃ ∈ Z
is V -minimal. With these preparations we can now perform the procedures
MinimaliserV for all points in X, and BarStabiliserV for V -minimal points in X
in the following way:

Given any x ∈ X, we first use MinimaliserU to find a U -minimal point w :=
xu ∈ X for some u ∈ U . Thus by definition w̃ is U -minimal as well, because
it is mapped by to w. Therefore, w̃ was stored during our precomputation.
Let z ∈ Z be the chosen V -minimal point in w̃V .

There are three cases: firstly, if w̃ = z, then we are done, returning v := u, since
w is V -minimal by definition. Secondly, if w̃ ∈ zU , w̃ 6= z, then since both z
and w̃ are U -minimal, we have a stored element s ∈ StabU(z) = StabU(w) ≤ U
such that w̃s = z and we can return v := us. If w̃ /∈ zU we have stored an
element t ∈ L such that w̃t ∈ zU , thus letting u′ := MinimaliserU(wt), the
above cases finally give us an element v := utu′s such that xutu′s is V -
minimal. In all three cases, we have found an element v ∈ V such that xv is

11

V -minimal thereby finding MinimaliserV (x).

If x ∈ X is V -minimal we have that x̃ is the V -minimal point in x̃V and thus we
have stored the order and generators for StabV (x̃) during our precomputation
using Algorithm 2. Therefore we can easily provide a procedure BarStabiliserV .

The definition of V -minimality for points in X together with the procedures
MinimaliserV and BarStabiliserV now fulfil exactly tasks (a) and (b) from Sec-
tion 3 with Z in place of Y and ˜ in place of and V in place of U . Thus we
can iterate the saving trick in this way and enumerate G-orbits by V -orbits.

Note that in practice the above-mentioned precomputations can all be done
on the fly whenever a point x ∈ X is encountered which is mapped by ˜ to an
as yet unknown V -orbit x̃V ⊆ Z. Moreover, to compute a transversal L for
the left cosets of U in V , we can just use a transitive V -set a point stabiliser
of which is contained in U and enumerate it by U -orbits.

Finally, this can be iterated as follows: let U1 < U2 < · · · < Uk < Uk+1 := G
be a chain of helper subgroups, together with Ui-sets Yi and homomorphisms
πi:Yi+1 → Yi of Ui-sets, for 1 ≤ i ≤ k, where we let Yk+1 := X. Then we are
able to enumerate a G-orbit in X by Uk-orbits using Algorithm 2. To do so,
for k ≥ i ≥ 2 in turn Ui-orbits in Yi are enumerated by Ui−1-orbits, also using
Algorithm 2. Finally U1-orbits in Y1 are enumerated using Algorithm 1.

5 Common case: linear actions

In this section we describe concrete cases in which the above methods can
be used, together with ways to find suitable helper sets and subgroups. These
techniques have already been applied successfully in the single helper subgroup
case to various substantial examples, see for example Lübeck et al. (2001),
Müller et al. (2002), Müller (2003).

5.1 Action on vectors

Let X be a finite-dimensional FG-module, where F is a finite field and FG
is the group algebra of G over F . Then in particular X can be considered
as a G-set. Let U < G be a subgroup such that there is an FU -submodule
0 < X ′ < X|U . Then the natural map :X → X/X ′ =: Y to the quotient FU -
module Y is a homomorphism of FU -modules, and thus is a homomorphism
of U -sets.

The quotient FU -module Y has to fulfil several conditions in order to be of

12

practical use: on the one hand, the F -dimension of Y has to be small enough
such that all its U -orbits can be enumerated in the precomputation and such
that we can store the necessary information for U -minimalisation. On the
other hand, the F -dimension of Y has to be big enough such that the average
size of the U -orbits in Y is as big as possible.

We thus have to find an appropriate helper subgroup U together with a good
quotient fulfilling these conditions simultaneously. For example, we might
guess a subgroup U , and try to find a suitable FU -submodule X ′ by using
the algorithms to compute submodule lattices described in Lux et al. (1994),
available in the MeatAxe (Ringe (2003)).

Note that a possible pitfall is that the zero vector in Y is necessarily U -
minimal, hence all points in X ′ are U -minimal as well. Thus, given x1 ∈ X,
all points in x1G ∩ X ′ have to be stored, which means that for these points
we do not save anything. A possible remedy is to choose X ′ < X such that
x1G ∩X ′ = ∅, but this poses a further condition for the quotient to be good,
which cannot always be fulfilled.

Now we proceed as follows: first we choose helper subgroups U < V < G.
Then we try to find an FV -submodule 0 < X ′′ < X|V , and subsequently
we try to find an FU -submodule 0 < X ′/X ′′ < (X/X ′′)|U , which amounts
to looking for an FU -submodule X ′ < X|U which contains X ′′. We then let
Z := X/X ′′ and Y := X/X ′. The natural maps :̃X → Z and :X → Y
are then homomorphisms of FV -modules and FU -modules, respectively, and

factors through ˜ as required. Of course this procedure can be iterated for
more than two helper subgroups to get a whole chain of submodules.

5.2 Projective action

In the situation of Section 5.1 we can also use projective action, i. e. the natural
action on the set P(X) of one-dimensional F -subspaces of X. The action on
P(X) is usually implemented by choosing an F -basis for X, and storing one-
dimensional subspaces as normalised vectors, i. e. vectors in which the first
nonzero entry is equal to 1; note that this choice of representative depends on
the chosen F -basis. The action of a group element, given by a representing
matrix, is then vector-matrix multiplication, followed by multiplying with a
scalar to re-normalise vectors.

Given an FU -submodule X ′ < X|U , the natural map :X → X/X ′ =: Y in-
duces a map from P(X)→ P(Y)∪̇{0}, where all one-dimensional F -subspaces
of X ′ are mapped to the zero-space {0} ≤ Y . Since 0 ∈ Y is fixed under the
action of U , this again is a homomorphism of U -sets.

13

In practice, if we have dimF (X) = d and dimF (X ′) = e, we may choose an F -
basis (b1, b2, . . . , bd) of X such that (bd−e+1, bd−e+2, . . . , bd) is an F -basis for X ′.
Writing the vectors in X with respect to this F -basis, and writing the vectors
in Y with respect to the truncated F -basis (b1 +X ′, b2 +X ′, . . . , bd−e+X ′), the
natural map is just taking the first d− e components. Note that using these
F -bases we do not have to re-normalise vectors after applying the natural
map.

