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Abstract

In representation theory of finite groups, there is a well-known and important conjecture due to
M. Broué. He conjectures that, for any prime p, if a p-block A of a finite group G has an abelian
defect group P , then A and its Brauer corresponding block B of the normaliser NG(P ) of P in G
are derived equivalent (Rickard equivalent). This conjecture is called Broué’s abelian defect group
conjecture.

We prove in this paper that Broué’s abelian defect group conjecture is true for a non-principal
3-block A with an elementary abelian defect group P of order 9 of the Harada-Norton simple group
HN. It then turns out that Broué’s abelian defect group conjecture holds for all primes p and for
all p-blocks of the Harada-Norton simple group HN.
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1. Introduction and notation

In representation theory of finite groups, one of the most important and interesting problems
is to give an affirmative answer to a conjecture, which was introduced by M. Broué around
1988 [8], and is nowadays called Broué’s Abelian Defect Group Conjecture. He actually
conjectures the following:

1.1.Conjecture (Broué’s Abelian Defect Group Conjecture) ([8, 6.2.Question] and [23,
Conjecture in p.132]). Let p be a prime, and let (K,O, k) be a splitting p-modular system
for all subgroups of a finite group G. Assume that A is a block algebra of OG with a defect
group P and that B is a block algebra of ONG(P ) such that B is the Brauer correspondent
of A, where NG(P ) is the normaliser of P in G. Then, A and B should be derived equivalent
(Rickard equivalent) provided P is abelian.

In fact, a stronger conclusion than 1.1 is expected. If G and H are finite groups and if A
and B are block algebras of OG and OH (or kG and kH) respectively, we say that A and
B are splendidly Rickard equivalent in the sense of Linckelmann ([39], [40]), where he calls
it a splendid derived equivalence, see the end of 1.8. Note that this is the same as that given
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by Rickard in [57] when A and B are the principal block algebras, which he calls a splendid
equivalence.

1.2.Conjecture (Rickard [57], [58, Conjecture 4, in p.193]). Keep the notation, and suppose
that P is abelian as in 1.1. Then, there should be a splendid Rickard equivalence between
the block algebras A of OG and B of ONG(P ).

There are several cases where the conjectures of Broué 1.1 and Rickard 1.2 are checked. For
example we prove that 1.1 and 1.2 are true for the principal block algebra A of an arbitrary
finite group G when the defect group P of A is elementary abelian of order 9 (and hence
p = 3), see [26, (0.2)Theorem]. Then, it may be natural to ask what about the case of non-
principal block algebras with the same defect group P = C3×C3. Namely, this paper should
be considered as a continuation of such a project, which has already been accomplished for
several cases in our previous papers for the O’Nan simple group and the Higman-Sims simple
group in [29, 0.2.Theorem], for the Held simple group and the sporadic simple Suzuki group
in [30, Theorem], and for the Janko’s simple group J4 [31, Theorem 1.3], see also [47] and
[34]. That is to say, our main theorem of this paper is the following:

1.3.Theorem. Let G be the Harada-Norton simple group HN, and let (K,O, k) be a splitting
3-modular system for all subgroups of G, see the definition 1.8 below. Suppose that A is a
non-principal block algebra of OG with a defect group P which is an elementary abelian
group C3 × C3 of order 9, and that B is a block algebra of ONG(P ) such that B is the
Brauer correspondent of A. Then, A and B are splendidly Rickard equivalent, and hence
the conjectures 1.1 and 1.2 of Broué and Rickard hold.

As a matter of fact, the main result 1.3 above is obtained by proving the following:

1.4.Theorem. Keep the notation and the assumption as in 1.3. Then, the non-principal
block algebra A of OG with a defect group P = C3 × C3 and the principal block algebra A′

of OHS of the Higman-Sims simple group are Puig equivalent, that is A and A′ are Morita
equivalent which is realized by a ∆P -projective p-permutation O[G × HS]-module, in other
words, A and A′ have isomorphic source algebras as interior P -algebras.

Then, it turns out that, as a corollary to the main result (1.3), we eventually can prove that

1.5.Corollary. Broué’s abelian defect group conjecture 1.1 and even Rickard’s splendid
equivalence conjecture 1.2 are true for all primes p and for all block algebras of OG when
G = HN.

1.6.Starting point and strategy. A story of the birth of this paper is actually very similar
to that of the Janko’s simple group J4 which is given in [31, 1.6]. Namely, relatively recently
G. Hiss, J. Müller, F. Noeske and J.G. Thackray [17] have determined the 3-decomposition
matrix of the group HN with defect group C3 × C3, see 4.1. Our starting point for this
work was actually to realize that the 3-decomposition matrix for the non-principal block
of HN with an elementary abelian defect group of order 9 is exactly the same as that for
the principal 3-block of the Higman-Sims simple group HS. Furthermore, the generalised 3-
decomposition matrices of these two blocks are the same. Therefore, it is natural to suspect
whether these two 3-block algebras would be Morita equivalent not only over an algebraically
closed field k of characteristic 3 but also over a complete discrete valuation ring O whose
residue field is k, and we might expect even that they are Puig equivalent (we shall give a
precise definition of Puig equivalence in 1.8 below). Anyhow, since the two conjectures of
Broué and Rickard in 1.1 and 1.2 respectively have been solved for the principal 3-block of
HS in a paper of Okuyama [51] it turns out that Broué’s abelian defect group conjecture 1.1
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and Rickard’s splendid equivalence conjecture 1.2 shall be solved also for the non-principal
3-block of HN with the same defect group C3 × C3.

1.7.Contents. In §2, we shall give several fundamental lemmas, which are useful and
powerful to prove our main results. In §§3 and 4, we shall investigate 3-modular represen-
tations for HN and we shall get trivial source (p-permutation) modules which are in the
non-principal 3-block A of HN with a defect group P = C3 × C3. In §5, we shall list data
on Green correspondents of simples in the principal 3-block A′ of HS, which are known by
a result of [64, Theorem], see [51, Example 4.8]. Finally, in §§6-8, we shall give complete
proofs of our main results 1.3, 1.4 and 1.5.

To achieve our results, next to theoretical reasoning we have to rely on fairly heavy
computations. As tools, we use the computer algebra system GAP [12], to calculate with
permutation groups as well as with ordinary and Brauer characters. We also make use of
the data library [7], in particular allowing for easy access to the data compiled in [10], [19]
and [67], and of the interface [66] to the data library [68]. Moreover, we use the computer
algebra system MeatAxe [60] to handle matrix representations over finite fields, as well as its
extensions to compute submodule lattices [42], radical and socle series [45], homomorphism
spaces and endomorphism rings [44], and direct sum decompositions [43]. We give more
detailed comments on the relevant computations in the spots where they enter the picture.

1.8.Notation. Throughout this paper, we use the following notation and terminology. Let
A be a ring. We denote by 1A, Z(A) and A× for the unit element of A, the centre of A and
the set of all units in A, respectively. We denote by rad(A) the Jacobson radical of A and
by radi(A) the i-th power (rad(A))i for any positive integer i while we define rad0(A) = A.
We write Matn(A) for the matrix ring of all n × n-matrices whose entries are in A. Let
B be another ring. We denote by mod-A, A-mod and A-mod-B the categories of finitely
generated right A-modules, left A-modules and (A,B)-bimodules, respectively. We write
MA, AM and AMB when M is a right A-module, a left A-module and an (A,B)-bimodule.
However, by a module we mean a finitely generated right module unless otherwise stated.
Let M and N be A-modules. We write N |M if N is (isomorphic to) a direct summand of
M as an A-module.

From now on, let k be a field and assume that A is a finite dimensional k-algebra.
Suppose that M is an A-module. Then, we denote by soc(M) the socle of M . We define
soc0(M) = 0 and soc1(M) = soc(M). Then, we define soci(M) by soci(M)/soci−1(M) =
soc(M/soci−1(M)) for any integer i > 2. Similarly, we write radi(M) for M ·radi(A) for any
integer i > 0. By using this, we define Li(M) by radi−1(M)/radi(M) for i = 1, 2, · · · . We
call Li(M) the i-th Loewy layer of M . We denote by j(M) the Loewy length of M , namely
j(M) is the least positive integer j satisfying radj(M) = 0. We write P (M) and I(M) for
a projective cover and an injective hull (envelope) of M , respectively, and we write Ω for
the Heller operator (functor), namely, ΩM is the kernel of the projective cover P (M) � M .
Dually, Ω−1M is the cokernel of the injective hull M � I(M). For simple A-modules
S1, · · · , Sn (some of which are possibly isomorphic) we write that M = a1×S1+· · ·+an×Sn,
as composition factors for positive integers a1, · · · , an when the set of all composition factors
are a1 times S1, · · · , an times Sn. For an A-module M and a simple A-module S, we denote
by cM (S) the multiplicity of all composition factors of M which are isomorphic to S. We
write c(S, T ) for cP (S)(T ) for simple A-modules S and T , namely, this is so-called the Cartan
invariant with respect to S and T .

To describe the structure of an A-module, we either indicate the radical and socle series,
in cases where these series coincide and are sufficient for our analysis, or we draw an Alperin
diagram [1]. An A-module need not have an Alperin diagram, but if it does then it is a
compact way to give a more detailed structural description of the module under considera-
tion; note that the Alperin diagram is closely related to the Hasse diagram of the incidence
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relation amongst the local submodules in the sense of [46], hence for explicit examples is
easily determined using the techniques described in [42]. Note, however, that by giving any
kind of diagram an A-module in general is not uniquely determined up to isomorphism.

Let N be another A-module. Then, HomA(M,N) is the set of all right A-module-
homomorphisms from M to N , which canonically is a k-vector space, and we denote by
PHomA(M,N) the set of all (relatively) projective homomorphisms in HomA(M,N), which
is a k-subspace of HomA(M,N). Hence, we can define the factor space, that is, we write
HomA(M,N) for the factor space HomA(M,N)/PHomA(M,N). By making use of this,
as is well-known, we can construct the stable module category mod-A, which is a quotient
category of mod-A such that the set of all morphisms is given by HomA(M,N).

In this paper, G is always a finite group and we fix a prime number p. Assume that
(K,O, k) is a splitting p-modular system for all subgroups of G, that is to say, O is a complete
discrete valuation ring of rank one such that its quotient field is K which is of characteristic
zero and its residue field O/rad(O) is k which is of characteristic p, and that K and k
are splitting fields for all subgroups of G. We mean by an OG-lattice a finitely generated
right OG-module which is a free O-module. We sometimes call it just an OG-module. Let
X be a kG-module. Then, we write X∨ for the k-dual of X, namely, X∨ = Homk(X, k)
which is again a right kG-module via (x)(ϕg) = (xg−1)ϕ for x ∈ X, ϕ ∈ X∨ and g ∈ G.
Similarly, we write χ∨ for the dual (complex conjugate) of χ for an ordinary character χ
of G. Let H be a subgroup of G, and let M and N be an OG-lattice and an OH-lattice,
respectively. Then, let M↓GH = M↓H be the restriction of M to H, and let N↑GH = N↑G be
the induction (induced module) of N to G, that is, N↑G = (N ⊗OH OG)OG. Similar for
kG- and kH-modules.

We denote by Irr(G) and IBr(G) the sets of all irreducible ordinary and Brauer characters
of G, respectively. Let A be a block algebra (p-block) of OG. Then, we write Irr(A) and
IBr(A) for the sets of all characters in Irr(G) and IBr(G) which belong to A, respectively.
We often mean by IBr(A) the set of all non-isomorphic simple kG-modules belonging to A.
For ordinary characters χ and ψ of G, we denote by (χ, ψ)G the inner product of χ and ψ in
usual sense. Let X and Y be kG-modules. Then, we write [X,Y ]G for dimk[HomkG(X,Y )].
We denote by kG the trivial kG-module. Similar for OG. For A-modules M and N we write
[M,N ]A for dimk[HomA(M,N)].

