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1 Introduction and results

One of the central problems of the modular representation theory of the sym-
metric group Sn is to give a precise description of its simple modules over fields
of prime characteristic p. When it comes to their properties, astonishingly little
is known about the structure of the tensor product of two such simple mod-
ules. It is even an open problem when precisely such a tensor product is simple
again; conjecturally [11] this only happens under very restrictive circumstances
in characteristic 2, but although major steps have been taken [4, 12] this has
not yet been settled affirmatively.

In the present paper we consider the natural module D[n−1,1], which is the non-
trivial constituent of the natural permutation module of Sn. We determine the
direct summands and the submodule structure of the tensor square D[n−1,1] ⊗
D[n−1,1], the results being presented in (1.2) and (1.4) for p = 2 and p odd,
respectively. Since the prime field Fp is a splitting field of Sn we restrict ourselves
to this case, and in particular the tensor product is understood over Fp. Many
of the results for the case p odd have already been obtained in [28], where also
detailed conjectures for the case p = 2 have been made. The latter case turns
out to be much more complicated than the former one, and to proceed we exploit
the close relationship of the submodule structure of the tensor square to that of
the Young modules labelled by the partitions [n − 2, 2] and [n − 2, 12].

Although Young modules play a prominent role in the modular representation
theory of Sn, and the Young modules labelled by the two lexicographically
largest partitions [n] and [n − 1, 1] are well-understood anyway, there are only
a few results in the literature, being commented on below, on the submodule
lattices of the Young modules labelled by the next largest partitions [n − 2, 2]
and [n − 2, 12]. Hence we first determine the submodule structure of the latter
modules; while this is almost immediate for p odd, these results for p = 2 might
be of independent interest as well.
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Table 1: Hasse diagrams of Young modules Y
[n−2,2]

F2
for p = 2 and n ≥ 5.

n ≡ 1 (mod 4) n ≡ 3 (mod 4)

1

D
[n−2,2]

1

D
[n−2,2]

n ≡ 0 (mod 4) n ≡ 2 (mod 4)

1

1 1

[n−2,2]
D

D
[n−1,1]

[n−1,1]
D

1

D

D

1

[n−1,1]

D
[n−2,2]

[n−1,1][n−1,1][n−1,1]

(1.1) Theorem. a) The submodule lattices of the Young modules over F2

labelled by [n − 2, 2] where n ≥ 4, and [n − 2, 12] where n ≥ 3, are as given in
Tables 1–3.
b) The submodule lattices of the non-simple Young modules over Fp labelled
by [n − 2, 2] and [n − 2, 12], where p is odd and n ≥ 4, are as given in Table 4.

In the Hasse diagrams shown, the local submodules, see (2.7), are depicted as
filled vertices. We only indicate their types, since these suffice to determine the
isomorphism types of all simple subquotients. Amongst the above cases only
the submodule lattices of the Young modules labelled by [n − 2, 2] for p = 2
and n ≡ 0 (mod 4) are not distributive, but there is a unique dotted-line, see
(2.7), consisting of local submodules of type 1F2

. In the distributive cases the
submodule lattices remain unchanged under extension Fp ⊆ F of the base field,
while in the non-distributive cases the cardinality of the dotted-line increases,
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Table 2: Hasse diagrams of Young modules Y
[n−2,12]

F2
for p = 2 and n ≥ 5.

n ≡ 1 (mod 4) n ≡ 3 (mod 4)

1

1

1

D

D

[n−2,2]

[n−2,2]

1

D1
[n−2,2]

D
[n−2,2]

1

n ≡ 0 (mod 4) n ≡ 2 (mod 4)

D

D

D

1

1

D

D

[n−1,1]

[n−1,1]

[n−1,1]

[n−2,2]

[n−2,2]

1

1

1

D

D

D

D

1

D

[n−1,1]

[n−1,1]

[n−1,1]

[n−2,2]

[n−2,2]
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Table 3: Hasse diagrams of Young modules for p = 2 and n ∈ {3, 4}.

Y
[13]

F2
Y

[2,12]
F2

Y
[2,2]

F2

1

1 D

D

1

[3,1]

[3,1]

1

D
[3,1]

D
[3,1]

D
[3,1]

1 1

1

as the latter is in bijection with F
.
∪ {∞}.

A few comments on the results available in the literature are in order. As for
the 2-part partition case [n − 2, 2], the associated Young modules have been
dealt with for p odd in [4, La.1.2] and [6, La.3.3], and for p = 2 and n odd in
[4, La.1.3]. Moreover, by [15, Thm.6.4] the Young modules labelled by [n− 2, 2]
and [m−2, 2], respectively, have isomorphic submodule lattices whenever m ≥ n
such that (n, p) 6= (4, 2) and m ≡ n (mod 2) and m ≡ n (mod pmin{e∈N;pe>n}).
Although these congruences do not reflect all lattice isomorphisms, for fixed p
we are reduced to a finite number of cases, which could be examined explicitly
by the computational techniques mentioned in (1.5), but we prefer to avoid this
involved machinery and give a straightforward proof for p = 2 and n even.

As for the partition [n−2, 12] and p = 2, the induced Specht module (S
[n−2,1]
F2

)Sn

is examined amongst others in [17, Sect.6]. For n even the latter coincides with

the Young module Y
[n−2,12]

F2
, while for n odd its principal block component is

a submodule of the Young module with quotient module 1F2
. Still, the results

in [17, Diagram V] do not seem to help to determine the submodule lattice of
the Young module, but conversely our results imply that, using the notation of

[17], for n even we have b ∼ S
[n−2,12]
F2

, c ∼ D[n−1,1] and a, d, e ∼ 0, while for n

odd we have b ∼ S
[n−2,2]
F2

, a ∼ D[n−1,1], e ∼ 1F2
and c, d ∼ 0. —

Having these prerequisites in place, we are prepared to state the results on the
submodule structure of the tensor square D[n−1,1] ⊗ D[n−1,1].
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Table 4: Hasse diagrams of non-simple Young modules for p odd and n ≥ 4.

Y
[n−2,2]

Fp
Y

[n−2,2]
Fp

Y
[n−2,12]

Fp

for n ≡ 1 (mod p) for n ≡ 2 (mod p) for n ≡ 0 (mod p)

1

1

D
[n−2,2]

D
[n−2,2]

D

D
[n−1,1]

[n−1,1]

D1

D

[n−2,1

[n−1,1]

2
]

D
[n−1,1]

(1.2) Theorem. Let p = 2, let n ≥ 3 and let D := D[n−1,1].

a) For n odd we have D ⊗ D ∼= D ⊕ Y
[n−2,12]

F2
.

b) For n even we have D ⊗ D ∼= rad(Y
[n−2,12]

F2
)/soc(Y

[n−2,12]
F2

), and D ⊗ D is
indecomposable if and only if n 6= 4.

Thus the submodule lattice of the tensor square can be read off from the Hasse

diagram of the Young module Y
[n−2,12]

F2
. Since for n odd D[n−1,1] is not a con-

stituent of Y
[n−2,12]

F2
, in this case the submodule lattice of the tensor square is

the lattice direct sum of those of D[n−1,1] and Y
[n−2,12]

F2
. In any case, the sub-

module lattice of the tensor square is distributive, and thus remains unchanged
under extension of the base field.

(1.3) Corollary. Let S2(D) and Λ2(D) denote the symmetric and exterior
square of D := D[n−1,1], respectively. Thus by [9, La.11.3] there is a filtration

{0} < Λ2(D) < S2(D) < D ⊗D with layers D⊗D ∼=




Λ2(D)

D
Λ2(D)



, the notation

being explained in (2.1). Hence for n odd we have S2(D) ∼= D ⊕ Λ2(D), where

for n ≡ 1 (mod 4) we have Λ2(D) ∼=




1F2

D[n−2,2]

1F2



, and for n ≡ 3 (mod 4) we

have Λ2(D) ∼= 1F2
⊕D[n−2,2]. For n ≡ 0 (mod 4) we have Λ2(D) ∼= 1F2

⊕D[n−2,2]
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and S2(D) ∼= 1F2
⊕

[
D

D[n−2,2]

]
, and for n ≡ 2 (mod 4) we have

Λ2(D) ∼=




1F2

D[n−2,2]

1F2



 and S2(D) ∼=





D
1F2

D[n−2,2]

1F2



 .