5.3 Action on d-dimensional subspaces

Similar to the projective action case, for any 1 < d ≤ dimF (X) we get a
natural homomorphism of U -sets from the set of d-dimensional F -subspaces
of X to the set of F -subspaces of Y of dimension at most d.

After choosing an F -basis for X, the d-dimensional F -subspaces of X are
described by matrices of full rank d in full echelon form. Hence the action
of a group element, given by a representing matrix, on such a d-dimensional
F -subspace is matrix-matrix multiplication, followed by computing the full
echelon form of the resulting matrix. In practice, we choose F -bases as de-
scribed in Section 5.2.

Note that typically the set of F -subspaces of Y of dimension at most d, where
we assume dimF (Y) > d, is too large to be enumerated completely. Thus in
practice we only consider the F -subspaces of dimension exactly d in Y , and
treat the F -subspaces of X being mapped by to F -subspaces of dimen-
sion less than d as “zero vectors”. But since for the latter we do not save
anything, the saving factor might become too small. A possible remedy is to
consider various quotients X/X ′, X/X ′′, X/X ′′′, . . ., and to treat only those
F -subspaces of X as “zero vectors” which by all associated natural maps are
mapped to F -subspaces of dimension less than d. For an application of this
idea see (Müller, 2003, Sect.III.15.2) and Müller et al. (2002).

6 Endomorphism rings and their character tables

We recall the necessary facts about permutation modules and their endomor-
phism rings; as general references see e. g. Müller (2003), Zieschang (1996),
Bannai et al. (1984).

Let G be a finite group, let H ≤ G and let n := [G:H]. Let X 6= ∅ be a
transitive G-set such that StabG(x1) = H, for some x1 ∈ X, and let X =⋃̇r
i=1Xi, where the Xi ⊆ X are the H-orbits. The number r ∈ N is called the

14

rank of X. For all 1 ≤ i ≤ r we choose xi ∈ Xi and gi ∈ G such that x1gi = xi,
where we assume g1 = 1 and X1 = {x1}, and we let Hi := StabH(xi) ≤ H and
ki := |Xi| = |H|/|Hi|.

For 1 ≤ i ≤ r, the orbits Γi := (x1g, xig)G ⊆ X ×X of the diagonal action of
G on X ×X are called orbitals ; hence we have |Γi| = |G|/|Hi| = nki. Let 1 ≤
i∗ ≤ r be defined by Γi∗ = (xi, x1)G, then Xi∗ is called the H-orbit paired to
Xi; note that we have ki∗ = ki. Let the i-th orbital graph be the simple directed
graph with vertex set X and edge set Γi, and let Ai = [ai,x,y] ∈ {0, 1}n×n, with
row index x ∈ X and column index y ∈ X, be its adjacency matrix, i. e. we
have ai,x,y = 1 if and only if (x, y) ∈ Γi.

Let ZX be the associated permutation ZG-module, and let E := EndZG(ZX)
be its endomorphism ring, i. e. the set of all Z-linear maps ZX → ZX commut-
ing with the action of G. By Schur (1933), see also (Landrock, 1983, Ch.II.12),
the set {Ai; 1 ≤ i ≤ r} ⊆ E is a Z-basis for E, called the Schur basis, and
it can also be considered as a C-basis for EC := E ⊗Z C ∼= EndCG(CX),
which is a split semisimple C-algebra. Moreover, E is commutative if and only
if the permutation character 1GH ∈ ZIrrC(G) associated with the G-set X is
multiplicity-free, i. e. all the constituents of 1GH occur with multiplicity 1, where
IrrC(G) denotes the set of irreducible C-valued characters of G.

From now on suppose E is commutative. Then letting IrrC(E) be the set of
irreducible C-valued characters of EC, we have |IrrC(E)| = r, and λ(A1) = 1
for all λ ∈ IrrC(E). The character table of E is defined as the matrix ΦE :=
[λ(Ai)] ∈ Cr×r, with row index λ ∈ IrrC(E) and column index 1 ≤ i ≤ r.
Hence in particular ΦE is invertible. Moreover, there is a natural bijection,
called the Fitting correspondence, between the irreducible characters of EC and
the constituents of 1GH ; the Fitting correspondent of λ ∈ IrrC(E) is denoted by
χλ ∈ IrrC(G). In particular, we have 1/χλ(1) = (1/n) ·∑r

i=1 ||λ(Ai)||2/ki, where
|| · || denotes the complex absolute value; thus degrees of Fitting correspondents
are easily computed from ΦE.

For 1 ≤ i ≤ r let Pi = [ph,i,j] ∈ Zr×r, with row index 1 ≤ h ≤ r and column
index 1 ≤ j ≤ r, be the representing matrix of Ai for its right regular action
on E, with respect to the Schur basis, i. e. we have AhAi =

∑r
j=1 ph,i,jAj.

Hence the map E → Z
r×r : Ai 7→ Pi, for 1 ≤ i ≤ r, is a faithful representation

of E. The matrices Pi are called collapsed adjacency matrices or intersection
matrices, since their entries are given by ph,i,j = |Xh ∩Xi∗gj| ∈ N0.

In particular, the first row and the first column of Pi are given as p1,i,j = δi,j
and ph,i,1 = kh · δh,i∗ , where δ·,· ∈ {0, 1} denotes the Kronecker function,
and the column sums of Pi are for all j identically given as

∑r
h=1 ph,i,j =∑r

h=1 |Xh ∩Xi∗gj| = ki. Moreover, we have kj · |Xh ∩Xi∗gj| = kh · |Xj ∩Xigh|,
implying the identity ph,i,j = |Xj ∩ Xigh| · kh/kj = pj,i∗,h · kh/kj. Thus from

15

∑r
j=1 |Xj ∩Xigh| = ki, depending on h we get the weighted row sums of Pi as∑r
j=1 kjph,i,j = khki.

The character table of E and the intersection matrices are related as fol-
lows: if ΦE is given, the Pi are easily computed using the formula Pi =
Φtr
E · diag[λ(Ai);λ ∈ IrrC(E)] · Φ−tr

E , where diag[·] ∈ Cr×r denotes the di-
agonal matrix having the indicated entries. Conversely, if the Pi are given, the
set {[λ(Ai); 1 ≤ i ≤ r] ∈ Cr;λ ∈ IrrC(E)}, consisting of the rows of ΦE to be
computed, is characterised as the unique C-basis of Cr consisting of simulta-
neous eigenvectors for all the matrices P tr

i ∈ Cr×r, for 1 ≤ i ≤ r, and having
1 as their first entry.