We say that M is a trivial source (p-permutation) kG-module if M is an indecomposable
kG-module whose source is kQ, where Q is a vertex of M . Let G′ be another finite group,
and let V be an (OG,OG′)-bimodule. Then we can regard V as a right O[G×G′]-module
via v(g, g′) = g−1vg′ for v ∈ V , g ∈ G and g′ ∈ G′. Similar for (kG, kG′)-bimodules. We
denote by ∆G the diagonal copy of G in G × G, namely, ∆G = {(g, g) ∈ G × G | g ∈ G}.
Let A and A′ be block algebras of OG and OG′, respectively. Then, we say that A and A′

are Puig equivalent if A and A′ have a common defect group P (and hence P ⊆ G ∩ G′)
and if there is a Morita equivalence between A and A′ which is induced by an (A,A′)-
bimodule M such that, as a right O[G×G′]-module, M is a p-permutation (trivial source)
module and ∆P -projective. Similar for blocks of kG and kG′. Due to a result of Puig
(and independently of Scott), see [55, Remark 7.5], this is equivalent to a condition that A
and A′ have source algebras which are isomorphic as interior P -algebras, see [40, Theorem
4.1]. For an (OG,OG′)-bimodule V and a common subgroup Q of G and G′, we set V Q =
{v ∈ V | qv = vq,∀q ∈ Q}. If Q is a p-group, the Brauer construction is defined to be a
quotient V (Q) = V Q/[

∑
R�Q TrQ

R(V R) + radO·V Q] where TrQ
R is the usual trace map. The

Brauer homomorphism BrQ : (OG)Q → kCG(Q) is obtained from composing the canonical
epimorphism (OG)Q � (OG)(Q) and a canonical isomorphism (OG)(Q) ≈→ kCG(Q).

We say that A and A′ are stably equivalent of Morita type if there exists an (A,A′)-
bimodule M such that AM and MA′ are both projective, A(M ⊗A′ M∨)A

∼= AAA ⊕
(projective (A,A)-bimodule) and A′(M∨⊗AM)A′ ∼= A′A′A′⊕(projective (A′, A′)-bimodule).
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We say that A and A′ are splendidly stably equivalent of Morita type if A and A′ have
a common defect group P and the stable equivalence of Morita type is induced by an
(A,A′)-bimodule M which is a p-permutation (trivial source) O[G×G′]-module and is ∆P -
projective, see [40, Theorem 3.1]. We say that A and A′ are Rickard equivalent if A and A′

are derived equivalent, namely, Db(mod-A) and Db(mod-A′) are equivalent as triangulated
categories. We say that A and A′ are splendidly Rickard equivalent if A and A′ are de-
rived equivalent by a complex M• ∈ Cb(A-mod-A′) and its dual (M•)∨ such that each term
Mn of M• is a ∆(P )-projective and p-permutation module as an O[G×G′]-module, where
Cb(A-mod-A′) is the category of bounded complexes of finitely generated (A,A′)-bimodules.

For a positive integer n, An and Sn denote the alternating and symmetric group on n
letters, Mn denotes the Mathieu group, and Cn, Dn and SDn denote the cyclic group, the
dihedral group and the semi-dihedral group of order n, respectively. For a subgroup E of
Aut(G), G o E denotes a semi-direct product such that G is normal in G o E and E acts
on G canonically. For g ∈ G and a subset S of G, we denote g−1Sg by Sg, and similarly,
xg = g−1xg for x ∈ G. For non-empty subsets S and T of G, we write S =G T if T = Sg

for an element g ∈ G.
For other notation and terminology, see the books of Nagao-Tsushima [48] and Thévenaz

[62].

2. Preliminaries

In this section we list many lemmas, some of which are theorems due to other people. These
lemmas are so useful and powerful to prove our main results.

2.1.Lemma ([24, (1.1)Lemma]). Let A be a finite-dimensional algebra over a field and X
an A-module. Assume that Y is a non-zero uniserial A-submodule of X with Loewy layers

radi−1(Y )/radi(Y ) ∼= Si for i = 1, · · · , n
where Si is a simple A-module. Set X̄ = X/Y . Then, we get the following:

(i) For each j = 1, · · · , j(X), radj−1(X)/radj(X) ∼= radj−1(X̄)/radj(X̄) or
radj−1(X)/radj(X) ∼= radj−1(X̄)/radj(X̄)

⊕
Si for some Si.

(ii) For each i = i, · · · , n, there is a positive integer mi such that m1 < m2 < · · · < mn

and that radmi−1(X)/radmi(X) ∼=
(
radmi−1(X̄)/radmi(X̄)

)⊕
Si.

2.2.Lemma (Okuyama [50, Lemma 2.2]). Let S be a simple kG-module with vertex P , and
let f be the Green correspondence with respect to (G,P,NG(P )). If S is a trivial source
module, then its Green correspondent f(S) is again simple as kNG(P )-module.

2.3.Lemma (Scott [35, II Theorem 12.4 and I Proposition 14.8] and [5, Corollary 3.11.4]).
(i) If M is a trivial source kG-module, then M uniquely (up to isomorphism) lifts to a

trivial source OG-lattice M̂ .
(ii) If M and N are both trivial source kG-modules, then [M,N ]G = (χcM , χ bN )G.

2.4.Lemma (Fong-Reynolds). Let H be a normal subgroup of G, and let A and B be block
algebras of OG and OH, respectively, such that A covers B. Let T = TG(B) be the inertial
subgroup (stabiliser) of B in G. Then, there is a block algebra Ã of OT such that Ã covers
B, 1A1Ã = 1Ã1A = 1Ã, A = ÃG (block induction), and the block algebras A and Ã are
Morita equivalent via a pair (1A·OG·1Ã, 1Ã·OG·1A), that is, the Morita equivalence is a
Puig equivalence and induces a bijection

Irr(Ã)→ Irr(A), χ̃ 7→ χ̃↑G; Irr(A)→ Irr(Ã), χ 7→ χ↓T ·1Ã
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between Irr(Ã) and Irr(A), and a bijection

IBr(Ã)→ IBr(A), φ̃ 7→ φ̃↑G; IBr(A)→ IBr(Ã), φ 7→ φ↓T ·1Ã

between IBr(Ã) and IBr(A),

Proof. See [30, 1.5.Theorem] and [48, Chapter 5 Theorem 5.10]. �

2.5.Lemma. Let A be a block algebra of OG with a defect group P , let N = NG(P ), and let
AN be a block algebra of ON which is the Brauer correspondent of A. Moreover, let (P, e)
be a maximal A-Brauer pair, H = NG(P, e), the normaliser of (P, e) in NG(P ), and let B
be a block algebra of OH which is the Fong-Reynolds correspondent of AN , see 2.4. Then,
A↓G×G

G×H ·1B = 1A·OG·1B, as a right O[G × H]-module, has a unique (up to isomorphism)
indecomposable direct summand with vertex ∆P .

Proof. See [31, Lemma 2.4] and [48, Chapter 5, Theorem 5.10]. �

2.6.Lemma. Assume that G > H, and let A and B respectively be block algebras of OG
and OH with a common defect group P , and hence P 6 H. Suppose, moreover, that a pair
(M,M∨) induces a splendid stable equivalence of Morita type between A and B, where M
is an (A,B)-bimodule such that M

∣∣∣1A·OG·1B as (A,B)-bimodules.

(i) If X is a non-projective trivial source kG-module in A, then (X⊗AM)B = Y ⊕(proj)
for a non-projective indecomposable kH-module Y such that Y has a trivial source.

(ii) If X is a non-projective indecomposable kG-module in A, then (X ⊗A M)B = Y ⊕
(proj) for a non-projective indecomposable kH-module Y such that there is a p-
subgroup Q of H such that Q is a common vertex of X and Y .

Proof. See [31, Lemma 2.7]. �

2.7.Lemma. Let k be a field, and let A be a finite-dimensional symmetric k-algebra. More-
over, suppose that S is a simple A-module and M is a projective-free A-module. Then, we
have HomA(S,M) ∼= HomA(S,M) and HomA(M,S) ∼= HomA(M,S) as k-spaces.

Proof. Follows by [13, (3.2), (3.2*), (3.3)], see [35, II, Lemma 2.7, Corollary 2.8]. �

2.8.Lemma. Let k be an algebraically closed field, and let A and B be finite-dimensional
symmetric k-algebras. Suppose that M is an (A,B)-bimodule such that AM and MB are
both projective modules. Then a functor F : mod-A→ mod-B defined by F (X ′) = X ′⊗AM
for X ′

A, is additive and exact. Assume, furthermore, that F induces a stable equivalence
between A and B.

(i) Let X be a projective-free A-module such that X has a simple A-submodule S. Set
T = F (S). Then, we can write F (X) = Y ⊕ R for a projective-free B-module Y
and a projective B-module R. Now, if T is a simple B-module, then we may assume
that Y contains T and that F (X/S) = Y/T ⊕ (proj).

(ii) (dual of (i)) Let X be a projective-free A-module such that X has an A-submodule
X ′ satisfying that X/X ′ is simple. Set T = F (X/X ′). Then, we can write F (X) =
Y ⊕R for a projective-free B-module Y and a projective B-module R. Now, if T is
a simple B-module, then we may assume that T is an epimorphic image of Y and
that Ker(F (X) � T ) = Ker(Y � T )⊕ (proj).

Proof. We get (i) from 2.7 and [30, 1.11.Lemma], just as in the proof of [30, 3.25.Lemma
and 3.26.Lemma], see [34, Proposition 2.2]. (ii) is just the dual of (i). �

2.9.Lemma (Linckelmann [37, Theorem 2.1(ii)]). Let A and B be finite-dimensional k-
algebras for a field k such that A and B are both self-injective and indecomposable as algebras,
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and none of them are simple algebras. Suppose that there is an indecomposable (A,B)-
bimodule M such that a pair (M,M∨) induces a stable equivalence between A and B. If S
is a simple A-module, then (S ⊗A M)B is a non-projective indecomposable B-module.

The next lemma is a new result due to Kunugi and the first author. This is actually so
useful and convenient when we want to apply so-called ”Rouquier’s gluing” to our inductive
argument in order to get a stable equivalence between two block algebras which we are
looking at.

2.10.Lemma (Koshitani-Kunugi [28, Theorem 1.2]). Let A be a block algebra of OG with
a cyclic defect group P 6= 1. Let H = NG(P ), and let B be a block algebra of OH such that
B is the Brauer correspondent of A. Then, we get the following:

(i) The following (1) and (2) are equivalent:
(1) The Brauer tree of A is a star with exceptional vertex in the centre, and there

exists a non-exceptional irreducible ordinary character χ of G in A such that
χ(u) > 0 for any element u ∈ P .

(2) The block algebras A and B are Puig equivalent.
(ii) If one of the conditions (1) and (2) in (i) holds (and hence both hold), then all simple

kG-modules in A are trivial source modules.
(iii) If one of the conditions (1) and (2) in (i) holds (and hence both hold), then there is

an indecomposable (A,B)-bimodule M such that 1A·OG·1B = M ⊕ (proj) and M,
as an O[G × H]-module, has ∆P as its vertex, and M realizes a Puig equivalence
between A and B.

2.11.Lemma. Let A be a block algebra of OG with defect group P . Set H = NG(P ), and
let B be a block algebra of OH such that B is the Brauer correspondent of A. Assume that
Q is a subgroup of P with Q ⊆ Z(G). Set Ḡ = G/Q, H̄ = H/Q and P̄ = P/Q. It is
well-known that there exist block algebras Ā and B̄ of OḠ and OH̄, respectively, such that
Ā and B̄ dominate A and B, namely Irr(Ā) ⊆ Irr(A) and Irr(B̄) ⊆ Irr(B), and that both Ā
and B̄ have P̄ as defect groups, see [48, Chapter 5 Theorems 8.10 and 8.11].

(i) It holds that H̄ = NḠ(P̄ ) and that B̄ is the Brauer correspondent of Ā.
In the rest of the lemma, assume in addition that P is elementary abelian of order
p2, namely, P = Q×R with Q ∼= R ∼= Cp.

(ii) It holds that
Ā⊗OH̄ B̄ = Ā(Ā·1B̄)B̄ = ĀXB̄ ⊕ (proj)

for an indecomposable (Ā, B̄)-bimodule X with vertex ∆P̄ .
(iii) In particular, if X realizes a Morita equivalence between Ā and B̄, then there ex-

ists an (A,B)-bimodule M such that M is an indecomposable direct summand of
A(A·1B)B with vertex ∆P , and hence M induces a Puig equivalence between A and
B.

Proof. (i) The first part is easy. The second part follows from [49, (3.2)Lemma], see [41,
`.10 on p.1314].

(ii) This follows by [38, Proposition 6.1] since P̄ ∼= Cp.
(iii) This is obtained from (ii) and [27, Theorem], see [41, `.− 7 ∼ `.− 4 on p.1314] and

[40, Theorem 4.1]. �

2.12.Lemma. Suppose that p = 3 and G = A9.
(i) There uniquely exists a non-principal block algebra A of OG with defect group P ∼=

C3. In addition we can write Irr(A) = {χ5, χ17, χ18} such that χ5(1) = 27, χ17(1) =
189, χ18(1) = 216 and χ5(u) = χ17(u) = 9 for any element u ∈ P − {1}, and that a
part of the 3-decomposition matrix is
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27 189
χ5 1 0
χ17 0 1
χ18 1 1

where the indices of χi are the same as in [10, p.37]. (In the following, we use the
notation A and P as in (i)).