(1.4) Theorem. Let p be an odd prime, let n ≥ 4 and let D := D[n−1,1].
a) For n ≡ 0 (mod p) we have

D ⊗ D ∼= (1Fp
⊕ D[n−2,2]) ⊕ (D[n−2,12])

∼= D[n−2,2] ⊕ rad(Y
[n−2,12]

Fp
)/soc(Y

[n−2,12]
Fp

).

b) For n ≡ 1 (mod p) we have D ⊗ D ∼= (D ⊕ Y
[n−2,2]

Fp
) ⊕ (D[n−2,12]).

c) For n ≡ 2 (mod p) we have D ⊗ D ∼= (1Fp
⊕ Y

[n−2,2]
Fp

) ⊕ (D[n−2,12]).

d) For n 6≡ 0, 1, 2 (mod p) we have D⊗D ∼= (1Fp
⊕D⊕D[n−2,2])⊕ (D[n−2,12]).

For the case n = 3 we for p = 3 have D[2,1] ⊗ D[2,1] ∼= 1Fp
, while for p > 3 we

have D[2,1]⊗D[2,1] ∼= (1Fp
⊕D[2,1])⊕ (D[13]). Hence for all n ≥ 3 the submodule

lattice of D ⊗ D is distributive, and is the lattice direct sum of the submodule
lattices of its direct summands.

We have D⊗D ∼= S2(D)⊕Λ2(D), where the bracketed terms in (1.4) indicate the
symmetric and exterior squares, respectively. Actually, it is known by folklore
that we always have Λ2(D) ∼= D[n−2,12]; this is implicit in [29] and an explicit
proof is given in [26]. —

The present paper is organised as follows. In Section 2 we fix the notation,
and to make the paper sufficiently self-contained we in (2.2)–(2.6) recall the
necessary auxiliary facts from the representation theory of the symmetric group.
In (2.7) we introduce some notions from the structure theory of combinatorial
lattices, in particular local submodules and dotted-lines which are the building
blocks of modular lattices. After these preparations, the submodule structure of
the Young modules mentioned in Table 4, i. e. for p odd, is immediate, while in
Sections 3 and 4 we proceed to examine the Young modules mentioned in Tables
1 and 2 of (1.1), respectively. Here, the strategy employed is as follows. For
the uniserial cases we directly head towards building up the unique composition
series, which coincides with both the Loewy series and the socle series. For the
other cases we determine the local submodules, and where existent the dotted-
lines. The submodule lattices can then be determined purely combinatorially
as described in (2.7). In Section 5 we finally prove (1.2) and (1.4).
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(1.5) Computations. To get some feeling how the patterns governing the
structure of the modules under consideration might look like, prior to attempt-
ing general proofs we have computed a bunch of explicit examples [28], using
techniques from computational representation theory. In particular, we thus

have found the results in Table 3 and the submodule lattice of Y
[3,12]

F2
in (4.5).

More precisely, for various partitions λ ⊢ n, for some smallish n, the computer
algebra system GAP [10] was used to construct the permutation action of Sn

on the cosets of the Young subgroup Sλ < Sn. Using the computer algebra
system MeatAxe [27], dealing with matrix representations over finite fields, and
its facilities to compute direct sum decompositions [31, 22], the Young module
labelled by λ was computed as a direct summand of the permutation module
associated with Sλ. Using the facilities to compute submodule lattices [21]
also available in the MeatAxe, the submodule lattice of the Young module was
then determined. Similarly, the natural module D[n−1,1] was constructed as
a constituent of the p-modular reduction of the natural permutation action of
Sn, and the direct summands of the tensor square D[n−1,1] ⊗D[n−1,1] and their
submodule lattices have been computed.

2 Preliminaries

(2.1) a) Prerequisites. We assume the reader familiar with the represen-
tation theory of the symmetric group [18, 19], in particular with the modular
branching rule for restriction of simple modules in positive characteristic [20,
Thm.11.2.7], and with the fact that Specht modules in positive characteristic
have Jantzen filtrations with self-dual layers which give rise to the Jantzen-
Schaper formula, [2] and [24, Cor.5.33]. Moreover, we assume the reader famil-
iar with the notion of Young lattices, [16, 13, 8] and [23, Ch.4.6], in particu-
lar with the fact that Young lattices are self-dual and have Specht filtrations
which are governed by the dominance partial ordering on partitions [23, La.4.6.2,
Thm.4.6.4], and with Klyachko’s formula for the multiplicities of Young lattices
as direct summands in certain permutation lattices, [13, Thm.7.14] and [23,
Thm.4.6.3]. Finally, we assume the reader familiar with the basic notions from
the theory of combinatorial lattices [5].

b) Notation. All modules considered are finitely generated unital right mod-
ules. If V is an A-module, where A is a finite dimensional F -algebra over a
field F , and S is a simple A-module, then the multiplicity of S in a composition
series of V is denoted by [V : S], and if A-modules V and W have the same
constituents including multiplicities then we write V ∼ W . If V is uniserial
having a composition series with descending simple layers S, T then we depict

this as V ∼=

[
S
T

]
, while if V has a filtration {0} < W < V then we write

V ∼=

[
V/W
W

]
, and we use a similar notation for longer composition series or

filtrations. To emphasise that this does not determine V up to isomorphism, we
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Table 5: Permutation modules for n ≥ 4.

Mλ

rkZ(Sµ) Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

1 [n] 1 1 1 1
n−1 [n−1, 1] . 1 1 2
n(n−3)

2 [n−2, 2] . . 1 1
(n−1)(n−2)

2 [n−2, 12] . . . 1

speak of the shape of V instead. For a Z-lattice V we let VQ := V ⊗Z Q and
VFp

:= V ⊗Z Fp. Similarly, letting Z(p) ⊆ Q be the localisation of Z at the prime
ideal (p) ⊳ Z, for a Z(p)-lattice V we let VQ := V ⊗Z(p)

Q and VFp
:= V ⊗Z(p)

Fp.

For a partition λ ⊢ n let Sλ be the associated Specht ZSn-lattice. In particular
we let 1Z := S[n] be the trivial ZSn-lattice. The simple FpSn-modules Dλ are
labelled by p-row regular partitions λ ⊢ n. Again we let 1Fp

:= D[n] be the
trivial FpSn-module. For λ ⊢ n let Mλ be the permutation ZSn-lattice induced
by the action of Sn on the cosets of the Young subgroup Sλ ≤ Sn, and let
Y λ ≤ Mλ

Z(p)
be the associated Young Z(p)Sn-lattice. The p-Kostka number

[Mλ
Z(p)

: Y µ], i. e. the multiplicity of the Young lattice Y µ, where µ ⊢ n, as a

direct summand of Mλ
Z(p)

is well-defined by [1, Cor.3.11.4], and [7, Exc.6.16]

applied to EndSn
(Mλ

Z(p)
).

Let Irr(Sn) be the set of irreducible ordinary characters of Sn, and let χλ ∈
Irr(Sn) be the character afforded by Sλ. In particular we let 1Sn

:= χ[n] and
1−Sn

:= χ[1n] be the trivial and the sign character, respectively. Finally, let

ψλ = 1Sn

Sλ
∈ ZIrr(Sn) be the permutation character afforded by Mλ.

(2.2) Permutation modules. The Kostka numbers [Mλ
Q : Sµ

Q] are known [19,

Ch.2.2]. For λ ∈ {[n], [n − 1, 1], [n − 2, 2], [n − 2, 12]} and n ≥ 4 they are
reproduced in Table 5, where the case n = 3 is recovered by deleting the row
and the column belonging to [n − 2, 2].