7 B acting on the cosets of Fi23

We are now ready to consider the promised example. The group theoretical
and representation theoretic data concerning the groups involved is available
in Conway et al. (1985). Computations with characters and with permuta-
tion and matrix representations are done with GAP (GAP (2005)) and the
MeatAxe (Ringe (2003)), in particular we make use of the algorithms to com-
pute submodule lattices described in Lux et al. (1994). We only indicate the
major steps; for more technical details we refer to Müller (2003), where we
have already reported on these computations.

From now on let G := B be the sporadic simple Baby Monster group, and let
H := Fi23 be the sporadic simple Fischer group, which is a maximal subgroup
of G. Then the permutation character 1GH has degree 1 015 970 529 280 000 ∼
1015, and by Breuer et al. (1996) it is multiplicity-free of rank r = 23, its
constituents have pairwise distinct degrees, and hence in particular are Q-
valued. We consider the action of G on the set of right cosets of H, the ultimate
aim being to determine the character table of the associated endomorphism
ring; recall that not even the sizes of the H-orbits have been known before.

First we construct an F2G-module, containing an H-invariant but not G-
invariant vector, placing ourselves into the situation described in Section 5.1:
let 4370a be the absolutely irreducible F2G-module of F2-dimension 4370;
by Jansen (2005) this is the smallest faithful representation of G over fields of
characteristic 2. Representing matrices for standard generators, in the sense
of Wilson (1996), have been constructed in Wilson (1993) and are available
in Wilson et al. (2005), where also words in the standard generators giving
standard generators for H are available. It turns out that 4370a|H has abso-
lutely irreducible constituents 782a and 3588a, the notation as usual indicating
F2-dimensions. Thus 4370a does not serve our purposes, and we proceed as
follows:

16

Table 1
The subgroup chain

i Ui |Ui| [Ui:Ui−1] dimF2(Mi)

5 B 4 154 781 481 226 426 191 177 580 544 000 000 ∼ 1015 4371

4 Fi23 4 089 470 473 293 004 800 86 316 516 782

3 S8(2) 47 377 612 800 2 295 42

2 210:A8 20 643 840 8 192 31

1 A7 2 520 2 520 18

Since the unique absolutely irreducible ordinary representation of G of de-
gree 4371 has 2-modular constituents 4370a and 1a, where the latter de-
notes the trivial F2G-module, by Thompson’s Theorem, see (Landrock, 1983,
Cor.I.17.5), there is a uniserial F2G-module M having descending composi-
tion series (1a, 4370a). Since 4371|H has absolutely irreducible ordinary con-
stituents having degrees 1, 782 and 3588, we conclude by Zassenhaus’s The-
orem, see (Landrock, 1983, Cor.I.17.3), that M |H ∼= 1a ⊕ 782a ⊕ 3588a as
F2H-modules. Hence we let 0 6= x1 ∈M be the non-trivial H-invariant vector,
which is not G-invariant, and thus its G-orbit X := x1G ⊆ M is isomorphic
as a G-set to the set of right cosets of H.

To construct the F2G-module M explicitly, we consider the cohomology group
Ext1

F2G
(1a, 4370a) ∼= H1

F2
(G, 4370a) := Z1

F2
(G, 4370a)/B1

F2
(G, 4370a), where

the latter are the groups of 1-cocycles and 1-coboundaries of G with values
in 4370a, respectively, see (Benson, 1983, Ch.3.4). As we already know that
there is a non-split extension of 1a with 4370a, we conclude by (Benson, 1983,
Cor.2.5.4) that H1

F2
(G, 4370a) 6= {0}. By an application of the probabilistic

technique to compute upper bounds on dimensions of group 1-cohomology
described in Lux (1997), we find dimF2(H1

F2
(G, 4370a)) ≤ 1, hence we have

equality, and thus the probabilistic technique indeed yields a genuine non-
trivial 1-cocycle in Z1

F2
(G, 4370a) \ B1

F2
(G, 4370a). Using the interpretation

in (Benson, 1983, Prop.3.7.2) any such 1-cocycle describes the matrix entries
for a non-split extension M of 1a with 4370a.

Note that to store a point in M we need d4371/8e = 547 Bytes, hence to store
all of X needs 555 735 879 516 160 000 ∼ 5.6 · 1017 Bytes. Hence we are indeed
tempted to apply the strategy described in Section 4. We choose the following
chain of subgroups, see Table 1:

G = B > H = Fi23 > U3 := S8(2) > U2 := 210:A8 > U1 := A7

Words in the standard generators for H giving non-standard generators for

17

the maximal subgroup S8(2) are available in Wilson et al. (2005). We derive a
suitable small faithful permutation representation of S8(2), and by a random
search we find standard generators for S8(2). The subgroup 210:A8 < S8(2)
again is maximal, and since the unique transitive permutation representation
of S8(2) on 2295 points also is available in terms of standard generators in Wil-
son et al. (2005), Algorithm 1 yields generators for 210:A8. By a random search
we find generators for a complement A8 of the normal subgroup 210 � 210:A8,
and finally generators for A7 < A8.

As described in Section 5.1, we specify a chain of smaller and smaller quotients
Mi of M : first let M5 := M and M4 := 782a and let π = π4 be the natural
projection of M |H onto its direct summand isomorphic to M4. We find that
M4|U3 has a uniquely determined quotient module M3 being isomorphic to
a uniserial module with descending composition series (16a, 26a). Moreover,
we similarly find that M3|U2 has a uniquely determined submodule of F2-
dimension 11. The quotient module M2 with respect to this submodule has
Loewy series (1a, 4a, 6a⊕6a, 14a). Finally, M2|U1 turns out to have a uniquely
determined quotient module M1

∼= 4a⊕ 14a. The associated homomorphisms
πi:Mi+1 →Mi, for 1 ≤ i ≤ 3, are just the natural maps.