(ii) Set H = NG(P ). Then H = (P × A6).C2, where the action on P × A6 by C2 is the
diagonal one, extending A6 to S6.

(iii) Let H be as in (ii), and let B be a block algebra of OH, which is the Brauer cor-
respondent of A. Then, A and B are Morita equivalent via an (A,B)-bimodule M
such that M is (up to isomorphism) the unique indecomposable direct summand of
A(A·1B)B with vertex ∆P , and hence it holds that M induces a Puig equivalence
between A and B, and that the simples 27 and 189 in A are both trivial source
kG-modules.

Proof. (i) This follows from [10, p.37], [67, A9 (mod 3)] and [19].
(ii) Easy by inspection.
(iii) This is obtained from (i) and 2.10. �

2.13.Lemma. Let A and B be finite dimensional k-algebras. Assume that there exists a
functor F : mod-A → mod-B realizing a stable equivalence between A and B. Assume, in
addition, that there is a simple A-module S0 such that S0 is sent to a simple B-module T0,
namely, F (S0) = T0. Then, for any simple A-module S with S 6∼= S0, it holds [F (S), T0]B =
[T0, F (S)]B = 0.

Proof. We get by 2.7 and the assumptions that

0 = HomA(S, S0) ∼= HomA(S, S0)
∼= HomB(F (S), F (S0)) = HomB(F (S), T0)
∼= HomB(F (S), T0).

Hence [F (S), T0]B = 0. The rest is similar. �

2.14.Lemma. Let A be a finite-dimensional k-algebra, and assume that X is an A-module
satisfying that (I1 ⊕ I2)

∣∣∣X where I1 and I2 are A-submodules of X with I1 ∼= I2 ∼= I(S) for
a simple A-module S. If Z is an A-submodule of X such that soc(Z) is a simple A-module,
then X/Z has a direct summand isomorphic to I(S).

Proof. Set Si = soc(Ii) for i = 1, 2. Then, soc(I1⊕I2) = S1⊕S2
∼= S⊕S. Hence S1⊕S2 6⊆Z,

so that S1 6⊆Z or S2 6⊆Z. Thus we may assume S1 6⊆Z. Then, I1 ∩ Z = 0 since I1 has a
unique minimal A-submodule S1. This implies that X/Z ⊇ (I1 + Z)/Z ∼= I1/(I1 ∩ Z) ∼= I1.
Hence, I1 ↪→ X/Z. Since I1 is injective, we finally have I1

∣∣∣X/Z. �

2.15.Lemma. Let G, H and L be finite groups such that all of them contain a com-
mon subgroup P , namely, P ⊆ G ∩ H ∩ L. Let M be a k[G × H]-module such that
M
∣∣∣ k∆P ↑G×H , and let N be a k[H×L]-module such that N

∣∣∣ k∆P ↑H×L. Then, it follows that

M ⊗kH N
∣∣∣ k∆P ↑G×L.

Proof. This is a special case of [16, 2.5.Proposition]. �

2.16.Lemma. Let A be a finite-dimensional k-algebra, and assume that X is an indecom-
posable non-simple A-module. Then, it holds soc(X) ⊆ rad(X).
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Proof. Assume that soc(X) 6⊆ rad(X). Then, X has a simple A-submodule S with S 6⊆
rad(X). Hence, X has a maximal A-submoduleM with S 6⊆M . These imply that S∩M = 0
and S + M = X. Namely, X = S ⊕M . Since M is indecomposable, X = S. This is a
contradiction. �

3. 3-Local structure for HN

3.1.Notation and assumption. From now on, we assume that G is the Harada-Norton
simple group HN, and hence |G| = 214·36·56·7·11·19 ; 2.7× 1014, see [10, p.164–166] and
[14].

3.2.Lemma.
(i) In order to prove Broué’s abelian defect group conjecture for G = HN, it suffices to

prove it for the case p = 3.
(ii) There exists a unique 3-block A with non-cyclic abelian defect group P , and P is

elementary abelian of order 9.
(iii) P is the Sylow 3-subgroup of the second largest maximal subgroup 2.HS.2 of G, a

two-fold cover of the automorphism group of the Higman-Sims simple group HS.

Proof. (i) We may assume p ∈ {2, 3, 5} by 3.1 just as in the proof of [31, Lemma 3.2].
Assume that p = 2. Then, G has only two 2-blocks B0 and B1 with positive defect by [67],
where B0 is the principal 2-block. Then, the non-principal 2-block B1 has a defect group
D with D ∼= SD16, see [4, Lemma 4.2(c)]. Thus, B0 and B1 both have non-abelian defect
groups. Next, suppose p = 5. By [67], G has only a unique 5-block B0 which has defect
> 2, and hence B0 is the principal 5-block. Then, B0 has non-abelian defect group 51+4

+ .5
by [10, p.164–166].

(ii) Finally, assume p = 3. Sylow 3-subgroups of G are non-abelian by [10, p.164–166].
Thus, G has a unique non-principal 3-block A such that A has a defect group P with
|P | > 32, and actually P ∼= C3 × C3, see [4, Lemma 4.2(b)].

(iii) Using the character table of G, calculations with GAP [12] show that the conjugacy
class 2A of G is a defect class of A, where we follow the notation in [10, p.164–166]. Hence
P is a Sylow 3-subgroup of the centralizer CG(2A) ∼= 2.HS.2. �

3.3.Notation. From now on, we assume p = 3, and we use the notation A and P as in 3.2,
namely, A is a block algebra of kG with defect group P ∼= C3×C3. Set H = NG(P ), and let
B be a block algebra of kH that is the Brauer correspondent of A. Let (P, e) be a maximal
A-Brauer pair in G, that it, e is a block idempotent of kCG(P ) such that BrP (1A)·e = e,
see [2], [9] and [62, §40]. Set H̃ = NG(P, e), namely, H̃ = {g ∈ NG(P ) | eg = e}, where
eg = g−1eg. Finally set E = H/CG(P ), and let Q be a subgroup of P of order 3.

3.4.Lemma. It holds the following:
(i) H = H̃ = (P × A6).SD16.
(ii) CG(P ) = CH(P ) = P × A6.
(iii) E = H̃/CG(P ) ∼= SD16, where the action of E on P is given by the embedding of

SD16 as a Sylow 2-subgroup of Aut(P ) ∼= GL2(3).
(iv) All elements in P − {1} are conjugate in H, and hence in G.
(v) P − {1} ⊆ 3A, where 3A is a conjugacy class of G following the notation in [10,

p.164–166].
(vi) All subgroups of P of order 3 are conjugate in H, and hence in G.
(vii) Recall the subgroup Q of P in 3.3. Then, we have CG(Q) = Q × A9, NG(Q) =

(Q× A9).2 6 A12, CH(Q) = (P × A6).2, and NH(Q) = (P × A6).22.
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(viii) CG(Q)/Q ∼= A9, CH(Q)/Q ∼= (C3 × A6).2, NG(Q)/Q ∼= A9.2, and NH(Q)/Q ∼=
(C3 × A6).22.

Proof. This is found using explicit computation with GAP [12]. The starting point is the
smallest faithful permutation representation of G on 1140000 points, available in terms of
so-called standard generators [65] in [68]. The associated one-point stabiliser is the largest
maximal subgroup A12 of G, which hence can be found explicitly by a randomised Schreier-
Sims technique. Having completed that, all the following computations can be done using
this permutation representation of G.

Actually, one of the standard generators is an element of the 2A conjugacy class of G,
where we use the notation in [10, p.164–166]. Hence the second largest maximal subgroup
2.HS.2 ∼= CG(2A) can be found be a centraliser computation. In turn, by 3.2(iii) P can be
computed explicitly as a Sylow 3-subgroup of 2.HS.2.

(i)–(ii) The normaliser H = NG(P ) and the centraliser CG(P ) of P can be computed
explicitly, and as these are fairly small groups their structure is easily revealed.

(iii) It follows from [67, A6 (mod 3)] and [19] that A6 has exactly two 3-blocks. Let β be
the non-principal block algebra of kA6, and hence β is of defect zero. Then, e = 1β . Since
β is a unique block algebra of kA6 of defect zero, this shows H = H̃.

(iv) Easy by (iii) and inspection.
(v) We use the notation 3A and 3B as in [10, p.164–166]. By (iv), P − {1} ⊆ 3A or 3B.

Assume P −{1} ⊆ 3B. Then, χ(u) = 0 for any χ ∈ Irr(A) and any u ∈ 3A by [48, Chapter 5
Corollary 1.10(i)]. But we know that χ8 ∈ Irr(A) by [4, Lemma 4.2(b)], see also 4.1, and
that χ8(u) = 27 for any u ∈ 3A. This is a contradiction.

(vi) Easy by (iv).
(vii)–(viii) It is easy to see that NG(Q) < A12, the largest maximal subgroup of G, which

is the one-point stabiliser in the given permutation representation of G. Hence again the
normaliser NA12(Q) and the centraliser CA12(P ) of P can be computed explicitly and their
structure determined. �

3.5.Lemma. We get the following diagram:

G = HN

A12

NG(Q) = NA12(Q) = (Q× A9).2

CG(Q) = CA12(Q) = Q× A9

H = NG(P ) = (P × A6).SD16

NA12(P ) = (P × A6).D8

NH(Q) = (P × A6).22

CH(Q) = (P × A6).2

CG(P ) = CH(P ) = P × A6

hhhhhhhhhhhhhh
hhhhhhhhhhhhhh

hhhhhhhhhhh

hhhhhhhhhhh

(A6 × A6).D8

(A6 × A6).22

84

84

1140000

220

2

2

2

2

2

20

20

263340000

462

where the numbers between two boxes are indices between the two corresponding groups.

Proof. This follows from [10, p.164–166], 3.4 and calculations with GAP [12]. �

3.6.Lemma. The following holds:
(i) B ∼= Mat9(O[P o SD16]) as O-algebras,
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(ii) The block algebra B has a source algebra jBj ∼= O[PoSD16], as interior P -algebras,
where j is a source idempotent of B with respect to P , namely, j is a primitive
idempotent of BP such that BrP (j) 6= 0 for the Brauer homomorphism BrP for P ,
see [62, §§19 and 27].

(iii) We can write

Irr(B) = {χ9a, χ9b, χ9c, χ9d, χ18a, χ18b, χ18c, χ72a, χ72b}
and

IBr(B) = {9a, 9b, 9c, 9d, 18a, 18b, 18c},
where the numbers mean the degrees of characters and the dimensions of simples,
respectively. Note that χ18b and χ18c are dual each other, and so are 18b and 18c.
The other characters and simples are self-dual.

(iv) The 3-decomposition matrix and the Cartan matrix of B are the following:

9a 9b 9c 9d 18a 18b 18c
χ9a 1 . . . . . .
χ9b . 1 . . . . .
χ9c . . 1 . . . .
χ9d . . . 1 . . .
χ18a . . . . 1 . .
χ18b . . . . . 1 .
χ18c . . . . . . 1
χ72a 1 1 . . 1 1 1
χ72b . . 1 1 1 1 1

P (9a) P (9b) P (9c) P (9d) P (18a) P (18b) P (18c)
9a 2 1 0 0 1 1 1
9b 1 2 0 0 1 1 1
9c 0 0 2 1 1 1 1
9d 0 0 1 2 1 1 1

18a 1 1 1 1 3 2 2
18b 1 1 1 1 2 3 2
18c 1 1 1 1 2 2 3

(v) There are unique conjugacy classes 4A and 4B of H, consisting of elements of order
4, and having centralisers of order 40 and 48, respectively. A part of the character
table of Irr(B) then is the following:

conjugacy class 4A 4B 12A
centraliser 40 48 24

χ9a 1 −1 −1
χ9b −1 −1 −1
χ9c 1 1 1
χ9d −1 1 1
χ18a 0 0 0
χ18b 0 0 0
χ18c 0 0 0
χ72a 0 −2 1
χ72b 0 2 −1

Note that this identifies the characters χ9a, χ9b, χ9c, χ9d, χ72a and χ72b uniquely.
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(vi) The radical and socle series of PIMs in B are the following:

9a
18b

9b 18a
18c
9a

9b
18c

9a 18a
18b
9b

9c
18c

9d 18a
18b
9c

9d
18b

9c 18a
18c
9d

18a
18b 18c

9b 9c 18a 9a 9d
18c 18b

18a

18b
9b 18a 9c

18c 18b 18c
9a 18a 9d

18b

18c
9a 18a 9d

18b 18c 18b
9b 18a 9c

18c

Note that this identifies the simples 18b and 18c uniquely.

