
A Disk-Based Parallel Implementation for Direct
Condensation of Large Permutation Modules

Eric Robinson
�

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
tivadar@ccs.neu.edu

J�urgen M�uller
Lehrstuhl D f�ur Mathematik

RWTH Aachen
52062 Aachen / Germany

juergen.mueller@
math.rwth-aachen.de

Gene Cooperman
�

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
gene@ccs.neu.edu

ABSTRACTThrough the use of a new disk-based method for enumerat-ing very large orbits,
ondensation for orbits with tens of bil-lions of elements
an be performed. The algorithm is novelin that it o�ers eÆ
ient a

ess to data using distributed disk-based data stru
tures. This provides fast a

ess to hundredsof gigabytes of data, whi
h allows for
omputing withoutworrying about memory limitations.The new algorithm is demonstrated on one of the long-standing open problems in the Modular Atlas Proje
t [11℄:the Brauer tree of the prin
ipal 17-blo
k the sporadi
 sim-ple Fis
her group Fi23. The tree is
ompleted by
om-puting three orbit
ounting matri
es for the Fi23-orbit ofsize 11; 739; 046; 176 a
ting on ve
tors of dimension 728 overGF (2). The
onstru
tion of these matri
es requires 3-1/2days on a
luster of 56
omputers, and uses 8 GB of diskstorage and 800 MB of memory per ma
hine.
Categories and Subject DescriptorsI.1.2 [Symboli
 and Algebrai
 Manipulation℄: Algo-rithms|algebrai
 algorithms
General TermsAlgorithms, Experimentation
Keywordspermutation groups, matrix groups, disk-based
omputa-tion, parallel
omputation, Brauer trees,
ondensation, spo-radi
 Fis
her group
1. INTRODUCTIONIn re
ent years, in parti
ular in the framework of theMod-ular Atlas proje
t mentioned below, but also in other appli
a-�This work was partially supported by the National S
ien
eFoundation under Grant ACIR-0342555.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

tions, the need of te
hniques to deal with very large permu-tation domains a
ted on by �nite groups be
ame apparent.Condensation, whose formalism is re
alled in Se
tion 2, isone of the workhorses allowing one to handle those, by some-times dramati
ally de
reasing the size of the obje
ts to bemanaged expli
itly, while retaining enough of their internalstru
ture to remain useful.In [7℄ this was done for the orbit of some ve
tor under alinear a
tion of the group in question, by �rst forming a per-mutation representation, whi
h was then pro
essed to �ndthe asso
iated
ondensed module. Su
h
omputations werelimited to permutations with at most hundreds of millionsof points, due to memory limitations. Those
omputationsused a spa
e-time trade-o� in order to stay within the limitsof aggregate RAM in a
luster. Under su
h a spa
e-timetrade-o�, optimizing any
omputation with more than a bil-lion points typi
ally pushed the time requirements so farthat the
omputation be
ame impra
ti
al.A more re
ent resear
h dire
tion [6, 22℄ looked at usingdistributed disk for large
omputations su
h as orbit enu-meration. Here the disks of a
luster are a

essed in astreaming manner for similar performan
e to a single mem-ory module. Essentially this gives a
omputation a

ess toterabytes of fast storage where previously only gigabyteswere available. Many problems that were previously impos-sible have be
ome feasible due to a large spa
e-time tradeo�.Using one of these distributed disk-based te
hniques
apa-ble of generating orbits with tens of billions of ve
tors, itbe
omes advantageous to work with the ve
tors in the orbitdire
tly rather than produ
ing a permutation representa-tion.In this paper we present a distributed disk-based imple-mentation of the dire
t
ondense te
hnique. The details ofthe underlying sequential algorithm and the new distributedalgorithm are given in Se
tions 3 and 4, respe
tively. Ourimplementation, whi
h of
ourse is of general purpose, hasbeen su

essfully tested by way of the following example,whi
h is detailed in Se
tion 5: We
onsider the sporadi
simple Fis
her group Fi23, whi
h has a transitive permu-tation domain of size 11; 739; 046; 176. This is realized asa set of ve
tors of dimension 782 over GF (2). On
e thisorbit has been enumerated, it is partitioned into the 6; 486suborbits of a suitable
ondensation subgroup, and the as-so
iated orbit
ounting matri
es for several elements of Fi23are produ
ed.

1.1 Related WorkEnumeration and dire
t
ondensation of large orbits, andtheir appli
ation to modular representations and other as-pe
ts of �nite groups, have raised some interest in re
entyears. The dire
t
ondense te
hnique has been invented in[20℄, already in
luding a notion of landmarks. It has beenimplemented as parallelized versions in [7, 12℄, and has beenfurther developed using subgroup stru
tures in [15, 17, 19℄.As for
on
rete examples dealt with, in [5℄ the sporadi
simple Thompson group was
onsidered, where the
om-putational ar
hite
ture STAR/MPI (
urrently ParGCL) [3℄was used, while in [18℄ the sporadi
 simple Lyons group was
onsidered. In both
ases, the aim was to
omplete
ertainBrauer trees. In [15, 16, 19, 22℄, the sporadi
 simple BabyMonster group was
onsidered.
1.2 AcknowledgementsThe authors thank Leo Hill for providing on the North-eastern University
luster the extensive disk resour
es neededfor this
omputation. We also thank Daniel Kunkle of North-eastern University for helpful dis
ussions
on
erning eÆ
ientdisk-based data stru
tures and algorithms.
2. BACKGROUND