8 The Fi23-orbits

Keeping the notation of Section 6, the next task is to determine the partition
X =

⋃̇
i=1,...,23Xi ⊆ M of X into the H-orbits Xi = xiH by finding suitable

representatives xi ∈ X; note that we do not even know the sizes ki = |Xi|
in advance. To do this, we do not describe the Xi directly, but instead find
the H-orbits Xπ

i = xπiH ⊆ M4. These in turn are enumerated using the
strategy described in Section 4, applied to the group H and the chain of
helper subgroups U3 > U2 > U1. The final result is given in Table 2, where
the H-orbits Xi are sorted according to their size ki.

If we are given some xi ∈ X, to enumerate xπiH we run Algorithm 2 with
some parameter 1/2 < f < 1; some numerical data on how this behaves in
practice is given in Table 4 at the end of this section. This ensures that we find
H̃i := StabH(xπi) ≤ H. Then we compute xiH̃i ⊆ Xi by Algorithm 1. Thus
we obtain Hi := StabH(xi) ≤ H̃i, and we have [Hi: H̃i] = |xiH̃i| as well as
ki = [H:Hi]. For group theoretical computations, such as the determination
of subgroup orders, we use the smallest faithful permutation representation of
H on 31671 points, being available in Wilson et al. (2005).

Hence we have to find suitable representatives xi ∈ X for the H-orbits Xi.
Beginning with x1 ∈ X, we apply a few random elements of G, and for the
points x ∈ X thus obtained we enumerate xπH. This random search yields 14

18

Table 2
H-orbits in X.

i ki |Hi| Hi H̃i [H̃i:Hi]

1 1 ∼ 4.1 · 1018 Fi23

2 412 896 9 904 359 628 800 O+
8 (3): 22

3 86 316 516 47 377 612 800 S8(2) Fi23 86 316 516

4 195 747 435 20 891 566 080 211.M23 Fi23 195 747 435

5 8 537 488 128 479 001 600 S12

6 23 478 092 352 174 182 400 O+
8 (2)

7 33 816 182 400 120 932 352 [39].[210].S3 [39].[210].32.2 3

8 113 778 447 552 35 942 400 2× 2F4(2)′ 2.F i22 3 592 512

9 160 533 964 800 25 474 176 S3 ×G2(3) S3 ×O7(3) 1 080

10 504 245 392 560 8 110 080 210.M11 211.M11 2

11 1 044 084 577 536 3 916 800 S4(4): 4

12 1 152 560 897 280 3 548 160 (2× 2.M22).2

13 1 584 771 233 760 2 580 480 27.A8

14 5 282 570 779 200 774 144 27.U3(3) 27.U3(3).2 2

15 7 888 639 030 272 518 400 (A6 ×A6): 22

16 12 678 169 870 080 322 560 22.L3(4).22

17 21 514 470 082 560 190 080 2×M12

18 43 028 940 165 120 95 040 M12

19 50 712 679 480 320 80 640 2.L3(4).22

20 133 120 783 635 840 30 720 24.24.A5.2

21 190 172 548 051 200 21 504 26:L3(2): 2

22 262 954 634 342 400 15 552 34.21+4.S3

23 283 991 005 089 792 14 400 (A5 ×A5): 22

of the H-orbits, namely those for i ∈ {1, 7, 11, 13, . . . , 23}, being underlined
in Table 2. These H-orbits of course tend to be the large ones, and summing
up the associated orbit sizes ki, and dividing by |X|, we obtain a fraction of
∼ 499/500. Hence it seems rather improbable to find further H-orbits using
such a random search. As the small H-orbits for i ∈ {2, . . . , 6, 8, 9, 10, 12} are
missing, we are tempted to look for large candidate subgroups of H instead
which might occur as stabilisers Hi.

19

Now the Schur double cover 2.G := 2.B of the Baby Monster group is a
subgroup of the sporadic simple Fischer–Griess Monster group M. More pre-
cisely, it is the involution centraliser 2.G = CM(a) of an element a in the
2A-conjugacy class in M, where a is a 6-transposition, since the product of a
with any of its conjugates has order at most 6.

Let Z := Z(2.G) = 〈a〉 and let H ′ < 2.G be a subgroup isomorphic to the
Fischer group Fi23, hence we have H ∼= (H ′×Z)/Z. By Norton (1985) we have
H ′ = CM(a, b), where 〈a, b〉 ∼= S3, where in turn b also is a 6-transposition and
ab belongs to the 3A-conjugacy class in M. Given g ∈ 2.G we have H ′∩H ′g =
CM(〈a, b〉 , 〈a, c〉) = CM(a, b, c), where c = ag also is a 6-transposition and
〈a, c〉 ∼= S3. Since N2.G(H ′) = 〈a〉 × H ′, we may assume that H ′g 6= H ′, and
thus 〈a, b〉 ∩ 〈a, c〉 = 〈a〉.

To deduce the corresponding information in G itself, we need to quotient by
the subgroup Z, i. e. we have to determine ((H ′ × Z) ∩ (H ′g × Z))/Z. Since
(H ′×Z)∩ (H ′g ×Z) = (H ′ ∩ (H ′g ×Z))×Z, there are two cases: in the split
case we have (H ′ ∩ H ′g) × Z = (H ′ × Z) ∩ (H ′g × Z), while in the non-split
case we have (H ′ ∩ H ′g) × Z � (H ′ × Z) ∩ (H ′g × Z), a normal subgroup of
index 2. Thus we are in the non-split case if and only if

CM(a, b, c) = H ′ ∩H ′g < H ′ ∩ (H ′g × Z) = CM(a, b) ∩ (CM(a, c)× 〈a〉).

This in turn is the case if and only if there is x ∈ NM(〈a, b, c〉) such that
ax = a, bx = b and cx = ca.

We use the table of centralisers of subgroups of M given in (Norton, 1997,
Table 1) to look for suitable subgroups being generated by triples (a, b, c) of
6-transpositions, such that 〈a, b〉 ∼= 〈a, c〉 ∼= S3, and both ab and ac belong
to the 3A-conjugacy class in M. The subgroups leaping to mind are listed in
Table 3; the fourth column indicates whether the split “+” or the non-split
“−” case occurs, and in the fifth column the corresponding row of Table 2 is
given.

For example, the subgroup generated might be isomorphic to S4, where a =
(1, 2) and b = (2, 3), while c = (1, 4) or c = (2, 4). There are two such sub-
groups: one has centraliser S8(2) and normaliser S4 × S8(2) in M, while the
other has centraliser 211.M23 and normaliser S4 × 211.M23.