Since the natural permutation action is doubly transitive, the tensor square
of the permutation character ψ[n−1,1] equals ψ[n−1,1] ⊗ ψ[n−1,1] = ψ[n−1,1] +
ψ[n−2,12]. This for n ≥ 4 yields χ[n−1,1]⊗χ[n−1,1] = (χ[n] +χ[n−1,1] +χ[n−2,2])+

(χ[n−2,12]), while for n = 3 we have χ[2,1] ⊗ χ[2,1] = (χ[3] + χ[2,1]) + (χ[13]); here
the bracketed terms indicate the symmetric and exterior squares, respectively.

(2.3) Specht modules. The decomposition multiplicities [Sµ
Fp

: Dλ], where

µ ∈ {[n], [n − 1, 1], [n − 2, 2], [n − 2, 12]} and n ≥ 3, are reproduced in Table 6
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Table 6: Partial decomposition matrices for p = 2 and n ≥ 5.

n ≡ 1 (mod 4)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n] 1 . .
[n−1, 1] . 1 .
[n−2, 2] 1 . 1
[n−2, 12] 2 . 1

n ≡ 3 (mod 4)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n] 1 . .
[n−1, 1] . 1 .
[n−2, 2] . . 1
[n−2, 12] 1 . 1

n ≡ 0 (mod 4)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n] 1 . .
[n−1, 1] 1 1 .
[n−2, 2] . 1 1
[n−2, 12] 1 1 1

n ≡ 2 (mod 4)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n] 1 . .
[n−1, 1] 1 1 .
[n−2, 2] 1 1 1
[n−2, 12] 2 1 1

for p = 2 and in Table 7 for p odd. Here the case n = 3 is covered by deleting
the row and the column belonging to [n − 2, 2], and for p = 2 the case n = 4
is covered by deleting the column belonging to [n − 2, 2]. Note that the partial
decomposition matrices already precisely reflect the p-block distribution of the
various Sµ

Fp
and Dλ mentioned.

The decomposition multiplicities for the 2-part partition cases S
[n−1,1]
Fp

and

S
[n−2,2]
Fp

are known by [18, Thm.24.15] and [18, p.137], and those of the hook par-

tition case S
[n−2,12]
Fp

for p odd by Peel’s Theorem, [29] and [18, Thm.24.1]. The

remaining case S
[n−2,12]
F2

is contained in [17, Thm.7.1], or we from Table 5 simply

observe χ[n−2,12]−χ[n−2,2]−χ[n] = ψ[n−2,12]−2·ψ[n−2,2] = 1Sn

Sn−2
−2·1Sn

Sn−2×S2
=

(1Sn−2
⊗ 1−S2

− 1Sn−2
⊗ 1S2

)Sn , hence restricting to odd order elements we get

χ[n−2,12]|2′ = (χ[n] + χ[n−2,2])|2′ .

(2.4) Specht modules in characteristic 2. The Specht modules Sµ
F2

, where

µ ∈ {[n − 1, 1], [n − 2, 2], [n − 2, 12]} and n ≥ 3, have the following structure.

a) For n odd we have S
[n−1,1]
F2

∼= D[n−1,1], for n even S
[n−1,1]
F2

∼=

[
D[n−1,1]

1F2

]
.
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Table 7: Partial decomposition matrices for p odd and n ≥ 4.

n ≡ 0 (mod p)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . .
[n−1, 1] 1 1 . .
[n−2, 2] . . 1 .
[n−2, 12] . 1 . 1

n ≡ 1 (mod p)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . .
[n−1, 1] . 1 . .
[n−2, 2] 1 . 1 .
[n−2, 12] . . . 1

n ≡ 2 (mod p)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . .
[n−1, 1] . 1 . .
[n−2, 2] . 1 1 .
[n−2, 12] . . . 1

n 6≡ 0, 1, 2 (mod p)
Dλ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . .
[n−1, 1] . 1 . .
[n−2, 2] . . 1 .
[n−2, 12] . . . 1

b) For n ≡ 1 (mod 4) we have S
[n−2,2]
F2

∼=

[
D[n−2,2]

1F2

]
, while for n ≡ 3

(mod 4) and n 6= 3 we have S
[n−2,2]
F2

∼= D[n−2,2]. For n ≡ 0 (mod 4) we have

S
[n−2,2]
F2

∼=

[
D[n−2,2]

D[n−1,1]

]
, while for n ≡ 2 (mod 4) we by [18, Thm.24.4] have

HomSn
(1F2

, S
[n−2,2]
F2

) = {0}, implying S
[n−2,2]
F2

∼=




D[n−2,2]

1F2

D[n−1,1]



.

c) For n odd the Jantzen-Schaper formula shows that S
[n−2,12]
F2

has only one

Jantzen layer. This for n ≡ 3 (mod 4) implies S
[n−2,12]
F2

∼= 1F2
⊕ D[n−2,2]. For

n ≡ 1 (mod 4) we only infer that S
[n−2,12]
F2

is self-dual; it is shown as a by-

product in (4.2) that S
[n−2,12]
F2

∼=




1F2

D[n−2,2]

1F2



.

For n even the Jantzen-Schaper formula shows that 1F2
and D[n−2,2] occur in the

first Jantzen layer of S
[n−2,12]
F2

, while D[n−1,1] occurs in a higher layer. Hence for

n ≡ 0 (mod 4) we have a filtration S
[n−2,12]
F2

∼=

[
1F2

⊕ D[n−2,2]

D[n−1,1]

]
; it is shown
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as a by-product in (4.3) that rad(S
[n−2,12]
F2

) = soc(S
[n−2,12]
F2

) ∼= D[n−1,1]. For

n ≡ 2 (mod 4) we have S
[n−2,12]
F2

∼=

[
V

D[n−1,1]

]
, where V ∼ 2 · 1F2

⊕ D[n−2,2]

is self-dual; it is shown as a by-product in (4.4) that S
[n−2,12]
F2

is uniserial.

(2.5) Restrictions of simple modules in characteristic 2. We determine
the structure of D[n−1,1]|Sn−1

and D[n−2,2]|Sn−1
, where p = 2 and n ≥ 5. The

constituents of the direct summands of the restrictions to Sn−1 of the simple
modules labelled by 2-part partitions are known by [30, Thm.3.1].

For n even we have D[n−1,1]|Sn−1
∼= D[n−2,1], for n odd we have D[n−1,1]|Sn−1

∼=


1F2

D[n−2,1]

1F2



. Moreover, for n even we have D[n−2,2]|Sn−1
∼= D[n−3,2].

It is slightly more involved to determine the structure of D[n−2,2]|Sn−1
for

n odd. The modular branching rule yields soc(D[n−2,2]|Sn−1
) ∼= D[n−2,1] ∼=

(D[n−2,2]|Sn−1
)/rad(D[n−2,2]|Sn−1

). For n ≡ 1 (mod 4) and n 6= 5 this implies

D[n−2,2]|Sn−1
∼=




D[n−2,1]

D[n−3,2]

D[n−2,1]



, while for n = 5 we get D[3,2]|S4
∼=

[
D[3,1]

D[3,1]

]
.

For n ≡ 3 (mod 4) we only infer that rad(D[n−2,2]|Sn−1
)/soc(D[n−2,2]|Sn−1

) ∼

2 ·1F2
⊕D[n−3,2] is self-dual; it is shown in (3.2) and used in (4.4) and (4.8) that

D[n−2,2]|Sn−1
is uniserial such that

D[n−2,2]|Sn−1
∼=





D[n−2,1]

1F2

D[n−3,2]

1F2

D[n−2,1]




.