2.1 NotationIn examining groups and their a
tions on a ve
tor spa
e,it be
omes useful to have some shorthand notation: We usethe expression vG, where v is a ve
tor and G is a group, todenote the G-orbit of v, or vG = fvg : g 2 Gg where vgis the a
tion of g on v by ve
tor-matrix multipli
ation. Inaddition, given a subgroup K � G, a G-orbit O = vG is adisjoint union of K-orbits S = fS1; : : : ; Skg,
alled the K-suborbits in O. In parti
ular, we have jS1j+ : : :+ jSkj = jOj.Finally, it will also be useful to have notation for applyinga parti
ular group element g 2 G to all elements in a set: ifO is a set of ve
tors, Og = fwg : w 2 Og.
2.2 CondensationCondensation, or more pre
isely �xed point
ondensation,was invented in [23℄ to aid in �nding new irredu
ible rep-resentations of a group and to analyze existing ones. Itstheoreti
al underpinnings as parti
ular S
hur fun
tors aredes
ribed in [9℄. Sin
e its invention it has been used in anumber of settings. The so-
alled dire
t
ondense te
hniquesrelated to the present work has already been mentioned inSe
tion 1.1. For more details we refer the reader, for exam-ple, to the overviews in [14, 15℄.Fundamentally, the goal is to
ondense a permutation rep-resentation on a large number of points, or a matrix repre-sentation of a high dimension, into a manageable matrixrepresentation. The
ondensed representation typi
ally hasa mu
h smaller dimension than the original one, whi
h al-lows one to reasonably
ompute with
ondensed matri
es,and to extra
t information about the original representation.Computing with the original representation would have beeninfeasible.
2.3 Fixed point condensationFormally we
onsider the group algebra FG of the groupGover the �eld F of
hara
teristi
 p. Letting K � G subgrouphaving order jKj prime to p, a so-
alled
ondensation sub-group, there is the idempotent e = jKj�1 �Pg2K g 2 FG.

Then to any (right) FG-module M we asso
iate the
on-densed module Me, whi
h is a module of the so-
alled He
kealgebra eFGe. In pra
ti
e, Me is the subset ofM
onsistingof the elements left �xed by K, from whi
h
omes the name�xed point
ondensation.
2.4 Permutation modulesIf FO is the permutation module asso
iated to the �niteG-set O, then the
ondensed module FOe is des
ribed asfollows: Letting S1; : : : ; Sk be the K-suborbits in O, we letS+i := Pw2Si w 2 FO be the asso
iated orbit sums. ThenfS+i ; : : : ; S+k g is an F -basis of FOe, and for
 2 G the a
tionof the
ondensed element e
e on FOe is given as S+i � e
e =Pj Cij(
) � jSj j�1 � S+j , whereCij(
) = jfw 2 Si : w
 2 Sjgj:Hen
e
ondensing
 2 G essentially boils down to
omputingthe orbit
ounting matrix C(
) = [Cij(g)℄ of dimension k.In the dire
t
ondensation te
hnique, as it is used here, wedo not write down permutations to des
ribe the G-a
tionon O, but instead use a linear G-a
tion on a ve
tor spa
e Vto give an impli
it des
ription of O as follows: We spe
ifya subgroup H � G and a ve
tor v 2 V su
h that H =StabG(v). Thus the orbit O = vG is equivalent as a G-setto the set of
osets of H in G.
3. SEQUENTIAL ALGORITHM AND

PREDICTED TIMEHere the sequential
ondensation algorithm is presentedalong with an analysis predi
ting the running time for Fi23.The running time is based on the ar
hite
ture des
ribed inSe
tion 4.5.
3.1 Sequential AlgorithmCondensation, as des
ribed in Se
tion 2.2,
an be brokenup into three phases. These phases are shown below:
3.1.1 Orbit EnumerationOn
e a suitable ve
tor v 2 V has been determined, O =vG must be
omputed. This
an be done in a straightforwardmanner using a breadth-�rst sear
h algorithm as shown inAlgorithm 1. Let gensG = fg1; : : : ; gmg be the generatorsof G.Algorithm 1: dis
overOrbitInput: v; gensGOutput: Olet open a queue with only v in it ;set O an empty set ;while open is not empty dodequeue h from open;for g 2 gensG dot = hg;if t has not been seen thenadd t to O;enqueue t on open;
3.1.2 Suborbit PartitioningOn
e the elements of O have been enumerated and a
on-densation subgroup K has been sele
ted, O
an be parti-tioned into K-suborbits S. This is done by performing a

breadth-�rst sear
h using the generators gensK = fk1; : : : ; kngof K over the elements in O until all the elements have beenseen. This is shown in Algorithm 2.Algorithm 2: partitionOrbitInput: O; gensKOutput: Sset S ;;while O is not empty dosele
t any o 2 O;let s dis
overOrbit(o; gensK);remove the elements in s from O;add s to S;
3.1.3 Orbit CountingOn
e O has been partitioned into K-suborbits S and a
ondensation element
 2 G has been sele
ted, the orbit
ounting matrix C(
) must be
omputed. This is done by
ounting, for ea
h suborbit, how many elements in that sub-orbit map to ea
h other suborbit, when
 is applied to them.This is shown in Algorithm 3.Algorithm 3: orbitCountInput: S;
Output: C(
)set C(
) a jSj � jSj all-zeros matrix ;for i 2 f1; : : : ; jSjg dofor s 2 Si doj = x s.t. sg 2 Sx;Ci;j(
) = Ci;j(
) + 1;
3.2 OptimizationsTo store O in full for Fi23 would require storing approx-imately 11:7 � 109 100-byte ve
tors. This would require atotal storage of approximately 1 terabyte. Here two meth-ods for redu
ing that spa
e are presented. These methodsadd to the
omputation time required by the algorithms pre-sented in this se
tion. In addition, however, another methodis presented that redu
es the time for ve
tor-matrix multi-pli
ations.
3.2.1 Fast Vector-Matrix MultiplicationThe generators for Fi23 are of dimension 782 over GF(2).Under optimal
onditions, the memory subsystem on an in-dividual node is
apable of reading or writing 2.12 GB/s.Given that we have a