(vii) An Alperin diagram of the PIM P (18a) is given as follows:

P (18a) =

18a

18b 18c

9b 9c 18a 9a 9d

18c 18b

18a
@ �

@ � @ �

� @ � @

@�

Proof. This again relies on computations with GAP [12]. Starting with the explicit re-
striction of the permutation representation of G to H obtained in 3.4, we find a faithful
permutation representation of H on a small number of points. This then is used to com-
pute the conjugacy classes of H, and its ordinary character table using the Dixon-Schneider
algorithm.

(i) Since the Schur multiplier of SD16 is trivial, see e.g. [25, Proof of Lemma 1.3], we get
the assertion by 3.4(i)-(iii), [33, A.Theorem].

(ii) This follows by a result of Puig [54, Proposition 14.6] and (i), see [3, Theorem 13]
and [62, (45.12)Theorem].

(iii)–(v) Easy from the character table of H.
(vi) The radical and socle series have been determined in [63].
(vii) To find the structure of P (18a), we have used the MeatAxe [60] to construct P (18a)

explicitly as a matrix representation, from the permutation representation of H obtained
above, and subsequently we have used the method described in [42] to compute the whole
submodule lattice of P (18a), from which the result follows easily. �

3.7.Notation. We use the notation χ9a, χ9b, χ9c, χ9d, χ18a, χ18b, χ18c, χ72a, χ72b, 9a, 9b,
9c, 9d, 18a, 18b, 18c, and also the source idempotent j as in 3.6.

3.8.Lemma. The block algebra B and its source algebra k[P oSD16] have exactly 18 trivial
source modules. In fact, it holds the following:

(i) Seven PIMs: P (9a), P (9b), P (9c), P (9d), P (18a), P (18b), P (18c).
(ii) Seven trivial source modules with a vertex P : 9a, 9b, 9c, 9d, 18a, 18b, 18c.
(iii) Four trivial source modules with vertex Q ∼= C3:

12



χ9a + χ9b + χ18a + χ72a ↔ V1 =

18a

18b

18a

18c

9b9a

9b 9a
� @ � @

@ � @ �

χ9c + χ9d + χ18a + χ72b ↔ V2 =

18a

18c

18a

18b

9d9c

9d 9c
� @ � @

@ � @ �

χ18b + χ18c + χ72a ↔ V3 =

18c18b

9a18a9b

18b18c
@ @� �

� �@ @

χ18b + χ18c + χ72b ↔ V4 =

18c18b

9d18a9c

18b18c
@ @� �

� �@ @

and all characters χVi realized by Vi has values χVi(u) = 27 for any u ∈ 3A, where 3A is
the unique conjugacy class of H of elements of order 3 on which χVi does not vanish, see
[48, Chapter 5, Corollary 1.10(i)].

Proof. These follow from 3.4, a theorem of Green [48, Chapter 4, Problem 10, p.302]
As for (iii), starting again with the permutation representation of H, using GAP [12] we
compute NH(Q), use the MeatAxe [60] and the methods described in [43] to find the PIMs
of NH(Q)/Q as direct summands of its regular representation, induce them to H, and find
the submodule structure of the induced modules using the methods described in [42]. �

3.9.Notation. We use the notation V1, V2, V3, V4 as in 3.8.

3.10.Lemma. There are no kH-modules in B whose radical and socle series are the same
and which have the following structure:

18a
18b 18c

18a
18b

(i)

18a
18b 18c

18a
18c

(ii)

9c
18c
9d
18b

(iii)

9d
18b
9c
18c

(iv)
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Proof. (i) Assume that such a kH-module, which we call M , exists. There is an epimor-
phism π : P (18a) � M . Set K = Ker(π). Then, 3.6(vi) and 1.1 imply that K has radical
and socle series

9b 9c 9a 9d
18c
18a

Since there does not exist a kH-module
9a
18c by 3.6(vi), we have a contradiction.

(ii) Similar to (i).
(iii) Assume that such a kH-module, which we call M , exists. There is an epimorphism

π : P (9c) � M . Set K = Ker(π). Then, by 3.6(vi) we get K =
18a
9c . This contradicts the

structure of P (9c) in 3.6(vi).
(iv) Similar to (iii). �

4. 3-Modular representations of HN

4.1.Theorem (Hiss-Müller-Noeske-Thackray [17]). The 3-decomposition matrix and the
Cartan matrix of A are the following:

degree [10, p.164–166] S1 S2 S3 S4 S5 S6 S7

8910 χ8 1 . . . . . .
16929 χ10 . 1 . . . . .

270864 χ19 . . 1 . . . .
1185030 χ32 1 1 . 1 . . .
1354320 χ33 1 . . . 1 1 .
1575936 χ37 . . 1 . . 1 .
2784375 χ43 1 . 1 1 1 1 .
4561920 χ49 . . . 1 1 . 1
4809375 χ50 . 1 1 1 . . 1

P (S1) P (S2) P (S3) P (S4) P (S5) P (S6) P (S7)
S1 4 1 1 2 2 2 0
S2 1 3 1 2 0 0 1
S3 1 1 4 2 1 2 1
S4 2 2 2 4 2 1 2
S5 2 0 1 2 3 2 1
S6 2 0 2 1 2 3 0
S7 0 1 1 2 1 0 2

where S1, · · · , S7 are non-isomorphic simple kG-modules in A whose degrees respectively are
8910, 16929, 270864, 1159191, 40338, 1305072, 3362391.

4.2.Notation. We use the notation χ8, χ10, χ19, χ32, χ33, χ37, χ43, χ49, χ50 and S1, · · · , S7

as in 4.1.

4.3.Lemma.
(i) All simples S1, · · · , S7 are self-dual.
(ii) (Knörr) All simples S1, · · · , S7 have P as vertices.
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Proof. (i) Easy from 4.1.
(ii) This is a result of Knörr [22, 3.7.Corollary]. �

4.4.Lemma.
(i) The heart H(P (Si)) = rad(P (Si))/soc(P (Si)) is indecomposable as a kG-module for

any i = 1, · · · , 7.
(ii) Ext1kG(Si, Sj) = 0 for any pair (i, j) ∈ {(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 7), (3, 1),

(3, 2), (3, 5), (3, 7), (4, 6), (5, 3), (5, 5), (5, 7), (6, 4), (6, 6), (7, 2), (7, 3), (7, 5), (7, 7)}.

Proof. (i) This follows by the Cartan matrix of A in 4.1 and results of Erdmann and
Kawata, see [11, Theorem 1], [20, Theorem 1.5] and [29, 1.9.Lemma].

(ii) If Ext1kG(S1, S2) 6= 0, then S2|H(P (S1)) since c12 = 1 by 4.1, which contradicts to
(i). Similar for the others. �

4.5.Lemma.
(i) The simple S1 is a trivial source module with S1 ↔ χ8.
(ii) The simple S2 is a trivial source module with S2 ↔ χ10.
(iii) The simple S3 is a trivial source module with S3 ↔ χ19.

Proof. (i)–(ii) Let M = 2.HS.2, where HS is the Higman-Sims simple group, be the second
largest maximal subgroups of G, see by [10, p.164–166]. Now, a calculation with GAP [12],
using the character tables of M and G, shows that 1M↑G·1A = χ8 +χ10. Set X = kM↑G·1A.
We then get X = S1 + S2 (as composition factors) by 4.1. Since X, S1, S2 are all self-dual
by 4.3(i), we obtain X = S1 ⊕ S2.

(iii) Let M be the same as above. There uniquely exists a non-trivial linear character χ
of M . Then, a calculation with GAP [12] shows that χ↑GM ·1A = χ19. Hence, by 4.1, S3 is a
trivial source module. �

4.6.Lemma. There is a trivial source kG-module in A whose vertex is Q and whose struc-
ture is

S4

S4

S7S5S2S1
HH ��

�� HH

JJ 





 JJ
↔ χ32 + χ49.

Proof. It follows from [10, p.164–166] that the fourth largest maximal subgroup of G is of
the form M = 21+8

+ .(A5×A5).2. Let PM ∈ Syl3(M). Then PM
∼= C3×C3, but a calculation

with GAP [12], using the character tables of G and M , shows that PM contains elements
belonging to the 3B conjugacy class of G, hence PM 6=G P by 3.4(v). Clearly, there is a
non-trivial kM -module T with dimk T = 1. Set X = T↑GM ·1A. Then, X is a direct sum
of trivial source kG-modules, and a calculation with GAP [12] shows that X ↔ χ32 + χ49.
Since P is a defect group of A, any indecomposable kG-module Y with Y |X does not have
P as its vertex.

Suppose that X is decomposable. Then, 2.3(i) implies that X = Y ⊕ Z such that
Y ↔ χ32 and Z ↔ χ49. Hence, 4.1 yields that Y = S1 + S2 + S4 (as composition factors).
We know by 4.3(ii) and 4.1 that S1, S2, and Y are all self-dual. If [Y, S1]G 6= 0, then the
self-dualities imply S1|Y , and hence 0 6= [S1, Y ]G = (χ8, χ32)G from 2.3(ii) and 4.5(i), a
contradiction. Hence, [Y, S1]G = [S1, Y ]G = 0. Similarly, we obtain [Y, S2]G = [S2, Y ]G = 0
by 2.3(ii) and 4.5(ii). This is a contradiction since Y has only three composition factors
S1, S2 and S4.
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Thus, X is indecomposable. By the decomposition matix of A in 4.1, X is not a PIM.
Thus, the order of a vertex of X is 3, and hence Q is a vertex of X by 3.4(vi). Clearly,
X is a trivial source kG-module in A. We know by 4.1 that X = S1 + S2 + 2 × S4 +
S5 + S7 (as composition factors). Note that X, S1, S2, S4, S5, S7 are all self-dual from
4.3(i). Then, [Si, X]G = [X,Si]G = 0 for any i = 1, 2, 5, 7 since X is indecomposable.
Thus, X/rad(X) ∼= Soc(X) ∼= S4. Therefore, again by the self-dualities, it holds that
rad(X)/Soc(X) ∼= S1 ⊕ S2 ⊕ S5 ⊕ S7. �

4.7.Lemma. There is a trivial source kG-module in A which has Q as a vertex and has

radical and socle series
S3

S6

S3

↔ χ19 + χ37.

(Note: We can prove that this module has Q as its vertex, but only later on in 7.2(ii)).

Proof. First, the third largest maximal subgroup of G is of shape M = U3(8).3, see [10,
p.164–166]. Then, a calculation with GAP [12], using the character tables of G and M ,
shows that

1M↑G·1A = χ19 + χ32 + χ37 + χ49.(1)

Set X = kM↑G·1A, hence X is self-dual and is a direct sum of trivial source kG-modules.
Then, by the decomposition matrix in 4.1, we know

X = S1 + S2 + 2× S3 + 2× S4 + S5 + S6 + S7 (as composition factors).(2)

If [X,S1]G 6= 0, then 2.3(ii) and 4.5(i) imply that (χX̂ , χ8)G = [X,S1]G 6= 0 where χX̂

is a character afforded by X (see 2.3(i)), which is a contradiction by (1). Hence, it holds
[X,S1]G = [S1, X]G = 0 by the self-dualities in 4.3(i). Similarly, by 4.5(ii)-(iii) and
2.3(ii), we know also [X,S2]G = [S2, X]G = 0 and [X,S3]G = [S3, X]G = 1. If [X,S5]G 6= 0,
then (2) and the self-dualities imply that S5|X, and hence S5 is liftable by 2.3(i), which
contradicts 4.1. Hence, [X,S5]G = [S5, X]G = 0 by the self-dualities. Similarly, it holds
also that [X,Si]G = [Si, X]G = 0 for i = 6, 7. If [X,S4]G = 2, then it follows from (2) and
the self-dualities that (S4⊕S4)|X, and hence S4 is liftable by 2.3(i), which contradicts 4.1.
This shows [X,S4]G = [S4, X]G 6= 2. Namely,

[S3, X]G = [X,S3]G = 1,(3)

[S4, X]G = [X,S4]G 6= 2,(4)

[Si, X]G = [X,Si]G = 0 for i = 1, 2, 5, 6, 7.(5)

Now, 4.6 says that there is a trivial source kG-module Y that has radical and socle series

Y =

S4

S4

S7S5S2S1
HH ��

�� HH

JJ 





 JJ
↔ χ32 + χ49.(6)

in A. Then, by (1), (6) and 2.3(ii), we have

[Y,X]G = [X,Y ]G = 2.(7)

Then, by (4) and (2), we know that

[S4, X]G = [X,S4]G 6 1.(8)

Next, we want to claim that there is a homomorphism ϕ ∈ HomkG(Y,X) with 0 6=
Im(ϕ) 6∼= S4. Suppose that any non-zero ϕ ∈ HomkG(Y,X) satisfies that Im(ϕ) ∼= S4. By
(7), let {ϕ1, ϕ2} be a k-basis of HomkG(Y,X). Then, it follows from Schur’s lemma that
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Im(ϕ1) 6= Im(ϕ2), and hence that there exists a direct sum Im(ϕ1) ⊕ Im(ϕ2) ⊆ X. This
means that [S4, X]G > 2, contradicting (8).