In the first case the involutions in S4 are 6-transpositions, since they centralise
elements of order 17, but the centraliser in M of the 2B-conjugacy class is
isomorphic to 21+24.Co1, thus has no such elements. It follows from (Norton,
1985, Table 3) that there is a conjugacy class of subgroups isomorphic to S4,
being generated by a triple (a, b, c) where bc also is a 6-transposition. This
obviously is a split case, proving row i = 3. In the second case, considering the
conjugacy class fusion from S4 × 211.M23 to M shows that the transpositions

20

Table 3
Centralizers of certain subgroups of M.

〈a, b, c〉 CM(〈a, b, c〉) NM(〈a, b, c〉) split i

32: 2 O+
8 (3) ((32: 2)×O+

8 (3)).S4 − 2

S4 S8(2) S4 × S8(2) + 3

S4 211.M23 S4 × 211.M23 + 4

A5 A12 (A5 ×A12): 2 − 5

2S4 2× 2F4(2)′ (2S4 × 2F4(2)′).2 + 8

31+2: 22 G2(3) (31+2: 22 ×G2(3)).2 − 9

42:S3 210.M11 (42:S3 × 210.M11).2 + 10

2× S5 2.M22 (S5 × 2.M22).2 − 12

L2(7) S4(4).2 (L2(7)× S4(4).2).2 − 11

L2(11) M12 (L2(11)×M12).2 +/− 17, 18

in S4 indeed are 6-transpositions. This also is a split case, proving row i = 4.

For the other cases we proceed similarly. To check conjugacy class fusions we
use the character table library of GAP, even though in many cases they are
well-known or easy to see. As it turns out, we rediscover rows i = 11 as well
as i = 17 and i = 18, which have already been found by the random search.
Moreover, we remark that the existence of stabilisers as in rows i = 2 and
i = 3 has also been stated in (Ivanov et al., 1995, p.3422).

At this stage we have just a single orbit left to find, and the number of points
left is 23 478 092 352. Hence the last stabiliser has order 174 182 400, which
strongly hints at O+

8 (2) as indicated in row i = 6.

It remains to find representatives xi ∈ X, for i ∈ {2, . . . , 6, 8, 9, 10, 12}, and to
prove row i = 6. Given generators for the associated stabiliser Hi, we compute
the subspace FixM(Hi) < M consisting of the Hi-invariant vectors, and for
each x ∈ FixM(Hi)\{0, x1} we proceed as follows: we compute a few elements
y ∈ xG ⊆M , and check whether yπ ∈M4 is a point in an H-orbit encountered
earlier. If we succeed in proving yπ ∈ Xπ

j , for some j, then Algorithm 2 also
yields an element h ∈ H such that yπh = xπj . It is then checked whether
yh = xj holds, which proves that y ∈ X and hence x ∈ X. It is easy then to

compute the associated subgroups H̃i, and we remark that it turns out that
Xπ
i = {0} ⊆M4 for i ∈ {3, 4}.

Hence we are left with actually finding generators for the various Hi: words in
the standard generators ofH giving generators of the maximal subgroupsH3 =
S8(2), and H4 = 211.M23, and H5 = S12 are available in Wilson et al. (2005).

21

Moreover, we haveH2 = O+
8 (3): 22 < O+

8 (3):S3, andH8 = 2×2F4(2)′ < 2.F i22,
as well as H9 = S3 ×G2(3) < S3 × O7(3), and H10 = 210.M11 < 211.M23, and
H12 = (2 × 2.M22).2 < 22.U6(2).2, where the overgroups again are maximal
subgroups of H, hence generators for these Hi are easy to find as well. Note
that for i = 9 there are two conjugacy classes of subgroups of S3 × O7(3)
isomorphic to S3 ×G2(3) only one of which yields a suitable vector x9 ∈ X.

For the candidate H6 = O+
8 (2) there are three conjugacy classes of maximal

subgroups of H containing a subgroup isomorphic to O+
8 (2), namely S8(2),

and O+
8 (3):S3, and 2.F i22. Again it is easy to find generators for the relevant

subgroups isomorphic to O+
8 (2). Indeed it turns out that a subgroup O+

8 (2) <
S8(2) yields a suitable vector x6 ∈ X, thus proving row i = 6.

We conclude this section by presenting some numerical data on the enumer-
ation of the H-orbits Xπ

i = xπiH ⊆ M4, for i 6∈ {1, 3, 4}, with respect to the
helper subgroup U3 and the map π3:M4 → M3. This has been done using a
slight modification of Algorithm 2, where we have specified f = 1, but the
break condition has been p = 2, i. e. the generators of U3 are never applied
to U3-orbit representatives. Moreover, motivated by the analysis at the end of
Section 2, for i 6∈ {2, 8, 9} all points x ∈ Xπ

i such that |StabU3(xπ3)| > 105 are
ignored and their U3-orbits simply are not stored. Thus we enumerate a cer-
tain subset X ⊆ Xπ

i , which still consists of U3-orbits. For the H-orbits whose
percentage is marked with a ∗ we increased the stabiliser limit for storing to
3 · 1010, and for those marked with a # we imposed no limit at all.

In Table 4 we have compiled the following data: the H-orbits Xπ
i are sorted

according to their size k̃i := |Xπ
i | = [H: H̃i], we give the cardinality |X | of the

subsets X ⊆ Xπ
i actually enumerated, which fraction of whole H-orbit Xπ

i

this is, the number of U3-orbits in X , the number NX of U3-minimal points in
X , and the saving factor NX/|X |. The fractions |X |/k̃i being very close to 1
shows that indeed the generators of the helper subgroup have to be applied
to orbit representatives only at the very end of an orbit enumeration.

To store a point in M4 we need d782/8e = 98 Bytes, thus to store all of
Xπ ⊆ M4 still needs 99 565 111 869 440 000 ∼ 1017 Bytes. To enumerate Xπ

applying the strategy described in Section 4 and the slight modification given
above, using the ORB package, needs ∼ 1.1 · 109 Bytes of memory space, and
∼ 4 800 s ∼ 80 min of CPU time on a 3.2 GHz Pentium IV processor, where
both figures include the time and space required to enumerate and store the
appropriate portions of the helper sets M3, M2 and M1.