ess to 64 bit operations (spe
i�
allyXOR), the time to perform a ve
tor-matrix multipli
ationin Fi23 is 3:6� 10�5s. This time is dominated by the timeto a

ess memory.However, to speed up the time for ve
tor-matrix multipli-
ations, we
an use a te
hnique
alled greasing. Greasing,whi
h was invented by Ri
hard Parker, pre
omputes mul-tipli
ation tables by
ombining bands of rows for a matrixin order to speed up subsequent multipli
ations. This te
h-nique is also used in GAP [8℄ and Magma [1℄. Sin
e weonly use two matri
es (the generators), this method
an beused to speed up the
omputation using a reasonably smallamount of spa
e.

3.2.2 Compressed ValuesRather than using full 100 byte ve
tor values, 12 bytes
an be used to represent ea
h element in O and guaranteethat it is distin
t from every other element in O with a highprobability. The representation size must be on the order oflg(jOj2) = 2�lg(jOj) in order to guarantee a high probabilityof uniqueness.Storing this representation along with the path in the gen-erators to the value from v requires on average 30 bytes ofstorage per element. In order to use these values for ve
tor-matrix multipli
ations, however, the path to the value fromv must be applied to get the full value. While the use of
ompressed values redu
es the spa
e of the
omputation, itresults in additional ve
tor-matrix multipli
ations.Orbit enumeration requires storing full values only for thefrontier (or open queue). On
e the generators have been ap-plied to a value, it
an be stored in its
ompressed form withno additional
omputation time. Suborbit partitioning re-quires rebuilding a single value for ea
h suborbit. This timeis trivial in
omparison to the time to generate the suborbititself. Finally, orbit
ounting requires rebuilding only onevalue from ea
h suborbit as well. After this, the full subor-bit
an be produ
ed as it was in the suborbit partitioningphase and

an be applied to all values in that suborbit.On
e again, the time to reprodu
e a single value is trivial in
omparison to the time to generate the suborbit itself.
3.2.3 Landmark DiscoveryAs the size of the orbit O grows, it be
omes in
reasinglydiÆ
ult to store the elements of O seen during the enumera-tion phase. While the enumeration phase
an use streamingdisk in a breadth-�rst sear
h, this
annot be done easilyfor the suborbit partitioning or the orbit
ounting phases,whi
h must randomly look up elements. Therefore, an ap-proa
h known as landmark dis
overy [4, 7℄ is
ommonly usedto allow O to �t in memory.In landmark dis
overy, a subset of the orbit elements arede
lared to be landmarks and retained in memory. The non-landmarks are dis
arded. This leads to storing only 1=Lelements, where 1=L is the landmark ratio. Though thisredu
es the total storage, it requires additional work duringthe suborbit partitioning and orbit
ounting phases.In the suborbit partitioning phase, if there exists at leastone landmark in ea
h suborbit then a breadth-�rst sear
hfrom that landmark over gensK
an be used to produ
e thefull suborbit. Be
ause of this, the landmark ratio is typi
allysele
ted so that it is large enough to guarantee with highprobability that at least one landmark will be seen in ea
hsuborbit. Any missing suborbit
an still be dete
ted andadded during the orbit
ounting phase.In addition, in the orbit
ounting phase, if the elementsin s
 : s 2 Si are not landmarks, then a breadth-�rst sear
hfrom the non-landmark elements over gensK must be per-formed until a landmark is found.
3.3 Predicted TimeGiven the use of landmark dis
overy using greasing forve
tor-matrix multipli
ation, the runtime of a single
on-densation
an be predi
ted. Those times are presented inthis se
tion.

3.3.1 Predicted Vector-Matrix Multiplication TimeWe found that by using greasing with a band size of 8, areasonable speedup using only a small amount of memorywas obtained:Mem Spa
e 782� d782=8e � 28b 20MBCPU Time d782=64e � d782=8eops 4:2� 10�7sMem Time d782=8e � d782=8eB 4:5� 10�6sBy using greasing and about 40 megabytes of extra spa
eper ma
hine, a single ve
tor-matrix multipli
ation
an besped up by a fa
tor of eight as
ompared to using the stan-dard method. Experimentally, we obtained a greasing time
loser to 2:0� 10�5s, and it is this time we will use for thepredi
ted time of algorithm.
3.3.2 Predicted Sequential Time using LandmarksBreadth-�rst sear
h requires time proportional to the num-ber of elements in the sear
h and the bran
hing fa
tor. Thisimplies a total of jOj � jgensGj ve
tor-matrix multipli
a-tions for the orbit enumeration phase, and jOj � jgensK jve
tor-matrix multipli
ations for the suborbit partitioningphase. The use of landmarks in
reases the number of ve
tor-matrix multipli
ations in the orbit
ounting phase from jOjto L� jOj. Given the time for ve
tor-matrix multipli
ationby greasing and the fa
t that both G and K have two gener-ators, this implies a total time of 25:8 CPU days on a singlema
hine.
3.3.3 Predicted Parallel Time with Linear SpeedupThe predi
ted running time for ea
h phase of the
om-putation is shown below. These times assume
omputationon a
luster of 56 nodes with nearly linear parallel speedup.These times
ompare
losely to the experimental times forthe parallel disk-based algorithm found in Se
tion 4.5. Theexperimental time for orbit enumeration is notably largerthan the predi
ted time. The predi
ted time does not takeinto a

ount the time for dupli
ate dete
tion in large disk-based breadth-�rst sear
hes. More details on this
an befound in [22℄.Phase TimeOrbit Enumeration 2 hoursSuborbit Partitioning 2 hoursOrbit Counting 7 hoursTotal 11 hours
4. DISTRIBUTED DISK-BASED