Therefore, there is a homomorphism ϕ ∈ HomkG(Y,X) with 0 6= Im(ϕ) 6∼= S4. Then,
by (6), we know Ker(ϕ) = 0 since Si 6 | soc(X) for i = 1, 2, 5, 7 by (5). That is, there is a
monomorphism ϕ : Y � X of kG-modules.

Then, just by the dual argument, we know also that there is an epimorphism ψ : X � Y of
kG-modules. It follows then by (2) and (6) that there is a direct sum Im(ϕ)⊕Ker(ψ) ⊆ X,
and hence Im(ϕ) ⊕ Ker(ψ) = X. Set Z = Ker(ψ). We can write X = Y ⊕ Z. Since

Z = 2× S3 + S6 (as composition factors), we get by (5) that Z =
S3

S6

S3

. Hence, it is easy to

know from (1) and (6) that Z is a trivial source kG-module with Z ↔ χ19 + χ37. �

4.8.Lemma. There is a trivial source kG-module in A whose structure is

S1 S2

S4

S1 S2

�

@

@

�
↔ χ8 + χ10 + χ32.

(Note: We can prove that this module has Q as its vertex, but only later on in 7.2(i)).

Proof. By [10, p.91], we have 1A11↑
A12 = 1A12 + χ̃11, where χ̃11 ∈ Irr(A12) is of degree 11.

It follows from the 3-decomposition matrix of A12 in [67, A12 (mod 3)] and [19] that

(9) kA11↑
A12 =

k
10
k

↔ 1A12 + χ̃11,

where 10 is a simple kA12-module of dimension 10. Set X = (kA11↑
A12)↑G·1A. Note that X

is a direct sum of trivial source kG-modules. Then, we know from a calculation with GAP
[12], using the character tables of G and A12, that

(10) X ↔ χ8 + χ10 + χ32

and

(11) X = 2× S1 + 2× S2 + S4 (as composition factors).

By (7), 2.3(ii) and 4.5(ii), we obtain [X,S1]G = (χX̂ , χ8)G = 1. Hence, [X,S1]G =
[S1, X]G = 1 by the self-dualities. Similarly, we have [X,S2]G = [S2, X]G = 1. Since
S4 is not liftable by 4.1, S4 is not a trivial source module by 2.3(i). This implies that
[X,S4]G = [S4, X]G = 0 by (8). These yield

(12) X/rad(X) ∼= Soc(X) ∼= S1 ⊕ S2.

Next, we want to claim that X is indecomposable. Suppose that X is decomposable. By
(12), we can write X = X1 ⊕ X2 for A-submodules X1 and X2 of X with soc(Xi) ∼= Si

for i = 1, 2. If X1/rad(X1) 6∼= S1, then (12) shows that X1/rad(X1) ∼= S2, and hence we

get by (12) and (11) that X = X1 ⊕ X2 =
S2

S4

S1

⊕ S1

S2
or X = X1 ⊕ X2 =

S2

S1
⊕

S1

S4

S2

,

which is a contradiction by the self-dualities of X and each Si in 4.4(i). This means that
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Xi/rad(Xi) ∼= Si for i = 1, 2 by (12). If X1 is simple, then we get by (12) that X2 has
radical and socle series which is one of the following three cases:

S2

S1 S4

S2

S2

S1

S4

S2

S2

S4

S1

S2

So we have a contradiction by 4.4(ii). Thus, X1 is not simple. Similarly, we know that X2

is not simple. Hence, 2.16 yields that soc(Xi) ⊆ rad(Xi) for i = 1, 2. Thus, X = X1⊕X2 =

S1

S4

S1

⊕ S2

S2
or X = X1 ⊕X2 =

S1

S1
⊕

S2

S4

S2

. This is a contradiction by (10), 2.3(i) and 4.1.

Therefore X is indecomposable. Hence, we get by (11), (12) and 2.16 that soc(X) ⊆
rad(X). Thus we get the structure of X as desired. �

4.9.Notation. In the rest of paper let f be the Green correspondence from G to H with
respect to P , see [48, Chapter 4 §4].

4.10.Lemma. It holds that f(S1) = 9a.

Proof. It follows from 4.5(i), 4.3(ii) and 2.1 that f(S1) is a simple kH-module in B, see
3.4(i). Using the ordinary characters afforded by the trivial source kH-modules in B, see
3.8, we get the following possible decompositions of S1↓H ·1B , by a calculation with GAP
[12] using the character tables of G and H:

S1↓H ·1B = 9a
⊕ (

7× P (9a)⊕ 7× P (9b)⊕ 5× P (18a)⊕ P (18b)⊕ P (18c)
)

or

S1↓H ·1B = 9b
⊕ (

8× P (9a)⊕ 6× P (9b)⊕ 5× P (18a)⊕ P (18b)⊕ P (18c)
)
.

In particular, f(S1) = 9a or f(S1) = 9b, and we have to decide which case actually occurs.
To this end, let M = 2.HS.2 be the second largest maximal subgroup of G, see 4.5.

By [67, HS (mod 3)] and [19], let A− be the block algebra of OM containing the unique
non-trivial linear character χ of M . Hence letting A+ and A′, see 5.1, be the principal
block algebras of OM and of OHS, respectively, we have A+ ∼= A′ and an isomorphism
−⊗χ : A+ → A−. Moreover, P being a Sylow 3-subgroup of M , it is the block defect group
of A−, and hence let B− be the Brauer correspondent of A− in NM (P ).

Using the smallest faithful permutation representation of M on 1408 points, available
in [68], the normaliser NM (P ) and the centraliser CM (P ) of the Sylow 3-subgroup P is
easily computed explicitly with GAP [12] and their structure determined, we find NM (P ) =
(P×D8).SD16 and CM (P ) = P×D8. Now the conjugacy classes ofNM (P ) can be computed,
its ordinary character table is found using the Dixon-Schneider algorithm, from which its
blocks are determined and B− is identified.

Then a computation with GAP [12], using the character tables of G and M , shows
that S1↓M ·1A− = 22−, where the latter denotes the unique simple A−-module of that
dimension. Moreover, using the character tables of M and NM (P ), GAP [12] shows that
(22−)↓NM (P )·1B− = λ, where λ is a certain linear character; actually, λ is the Green corre-
spondent of 22− with respect to (M,P,NM (P )), which must be linear in view of 5.7. Hence
λ = (S1↓M ·1A−)↓NM (P )·1B− is a direct summand of

(S1↓H)↓NM (P )·1B− =
(
f(S1)⊕ (R-proj)

)
↓NM (P )·1B−

= f(S1)↓NM (P )·1B− ⊕ (Q-proj)⊕ (proj),
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where R consists of elementary-abelian 3-subgroups of H, of order at most 9, not H-
conjugate to P , and Q ∼= C3 is as in 3.3. Since λ has P as a vertex, we conclude that
λ is a direct summand of f(S1)↓NM (P )·1B− .

Now a computation with GAP [12], using the character tables of H and NM (P ), shows
that f(S1)↓NM (P )·1B− = (9x)↓NM (P )·1B− , where x ∈ {a, b}, already is linear, where

(9a)↓NM (P )·1B− = λ 6= (9b)↓NM (P )·1B− .

This shows that f(S1) = 9a. �

4.11.Lemma. It holds that f(S2) = 9b.

Proof. It follows from 4.5(i), 4.3(ii) and 2.1 that f(S1) is a simple kH-module in B, see
3.4(i). Using the ordinary characters afforded by the trivial source kH-modules in B, see
3.8, we get the following possible decompositions of S1↓H ·1B , by a calculation with GAP
[12] using the character tables of G and H:

S2↓H ·1B = 9b
⊕(

9× P (9a)⊕ 8× P (9b)⊕ 7× P (18a)⊕ 5× P (18b)⊕ 5× P (18c)
)

or

S2↓H ·1B = 9a
⊕(

8× P (9a)⊕ 9× P (9b)⊕ 7× P (18a)⊕ 5× P (18b)⊕ 5× P (18c)
)
.

In particular, f(S2) = 9b or f(S2) = 9a, hence the assertion follows from 4.10. �

4.12.Lemma. It holds that f(S3) = 9c.

Proof. It follows from 4.5(i), 4.3(ii) and 2.1 that f(S1) is a simple kH-module in B, see
3.4(i). Using the ordinary characters afforded by the trivial source kH-modules in B, see
3.8, we get the following possible decompositions of S1↓H ·1B , by a calculation with GAP
[12] using the character tables of G and H:

S3↓H ·1B = 9c
⊕(

54× P (9a)⊕ 54× P (9b)⊕ 40× P (9c)⊕ 41× P (9d)

⊕ 94× P (18a)⊕ 95× P (18b)⊕ 95× P (18c)
) ⊕

V3

or

S3↓H ·1B = 9c
⊕(

54× P (9a)⊕ 54× P (9b)⊕ 39× P (9c)⊕ 40× P (9d)

⊕ 93× P (18a)⊕ 96× P (18b)⊕ 96× P (18c)
) ⊕

V2

or

S3↓H ·1B = 9d
⊕(

54× P (9a)⊕ 54× P (9b)⊕ 41× P (9c)⊕ 40× P (9d)

⊕ 94× P (18a)⊕ 95× P (18b)⊕ 95× P (18c)
) ⊕

V3

or

S3↓H ·1B = 9d
⊕(

54× P (9a)⊕ 54× P (9b)⊕ 40× P (9c)⊕ 39× P (9d)

⊕ 93× P (18a)⊕ 96× P (18b)⊕ 96× P (18c)
) ⊕

V2,

where V3 and V2 are the trivial source kH-modules in B with vertex Q given in 3.8. In
particular, f(S3) = 9c or f(S3) = 9d, and we have to decide which case actually occurs.

Keeping the notation from 4.10, we by the proof of 4.5(iii) have S3 = χ↑G·1A, hence
(χ↑G·1A)↓H ·1B = S3↓H ·1B = f(S3)⊕ (Q-proj)⊕ (proj). Hence f(S3) is a direct summand
of

(χ↑G)↓H ·1B =
⊕

g

(
(χg)↓Mg∩H

)
↑H ·1B ,
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where g runs through a set of representatives of the M -H double cosets in G. Since f(S3)
has P as a vertex, and P is normal in H, we only have to look at summands coming from
g ∈ G such that P ≤ Mg ∩ H. But for these g we have P, P g−1 ≤ M , which since P is
a Sylow 3-subgroup of M implies the existence of m ∈ M such that Pm = P g−1

, hence
h := mg ∈ H, and thus g = m−1h ∈MH, that is, we may assume g = 1.

Thus we conclude that f(S3) is a direct summand of (χ↓M∩H)↑H ·1B = (χ↓NM (P ))↑
H ·1B .

Now a computation with GAP [12], using the character tables of NM (P ) and H, shows that
(χ↓NM (P ))↑

H ·1B = 9c is indecomposable, showing that f(S3) = 9c. �

4.13.Remark. We use the notation as in the proof of 4.12. We just remark that it is
possible, using GAP [12] and specially tailored programs to deal efficiently with permutations
on millions of points, to construct the transitive permutation representation of G on 3078000
points, that is, the action of G on the cosets of 2.HS in G, where 2.HS is the derived subgroup
of M , and to use the restriction of this representation to H to show that the first of the four
possible decompositions of S3↓H ·1B listed above actually occurs. But we will not need this
fact.

5. Green correspondence for HS

5.1.Notation and assumption. In the rest of this paper, we use the following notation,
too. Let G′ be the Higman-Sims simple group HS. Since Sylow 3-subgroups of G′ are
isomorphic to C3 × C3, we by abuse of notation let P denote a Sylow 3-subgroup of HS as
well. There is exactly one conjugacy class of G′ which contain elements of order 3, that is, P
has exactly one G′-conjugacy class of subgroups of order 3, see [10, p.81]. Let H ′ = NG′(P ),
and hence H ′ = (P o SD16)× 2, where the action of SD16 on P is given by the embedding
of SD16 as a Sylow 2-subgroup of Aut(P ) ∼= GL2(3). Let A′ and B′, respectively, be the
principal block algebras of OG′ and OH ′.