(2.6) Young modules. The decomposition multiplicities [Y λ
Q : Sµ

Q], where λ ∈

{[n], [n − 1, 1], [n − 2, 2], [n − 2, 12]} and n ≥ 3, are reproduced in Table 8 for
p = 2 and in Table 9 for p odd. Here the case n = 3 is covered by deleting the
row and the column belonging to [n − 2, 2].

The p-Kostka numbers, and hence the decomposition multiplicities, for the 2-
part partition cases Y [n−1,1] and Y [n−2,2] are known by [14, Thm.3.3]. For p odd

1Sn

Sn−2
= (1Sn−2

⊗1S2
+1Sn−2

⊗1−S2
)Sn implies M

[n−2,12]
Z(p)

∼= M
[n−2,2]
Z(p)

⊕Y [n−2,12],

while for p = 2 Klyachko’s formula implies M
[n−2,12]
Z(2)

∼= 2 · Y [n−1,1] ⊕ Y [n−2,12]

for n odd, and M
[n−2,12]
Z(2)

∼= Y [n−1,1] ⊕ Y [n−2,12] for n even.

(2.7) Submodule lattices. We need a few notions from the theory of com-
binatorial lattices which are not readily available in textbooks. Most of this
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Table 8: Young modules for p = 2 and n ≥ 4.

n ≡ 1 (mod 4)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . 1 1
[n−1, 1] . 1 . .
[n−2, 2] . . 1 1
[n−2, 12] . . . 1

n ≡ 3 (mod 4)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . 1
[n−1, 1] . 1 . .
[n−2, 2] . . 1 1
[n−2, 12] . . . 1

n ≡ 0 (mod 4)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 1 1 .
[n−1, 1] . 1 1 1
[n−2, 2] . . 1 1
[n−2, 12] . . . 1

n ≡ 2 (mod 4)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 1 . .
[n−1, 1] . 1 1 1
[n−2, 2] . . 1 1
[n−2, 12] . . . 1

actually holds much more generally for modular lattices [25], but here we re-
strict ourselves to submodule lattices.

a) Local submodules. Let A be a finite dimensional F -algebra, where F is
a field, let V be an A-module. The set M(V ) of its submodules is a modular
lattice of finite length, whose join and meet operations are sum and intersection
of submodules, respectively. For any simple A-module S let

LS(V ) := {U ≤ V ;U/rad(U) ∼= S},

L2
S(V ) := {U ≤ V ;U/rad(U) ∼= S ⊕ S},

L∞
S (V ) := {U ≤ V ;U/rad(U) ∼=

⊕r
i=1 S for some r ∈ N0}.

The elements of LS(V ) are called the local submodules of type S, or the S-
local submodules for short. The set L∞

S (V ) is a lattice whose join operation
still is the sum of submodules, but where the meet of U,U ′ ∈ L∞

S (V ) is given
by

∑
{W ∈ L∞

S (V );W ≤ U ∩ U ′}. Summing over all simple A-modules yields

L(V ) :=
∐

S/∼=
LS(V ) = {U ≤ V ;U/rad(U) simple},

L2(V ) :=
∐

S/∼=
L2

S(V ) = {U ≤ V ;U/rad(U) ∼= S ⊕ S for some S}.

In particular, L(V ) is the set of join-irreducible elements of M(V ). These sets
can be used to give a description of the full submodule lattice M(V ) as follows.
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Table 9: Young modules for p odd and n ≥ 4.

n ≡ 0 (mod p)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 1 . .
[n−1, 1] . 1 . 1
[n−2, 2] . . 1 .
[n−2, 12] . . . 1

n ≡ 1 (mod p)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . 1 .
[n−1, 1] . 1 . .
[n−2, 2] . . 1 .
[n−2, 12] . . . 1

n ≡ 2 (mod p)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . .
[n−1, 1] . 1 1 .
[n−2, 2] . . 1 .
[n−2, 12] . . . 1

n 6≡ 0, 1, 2 (mod p)
Y λ

Sµ [n
]

[n
−

1,
1]

[n
−

2,
2]

[n
−

2,
12

]

[n] 1 . . .
[n−1, 1] . 1 . .
[n−2, 2] . . 1 .
[n−2, 12] . . . 1

For any U ∈ L2
S(V ) let {Ui <· U ; i ∈ IU} be the set of its maximal submodules,

where IU is a suitable index set. A set DU = {Li ∈ LS(V ); i ∈ IU} such that
Li +rad(U) = Ui, for all i ∈ IU , is called a dotted-line for U . By [25, Thm.5.2]
dotted-lines always exist, and we may identify IU = EndA(S)

.
∪ {∞}, where

EndA(S) denotes the endomorphism skew field of S, and ‘∞’ is one further
element disjoint to EndA(S). In particular we have |IU | ≥ 3.

Now, for any U ∈ L2(V ) we arbitrarily pick a dotted-line DU ⊆ L(V ) and keep
it fixed. Let M(L(V )) be the set of subsets X ⊆ L(V ) such that i) whenever
we have L ∈ X and L′ ∈ L(V ) such that L′ ≤ L, then we also have L′ ∈ X , and
ii) for any U ∈ L2(V ) and the chosen dotted-line DU ⊆ L(V ) we either have
|DU ∩ X | ≤ 1 or DU ⊆ X . Generalising the result in [3] we have the following
mutually inverse inclusion-preserving bijections [25, Thm.2.5, Thm.2.7]

M(V ) → M(L(V )) : U 7→ {L ∈ L(V );L ≤ U},

M(L(V )) → M(V ) : X 7→
∑

X .

Hence it suffices to determine the local submodules and the pairwise inclusions
between them, as well as L2(V ) and the associated dotted-lines, then M(V ) can
be determined purely combinatorially using the above bijections. In particular,
by [25, Cor.2.8] the lattice M(V ) is distributive if and only if L2(V ) = ∅, and
if M(V ) is distributive and F is a splitting field of A then [25, Sect.5.4] implies
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that M(V ) is unchanged under extension of the base field.

b) Small multiplicities. For the cases [V : S] = 1 and [V : S] = 2 we have
precise descriptions of LS(V ) and L2

S(V ). To this end let e ∈ A be a primitive
idempotent such that eA/rad(eA) ∼= S. Then V e ⊆ V is an eAe-module having
Se as its only constituent, and we have [V e : Se] = [V : S] and EndeAe(Se) ∼=
EndA(S). By [25, Sect.5.4] we have L∞

S (V ) ∼= M(V e) as lattices. Thus if
[V : S] = 1 then we have |LS(V )| = 1 and L2

S(V ) = ∅.

If [V : S] = 2 then we have either V e ∼= Se ⊕ Se or V e ∼=

[
Se
Se

]
. In the latter

case we have L2
S(V ) = ∅ and LS(V ) = {L′, L} where L′ < L. In the former

case we have L2
S(V ) = {U} and LS(V ) = {Li; i ∈ IU}, where we may identify

IU = EndA(S)
.
∪ {∞} = EndeAe(Se)

.
∪ {∞} = IV e, thus |LS(V )| ≥ 3. We

have Li + Lj = U for all i 6= j ∈ IU , hence {Li + rad(U); i ∈ IU} is in bijection
with the maximal submodules of U , and LS(V ) is the unique dotted-line for U .

3 The Young module Y
[n−2,2]

F2

Let p = 2 and n ≥ 5 and Y := Y [n−2,2]. We determine the submodule structure
of YF2

, as is indicated in Table 1.

(3.1) The cases n ≡ ±1 (mod 4). By (2.6) and (2.3) for n ≡ 3 (mod 4) we
have YF2

∼= D[n−2,2]. For n ≡ 1 (mod 4) we have YF2
∼ 2 · 1F2

⊕D[n−2,2]. Since
YF2

is indecomposable and self-dual, this determines the submodule structure.

(3.2) The case n ≡ 2 (mod 4). We have a Specht filtration Y ∼=

[
S

[n−1,1]
Z(2)

S
[n−2,2]
Z(2)

]
,

yielding a filtration with uniserial layers

YF2
∼=





D[n−1,1]

1F2

D[n−2,2]

1F2

D[n−1,1]




.