ALGORITHMWe present our distributed disk-based algorithms for the
omputation of orbit
ounting matri
es for G = Fi23. Inthe language of Se
tion 2, V has dimension 782 over GF (2).Choosing a suitable subgroup H = O+8 (2) : 2 < G thereindeed is a v 2 V su
h that StabG(v) = H. Letting O = vGthis leads to jOj = 11; 739; 046; 176. Moreover, we
hooseK = S6(2) : 2 < H, whi
h leads to k = 6; 486 suborbitsin O. These
hoi
es are justi�ed in Se
tion 5.The
luster we are using for this
omputation has 56 nodes,ea
h with 4 gigabytes of lo
al memory and 10 gigabytes oflo
al disk. Due to the orbit size, jOj = 11; 739; 046; 176, O istoo large to store in memory a
ross the
luster and must usedistributed disk. Here a disk-based solution to this problemis presented in terms of the three phases of
ondensationdis
ussed in Se
tion 3.1.

4.1 TerminologyBefore examining the algorithm itself, some
ommon ter-minology must be
onsidered.Owner of a Ve
tor Given the
ompressed signature w
 ofa ve
tor w, a subset of the bits of that
ompressedsignature are used to determine a unique node, N (w
)in the
omputation that is responsible for storing that
ompressed signature. For a set of
ompressed signa-tures, O, Pi(O) = fw
 2 O : N (w
) = ig is the set of
ompressed signatures belonging to node i in O.Owner of a suborbit Given a set of
ompressed signaturesW representing the values in a suborbit, a
anoni
al or-dering for those
ompressed signatures is
hosen. Thesmallest C(W) 2 W is the
anoni
al member of W .The owner of W , N (W) = N (C(W)) is the node own-ing the
anoni
al member of W . It is responsible forstoring the information for that orbit. For a set ofsuborbits S, Pi(S) = fs 2 S : N (s) = ig is the set ofsuborbits belonging to node i in S.
4.2 Orbit EnumerationWe follow the general approa
h of [22℄ for orbit enumera-tion to produ
e O = vG. This approa
h uses a distributedhash array while performing a breadth �rst sear
h. Anyempty hash slot indi
ates a value has not been seen previ-ously. If the hash slot is not empty, either the value is adupli
ate or there has been a hash
ollision. In this
ase,the value is dropped from the frontier and pla
ed in a
olli-sion queue. Values in the
ollision queue are later
he
ked todetermine where hash
ollisions o

urred by using externalsort and a streaming s
an through the values. This allowsdisk-based dupli
ate dete
tion to take pla
e using streaminga

ess only. After hash
ollisions have been dete
ted, thesevalues are added to the frontier.Given the use of
ompressed values, the amount of spa
erequired by the entire sear
h is only 6:4 gigabytes per node.This �ts easily on distributed disk. The hash used for this
omputation required only 2 bits per entry, or 53 megabytesper node. This allows for a hash that �ts easily into dis-tributed memory. This hash is organized in su
h a way thatfor all values w 2 O : w hashes to node i, N (w
) = i, orevery value hashes to the node that owns it. This allowsthe messages that
he
k the distributed hash to double asthe messages that store values in the orbit on the node thatowns them.While the use
ompressed values redu
es the amount ofspa
e required enough to �t the sear
h on disk, it also in-
reases the number of ve
tor-matrix multipli
ations required.Those values dis
overed whose hash slots are empty areadded immediately to the frontier and are never stored intheir
ompressed form in the
ollision queue. However, thoseelements that have hash
ollisions must later be added ba
kinto the frontier. In order to do this, their full values mustbe
omputed. Fortunately, it is only a small per
entage,around 22:5%, of the values for whi
h this must be done. Inaddition, many of the
al
ulations
an be bat
hed so thatvalue-generator pairs are not
omputed multiple times forvalues that have similar paths.
4.3 Suborbit PartitioningSuborbit partitioning to form theK-suborbits
an be viewedin terms of the a
tions of the nodes owning the data in ques-

tion on that data. This data in
ludes the initial orbit, O,the suborbits in S, and the landmarks in those suborbits, L.
4.3.1 Use of LandmarksSin
e O is distributed and disk-based, it is not possibleto qui
kly remove values from it as they are en
ountered.For this reason, instead of removing values from O, a list ofpreviously en
ountered values is maintained. Rather thanstoring all values, only landmark values are re
orded in or-der to allow this list to �t in distributed RAM a
ross the
luster. A landmark ratio of L = 7 was sele
ted, requir-ing 360 megabytes of landmark storage of
ompressed sig-natures, by the node that owns them. It would have beenpossible to store all the values in their
ompressed form inmemory, using 2.5 gigabytes of memory. However, be
ausethe
luster is shared, using a smaller per
entage of the totalmemory per node was preferable.Landmarks had to be sele
ted
arefully. First, the portionof the
ompressed signature that determined the owner of ave
tor had to be distin
t from the portion de
iding whetheror not that ve
tor was a a landmark. Without this, alllandmarks would be owned by a subset of the nodes of the
omputation.Also, it was known prior to the
omputation that v wasa �xed point under K, and therefore would be in a suborbitby itself. Our landmark sele
tion was made in su
h a waythat the v was always
onsidered a landmark. Other miss-ing suborbits would be dis
overed during the orbit
ountingphase, although this did not o