5.2.Lemma.
(i) The character table of P o SD16 is given as follows:

conjugacy class 1A 2A 2B 3A 4A 4B 6A 8A 8B
centraliser 144 16 12 18 8 4 6 8 8

χ1a 1 1 1 1 1 1 1 1 1
χ1b 1 1 1 1 1 −1 1 −1 −1
χ1c 1 1 −1 1 1 1 −1 −1 −1
χ1d 1 1 −1 1 1 −1 −1 1 1
χ2a 2 2 0 2 −2 0 0 0 0
χ2b 2 −2 0 2 0 0 0

√
−2 −

√
−2

χ2c 2 −2 0 2 0 0 0 −
√
−2

√
−2

χ8a 8 0 2 −1 0 0 −1 0 0
χ8b 8 0 −2 −1 0 0 1 0 0

Note that this identifies the characters χ1a, χ1b, χ1c, χ1d, χ8a, and χ8b uniquely.
(ii) B′ ∼= O[P o SD16], as interior P -algebras and hence k-algebras, and we can write

that

Irr(B′) = {1H′ = χ1a, χ1b, χ1c, χ1d, χ2a, χ2a, χ2c = χ2b
∨, χ8a, χ8b},

IBr(B′) = {1a, 1b, 1c, 1d, 2a, 2b, 2c = 2b∨},
where the numbers mean the degrees (dimensions) of characters (modules). In par-
ticular, all simple modules 1a, 1b, 1c, 1d, 2a in B′ except 2b and 2c are self-dual.

(iii) The 3-decomposition and the Cartan matrices of B′, respectively, are the following:
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1a 1b 1c 1d 2a 2b 2c
χ1a 1 . . . . . .
χ1b . 1 . . . . .
χ1c . . 1 . . . .
χ1d . . . 1 . . .
χ2a . . . . 1 . .
χ2b . . . . . 1 .
χ2c . . . . . . 1
χ8a 1 1 . . 1 1 1
χ8b . . 1 1 1 1 1

P (1a) P (1b) P (1c) P (1d) P (2a) P (2b) P (2c)
1a 2 1 0 0 1 1 1
1b 1 2 0 0 1 1 1
1c 0 0 2 1 1 1 1
1d 0 0 1 2 1 1 1
2a 1 1 1 1 3 2 2
2b 1 1 1 1 2 3 2
2c 1 1 1 1 2 2 3

Proof. (i) This is found using explicit computation with GAP [12]. Using the smallest
faithful permutation representation of G′ on 100 points, available in [68], P can be computed
as a Sylow 3-subgroup ofG′, and hence the normaliserH ′ = NG′(P ) of P is easily determined
explicitly. Now the conjugacy classes ofH ′ can be computed, and its ordinary character table
is found using the Dixon-Schneider algorithm. Note that there are unique conjugacy classes
2B and 4B consisting of elements of order 2 and 4, respectively, and having centralisers of
order 12 and 4, respectively.

(ii)–(iii) Easy from the character table. �

5.3.Notation. We use the notation 1H′ = χ1a, χ1b, χ1c, χ1d, χ2a, χ2a, χ2c = χ2b
∨, χ8a, χ8b

and 1a, 1b, 1c, 1d, 2a, 2b, 2c = 2b∨, as in 5.2. Namely, we can write

Irr(B′) = Irr(H ′) = {1H′ = χ1a, χ1b, χ1c, χ1d, χ2a, χ2a, χ2c = χ2b
∨, χ8a, χ8b},

IBr(B′) = IBr(H ′) = {1a, 1b, 1c, 1d, 2a, 2b, 2c = 2b∨}
Let f ′ and g′ be the Green correspondences with respect to (G′, P,H ′).

5.4.Lemma.
(i) The radical and socle series of PIMs in B′ are the following:

1a
2b

1b 2a
2c
1a

1b
2c

1a 2a
2b
1b

1c
2c

1d 2a
2b
1c

1d
2b

1c 2a
2c
1d

2a
2b 2c

1b 1c 2a 1a 1d
2c 2b
2a

2b
1b 2a 1c
2c 2b 2c
1a 2a 1d

2b

2c
1a 2a 1d
2b 2c 2b
1b 2a 1c

2c

Note that this identifies the simples 2b and 2c uniquely.
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(ii) An Alperin diagram of the PIM P (2a) is given as follows:

P (2a) =

2a

2b 2c

1b 1c 2a 1a 1d

2c 2b

2a
@ �

@ � @ �

� @ � @

@�

Proof. Using the faithful permutation representation of H ′ obtained in 5.2, we have used
the MeatAxe [60] to construct the PIMs explicitly as matrix representations. Then we have
used the method described in [45] to find the radical and socle series, and the method in
[42] to compute the whole submodule lattice of P (2a). �

5.5.Lemma.
(i) We can write that

Irr(A′) = {χ′1 = 1G′ , χ′154, χ
′
22, χ

′
1408, χ

′
1925, χ

′
770, χ

′
3200, χ

′
2750, χ

′
1750}

IBr(A′) = {1G′ , 154, 22, 1253, 1176, 748, 321}
(ii) All simples 1G′ , 154, 22, 1253, 1176, 748, 321 in A′ are self-dual, and have P as their

vertices.
(iii) The simples 1G′ , 154, 22 are trivial source kG′-modules.

Proof. (i) This was first calculated by Humphreys [18, p.329]; see also [67, HS (mod 3)]
and [19].

(ii) This is obtained by a result of Knörr [22, 3.7.Corollary].
(iii) It follows from [64] or [51, Example 4.8] that the Green correspondents f ′(kG′), f ′(22)

and f ′(154) are kH′ = 1a, 1b and 1c, respectively, see 5.7 below. �

5.6.Notation. We write χ′1 = 1G′ , χ′154, χ
′
22, χ

′
1408, χ

′
1925, χ

′
770, χ

′
3200, χ

′
2750, χ

′
1750, as well as

1G′ , 154, 22, 1253, 1176, 748, 321 as in 5.5.

5.7.Lemma. f ′(kG′ = 1a) = kH′ = 1a f ′(154) = 1b f ′(22) = 1c

f ′(1253) =

2a

2c2b

2a
@ �

� @
f ′(1176) =

2b

1c1b

2c
@ �

� @

f ′(748) =

1d2a

2b2c

2a1d

@ ��

�@�
f ′(321) =

2c

1d1a

2b
@ �

� @

Proof. This follows from [64], see [51, Example 4.8, HS]. �

5.8.Lemma. The Cartan matrix of A′ is the following:
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P (kG′) P (154) P (22) P (1253) P (1176) P (748) P (321)
kG′ 4 1 1 2 2 2 0
154 1 3 1 2 0 0 1
22 1 1 4 2 1 2 1

1253 2 2 2 4 2 1 2
1176 2 0 1 2 3 2 1
748 2 0 2 1 2 3 0
321 0 1 1 2 1 0 2

Proof. This was first calculated by Humphreys [18, p.329]; see also [67, HS (mod 3)] and
[19]. �

6. Stable equivalence between A and B for HN

6.1.Notation. First of all, recall the notation G, A, P , H, B, e, Q, E, f as in 3.3 and
4.9. Let i and j respectively be source idempotents of A and B with respect to P . As
remarked in [40, pp.821–822], we can take i and j such that BrP (i)·e = BrP (i) 6= 0 and
that BrP (j)·e = BrP (j) 6= 0. Set GP = CG(P ) = CH(P ) = HP , and set GQ = CG(Q)
and HQ = CH(Q). By replacing eQ and fQ (if necessary), we may assume that eQ and fQ

respectively are block idempotents of kGQ and kHQ such that eQ and fQ are determined
by i and j, respectively. Namely, BrQ(i)·eQ = BrQ(i) and BrQ(j)·fQ = BrQ(j). Let
AQ = kCG(Q)·eQ and BQ = kCH(Q)·fQ, so that eQ = 1AQ

and fQ = 1BQ
.

6.2.Lemma. Let MQ be a unique (up to isomorphism) indecomposable direct summand of
AQ↓

GQ×GQ

GQ×HQ
·1BQ

with vertex ∆P (note that such an MQ always exists by 2.5). Then, a pair
(MQ,M

∨
Q) induces a Puig equivalence between AQ and BQ.

Proof. This follows from 3.4(viii), 2.12(iii) and 2.11(iii). �

6.3.Lemma.
(i) The (A,B)-bimodule 1A·kG·1B has a unique (up to isomorphism) indecomposable

direct summand AMB with vertex ∆P . Moreover, a functor F : mod-A → mod-B
defined by XA 7→ (X ⊗A M)B induces a splendid stable equivalence of Morita type
between A and B. We use the notation F below as well.

(ii) If X is a non-projective trivial source kG-module in A, then F (X) = Y ⊕ (proj)
for a non-projective indecomposable kH-module Y in B such that Y is also a trivial
source module, and X and Y have a common vertex.

(iii) If X is a non-projective kG-module in A, then F (ΩX) = Ω(F (X))⊕ (proj).

Proof. This follows just like in [31, Proof of Lemma 6.3]. Namely, we get the assertion by
[2, Proposition 4.21] and [9, Theorem 1.8(i)] for the morphisms in the Brauer categories and
also by [32, Theorem], 6.2, 3.4(vi) and [40, Theorem 3.1], see [41, Theorem A.1]. �

6.4.Notation. We use the notation M and F as in 6.3.

7. Images of simples via the functor F

7.1.Lemma. F (S1) = 9a, F (S2) = 9b, F (S3) = 9c.

Proof. These follow from 4.10, 4.11, 4.12, 2.9 and 6.3. �

7.2.Lemma.
(i) The trivial source kG-module in 4.8 has Q ∼= C3 as its vertex.
(ii) The trivial source kG-module in 4.7 has Q ∼= C3 as its vertex.
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Proof. (i) Let X be the trivial source kG-module in 4.8. We get by 6.3(ii) that F (X) =
Y ⊕ (proj) for a non-projective indecomposable B-module Y . Then, it follows from 2.7,
6.3(i) and 7.1 that

0 6= HomA(X,S1) ∼= HomA(X,S1) ∼= HomB(F (X), F (S1))

= HomB(F (X), 9a) = HomB(Y, 9a) ∼= HomB(Y, 9a)

as k-spaces. Clearly, Y is a trivial source kH-module in B by 6.3(ii).
Suppose that X has P as a vertex. Then, so does Y by 6.3(ii). This yields that

Y ∈ {9a, 9b, 9c, 9d, 18a, 18b, 18c} from 3.8, and hence Y ∈ {9d, 18a, 18b, 18c} by 7.1. But,
the above computation shows that HomB(Y, 9a) 6= 0, a contradiction.

Since X is non-projective, we know that Q is a vertex of X from 3.4(vi).
(ii) Let X ′ be the trivial source kG-module in 4.7. We get by 6.3(ii) that F (X ′) =

Y ′ ⊕ (proj) for a non-projective indecomposable B-module Y ′. Then, it follows from 2.7,
6.3(i) and 7.1 that

0 6= HomA(X ′, S3) ∼= HomA(X ′, S3) ∼= HomB(F (X ′), F (S3))

= HomB(F (X ′), 9c) = HomB(Y ′, 9c) ∼= HomB(Y ′, 9c)

as k-spaces. Clearly, Y ′ is a trivial source kH-module in B by 6.3(ii).
Suppose that X ′ has P as a vertex. Then, so does Y ′ by 6.3(ii). This yields that

Y ′ ∈ {9a, 9b, 9c, 9d, 18a, 18b, 18c} from 3.8, and hence Y ′ ∈ {9d, 18a, 18b, 18c} by 7.1. But,
the above computation shows that HomB(Y ′, 9c) 6= 0, a contradiction.

Since X ′ is non-projective, we know that Q is a vertex of X ′ from 3.4(vi).
�

7.3.Lemma. Let X be the trivial source kG-module with vertex Q showing up in 4.8 and
7.2(i). Then, F (X) = V1 ⊕ (proj), where V1 is the trivial source kH-module in B with
vertex Q given in 3.8(iii). Namely,

F

(
S1 S2

S4

S1 S2

�

@

@

�
)

=

18a

18b

18a

18c

9b9a

9b 9a
� @ � @

@ � @ � ⊕
(proj).