22

Table 4
Statistics for H-orbits in Xπ.

i k̃i |X | k̃i/|X | U3-orbits NX |X |/NX

23 283 991 005 089 792 281 173 991 454 720 0.99 8 105 1 433 928 196 086 547

22 262 954 634 342 400 260 326 657 382 400 0.99 6 977 1 198 807 217 154 769

21 190 172 548 051 200 188 272 393 804 800 0.99 5 271 1 263 408 149 019 472

20 133 120 783 635 840 131 793 266 626 560 0.99 3 916 621 625 212 014 102

19 50 712 679 480 320 49 702 192 081 920 0.98 1 899 228 710 217 315 342

18 43 028 940 165 120 42 170 681 548 800 0.98 1 485 438 005 96 278 995

17 21 514 470 082 560 21 085 044 664 320 0.98 770 198 485 106 229 914

16 12 678 169 870 080 12 300 050 810 880 0.97 524 138 605 88 741 753

15 7 888 639 030 272 7 659 885 219 840 0.97 490 78 695 97 336 364

14 2 641 285 389 600 2 562 503 731 200 0.97 154 69 664 36 783 758

13 1 584 771 233 760 1 490 058 823 680 0.94 131 96 244 15 482 095

12 1 152 560 897 280 1 083 499 683 840 0.94 101 20 861 51 939 009

11 1 044 084 577 536 1 015 328 563 200 0.97 100 18 941 53 604 802

10 252 122 696 280 223 859 220 480 0.88 33 8 864 25 254 875

6 23 478 092 352 21 311 994 512 #0.90 24 409 886 51 994

7 11 272 060 800 10 158 220 800 ∗0.88 8 193 554 52 482

5 8 537 488 128 7 262 008 320 0.85 11 966 7 517 606

9 148 642 560 135 080 640 ∗0.90 5 17 794 7 591

2 412 896 366 792 ∗0.88 2 122 3 006

8 31 671 31 416 #0.90 2 13 064 2

9 The character table

The final task is now to compute the intersection matrix P2 = [ph,2,j] ∈ Z23×23

for the smallest non-trivial H-orbit X2, which has size k2 = 412 896, and since
it is the only H-orbit having this size it is self-paired. We have

ph,2,j = |X2gh ∩Xj| · kh/kj,

hence the task is to enumerate all of X2gh explicitly, successively for every
2 ≤ h ≤ 23, and to determine which H-orbits Xj (where 1 ≤ j ≤ 23) the
various points x ∈ X2gh belong to; recall that we are done for h = 1.

23

Table 5
Intersection matrix P2.
i ki 1 2 3 4 5 6 7 8 9 10

1 1 . 1

2 412896 412896 2 136 . . 1 4 . . .

3 86316516 . 28431 . . 462 1

4 195747435 135

5 8537488128 . . 45696 . . . 3888 . . 1056

6 23478092352 . 56862 272 16192 . 136

7 33816182400 . 327600 . . 15400 . 8 . 364 .

8 113778447552 3200 1134 .

9 160533964800 1728 1600 728 .

10 504245392560 62370

11 1044084577536 12096

12 1152560897280 . . . 129536 1760

13 1584771233760 . . 275400 8096 . 16335 78732 . . 33440

14 5282570779200 16200 . . 2106 .

15 7888639030272 . . 91392 . 924 79296 23328 . . 37312

16 12678169870080 178200 . . . 37908 .

17 21514470082560 139968 12480 . 101376

18 43028940165120 24960 58968 .

19 50712679480320 . . . 259072 124740 2112

20 133120783635840 226800 157464 . . 135168

21 190172548051200 16200 . 280800 75816 10560

22 262954634342400 30800 33600 7776 . 235872 .

23 283991005089792 12096 . 89856 . 90112

As we have not enumerated the H-orbits Xj directly, but the H-orbits Xπ
j

instead, the membership test is done by checking whether xπ ∈ Xπ
j holds,

whenever j 6∈ {1, 3, 4}; the cases j ∈ {3, 4} will be commented on below, while
j = 1 only occurs for i = 2 and checking whether x = x1 is easy anyway.

In turn, as we have enumerated only parts of the Xπ
j explicitly, we have to

check a few points in xπH for membership. This only allows us to prove
membership, but not to disprove it. Hence we let j vary, and in a first run
we test a very few points in xπH, at most 5 say, for membership in Xπ

j . If
xπ cannot be proven to belong to a particular H-orbit, we start a second run
where we test some more points in xπH, at most 1000 say. Now this is done
for all x ∈ X2gh, and it turns out that after the second run only a very few
points have not been proven to belong to a particular H-orbit, in particular
including those which belong to X3 or X4.

Hence we have found lower bounds for the matrix entries ph,2,j ∈ N0. Now
we have

∑23
j=1 ph,2,jkj = k2kh, and moreover ph,2,j = pj,2,h · kj/kh, which is an

integrality condition, and in particular implies that ph,2,j = 0 if and only if
ph,2,i = 0. It turns out that these conditions are sufficient to find all the matrix

24

Table 6
Intersection matrix P2, continued.
i 11 12 13 14 15 16 17 18 19 20 21 22 23

1

2

3 . . 15 . 1

4 . 22 1 1

5 1 120 . . 21 . . 1 .

6 272 . 242 72 236 40 2 3 1

7 . . 1680 . 100 . 220 . . 40 . 1 .

8 66 66 . . 168 . 36

9 . . . 64 . 480 . 220 . . 64 144 .

10 . 770 10640 . 2385 . 2376 . 21 512 28 . 160

11 1360 1232 . . 36 112 . 1980 700 . 672 486 176

12 1360 . . 4320 1575 1400 . . 211 496 128 567 600

13 . . 30 2376 . 9632 . 396 3420 40 30 945 175

14 . 19800 7920 128 1350 . 6270 990 2370 2560 844 1512 3300

15 272 10780 . 2016 626 15120 792 3696 12866 480 1008 4596 2546

16 1360 15400 77056 . 24300 240 29700 396 420 13056 3088 1350 5400

17 . . . 25536 2160 50400 440 6996 28560 1792 3136 13824 6360

18 81600 . 10752 8064 20160 1344 13992 21032 3360 24064 30016 11232 14760

19 34000 9284 109440 22752 82710 1680 67320 3960 5542 41664 16016 9828 24110

20 . 57288 3360 64512 8100 137088 11088 74448 109368 23672 38976 76707 45600

21 122400 21120 3600 30384 24300 46320 27720 132660 60060 55680 108608 81972 64800

22 122400 129360 156800 75264 153200 28000 168960 68640 50960 151520 113344 81640 118600

23 47872 147840 31360 177408 91656 120960 83952 97416 135016 97280 96768 128088 126272

entries ph,2,j. The resulting intersection matrix P2 is shown in Tables 5–6.