ur in our
omputation.
4.3.2 Processing the Orbit ValuesEa
h node n pro
esses a pie
e ofO
orresponding to Pn(O).This is done in a manner similar to Algorithm 2. Now,however, rather than removing values in O, a list of knownlandmarks, Ln 2 O, owned by node n is stored. Algorithm 4shows how this is done.Algorithm 4: ppartitionOrbitInput: Pn(O); gensKfor ea
h
ompressed signature w
 2 Pn(O) doif isLandmark(w
) and w
 62 Ln thenw = buildV alue(v; path(w
));s = dis
overOrbit(w; gensK);s =
ompress(s);s = stripNonlandmarks(s);s = sortCanoni
al(s);sendSuborbit(s; path(w
));Ea
h lo
al landmark from Pn(O) is
ompared with a list oflandmarks sent by other nodes, Ln. For ea
h lo
al landmarkthat has not been en
ountered previously, the suborbit forthat landmark needs to be built. Before this
an be done, the
ompressed value needs to be expanded into its full value byfollowing the path asso
iated with it from v in gensG. On
ethe suborbit has been
omputed lo
ally, the values in it are
ompressed, non-landmarks are stripped, and it is sorted in
anoni
al order. This pla
es the
anoni
al element for s,C(s), �rst. The suborbit along with the path to rea
h thatsuborbit are then sent to the node N (s).
4.3.3 Processing the SuborbitsWhen a node N (s) re
eives a suborbit s it owns, it mustpro
ess that suborbit. This is shown in Algorithm 5.

Algorithm 5: ppartitionSuborbitInput: s; pathif s 62 Pn(S) thenGet an original number id 2 f1; : : : ; kg;Store fpath; C(s); idg in Pn(S);s = sortOwner(s);sendLandmarks(s);
The suborbit is �rst
he
ked to see if it is a dupli
ateby s
anning through Pn(S), the suborbits in S owned bynode n = N (s), and looking at the
anoni
al elements. Ifit has not been seen, it is pro
essed. It �rst gets a uniqueid 2 f1; : : : ; kg. This is obtained by requesting an id from aunique master node, who keeps tra
k of what ids have beenseen before. After this, the information for the suborbit isstored lo
ally in Pn(S) and the values in the suborbit aresorted a

ording to their owners. For ea
h node n, the valuesPn(s) owned by the node n, along with the suborbit id, arethen sent to the owner n.

4.3.4 Processing the LandmarksWhen a node n re
eives a set of landmarks it owns, it muststore those landmarks in Ln. This is shown in Algorithm 6.
Algorithm 6: ppartitionLandmarksInput: l; idl = sortCanoni
al(l);Add l to Ln(id);Ea
h node n stores Ln, an array of size k. Ea
h entry i inthat array, Ln(i),
orresponds to the set of known landmarksin suborbit i owned by node n. These values are sorted
anoni
ally to allow for qui
k lookup.
4.3.5 Nearly Linear Speedup for

Parallel ImplementationThe parallel algorithm provides a nearly linear speedup
ompared to the sequential algorithm. Sin
e the only timethe same suborbit is generated multiple times is when mul-tiple nodes are produ
ing the same suborbit simultaneously,this means at worst a slowdown fa
tor of n = 56. However,sin
e k is relatively large in
omparison to n, on average,ea
h suborbit is typi
ally generated only on
e. Sin
e thesuborbits are pro
essed in parallel, this provides nearly lin-ear speedup.Ea
h suborbit is
omputed only on
e on average. Thisimplies ea
h landmark l 2 Si is sent only twi
e, on
e torea
h its suborbit's owner, N (Si), and a se
ond time torea
h its owner, N (l). The bandwidth of the network issuÆ
ient so that the bottlene
k of the
omputation is stillthe CPU-intensive ve
tor-matrix multipli
ation and not thesending of the data. The laten
y of the network is not afa
tor be
ause landmarks are sent out in large groups to thenodes that own them. At most k � 56 = 363; 261 messageswill be passed a
ross the network. Be
ause of the algorithmdesign, dupli
ation
he
ks for individual landmarks are lo
alto the nodes that own those landmark and do not in
ur a
ommuni
ation penalty.Finally, the time for sort, binary sear
h, and hash lookupin the suborbit's breadth �rst sear
h are relatively small

when
ompared to the ve
tor-matrix multipli
ation time.This implies a run time dominated by the time to performve
tor-matrix multipli
ations in the breadth-�rst sear
h, justas in the sequential algorithm.
4.4 Orbit CountingOrbit
ounting
an also be viewed in terms of the a
tionsof the nodes owning the data in question on that data. Inthis
ase, the data is the set of suborbits, S, and the land-marks of the neighboring values. For some
ondensationelement
, ea
h node n holds a pie
e of the resulting or-bit
ounting matrix C(
)
orresponding to the set of rowsfi : N (Si) = ng. The resulting data is
ombined on
e the
omputation �nishes.
4.4.1 InitializationIn order to speed up the pro
ess of determining whi
h sub-orbits a large set of landmarks are in, the way in whi
h Lifor ea
h node i is stored is
hanged. On the node n, ratherthan storing Ln = fLn(1); : : : ;Ln(k)g, Ln is stored as a sin-gle blo
k in whi
h ea
h entry
orresponds to the
ompressedsignature of a landmark along with the id of the suborbit ofthat landmark. These values are then sorted based on the
anoni
al ordering of their
ompressed signatures.
4.4.2 Processing the SuborbitsGiven some
ondensation element
, the subset Pn(S),
orresponding to the set of suborbits owned by node n, arepro
essed a