Proof. We know from the proof of 7.2(i) that [Y, 9a]B 6= 0. Hence we get the assertion by
3.8(iii). �

7.4.Lemma. Let X ′ be the trivial source kG-module with vertex Q showing up in 4.7 and
7.2(ii). Then, F (X ′) = V2 ⊕ (proj), where V2 is the trivial source kH-module in B with
vertex Q given in 3.8(iii). Namely,

F

( S3

S6

S3

)
=

18a

18c

18a

18b

9d9c

9d 9c
� @ � @

@ � @ � ⊕
(proj).

Proof. We know from the proof of 7.2(ii) that [Y ′, 9c]B 6= 0. Hence we get the assertion
by 3.8(iii). �

7.5.Lemma. It holds that F (S4) =

18a

18c18b

18a
@ �

� @
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Proof. Let X be the trivial source kG-module in A with vertex Q given in 4.8 and 7.2(i).
By 7.3, we can write F (X) = V1 ⊕ (proj), where V1 is the trivial source kH-module in B
given in 3.8(iii). Then, since F (S1) = 9a by 7.1, it follows from 2.8 that

F

( S2S1

S4

S2

@ �
)

= F (X/S1) = (V1/9a)
⊕

(proj) =

18a

18b

18a

18c

9b9a

9b
� @ �

@ � @ � ⊕
(proj).

Similarly, we get by 2.8 that

F

(
S2

S4

S2

)
= F

(
Ker

[ S2S1

S4

S2

@ �
� S1

])

∼= Ker

( 18a

18b

18a

18c

9b9a

9b
� @ �

@ � @ �
� 9a

)⊕
(proj) =

18a

18b

18a

18c

9b

9b
� @ �

� @ � ⊕
(proj).

Then, since F (S2) = 9b by 7.1, we similarly obtain by 2.8 that

F (S4) =

18a

18c18b

18a
@ �

� @ ⊕
(proj).

Therefore, 6.3(i) and 2.9 imply the assertion. �

7.6.Lemma. It holds that F (S6) =

18a

18c

18a

18b

9d

9d
� @ �

� @ �
.

Proof. Let X ′ =
S3

S6

S3

in 4.7, that is, X ′ is a trivial source kG-module in A with vertex Q.

Then, 7.4 yields that

F (X ′) =

18a

18c

18a

18b

9d9c

9d 9c
� @ � @

@ � @ � ⊕
(proj).

Since F (S3) = 9c by 7.1, we obtain the assertion from 6.3(i) and 2.9 just as in the proof
of 7.5. �

7.7.Notation. We use the notation W = F (S5)⊕ F (S7) in the rest of this paper.

7.8.Lemma. We get the following.
(i) The module W is self-dual.
(ii) The module W is a direct sum of exactly two non-projective non-simple indecompos-

able B-modules, and both of them are self-dual.
(iii) It holds that F (S5) and F (S7) are neither simple B-modules, and 2 6 j(W ) 6 4.
(iv) [9x,W ]B = [W, 9x]B = 0 for any x ∈ {a, b, c}.
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(v) [18a,W ]B = [W, 18a]B = 0.

Proof. (i) This follows from 4.3(i) and 6.3(i).
(ii) This follows from 2.9, 6.3(i), 4.3(i), 2.3(i) and 4.1.
(iii) By (ii) and 3.6(vi), we get j(W ) 6 4. Assume that F (S5) is simple. Then, we

know by 3.8(ii) and 6.3(ii) that S5 is a trivial source module, and hence S5 lifts to a trivial
source OG-module by 2.3(i). This contradicts the 3-decomposition matrix in 4.1. Hence,
F (S5) is not simple. Similarly, we know that F (S7) is not simple. These imply j(W ) > 2.

(iv) This is obtained by 7.1 and 2.13.
(v) Set X = F (S4). By 7.5, there is an epimorphism X � 18a. Hence, we get from 2.7

and 7.5 that

HomB(18a,W ) ∼= HomB(18a,W ) ∼= HomA

(
F−1(18a), F−1(W )

)
= HomA

(
F−1(18a), S5 ⊕ S7

)
∼= HomA

(
F−1(18a), S5 ⊕ S7

)
⊆ HomA

(
F−1(X), S5 ⊕ S7

)
= HomA(S4, S5 ⊕ S7) = 0. �

7.9.Notation. Let M =

S4

S4

S7S5S2S1
HH ��

�� HH

JJ 





 JJ
be the trivial source kG-module in A showing

up in 4.6, and set XB = F (M) and we use the notation X in the rest of this paper.

7.10.Lemma.
(i) The module X has a filtration

X =

18a

18c18b

18a
@ �

� @ ∣∣∣∣∣ 9a⊕ 9b⊕W
∣∣∣∣∣

18a

18c18b

18a
@ �

� @

namely, X has submodules X % Y % Z such that X/Y ∼= Z ∼=

18a

18c18b

18a
@ �

� @
and

Y/Z ∼= 9a⊕ 9b⊕W .
(ii) It holds X = V ⊕ P (18a) where V ∈ {V3, V4}.

Proof. (i) This follows from 4.6, 7.1 and 7.5.
(ii) We know by 6.3(ii) that X = V ⊕L for an indecomposable kH-module V in B with

vertex Q and a projective kH-module L in B. Note that Vi 6 |X for i = 1, 2 by 7.3 and 7.4.
Thus, V ∈ {V3, V4} by 3.8(iii). Moreover, since [V3, 18a]B = [V4, 18a]B = 0 by 3.8(iii), we
know that [V, 18a]B = [V, 18a]B = 0 again by 3.8(iii). Thus, we have P (18a)|L by (i), and
hence P (18a)|X.

Next, assume that P (T )|L for a simple kH-module T in B with T 6∼= 18a. Since Z has
a unique minimal submodule, and which is isomorphic to 18a, we have that P (T ) ∩ Z = 0
in X, and hence that there is a direct sum P (T ) ⊕ Z in X. Set X̄ = X/Z. Clearly, X̄ ⊇
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(P (T ) ⊕ Z)/Z ∼= P (T ). Since P (T ) is injective, it holds P (T )|X̄. Set U = (X̄)∨. Then, by
the dualities, we know P (T∨)|U . Now, by the filtration of X, U has a filtration

U = 9a⊕ 9b⊕W

∣∣∣∣∣ 18a

18c18b

18a
@ �

� @

Namely, U has a submodule Z ′ such that

Z ′ ∼=

18a

18c18b

18a
@ �

� @
and U/Z ′ ∼= 9a⊕ 9b⊕W.

We have T∨ 6∼= 18a by 3.6(iii). Hence, we get P (T∨) ∩ Z ′ = 0 in U , and hence there is a
direct sum P (T∨)⊕ Z ′ ⊆ U . Then, we have

P (T∨) ∼= (P (T∨)⊕ Z ′)/Z ′ ⊆ U/Z ′ ∼= 9a⊕ 9b⊕W.
Since P (T∨) is injective, it holds that P (T∨)|(9a⊕ 9b⊕W ), so that P (T∨)|W by 3.6(vi).
This is a contradiction by 7.8(ii).

Now, assume that (P (18a)⊕ P (18a))|X. Then, since soc(Z) ∼= 18a, it follows from 2.14
that

P (18a)

∣∣∣∣∣ X/Z =

( 18a

18c18b

18a
@ �

� @ ∣∣∣∣∣ 9a⊕ 9b⊕W

)
.

Then, by taking its dual, we get also that

P (18a)

∣∣∣∣∣ (X/Z)∨ =

(
9a⊕ 9b⊕W ∣∣∣∣∣ Z

)

where the right-hand-side is a filtration, by using 7.8(i) and 3.6(iii). Set N = (X/Z)∨.
Then, we may consider that N has a B-submodule Z such that N/Z ∼= 9a ⊕ 9b ⊕W and
N = P (18a) ⊕ N ′ for a B-submodule N ′ of N . Since j(Z) = 3, it holds Z ⊆ soc3(N) =
soc3(P (18a)) ⊕ soc3(N ′). This implies that there exists a B-epimorphism π : N/Z �
N/soc3(N). Clearly,

N/soc3(N) = [P (18a)⊕N ′]/[soc3(P (18a))⊕ soc3(N ′)]
∼= [P (18a)/soc3(P (18a)]⊕ [N ′/soc3(N ′)].

Since P (18a)/soc3(P (18a)) =
18a

18b 18c by 3.6(vi), we get that 18a | [(N/Z)/rad(N/Z)] ∼=

9a⊕ 9b⊕ [W/rad(W )]. This shows that [W, 18a]B 6= 0, which is a contradiction by 7.8(v).
Thus, we know [P (18a)|L]B = 1. Therefore, we get L ∼= P (18a). We are done. �

7.11.Lemma. W/rad(W ) ∼= soc(W ) ∼= 18b⊕ 18c.

27



Proof. By 7.8(i) and 3.6(iii), it suffices to show only W/rad(W ) ∼= 18b⊕18c. By 7.10(ii),
we have

(13) X = V ⊕P (18a) =

18c18b

9y18a9x

18b18c
@ @� �

� �@ @
⊕ P (18a), where (x, y) ∈ {(b, a), (c, d)}.

By 7.10(i), X has a filtration

(14) X =

18a

18c18b

18a
@ �

� @ ∣∣∣∣∣ 9a⊕ 9b⊕W
∣∣∣∣∣

18a

18c18b

18a
@ �

� @

Set Li(W ) = radi(W )/radi+1(W ) for each i = 0, 1, .... Then (13) and (14) show that
(18b⊕ 18c)|L1(W ). Recall (18b)∨ ∼= 18c by 3.6(iii).

Suppose that (18b ⊕ 18b) |L1(W ). Then, by (14), X has a factor module X̄ which has a
filtration

18a

18c18b

18a
@ �

� @ ∣∣∣∣∣ 18b⊕ 18b

Since [X, 18b]B = 1 by (13), and since there do not exist modules of forms
18b
18b nor

18c
18b

by 3.6(vi), there must be a kH-module having radical and socle series

18a
18b 18c

18a
18b

But this is a contradiction by 3.10(i).
Similarly, we get a contradiction by using 3.10(ii) if (18c⊕ 18c)|L1(W ).
Thus it holds that [W, 18b]B = [W, 18c]B = 1 and [W,T ]B = 0 for any T ∈ {9a, 9b, 9c, 18a}

by 3.6(iii) and 7.8(iv)-(v). However, we have to investigate for 9d.
Assume, first, that the case (x, y) = (b, a) happens in (13). Then, (14) and (13) imply

that W = 9a+ 9b+ 9c+ 9d+ 2× 18b+ 2× 18c, as composition factors.
Suppose that 9d |L1(W ). Then, since cW (9d) = 1 and since W and 9d are both self-dual

by 3.6(iii) and 7.8(i), we get that 9d |W = F (S5)⊕ F (S7). Recall that F (S5) and F (S7)
are both non-projective indecomposable kH-modules by 2.9 and 6.3(i)-(ii). Since 9d is a
trivial source kH-module by 3.8(ii), we know by 6.3(ii) that S5 or S7 is a trivial source
module, and hence that S5 or S7 lifts from k to O by 2.3(i). This is a contradiction by the
3-decomposition matrix in 4.1.

Hence, 9d 6 |L1(W ). This yields L1(W ) ∼= 18b⊕ 18c.
Next, assume that the case (x, y) = (c, d) in (13) happens. Then, (13) and (14) imply

that

W = 2× 9c+ 2× 9d+ 2× 18b+ 2× 18c, as composition factors.(15)

Suppose that (9d⊕9d) |L1(W ). Then, the self-dualities of 9d andW in 3.6(iii) and 7.8(i)
imply that (9d ⊕ 9d) |W = F (S5) ⊕ F (S7). Hence, W ∼= 9d ⊕ 9d by 7.8(ii), contradicting
7.7 and 7.8.
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Thus,

[W, 9d]B 6 1.(16)

Assume, next, that [W, 9d]B = 1. Hence, by the dualities in 3.6(iii), we have

L1(W ) ∼= soc(W ) ∼= 18b⊕ 18c⊕ 9d.(17)

We get by 7.8 that W = W1⊕W2 where Wi is a non-simple non-projective indecomposable
self-dual B-module for i = 1, 2. Thus, by (17) and by interchanging W1 and W2, we may
assume that L1(W1) ∼= 18b, 18c or 9d.

Case 1: L1(W1) ∼= 18b. Then, soc(W1) ∼= 18c since (18b)∨ ∼= 18c by 3.6(iii) and since

W1 is self-dual. Hence, the structure of P (18b) in 3.6(vi) yields that W1 =
18b
9c
18c

. Hence,

(15) and (17) imply that L1(W2) ∼= 18c⊕ 9d and L2(W2) ∼= 9c. But this is a contradiction
since Ext1B(18c, 9c) = 0 = Ext1B(9d, 9c) by 3.6(vi).