Letting Ŷ := Y [n−1,2], we have Ŷ |Sn
∼= Y , implying YF2

∼= D[n−1,2]|Sn
. Thus

by (2.5) we have soc(YF2
) ∼= YF2

/rad(YF2
) ∼= D[n−1,1]. Since rad(YF2

)/soc(YF2
)

is self-dual having a submodule of shape

[
D[n−2,2]

1F2

]
, we conclude that YF2

∼=

D[n−1,2]|Sn
is uniserial, which also proves the assertion left open in (2.5).
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(3.3) The case n ≡ 0 (mod 4). We have a Specht filtration Y ∼=





1Z(2)

S
[n−1,1]
Z(2)

S
[n−2,2]
Z(2)



,

by (2.3) yielding a filtration with uniserial layers

YF2
∼=





1F2

D[n−1,1]

1F2

D[n−2,2]

D[n−1,1]




.

Hence from self-duality we deduce 1F2
⊕ D[n−1,1] ≤ soc(YF2

) ∼= YF2
/rad(YF2

),
implying equality and rad(YF2

)/soc(YF2
) ∼= D[n−2,2].

Let L′
0, L

′
1 < YF2

be the unique submodules isomorphic to 1F2
and D[n−1,1], re-

spectively. Let L2 < YF2
be the unique D[n−2,2]-local submodule, hence we have

L′
1 < L2 and L2

∼=

[
D[n−2,2]

D[n−1,1]

]
. There is a subquotient of shape

[
D[n−1,1]

D[n−2,2]

]
,

hence there is a D[n−1,1]-local submodule L1 < YF2
such that L′

1 < L2 < L1,
and thus L′

1 and L1 are the only D[n−1,1]-local submodules.

Let L̂1 < YF2
be the unique submodule such that YF2

/L̂1
∼= D[n−1,1]. Thus

L̂1/L′
1 ∼ 2 · 1F2

⊕ D[n−2,2] is self-dual, and has a submodule isomorphic to

L2/L′
1
∼= D[n−2,2]. Assume that L̂1/L′

1 is not semisimple, then YF2
has a sub-

quotient of shape

[
1F2

1F2

]
, which is an F2C2-module for the natural epimorphic

image Sn → C2. Hence YF2
|Sn−1

also has a subquotient of this shape. But

Y |Sn−1
∼= 2 ·1Z(2)

⊕2 ·Y [n−2,1]⊕Y [n−3,2] implies YF2
|Sn−1

∼= 2 ·1F2
⊕2 ·D[n−2,1]⊕

D[n−3,2], a contradiction. Thus we have L̂1/L′
1
∼= 2 · 1F2

⊕ D[n−2,2].

Hence there is a 1F2
-local submodule L0 < YF2

of shape

[
1F2

D[n−1,1]

]
, thus

rad(L0) = L′
1. Letting V := L′

0 ⊕ L0 we get (V/L′
1)/rad(V/L′

1)
∼= 1F2

⊕ 1F2
,

thus there are precisely three 1F2
-local submodules {L′

0, L0, L
′′
0}, forming the

unique dotted-line for V , where L′′
0 has shape

[
1F2

D[n−1,1]

]
and rad(L′′

0) = L′
1.

It remains to determine L1. Assume that rad(L1) = L2, then we have L1 ∩
L0 = L1 ∩ L′′

0 = L′
1 and L1 ∩ L′

0 = {0}, implying YF2
/L1

∼= 1F2
⊕ 1F2

, a
contradiction. Assume that rad(L1) = L0 + L2 or rad(L1) = L′′

0 + L2, then we
have YF2

= L′
0 ⊕ L1, again a contradiction. Hence we have rad(L1) = L2 + L′

0.

4 The Young module Y
[n−2,12]

F2

Let n ≥ 5 and Y := Y [n−2,12]. We determine the submodule structure of YF2
, as

is indicated in Table 2. To do so, in (4.1)–(4.4) we first consider the congruence
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classes of n modulo 4 separately, which settles the case n ≡ 2 (mod 4), but only
gives partial information for n 6≡ 2 (mod 4). To complete the latter cases we in
(4.5) set up an induction argument, which then is carried out in (4.6)–(4.8).

(4.1) The case n ≡ 3 (mod 4). By (2.6) and (2.3) we have a Specht filtration

Y ∼=





1Z(2)

S
[n−2,2]
Z(2)

S
[n−2,12]
Z(2)



 ,

implying 1F2
⊕ D[n−2,2] ≤ soc(YF2

) ∼= YF2
/rad(YF2

), and thus equality and

soc(YF2
) = rad(YF2

). Hence we have a filtration YF2
∼=

[
1F2

⊕ D[n−2,2]

1F2
⊕ D[n−2,2]

]
.

Assume that YF2
has a submodule of shape

[
1F2

1F2

]
, then it also has such a quo-

tient module, and hence a submodule of shape

[
D[n−2,2]

D[n−2,2]

]
, contradicting its

indecomposability. Similarly we deduce the non-existence of quotient modules

of shape

[
1F2

1F2

]
, and of submodules or quotient modules of shape

[
D[n−2,2]

D[n−2,2]

]
.

(4.2) The case n ≡ 1 (mod 4). We have a Specht filtration

Y ∼=





1Z(2)

S
[n−2,2]
Z(2)

S
[n−2,12]
Z(2)



 .

Since Y and 1Z(2)
are permutation lattices, and

[
1F2

1F2

]
is a permutation module

lifting to the regular permutation lattice Z(2)C2 for the natural epimorphic
image Sn → C2, we obtain dimF2

(HomSn
(1F2

, YF2
)) = dimQ(HomSn

(1Q, YQ)) =

1 and dimF2
(HomSn

(

[
1F2

1F2

]
, YF2

)) = dimQ(HomSn
(1Q ⊕ 1−Q , YQ)) = 1. Thus

YF2
has a unique submodule isomorphic to 1F2

, and no submodule of shape[
1F2

1F2

]
. Similarly, YF2

has a unique quotient module isomorphic to 1F2
, and

none of shape

[
1F2

1F2

]
. Thus we have a filtration with uniserial layers

YF2
∼=





1F2

D[n−2,2]

1F2

1F2

D[n−2,2]

1F2




.
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Let S
[n−2,12]
F2

∼= U < YF2
be the submodule affording the above filtration, and

let W < YF2
such that U 6≤ W and W/(W ∩U) ∼= (W + U)/U is simple. Hence

we have W/(W ∩ U) ∼= 1F2
, and thus W ∩ U = rad(U), implying soc2(YF2

) =

rad(U) ∼=

[
D[n−2,2]

1F2

]
. Hence we have YF2

/rad2(YF2
) ∼=

[
1F2

D[n−2,2]

]
, implying

soc2(YF2
) < rad2(YF2

) and rad2(YF2
)/soc2(YF2

) ∼ 2 · 1F2
.

(4.3) The case n ≡ 0 (mod 4). We have a Specht filtration

Y ∼=





S
[n−1,1]
Z(2)

S
[n−2,2]
Z(2)

S
[n−2,12]
Z(2)



 .

We determine soc(YF2
). From M

[n−2,12]
F2

∼= Y
[n−1,1]

F2
⊕ YF2

we deduce that 1F2

is not a submodule of YF2
. By (2.5) from D[n−1,1]|Sn−2

∼=




1F2

D[n−3,1]

1F2



 we get

dimF2
(HomSn

(D[n−1,1],M
[n−2,12]
F2

)) = dimF2
(HomSn−2

(D[n−1,1]|Sn−2
, 1F2

)) = 1,

hence there is a unique submodule of YF2
isomorphic to D[n−1,1]. As 1F2

is not a

quotient module of D[n−2,2]|Sn−2
, we get dimF2

(HomSn
(D[n−2,2],M

[n−2,12]
F2

)) =

dimF2
(HomSn−2

(D[n−2,2]|Sn−2
, 1F2

)) = 0, hence D[n−2,2] is not a submodule of

YF2
. Thus we have soc(YF2

) ∼= YF2
/rad(YF2

) ∼= D[n−1,1].