ording to Algorithm 7.Algorithm 7: p
ondenseSuborbitsInput: Pn(S);
let C(
) a distributed k � k all-zeros matrix forso 2 Pn(S) dow = buildV alue(v; path(so));i = id(so);s = dis
overOrbit(w; gensK);s = s
;s = findClosestLandmarks(s; gensK);s = sortOwner(s);sendLandmarks(s);for m 2 nodes doCi;�(
) = Ci;�(
) + re
eiveCounts(m);Ea
h node pro
esses ea
h suborbit it owns. It rebuildsthat suborbit and then applies the
ondensation element
to ea
h element in the suborbit. After that, it must performa breadth-�rst sear
h for ea
h element in s in gensK to�nd the
losest landmark (stored as a
ompressed value).The
ompressed values are sorted a

ording to the nodesthat own them and then are sent to those nodes. The resultreturned is the number of landmarks in ea
h suborbit ownedby that node. These results are added up to form Ci;�(
).
4.4.3 Processing the LandmarksWhen a node n re
eives a set of landmarks it owns, it must
ompute how many of those landmarks are in ea
h suborbit.This is shown in Algorithm 8.First the result res is initialized to an all zeros ve
torof size k. The landmarks re
eived are sorted in
anoni
alorder. By sorting, a single pass through Ln is suÆ
ient to�nd the ids of all landmarks in s. When an i = id(l 2 s) isen
ountered, resi is in
remented.

Algorithm 8: p
ondenseLandmarksInput: sres = an all zeros row ve
tor of size k;sortCanoni
al(s);l = start of Ln;for s 2 S dowhile Ln(l) < s do in
rement l;i = id(Ln(l));resi = resi + 1;sendCounts(res);
4.4.4 Nearly Linear Speedup for

Parallel ImplementationHere also there is a nearly linear speedup for orbit
ount-ing when
ompared to the sequential algorithm. Ea
h sub-orbit is pro
essed only on
e, as in the sequential algorithm.Ea
h value in a suborbit, upon proje
tion by
, is pro
essedonly on
e to �nd the
losest landmark in the generators ofgensK . This implies that the number of ve
tor-matrix mul-tipli
ations in the parallel algorithm is exa
tly the same asthe number in the serial algorithm.Ea
h suborbit is
omputed only on
e. Here, though, avalue for ea
h
ompressed signature in the suborbit mustbe passed a
ross the network. Let the amount of data senta
ross the network in the suborbit partitioning phase beD, orbit
ounting requires the sending of L � D=2 data.However, the same in
rease in the number of ve
tor-matrixmultipli
ations must also be performed, meaning ratio oftime spent in the network and in performing ve
tor-matrixmultipli
ations is identi
al. As before, the bottlene
k lieswith the ve
tor-matrix multipli
ations.Finally, L must be s
anned k times to lo
ate the ids forlandmarks. While this does add some time to the
om-putation, it is still not signi�
ant when
ompared to theve
tor-matrix multipli
ations.
4.5 Experimental ResultsWe used a
luster of 56
omputers in the
omputationof the orbit
ounting matri
es. Ea
h
omputer was an In-tel dual-pro
essor Xeon running at 3.20 GHz, running RedHat Linux 3.2.3 under Ro
ks. The time for ea
h portion ofthe algorithm, as well as the total storage requirements, ispresented here.Phase Time Memory DiskOrbit Enumeration 18 hours 500 MB 8 GBSuborbit Partitioning 4 hours 800 MB 300 MBOrbit Counting 20 hours 800 MB 300 MBTotal 42 hours 800 MB 8 GBGiven the predi
ted time on a single ma
hine with a land-mark ratio L = 7 of 25.8 CPU days, this would imply0.46 CPU days on 56
omputers, as shown in Se
tion 3.3.3.This is within a fa
tor of four of the predi
ted time. Thefa
tor would be only two if not for the naive predi
ted timefor the orbit enumeration phase from Se
tion 3.3.2.
5. THE BRAUER TREEWe show how the
omputed orbit
ounting matri
es areused to determine the missing labels of the verti
es of theBrauer tree of the prin
ipal 17-blo
k of the sporadi
 simpleFis
her group Fi23. We were parti
ularly interested in thisexample for the following reason:

Table 1: The prin
ipal 17-blo
k of Fi23.i � �(1) �(e) 1GH1 1 1 1 12 3 3588 1 13 6 30888 8 34 13 789360 2 15 15 837200 0 06 16 837200 0 07 24 5533110 27 48 60 97976320 58 39 62 153014400 44 110 63 153014400 44 111 76 264536064 35 012 77 264536064 140 013 79 287721720 147 114 92 476702577 185 015 94 504627200 167 116 95 504627200 167 117 98 559458900 128 0
5.1 The Modular Atlas projectThe aim of the Modular Atlas proje
t [11, 24, 25℄, whi
hwas initiated two de
ades ago and is still running, is to deter-mine the p-modular de
omposition matri
es and the Brauer
hara
ter tables of the groups listed in the Atlas [2℄. As far asthe blo
ks of
y
li
 defe
t are
on
erned, whi
h en
ompassthe
ase where p divides the order of the group under
on-sideration but p2 does not, the de
omposition problem
anbe rephrased as the problem of determining the asso
iatedBrauer trees. For the sporadi
 groups and their automor-phism groups, a
omprehensive
olle
tion of Brauer treeshas been
omputed in [10℄, but quite a few questions stillremain open.In parti
ular, for Fi23 the shape of the Brauer tree of itsprin
ipal 17-blo
k, and the labeling of its verti
es, up to fourpossible
ases, have been determined in [10℄. Table 1 pro-vides the numbering of the irredu
ible ordinary
hara
tersin the prin
ipal 17-blo
k, where their Atlas [2℄ numbers andtheir degrees are given in the se
ond and third
olumns, re-spe
tively. The asso
iated Brauer tree is as follows, wherefa; a0g = f9; 10g and fb; b0g = f15; 16g.