Finally, it turns out that all the row eigenspaces of the matrix P tr
2 ∈ Q23×23 are

already 1-dimensional, hence normalising the eigenvectors to have 1 as their
first entry yields the character table ΦE, which together with the degrees of
the Fitting correspondents is shown in Tables 7–10.

References

E. Bannai and T. Ito, Algebraic combinatorics I: Association schemes, Ben-
jamin, 1984; MR0882540 (87m:05001).

D. Benson, Representations and cohomology I, Cambridge Studies in Advanced
Mathematics 30, Cambridge Univ. Press, 1998; MR1644252 (99f:20001a).

T. Breuer and K. Lux, The multiplicity-free permutation characters of the
sporadic simple groups and their automorphism groups, Comm. Algebra
24, 1996, 2293–2316; MR1390375 (97c:20020).

T. Breuer and J. Müller, Character tables of endomorphism rings of multi-

25

Table 7
The character table.
i χλ(1) 1 2 3 4 5 6 7

1 1 1 412896 86316516 195747435 8537488128 23478092352 33816182400

2 4371 1 −137632 18115812 −10472085 −1159411968 1449264960 3757353600

3 96255 1 82016 8890596 5701995 457037568 327742272 1297296000

4 9458750 1 41888 3232548 −43605 123026688 57841344 314160000

5 63532485 1 −32032 2275812 414315 −77223168 −2312640 179625600

6 347643114 1 10208 704484 1589355 10679040 46398528 −9609600

7 356054375 1 −17248 900900 −1508949 −20097792 43902144 32672640

8 4221380670 1 −3232 324324 103275 −2453760 15121728 −12297600

9 4275362520 1 14816 725796 −43605 16743168 −7316928 31920000

10 9287037474 1 6896 132516 699435 736128 11096352 4502400

11 13508418144 1 −11632 475812 111915 −9283968 −491040 17673600

12 108348770530 1 7328 246564 −43605 3421440 1729728 4502400

13 309720864375 1 −1120 89892 −181845 −172800 3172032 −3638400

14 635966233056 1 3408 69284 147755 295040 2450528 −169600

15 1095935366250 1 −4576 126756 2475 −1324800 −949824 1061760

16 6145833622500 1 2864 51876 −26325 316800 −507744 309120

17 6619124890560 1 1088 39204 25515 138240 −300672 −1065600

18 12927978301875 1 −2128 19620 −40149 67968 706464 186240

19 38348970335820 1 −1232 15524 37675 19840 −69472 −233600

20 89626740328125 1 944 1188 15147 −79488 61344 63360

21 211069033500000 1 560 1188 −12501 −51840 12960 −68736

22 284415522641250 1 −16 −5724 8235 17280 50976 78720

23 364635285437500 1 −400 −1116 −5589 26496 −71136 −7296

plicity-free permutation modules of the sporadic simple groups and their
cyclic and bicyclic extensions, 2005, http://www.math.rwth-aachen.de/
~Juergen.Mueller/mferctbl/mferctbl.html.

A. Brouwer and A. Cohen and A. Neumaier, Distance-regular graphs, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) 18, Springer, 1989;
MR1002568 (90e:05001).

J. Conway and R. Curtis and S. Norton and R. Parker and R. Wilson, Atlas
of finite groups, Oxford Univ. Press, 1985; MR0827219 (88g:20025).

G. Davidoff and P. Sarnak and A. Valette, Elementary number theory, group
theory, and Ramanujan graphs, London Mathematical Society Student
Texts 55, Cambridge Univ. Press, 2003; MR1989434 (2004f:11001).

W. Feit, The representation theory of finite groups, North-Holland Mathemat-
ical Library 25, North-Holland, 1982; MR0661045 (83g:20001).

The GAP Group, GAP — Groups, Algorithms, and Programming, Version
4.4, 2005, http://www.gap-system.org.

D. Higman, A monomial character of Fischer’s baby monster, in Proc. of the
Conference on Finite Groups, Utah, 1975, 277–283, Academic Press, 1976;
MR0409627 (53 #13379).

A. Ivanov and S. Linton and K. Lux and J. Saxl and L. Soicher, Distance-

26

Table 8
The character table, continued.
i 8 9 10 11 12 13

1 113778447552 160533964800 504245392560 1044084577536 1152560897280 1584771233760

2 1404672192 −5945702400 39426594480 −21483221760 −4743048960 −110868769440

3 −1788671808 −511948800 12027702960 −9527341824 6966984960 30484602720

4 183218112 258508800 1991288880 1252323072 −1021697280 4906012320

5 −32332608 35481600 1084693680 550851840 −432034560 −2400567840

6 57081024 −167270400 224426160 533820672 271607040 −9741600

7 −21155904 63866880 185985072 −186810624 778242816 −259829856

8 −15494976 74188800 87499440 −219034368 −142145280 29121120

9 14841792 4147200 110118960 −61012224 62588160 198033120

10 −38864448 20044800 −21727440 115105536 171953280 32315760

11 7584192 −18662400 32946480 −61205760 −22584960 −74323440

12 −11866176 −6912000 5609520 −1790208 −28857600 −1265760

13 6934464 −6912000 12798000 19554048 −7568640 3745440

14 6681024 5913600 −1900240 −8656128 8992640 −2385200

15 −254016 1935360 −841680 6983424 3168000 10755360

16 1197504 691200 −2857680 2467584 −777600 −4879440

17 −1498176 −460800 2430000 −1928448 3732480 −3810240

18 −627264 −414720 −2332368 −1292544 −307584 −943056

19 −576 76800 −292560 472832 −1668480 588720

20 36288 −709632 −452304 −850176 134784 854064

21 −129600 248832 73008 200448 −335232 518832

22 −46656 138240 114480 532224 −293760 −481680

23 119232 −82944 86832 −352512 508032 −42768

transitive representations of the sporadic groups, Comm. Algebra 23, 1995,
3379–3427; MR1335306 (96g:20019).