Case 2: L1(W1) ∼= 18c. As in Case 1, we know that W1 =
18c
9c
18b

. Then we get a

contradiction by 3.6(vi) as in Case 1.
Case 3: L1(W1) ∼= 9d. By the self-dualities of W1 in 7.8(ii) and simple B-modules in

3.6(iii), we get that soc(W1) ∼= 9d. It follows by 2.16 that soc(W1) ⊆ rad(W1). Hence
cW1(9d) = 2 by (15). Thus, the structure of P (9d) in 3.6(vi) yields that W1

∼= P (9d), a
contradiction.

Therefore [W, 9d]B 6= 1, and hence [W, 9d]B = 0 by (16). So that we have L1(W ) ∼=
18b⊕ 18c. �

7.12.Lemma. X = V3 ⊕ P (18a).

Proof. Suppose that X = V4 ⊕ P (18a). Then, we get by 7.10(i)-(ii) and 3.6(iv) that
W = 2× 9c+ 2× 9d+ 2× 18b+ 2× 18c, as composition factors. We use the same notation
Li(W ) as in the proof or 7.11. By 7.11, L1(W ) ∼= 18b ⊕ 18c. Since cW (9c) = 2, it
follows from 3.6(vi) and 7.8(iii) that j(W ) = 4 and 9c |L4(W ). This means 9c | soc(W ),
contradicting 7.11. Therefore, we get the assertion by 7.10(ii). �

7.13.Lemma. W =

18b

9c9b

18c
@ �

� @
⊕

18c

9d9a

18b
@ �

� @
= F (S5)⊕ F (S7).

Namely, either one of the following two cases occurs:

Case (a) : F (S5) =

18b

9c9b

18c
@ �

� @
and F (S7) =

18c

9d9a

18b
@ �

� @

Case (b) : F (S5) =

18c

9d9a

18b
@ �

� @
and F (S7) =

18b

9c9b

18c
@ �

� @
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Proof. Here as well we use the notation Li(W ) for i = 1, 2, ... just as in the proof of 7.11.
It follows from 7.10(i) that X has a filtration

X =

18a

18c18b

18a
@ �

� @ ∣∣∣∣∣ 9a⊕ 9b⊕W
∣∣∣∣∣

18a

18c18b

18a
@ �

� @(18)

namely, X has submodules Y and Z such that X % Y % Z, X/Y ∼= Z ∼=

18a

18c18b

18a
@ �

� @
and

Y/Z ∼= 9a⊕ 9b⊕W . On the other hand, 7.12 says that

(19) X =

18c18b

9a18a9b

18b18c
@ @� �

� �@ @ ⊕
P (18a).

Then, we know by (18), (19) and 3.6(iv) that

(20) W = 9a+ 9b+ 9c+ 9d+ 2× 18b+ 2× 18c, as composition factors.

By 7.11 and (20), we know j(W ) > 3.
Assume that j(W ) > 4. Then, j(W ) = 4 by 7.8(iii). Since L1(W ) ∼= 18b⊕ 18c by 7.11,

we get by 3.6(vi) that

L4(W )
∣∣∣ L4(P (18b))

⊕
L4(P (18c)) = (9a⊕ 18a⊕ 9d)

⊕
(9b⊕ 18a⊕ 9c)

and
L4(W )

∣∣∣ soc(W ) = 18b⊕ 18c.

This is a contradiction.
Hence j(W ) = 3. Thus, again by 7.11, (20) and 3.6(vi), we know that W has radical

and socle series

(21)
18b 18c

9b 9c 9a 9d
18c 18b

Now, as in the proof of 7.11, we get by 7.8 that W = W1⊕W2 where Wi is a non-simple non-
projective indecomposable self-dual B-module for i = 1, 2. Then, by (21), we may assume
that L1(W1) ∼= 18b, soc(W1) ∼= 18c, L1(W2) ∼= 18c and soc(W2) ∼= 18b since (18b)∨ ∼= 18c
by 3.6(iii). Hence the structures of P (18b) and P (18c) in 3.6(vi) yield that

W1 =
18b

9b 9c
18c

and W2 =
18c

9a 9d
18b

�

8. Proof of main results

8.1.Notation. We still keep the notation F , j, B′, f ′ and g′, see 6.4, 3.7 and 5.2–5.4.
Set E = SD16, and let P o E be the canonical semi-direct product such that E acts on P
faithfully. Recall that Aut(P ) ∼= GL2(3) since P = C3 × C3, and hence SD16 is a Sylow
2-subgroup of GL2(3).
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8.2.Lemma. The non-principal block algebra A of HN and the principal block algebra A′ of
HS are Puig equivalent.

Proof. Let j be the same as in 3.6(ii). Since jBj ∼= O[P o E] = B′ as interior P -
algebras by 3.6(ii), we can identify jBj and B′. Define a functor F ′ : mod-B → mod-B′

via F ′(−) = − ⊗B Bj. By 3.6(ii), F ′ induces a Puig equivalence (which is stronger than
a Morita equivalence) between B and B′. In the following we use the information on the
structures of PIMs in B and B′ described in 3.6(vi) and 5.2(iii), respectively, without
quoting these statements.

Then, first of all, we know that F ′(18a) = 2a by looking at the PIMs P (18a) and P (2a).
Similarly, we know at least that {F ′(9a), F ′(9b), F ′(9c), F ′(9d)} = {1a = kH′ , 1b, 1c, 1d}. It
follows from 5.4 that 1x ⊗ 1x = 1a for any x ∈ {a, b, c, d} since they are just in Irr(E).
Hence a technique of self-Puig equivalence in [31, 2.8.Lemma] can be used just as in the
proof of [31, 6.8.Lemma]. Namely, we can assume that F ′(9a) = 1a. Hence, by comparing
the second Loewy layers of P (9a) and P (1a), we get F ′(18b) = 2b. Similarly, by looking
at the third Loewy layers of P (9a) and P (1a), we have F ′(9b) = 1b. If we look at the
fourth Loewy layers of these PIMs, then we know F ′(18c) = 2c. Thus, by looking at the
second Loewy layers of P (18c) and P (2c), we know also that F ′(9d) = 1d. These mean that
F ′(9c) = 1c. Namely, we can assume that

F ′(9a) = 1a, F ′(9b) = 1b, F ′(9c) = 1c, F ′(9d) = 1d,

F ′(18a) = 2a, F ′(18b) = 2b, F ′(18c) = 2c.
(22)

We know by 7.13 that Case(a) or Case(b) happens.

Assume, first, that Case(b) occurs. Then, by bunching up 2.2, 7.1, 7.5, 7.6, 7.13 and
5.7, we get the diagram shown in Table 1.

First, all the three functors above are given by bimodules which are p-permutation mod-
ules overO[G1×H1] for corresponding two finite groupsG1 andH1, which are ∆P -projective,
and also which induce a stable equivalence of Morita type at each step, if we indentify the
source algebra jBj as O[P o E].

Secondly, it has to be noted that all non-simple modules in the above diagram are uniquely
determined (up to isomorphism) by just the diagrams given in the above boxes: This is
clear for F (S1), F (S2), F (S1), f ′(kG′), f ′(154), and f ′(22) anyway, as well as for F (S4) and
f ′(1253) by the structure of P (18a) and P (2a) given in 3.6(vi) and 5.2(iii).

To tackle F (S6), the structure of P (18a) specified in 3.6(vii) shows that P (18a) has a
unique quotient with composition factors 9d + 2 × 18a + 18b + 18c. Moreover, P (9d) has
a unique quotient with composition factors 9d+ 18a+ 18b. Since they both have a unique
submodule with composition factors 18a + 18b, the glueing to yield F (S6) also is uniquely
defined, and thus F (S6) is uniquely determined by the diagram given. For f ′(748) we argue
similarly using 5.2(iv).

We consider F (S7): Note first that for P (18b) there is no Alperin diagram defined. By
3.6(vi), let X be the unique quotient module of P (18b) having radical and socle series

18b
9b 9c . By the structure of P (18b) given in 3.6(vi) we have [Ω(X), 18a]B = 1, hence using

3.6(vii) there is a homomorphism ϕ ∈ HomB(P (18a),Ω(X)) such that

Im(ϕ) =

18a

18c 18b

9a 9d 18a

18b
@ �

� @ �

� @
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Table 1. Case(b).

mod-A
F−→ mod-B

F ′
−→ mod-B′ f ′−1

−→ mod-A′

S1 7→ 9a 7→ 1a 7→ kG′

S2 7→ 9b 7→ 1b 7→ 154

S3 7→ 9c 7→ 1c 7→ 22

S4 7→

18a

18c18b

18a
@ �

� @
7→

2a

2c2b

2a
@ �

� @
7→ 1253

S5 7→

18c

9d9a

18b
@ �

� @
7→

2c

1d1a

2b
@ �

� @
7→ 321

S6 7→

18a

18c

18a

18b

9d

9d
� @ �

� @ �
7→

2a

2c

2a

2b

1d

1d
� @ �

� @ �
7→ 748

S7 7→

18b

9c9b

18c
@ �

� @
7→

2b

1c1b

2c
@ �

� @
7→ 1176

This implies Ω(X)/Im(ϕ) ∼= 18c. Since 18c occurs exactly twice as a composition factor of
Ω(X), and also is a composition factor of Im(ϕ), we conclude that [Ω(X), 18c]B = 1, thus

dimk[Ext1B(X, 18c)] = 1. Hence a module having radical and socle series
18b

9b 9c
18c

is uniquely

defined. For F (S5), f ′(1176), and f ′(321) we argue similarly.
Then, it follows from 2.15 that A and A′ are splendidly stable equivalent of Morita type,

that is, A and A′ are stable equivalent which is realized by an O[G × G′]-bimodule which
is a p-permutation module and ∆P -projective. Hence, first of all, the stable equivalence
actually gives a Morita equivalence by a result of Linckelmann [37, Theorem 2.1(iii)]. Then,
if we look at the proof of [37, Theorem 2.1(iii)] which is actually given in [37, Remark
2.7], we know that the Morita equivalence between A and A′ gives a bijection such as
S5 ↔ 321. Hence, we must have equalities between the corresponding Cartan invariants,
namely, c(S5, S5) = c(321, 321). However, we get that c(S5, S5) = 3 by 4.1, and on the other
hand, that c(321, 321) = 2 by 5.8. This is a contradiction. Thus, Case(b) cannot happen.

This means that only Case(a) occurs, as is shown in Table 2. Then, again the same argu-
ment given above still works. Namely, we have a Morita equivalence between A and A′, and
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Table 2. Case(a).

mod-A
F−→ mod-B

F ′
−→ mod-B′ f ′−1

−→ mod-A′

S1 7→ 9a 7→ 1a 7→ kG′

S2 7→ 9b 7→ 1b 7→ 154

S3 7→ 9c 7→ 1c 7→ 22

S4 7→

18a

18c18b

18a
@ �

� @
7→

2a

2c2b

2a
@ �

� @
7→ 1253

S5 7→

18b

9c9b

18c
@ �

� @
7→

2b

1c1b

2c
@ �

� @
7→ 1176

S6 7→

18a

18c

18a

18b

9d

9d
� @ �

� @ �
7→

2a

2c

2a

2b

1d

1d
� @ �

� @ �
7→ 748

S7 7→

18c

9d9a

18b
@ �

� @
7→

2c

1d1a

2b
@ �

� @
7→ 321

hence the Morita equivalence is a Puig equivalence by a result of Puig (and, independently,
of Scott) [55, Remark 7.5], see [40, Theorem 4.1]. �

8.3.Proofs of 1.3 and 1.4. Recall that a Puig equivalence lifts from k to O by a result
of Puig [53, 7.8.Lemma] (see [62, (38.8)Proposition], and that so does a splendid Rickard
equivalence by a result of Rickard [57, Theorem 5.2], see [15, P.75, lines −17 ∼ −16]. Thus,
it is enough to consider blocks A, B, A′ and B′ only over k. Thus, we get 1.4 by 8.2.

By results of Okuyama [51, Example 4.8] and [52, Corollary 2], the conjectures 1.1 and
1.2 hold for A′. Namely, we get the following diagram:

A
Puig equiv.−−−−−−−−−→ A′ysplendid Rickard equiv.

B ←−−−−−−−−−
Puig equiv.

B′

Therefore, we finally get that A and B are splendidly Rickard equivalent. That is, the proof
of 1.3 is completed. �

8.4.Proof of 1.5. We get 1.5 from 3.2 and 1.3. �
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