141213 4 211

5

6

871 3 17a a’b’b

ϕ ψ

The task now is to determine whi
h of these four
asesa
tually o

urs. We apply an analysis similar to that usedin [5, 18℄.
5.2 The OrbitStandard generators gensG = fg1; g2g of G = Fi23, inthe sense of [26℄, are given in [24℄. The standard generatorsare given both in terms of the smallest faithful permutationrepresentation on 31; 671 points, and in terms of the small-est faithful matrix representation in
hara
teristi
 2, i.e. indimension 782 over GF (2).

We now look for a subgroup H < G su
h that the sim-ple modules S' and S , a�ording the Brauer
hara
ters 'and as indi
ated above, are modular
onstituents of thepermutation module 1GH . We
hoose a subgroupH = O+8 (2) : 2 < S8(2) < G;where both H = O+8 (2) : 2 < S8(2) and S8(2) < G aremaximal subgroups. Using the fa
ilities to
ompute with
lass fun
tions and to determine fusions of
onjuga
y
lassesavailable in GAP [8℄, we �nd the multipli
ities of the ordinaryirredu
ible
hara
ters in the permutation
hara
ter 1GH asgiven in the �fth
olumn of Table 1. These imply that S'and S are modular
onstituents of 1GH .To apply a dire
t
ondensation te
hnique, the G-set un-derlying 1GH must be realized as a set of ve
tors in a suitablelinear representation of G. A
tually, it turns out that in therepresentation spa
e V of dimension 782 over GF (2) thereis a (unique) ve
tor v su
h that StabG(v) = H. This yieldsa manageable orbit O = vG � V .
5.3 The Condensation SubgroupIn general, given an FG-module M with Brauer
hara
-ter ', whi
h is extended arbitrarily to a
lass fun
tion ~'on G, we have dimF (Me) = h'jK ; 1Ki = h ~'; 1GKiG, whereh�; �iG denotes the s
alar produ
t for
lass fun
tions. Asea
h Brauer
hara
ter
an be written as a linear
ombina-tion of ordinary
hara
ters, these s
alar produ
ts
an bedetermined from ordinary
hara
ters. If the blo
k under
onsideration is des
ribed by a Brauer tree, these linear
om-binations
an dire
tly be read o� from the tree.Here, we
hoose the
ondensation subgroupK = S6(2) : 2 < H < G;a maximal subgroup of H. Using the fa
ilities to
omputewith
lass fun
tions available in GAP [8℄, we determine thedimensions �(e) = h�; 1GKiG of the
ondensed modules ofthe ordinary irredu
ible
hara
ters in the prin
ipal blo
k,as given in the fourth
olumn of Table 1. In parti
ular,these dimensions imply that '(e) = 124 and (e) = 43.Hen
e the
ondensed modules S'e and S e are
onstituentsof (1GH)e, having the indi
ated dimensions. Similarly, we �ndk = dim((1GH)e) = h1GH ; 1GKiG = 6; 486. Thus the
ondensedmodule has manageable dimension to be analyzed expli
itlyusing MeatAxe [21℄ te
hniques.
5.4 Determining the Brauer TreeWe spe
ify
 = g2, the se
ond standard generator of G,and
ompute the tra
es TrS'e(e
e) and TrS e(e
e) for thepossible
ases [a; b℄ 2 f[9; 15℄; [10; 15℄; [9; 16℄; [10; 16℄g, usingthe formula TrMe(e
e) = jKj�1 �Xg2KTrM (
g);where the right hand side
an be determined from the Brauer
hara
ter of M by p-modular redu
tion, provided we knowthe
ardinalities of the interse
tions of the
oset K
 withthe various
onjuga
y
lasses of G.To �nd those, we have to run through all jKj = 2; 903; 040elements of K
, and to determine to whi
h
onjuga
y
lassof G it belongs. Conjuga
y testing is done using the permu-tation representation on 31; 671 points, the fa
ilities dealingwith permutation groups available in GAP [8℄, and somespe
ially tailored programs using
y
le stru
tures and
lass