Letting Ŷ := Y [n−1,12], we get Ŷ |Sn
∼= Y [n−1,1]⊕Y where Y

[n−1,1]
F2

∼= M
[n−1,1]
F2

∼=


1F2

D[n−1,1]

1F2



. By (4.2) we have soc(ŶF2
) ∼= 1F2

, hence factoring it out yields

(ŶF2
/soc(ŶF2

))|Sn
∼=

[
1F2

D[n−1,1]

]
⊕ YF2

. We have (soc2(ŶF2
)/soc(ŶF2

))|Sn
∼=

D[n−1,2]|Sn
∼=




D[n−1,1]

D[n−2,2]

D[n−1,1]



. Thus projecting D[n−1,2] ≤ ŶF2
/soc(ŶF2

) into the

direct summand YF2
of (ŶF2

/soc(ŶF2
))|Sn

, we obtain a submodule of YF2
of

Loewy length 3, which hence is isomorphic to D[n−1,2]|Sn
.

Let V := rad(YF2
)/soc(YF2

). Hence V ∼ 2 · 1F2
⊕ D[n−1,1] ⊕ 2 · D[n−2,2] is

self-dual, and has a filtration with uniserial second layer

V ∼=





1F2

D[n−2,2]

D[n−1,1]

1F2
⊕ D[n−2,2]



 .
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Let L1 < V be the unique D[n−1,1]-local submodule. From having a submodule

of shape

[
D[n−1,1]

D[n−2,2]

]
and being self-dual we deduce that there are D[n−2,2]-

local submodules L2, L
′
2 < V such that L′

2 < L1 < L2. Thus L2 and L′
2 are

the only D[n−2,2]-local submodules, L′
2 is the unique submodule isomorphic to

D[n−2,2], and we have L1
∼=

[
D[n−1,1]

D[n−2,2]

]
. In particular this implies that V has

no submodule isomorphic to D[n−1,1].

We have Y |Sn−1
∼= 3 · Y [n−2,1] ⊕ Y [n−3,12], where Y

[n−2,1]
F2

∼= D[n−2,1] does not

belong to the principal 2-block of Sn−1. Thus V |Sn−1
∼= D[n−2,1]⊕Y

[n−3,12]
F2

, im-
plying that V is indecomposable. Moreover, by (4.1) there is a unique submodule
L′

0 < V isomorphic to 1F2
, hence we have soc(V ) = L′

0 ⊕ L′
2
∼= 1F2

⊕ D[n−2,2].

We determine the structure of L2. Assume that rad(L2) = L1, then V/L2 ∼

2 · 1F2
, and projecting into the direct summand Y

[n−3,12]
F2

of V |Sn−1
we obtain

a quotient module ∼ 2 · 1F2
, contradicting (4.1). Hence we have L2 ∼ 1F2

⊕
D[n−1,1]⊕2·D[n−2,2]. Assume that L2∩soc(V ) = L′

2, then we have V ∼= L′
0⊕L2,

a contradiction. Hence soc(V ) = L′
0 ⊕ L′

2 < L2 and thus rad(L2) = L′
0 ⊕ L1.

(4.4) The case n ≡ 2 (mod 4). We have a Specht filtration

Y ∼=





S
[n−1,1]
Z(2)

S
[n−2,2]
Z(2)

S
[n−2,12]
Z(2)



 ,

and proceeding as in (4.3) we again find soc(YF2
) ∼= YF2

/rad(YF2
) ∼= D[n−1,1].

Letting Ŷ := Y [n−1,12], we have Ŷ |Sn
∼= Y [n−1,1] ⊕ Y . By (4.1) we have

soc(ŶF2
) ∼= 1F2

⊕D[n−1,2], thus factoring out the submodule L < ŶF2
isomorphic

to 1F2
yields (ŶF2

/L)|Sn
∼=

[
1F2

D[n−1,1]

]
⊕ YF2

, which by (3.2) has a submodule

D[n−1,2]|Sn
∼=





D[n−1,1]

1F2

D[n−2,2]

1F2

D[n−1,1]




.

Thus projecting the submodule D[n−1,2] ≤ ŶF2
/L into the direct summand YF2

of (ŶF2
/L)|Sn

, we obtain a submodule of YF2
of Loewy length 5, which hence is

isomorphic to D[n−1,2]|Sn
.

Let V := rad(YF2
)/soc(YF2

). Hence V ∼ 4 · 1F2
⊕ D[n−1,1] ⊕ 2 · D[n−2,2] is
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self-dual, and its unique D[n−1,1]-local submodule is given as

L1
∼=





D[n−1,1]

1F2

D[n−2,2]

1F2



 .

Hence by self-duality there are D[n−2,2]-local submodules L2, L
′
2 ≤ V such that

L′
2 < L1 < L2. Thus L2 and L′

2
∼=

[
D[n−2,2]

1F2

]
are the only D[n−2,2]-local

submodules of V .

We have Y |Sn−1
∼= 3 · Y [n−2,1] ⊕ Y [n−3,12], where Y

[n−2,1]
F2

∼= D[n−2,1] does not

belong to the principal 2-block of Sn−1. Thus we have V |Sn−1
∼= D[n−2,1] ⊕

Y
[n−3,12]

F2
, and (4.2) implies that soc2(V ) = L′

2. Hence we have V/rad2(V ) ∼=[
1F2

D[n−2,2]

]
and soc2(V ) < rad2(V ), where rad2(V )/soc2(V ) ∼ 2·1F2

⊕D[n−1,1]

is self-dual and has a submodule isomorphic to L1/L′
2
∼=

[
D[n−1,1]

1F2

]
. Hence

rad2(V )/soc2(V ) is uniserial, implying that V is uniserial as well, completing
the case n ≡ 2 (mod 4).

(4.5) The cases n 6≡ 2 (mod 4), continued. To complete the cases n 6≡ 2
(mod 4), where n ≥ 5, we proceed by induction. For n = 5 we explicitly

confirm that Y
[3,12]

F2
is uniserial as described in (1.5). Hence we now let n ≥ 6.

(4.6) The case n ≡ 0 (mod 4), continued. We keep the notation of (4.3).
Assume that there is an 1F2

-local submodule L0 < V such that L′
0 6≤ L0, then V

has a subquotient isomorphic to 1F2
⊕ 1F2

. Since V |Sn−1
∼= D[n−2,1] ⊕ Y

[n−3,12]
F2

this implies that Y
[n−3,12]

F2
has a subquotient isomorphic to 1F2

⊕1F2
, by induction

contradicting (4.8). Hence there is an 1F2
-local submodule L′

0 < L0 < V , thus
L′

0 and L0 are the only 1F2
-local submodules of V .

Since we have L0 6≤ L2 and L0 < V , we conclude that rad(L0) = L0 ∩ L2 and

rad(L0) ∈ {L′
0, L

′
0⊕L′

2, L
′
0⊕L1}. Assume that rad(L0) = L′

0, then Y
[n−3,12]

F2
has

a submodule ∼ 2 · 1F2
, contradicting (4.1). Assume that rad(L0) = L′

0 ⊕ L1 =
rad(L2), then we have V/L0

∼= D[n−2,2], thus by self-duality there is W < L0

such that V/W ∼=

[
D[n−2,2]

D[n−1,1]

]
, contradicting L0/rad(L0) ∼= 1F2

. Hence we

have rad(L0) = L′
0 ⊕ L′

2, completing the case n ≡ 0 (mod 4).