C. Jansen, The minimal degrees of faithful representations of the sporadic
simple groups and their covering groups, LMS J. Comput. Math. 8, 2005,
122–144; MR2153793.

D. Johnson, Presentations of groups, London Mathematical Society Student
Texts 15, Cambridge Univ. Press, 1997; MR1472735 (98e:20001).

P. Landrock, Finite group algebras and their modules, London Mathematical
Society Lecture Note Series 84, Cambridge Univ. Press, 1983; MR0737910
(85h:20002).

F. Lübeck and M. Neunhöffer, Enumerating large orbits and direct condensa-
tion, Experiment. Math. 10 (2), 2001, 197–205; MR1837671 (2002m:20028).

K. Lux, Algorithmic methods in modular representation theory, Habilitation-
sschrift, RWTH Aachen, 1997.

K. Lux and J. Müller and M. Ringe, Peakword condensation and submodule
lattices: an application of the MeatAxe, J. Symbolic Comput. 17 (6), 1994,
529–544; MR1300352 (95h:68091).

J. Müller, On the multiplicity-free actions of the sporadic simple groups,

27

Table 9
The character table, continued.
i 14 15 16 17 18

1 5282570779200 7888639030272 12678169870080 21514470082560 43028940165120

2 65216923200 −292171815936 573908924160 −796832225280 531221483520

3 28447848000 58091185152 118446831360 158430504960 −222361251840

4 −3514104000 3727696896 12802648320 10166446080 20332892160

5 1235995200 −300174336 4718165760 −4534548480 −8511713280

6 916660800 2067158016 −1656357120 −679311360 1892782080

7 −2109032640 −1909619712 −643458816 1675634688 1177473024

8 499867200 −274627584 −544631040 −5806080 592220160

9 197640000 −366363648 5218560 −75479040 −452874240

10 217339200 −118153728 122446080 −322237440 661893120

11 −10756800 200600064 −34179840 269982720 836075520

12 −80222400 35030016 −96802560 −145152000 −11612160

13 −43200 −48356352 −17729280 18524160 −16035840

14 −15211200 36246016 7220480 −39797760 −41656320

15 2721600 1741824 −31921920 −5806080 −58060800

16 5417280 −5515776 518400 14515200 11612160

17 648000 5308416 933120 14100480 −9953280

18 2928960 787968 6269184 7216128 −6967296

19 −1924800 −2025984 4348160 −1582080 5468160

20 938304 −1866240 518400 −746496 −1658880

21 −720576 898560 1237248 −1410048 995328

22 25920 −262656 −1416960 2903040 −1658880

23 191808 290304 −311040 −1741824 995328

Preprint, 2007, http://www.math.rwth-aachen.de/~Juergen.Mueller/.
J. Müller, On the action of the sporadic simple Baby Monster group on the

cosets of 21+22.Co2, Preprint, 2006, http://www.math.rwth-aachen.de/

~Juergen.Mueller/.
J. Müller, On endomorphism rings and character tables, Habilitationsschrift,

RWTH Aachen, 2003.
J. Müller and M. Neunhöffer and F. Noeske, GAP-4 package ORB, 2006,
http://www.math.rwth-aachen.de/~Max.Neunhoeffer/

Computer/Software/Gap/orb.html.
J. Müller and M. Neunhöffer and F. Röhr and R. Wilson, Completing the

Brauer trees for the sporadic simple Lyons group, LMS J. Comput. Math.
5, 2002, 18–33; MR1916920 (2003e:20015).

S. Norton, Anatomy of the Monster I, in The Atlas of finite groups: ten years
on, Birmingham, 1995, London Math. Soc. Lecture Note Ser. 249, 198–214,
Cambridge Univ. Press, 1998; MR1647423 (99i:20021).

S. Norton, The uniqueness of the Fischer–Griess Monster, in Finite groups
— coming of age, Montreal, 1982, Contemp. Math. 45, 271–285, 1985;
MR0822242 (87b:20025).

28

Table 10
The character table, continued.
i 19 20 21 22 23

1 50712679480320 133120783635840 190172548051200 262954634342400 283991005089792

2 1460859079680 −2739110774400 −782603078400 3246353510400 −1168687263744

3 239651343360 190079809920 −857327328000 28598169600 218194808832

4 7936220160 8210885760 47791814400 −25333862400 −90188550144

5 −1053803520 12753417600 10828857600 −17953689600 3908653056

6 3994721280 −5895711360 1568160000 −10005811200 6838013952

7 3238050816 −155675520 −44478720 −6826659840 4981616640

8 722856960 813214080 −13996800 −1025740800 −578285568

9 −1233239040 −1778474880 666144000 148377600 2518290432

10 −489991680 959091840 −1020988800 174182400 −479582208

11 −664312320 −183254400 −1004918400 593510400 125024256

12 83082240 268168320 −170553600 212889600 −59609088

13 −61793280 98133120 −116640000 190771200 −74649600

14 −22725120 16717440 9264000 80076800 −41576448

15 36449280 −18264960 41644800 94187520 −83349504

16 15137280 9797760 −15085440 −21934080 −10450944

17 −9953280 −18195840 27993600 27648000 −35831808

18 −2225664 −16744320 22654080 −8663040 −276480

19 −919040 −1537920 −7036800 −17100800 23365632

20 2198016 3825792 6065280 −4534272 −3815424

21 −1893888 −4053888 −1316736 −2764800 8570880

22 −69120 −3058560 51840 6082560 −2709504

23 705024 4572288 −1026432 −700416 −3151872

M. Ringe, The C-MeatAxe 2.4, RWTH Aachen, 2003.
I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungs-

berichte der Preußischen Akademie der Wissenschaften, 1933, 598–623.
R. Wilson, Standard generators for sporadic simple groups, J. Algebra 184,

1996, 505–515; MR1409225 (98e:20025).
R. Wilson, A new construction of the Baby Monster and its applications, Bull.

London Math. Soc. 25 (1993), no. 5, 431–437; MR1233405 (94k:20027).
R. Wilson and R. Parker and S. Nickerson and J. Bray, Atlas of finite group

representations, 2005, http://brauer.maths.qmul.ac.uk/Atlas/.
P. Zieschang, An algebraic approach to association schemes, Lecture Notes in

Mathematics 1628, Springer, 1996; MR1439253 (98h:05185).

29