multipli
ation
oeÆ
ients. This needs about 100 CPU hourson a single ma
hine to be
ompleted. (Parallelizing this aswell would of
ourse be possible, but we have not pursuedthis further.)We do not reprodu
e the full
lass distribution here, butjust note the following: The element
 to be
ondensed mustbe
hosen su
h that the four
ases
an be distinguished bylooking at the above mentioned tra
es. Sin
e the
ases yieldBrauer
hara
ters whi
h only di�er on elements of orderdivisible by 13, this essentially boils down to a
ondition onthe interse
tions ofK
 with the
onjuga
y
lasses
ontainingsu
h elements. Here is the result for
 = g2:13A 43044 13B 4352626A 111166 26B 11178239A 67678 39B 66560Now this yields the following, where the entries are under-stood to be in GF (17):[a; b℄ [9; 15℄ [10; 15℄ [9; 16℄ [10; 16℄TrS'e(e
e) 10 3 14 7TrS e(e
e) 7 14 7 14
5.5 ConclusionWe use the subalgebra of the He
ke algebra generated byfeg1e; eg2e; eg1g2eg, where gensG = fg1; g2g. By the te
h-nique des
ribed in Se
tion 4, we determine the asso
iatedorbit
ounting matri
es, whi
h essentially des
ribe their a
-tion on the
ondensed permutation module (1GH)e.Using MeatAxe [21℄ te
hniques, in parti
ular those to de-termine submodule stru
tures [13℄, it turns out that this sub-algebra already is suÆ
iently large to pi
k the
onstituentsS'e and S e of (1GH)e. By inspe
tion, it is found thatTrS'e(e
e) = 7 and TrS e(e
e) = 14 for
 = g2, implyinga = 10 and b = 16, and we are done.
6. REFERENCES[1℄ Wieb Bosma, John Cannon, and Catherine Playoust.The magma algebra system i: The user language. J.Symboli
 Comput., 24:235{265, 1997.[2℄ J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker,and R.A. Wilson. Atlas of �nite groups. ClarendonPress, Oxford, 1985.[3℄ G. Cooperman. STAR/MPI: Binding a parallel libraryto intera
tive symboli
 algebra systems. In Pro
. ofInternational Symposium on Symboli
 and Algebrai
Computation (ISSAC '95), volume 249 of Le
tureNotes in Control and Information S
ien
es, pages126{132. ACM Press, 1995. software at URL:http://www.

s.neu.edu/home/gene/software.html\#starmpi andhttp://www.

s.neu.edu/home/gene/parg
l.html.[4℄ G. Cooperman, L. Finkelstein, M. Tselman, andB. York. Constru
ting permutation representations formatrix groups. J. Symboli
 Comput., 1997.[5℄ G. Cooperman, G. Hiss, K. Lux, and J. M�uller. TheBrauer tree of the prin
ipal 19-blo
k of the sporadi
simple Thompson group. Experiment. Math.,6:293{300, 1997.[6℄ G. Cooperman and E. Robinson. Memory-based anddisk-based algorithms for very high degreepermutation groups. In Pro
. of International

Symposium on Symboli
 and Algebrai
 Computation(ISSAC '03), pages 66{73. ACM Press, 2003.[7℄ G. Cooperman and M. Tselman. New sequential andparallel algorithms for generating high dimensionHe
ke algebras using the
ondensation te
hnique. InPro
. of International Symposium on Symboli
 andAlgebrai
 Computation (ISSAC '96), pages 155{160.ACM Press, 1996.[8℄ The GAP Group. GAP | Groups, Algorithms, andProgramming, Version 4.4, 2006.http://www.gap-system.org.[9℄ J. Green. Polynomial Representations of GLn. Le
tureNotes in Mathemati
s 830. Springer-Verlag, 1980.[10℄ G. Hiss and K. Lux. Brauer Trees of Sporadi
 Groups.Oxford Univ. Press, Oxford, 1989.[11℄ C. Jansen, K. Lux, R. Parker, and R. Wilson. An Atlasof Brauer Chara
ters, volume 11 of London Math. So
.Monographs, (N. S.). Clarendon Press, Oxford, 1995.[12℄ F. L�ube
k and M. Neunh�o�er. Enumerating largeorbits and dire
t
ondensation. Experiment. Math.,10:197{206, 2001.[13℄ K. Lux, J. M�uller, and M. Ringe. Peakword
ondensation and submodule latti
es: An appli
ationof the MeatAxe. J. Symb. Comp., 17:529{544, 1994.[14℄ J. M�uller. Computational representation theory:remarks on
ondensation. Le
ture Notes, 2003. http://www.math.rwth-aa
hen.de/~Juergen.Mueller/.[15℄ J. M�uller. On endomorphism rings and
hara
tertables. Habilitationss
hrift, RWTH Aa
hen, 2003.[16℄ J. M�uller. On the a
tion of the sporadi
 simple babymonster group on the
osets of 21+22:Co2. Preprint,2006.[17℄ J. M�uller, M. Neunh�o�er, and F. Noeske. GAP-4pa
kage orb, 2006.http://www.math.rwth-aa
hen.de/~Max.Neunhoeffer/Computer/Software/Gap/orb.html.[18℄ J. M�uller, M. Neunh�o�er, F. R�ohr, and R. Wilson.Completing the Brauer trees for the sporadi
 simpleLyons group. LMS J. Comput. Math., 5:18{33, 2002.[19℄ J. M�uller, M. Neunh�o�er, and R. Wilson. Enumeratingbig orbits and an appli
ation: B a
ting on the
osetsof Fi23. Preprint, to appear in J. Algebra, 2006. http://www.math.rwth-aa
hen.de/~Juergen.Mueller/.[20℄ R. Parker and R. Wilson. Unpublished, 1995.[21℄ M. Ringe. The C-MeatAxe, Version 2.4, Manual.RWTH Aa
hen, 2000.[22℄ E. Robinson and G. Cooperman. A parallelar
hite
ture for disk-based
omputing over the BabyMonster and other large �nite simple groups. In Pro
.of International Symposium on Symboli
 andAlgebrai
 Computation (ISSAC '06), pages 298{305.ACM Press, 2006.[23℄ J. Tha
kray. Modular representations of some �nitegroups. PhD thesis, Univ. of Cambridge, 1981.[24℄ R. Wilson. Atlas of �nite group representations.http://brauer.maths.qmul.a
.uk/Atlas/v3/.[25℄ R. Wilson. The modular atlas homepage.http://www.math.rwth-aa
hen.de/homes/MOC/.[26℄ R. Wilson. Standard generators for sporadi
 simplegroups. J. Algebra, 184:505{515, 1996.