(4.7) The case n ≡ 1 (mod 4), continued. We keep the notation of (4.2). We

have Y |Sn−1
∼= Y [n−2,1] ⊕ Y [n−3,12], where by (4.3) Y

[n−3,12]
F2

/rad(Y
[n−3,12]

F2
) ∼=
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soc(Y
[n−3,12]

F2
) ∼= D[n−2,1] and Y

[n−2,1]
F2

∼= M
[n−2,1]
F2

∼=




1F2

D[n−2,1]

1F2



.

Letting V := rad(YF2
)/soc(YF2

), where soc(YF2
) ∼= YF2

/rad(YF2
) ∼= 1F2

, yields

V |Sn−1
∼= D[n−2,1] ⊕ Y

[n−3,12]
F2

. Assume that rad(V )/soc(V ) ∼= 1F2
⊕ 1F2

, then

Y
[n−3,12]

F2
has a subquotient isomorphic to 1F2

⊕ 1F2
, by induction contradicting

(4.6). Hence rad(V )/soc(V ) ∼=

[
1F2

1F2

]
, completing the case n ≡ 1 (mod 4).

(4.8) The case n ≡ 3 (mod 4), continued. We keep the notation of (4.1).

We have Y |Sn−1
∼= Y [n−2,1] ⊕ Y [n−3,12], hence letting M := M

[n−2,1]
Z(2)

∼= Y [n−2,1]

and Y ′ := Y [n−3,12] we by (4.4) have

YF2
|Sn−1

∼= MF2
⊕ Y ′

F2
∼=




1F2

D[n−2,1]

1F2



 ⊕





D[n−2,1]

1F2

D[n−3,2]

1F2

D[n−2,1]

1F2

D[n−3,2]

1F2

D[n−2,1]





.

Let L′
0, L

′
2 < YF2

be the unique submodules isomorphic to 1F2
and D[n−2,2],

respectively. Assume that there is a D[n−2,2]-local submodule L2 < YF2
such

that L′
2 6≤ L2, then YF2

has a subquotient isomorphic to D[n−2,2] ⊕ D[n−2,2].
Thus we conclude that YF2

|Sn−1
has a subquotient isomorphic to D[n−3,2] ⊕

D[n−3,2], a contradiction. Hence we have L′
2 < L2 < YF2

, thus L′
2 and L2

are the only D[n−2,2]-local submodules, and since L2 has Loewy length 2 and
rad(L2) > L′

2 we conclude that rad(L2) = soc(YF2
) = L′

0 ⊕ L′
2.

(∗) Assume that there is a 1F2
-local submodule L0 < YF2

such that L′
0 6≤ L0, then

we have L′
2 < L0 and L0

∼=

[
1F2

D[n−2,2]

]
. To proceed towards a contradiction,

let L̂2 < YF2
be the unique submodule such that YF2

/L̂2
∼= D[n−2,2], hence we

have L̂2/L′
2
∼= 1F2

⊕1F2
. Moreover, let α ∈ EndSn

(YF2
) such that im(α) = L′

2
∼=

D[n−2,2], thus we have α2 = 0 and ker(α) = L̂2.

Since M is a permutation lattice and Y ′ is a direct summand of a permutation
lattice we get dimF2

(EndSn−1
(MF2

)) = 2 and dimF2
(EndSn−1

(Y ′
F2

)) = 3. Hence
there is an F2-basis {idM , µ} of EndSn−1

(MF2
), where im(µ) = soc(MF2

) ∼= 1F2

and µ2 = 0, and there is an F2-basis {idY ′ , δ, δ2} of EndSn−1
(Y ′

F2
), where im(δ) =

rad4(Y ′
F2

) = soc5(Y ′
F2

) and hence im(δ2) = soc(Y ′
F2

) ∼= D[n−2,1] and δ3 = 0.
Similarly, dimF2

(HomSn−1
(MF2

, Y ′
F2

)) = dimF2
(HomSn−1

(Y ′
F2

,MF2
)) = 1, hence



21

there are 0 6= ρ ∈ HomSn−1
(MF2

, Y ′
F2

) and 0 6= λ ∈ HomSn−1
(Y ′

F2
,MF2

) such that

im(ρ) = soc2(Y ′
F2

) ∼=

[
1F2

D[n−2,1]

]
as well as im(λ) = soc2(MF2

) ∼=

[
D[n−2,1]

1F2

]
.

Thus EndSn−1
(MF2

⊕ Y ′
F2

) has {idM , µ, ρ, λ, idY ′ , δ, δ2} as an F2-basis, whose
multiplication table is given in Table 10; note that endomorphisms also act
from the right.

Since by (3.2) D[n−2,2]|Sn−1
has Loewy length 5 such that soc(D[n−2,2]|Sn−1

) ∼=
D[n−2,1], we conclude that α ∈ EndSn−1

(MF2
⊕ Y ′

F2
) can be written as an F2-

linear combination α = δ + aρ + bλ, where a, b ∈ F2 and where we replace δ by
δ + δ2 if necessary. From α2 = (1 + ab)δ2 we deduce a = b = 1. Hence we have

L′
2 = im(δ + ρ + λ) and L̂2 = ker(δ + ρ + λ).

Thus we have soc3(Y ′
F2

) = soc7(Y ′
F2

)δ+ρ+λ < L′
2, and since both induced maps

λ : Y ′
F2

/soc7(Y ′
F2

) → soc2(MF2
) and δ : Y ′

F2
/soc7(Y ′

F2
) → soc5(Y ′

F2
)/soc3(Y ′

F2
) are

isomorphisms, we conclude that L′
2 ∩ MF2

= {0} and L′
2 ∩ Y ′

F2
= soc3(Y ′

F2
).

Moreover, for [m, y] ∈ ker(δ + ρ + λ) < MF2
⊕ Y ′

F2
we have [yλ, yδ + mρ] = 0,

hence yδ = mρ ∈ soc2(Y ′
F2

), implying y ∈ soc6(Y ′
F2

) < soc7(Y ′
F2

) = ker(λ). Thus

we have L̂2 < MF2
⊕ soc6(Y ′

F2
).

Let M ′
F2

:= soc6(Y ′
F2

)/soc3(Y ′
F2

). Hence MF2
and M ′

F2
have shape




1F2

D[n−2,1]

1F2



.

Let W := (L′
2|Sn−1

)/soc3(Y ′
F2

) < MF2
⊕ M ′

F2
and V := (L̂2|Sn−1

)/soc3(Y ′
F2

) <

MF2
⊕ M ′

F2
. Hence we deduce (MF2

⊕ M ′
F2

)/V ∼ 1F2
⊕ D[n−2,1] and W ∼=[

D[n−2,1]

1F2

]
, where W ∩ MF2

= W ∩ M ′
F2

= {0}. Moreover, we have W < V

such that V/W ∼= 1F2
⊕ 1F2

, hence there are submodules U,U ′ < V such that
U ∩ U ′ = W and U + U ′ = V . Assume that both U,U ′ ≤ soc2(MF2

⊕ M ′
F2

),

then V ≤ soc2(MF2
⊕M ′

F2
) as well. Since V ∼ 3 ·1F2

⊕D[n−2,1] and soc2(MF2
⊕

M ′
F2

) ∼ 2 · 1F2
⊕ 2 · D[n−2,1] this is a contradiction. Hence we may assume that

U 6≤ soc2(MF2
⊕M ′

F2
), thus since U/W ∼= 1F2

we conclude that U also has shape


1F2

D[n−2,1]

1F2



. Hence U ∩ MF2
= U ∩ M ′

F2
= {0}, implying MF2

∼= U ∼= M ′
F2

.

Now Y [n−2,1]|Sn−2
∼= 2 · Y [n−2] ⊕ Y [n−3,1] implies MF2

|Sn−2
∼= Y

[n−2,1]
F2

|Sn−2
∼=

2 · 1F2
⊕ D[n−3,1]. Moreover, we have Y [n−3,12]|Sn−2

∼= 3 · Y [n−3,1] ⊕ Y [n−4,12],

hence Y ′
F2
|Sn−2

∼= 3 ·D[n−3,1] ⊕ Y
[n−4,12]

F2
, where by induction and (4.7) we have

Y
[n−4,12]

F2

∼=





1F2

D[n−4,2]

1F2

1F2

D[n−4,2]

1F2




.
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Table 10: Multiplication table of EndSn−1
(MF2

⊕ Y ′
F2

).

idM µ ρ λ idY ′ δ δ2

idM idM µ ρ . . . .
µ µ . . . . . .
ρ . . . . ρ . .
λ λ . δ2 . . . .

idY ′ . . . λ idY ′ δ δ2

δ . . . . δ δ2 .
δ2 . . . . δ2 . .

Thus we deduce that M ′
F2
|Sn−2

∼=

[
1F2

1F2

]
⊕D[n−3,1], implying that MF2

|Sn−2
6∼=

M ′
F2
|Sn−2

, the final contradiction to the assumption (∗).

Hence there is a 1F2
-local submodule L0 < YF2

such that L′
0 < L0, thus L′

0

and L0 are the only 1F2
-local submodules, and we conclude that rad(L0) =

soc(YF2
) = L′

0 ⊕ L′
2, finally completing the case n ≡ 3 (mod 4).

5 The natural module D
[n−1,1]

We finally prove (1.2) and (1.4) revealing the structure of the tensor square
D[n−1,1] ⊗ D[n−1,1], for the cases p = 2 and p odd, respectively.

(5.1) The case p odd. For n ≡ 0 (mod p) the assertion follows directly from

(2.3), (2.2) and (2.6). For n 6≡ 0 (mod p) we by (2.6) have D[n−1,1] ∼= S
[n−1,1]
F2

∼=

Y
[n−1,1]

F2
, hence D[n−1,1] ⊗ D[n−1,1] is a direct sum of Young modules, and thus

the assertion again follows from (2.2).

(5.2) The case p = 2 and n odd. Since D[n−1,1] ∼= S
[n−1,1]
F2

∼= Y
[n−1,1]

F2
is a

Young module, D[n−1,1] ⊗ D[n−1,1] is a direct sum of Young modules as well,

and hence D[n−1,1] ⊗ D[n−1,1] ∼= Y
[n−1,1]

F2
⊕ Y

[n−2,12]
F2

∼= D[n−1,1] ⊕ Y
[n−2,12]

F2
.

(5.3) The case p = 2 and n even. We first consider the case n = 4. Since
D[3,1] has the Klein 4-group V4 ⊳S4 in its kernel, D[3,1] is a module for S4/V4

∼=

S3, and as such isomorphic to D[2,1]. The module Y
[13]

F2

∼=

[
1F2

1F2

]
is a module for

S3/A3
∼= C2

∼= S4/A4. Hence by (5.2) we get D[3,1]⊗D[3,1] ∼= D[3,1]⊕

[
1F2

1F2

]
∼=

rad(Y
[2,12]

F2
)/soc(Y

[2,12]
F2

), which in particular is decomposable.
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We now let n ≥ 6. We have V := Y
[n−1,1]

F2
⊗ Y

[n−1,1]
F2

∼= 2 · Y
[n−1,1]

F2
⊕ Y

[n−2,12]
F2

.
Fixing a direct sum decomposition of V as above, we let π : V → im(π) ∼=

Y
[n−2,12]

F2
be the associated projection with ker(π) ∼= Y

[n−1,1]
F2

⊕ Y
[n−1,1]

F2
. From

the unique composition series of Y
[n−1,1]

F2
we get a filtration

V ∼=





1F2

D[n−1,1] ⊕ D[n−1,1]

1F2
⊕ (D[n−1,1] ⊗ D[n−1,1]) ⊕ 1F2

D[n−1,1] ⊕ D[n−1,1]

1F2




,

hence there is U < V having a filtration {0} < U1 < U2 < U with layers

U ∼=




D[n−1,1] ⊗ D[n−1,1]

D[n−1,1] ⊕ D[n−1,1]

1F2



 .

Now V contains the constituent D[n−2,2] with multiplicity 2, and from the sub-

module structure of im(π) ∼= Y
[n−2,12]

F2
given in Table 2 we deduce that there

are precisely two D[n−2,2]-local submodules L′
2 < L2 < rad(im(π)) < V . Since

D[n−1,1] ⊗ D[n−1,1] also contains the constituent D[n−2,2] with multiplicity 2

we have L2 ≤ U as well. From soc(im(π)) ∼= soc(Y
[n−2,12]

F2
) ∼= D[n−1,1] we get

1F2
∼= U1 ≤ ker(π). Moreover there is a submodule U1 < L ≤ U2 ∩ ker(π) such

that L ∼ 1F2
⊕ D[n−1,1]. Hence in conclusion we have L ⊕ L2 ≤ U .

We now for the moment distinguish two cases. For n ≡ 2 (mod 4) we have
D[n−1,1]⊗D[n−1,1] ∼ 4·1F2

⊕D[n−1,1]⊕2·D[n−2,2], hence U ∼ 5·1F2
⊕3·D[n−1,1]⊕

2 ·D[n−2,2], and by Table 2 we obtain L2 ∼ 3 ·1F2
⊕2 ·D[n−1,1]⊕2 ·D[n−2,2]. For

n ≡ 0 (mod 4) we similarly get D[n−1,1]⊗D[n−1,1] ∼ 2·1F2
⊕D[n−1,1]⊕2·D[n−2,2],

hence U ∼ 3·1F2
⊕3·D[n−1,1]⊕2·D[n−2,2] and L2 ∼ 1F2

⊕2·D[n−1,1]⊕2·D[n−2,2].

Thus in both cases we may argue as follows. We have soc(L2) ∼= D[n−1,1].
Assume that soc(L2) 6≤ U2, then we conclude L2

∼= (L2 + U2)/U2 ≤ U/U2
∼=

D[n−1,1] ⊗ D[n−1,1], contradicting the above multiplicities. Thus soc(L2) < U2,
and hence from U2 ∼ 1F2

⊕ 2 · D[n−1,1] we deduce U2 = L ⊕ soc(L2), where
L = U2 ∩ ker(π). Moreover, we have U/(L ⊕ L2) ∼= 1F2

. Hence U/U2 has shape[
1F2

L2

]
, where L2 := L2/soc(L2) = L2/soc(im(π)).

Assume that L̂ := U ∩ker(π) > U2∩ker(π) = L, then since L2 < im(π) we have

L̂/L ∼= 1F2
and L̂⊕L2 = U , implying U/U2

∼= (L̂⊕L2)/(L⊕soc(L2)) ∼= 1F2
⊕L2.

Hence U/U2
∼= D[n−1,1]⊗D[n−1,1] has a subquotient isomorphic to 1F2

⊕1F2
. We

deduce that (U/U2)|Sn−1
∼= D[n−2,1]⊗D[n−2,1] also has a subquotient isomorphic

to 1F2
⊕ 1F2

, by (5.2) contradicting Table 2. Hence we have L̂ = L, and thus
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U/L ∼= Uπ = rad(im(π)) ∼= rad(Y
[n−2,12]

F2
). Since U/U2

∼= (U/L)/(U2/L) ∼=
Uπ/soc(L2) = rad(im(π))/soc(im(π)) this proves the asserted isomorphism.

For n ≡ 2 (mod 4) the module rad(im(π))/soc(im(π)) is uniserial and hence
indecomposable. For n ≡ 0 (mod 4) and n ≥ 6 let soc(im(π)) < L′

1 < L1 <
rad(im(π)) be the 1F2

-local submodules of im(π), and let L1 := L1/soc(im(π)).
Fixing a direct sum decomposition of rad(im(π))/soc(im(π)), there is a unique
summand containing L1, and a unique summand containing L2 as a submodule.
Since L1 ∩ L2 6= {0} and L1 + L2 = rad(im(π))/soc(im(π)) we conclude that
rad(im(π))/soc(im(π)) is indecomposable, and we are done.
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