THE BRAUER CHARACTERS OF THE SPORADIC SIMPLE HARADA-NORTON GROUP AND ITS AUTOMORPHISM GROUP IN CHARACTERISTICS 2 AND 3

GERHARD HISS, JÜRGEN MÜLLER, FELIX NOESKE, AND JON THACKRAY
Dedicated to the memory of Herbert Pahlings

Abstract. We determine the 2-modular and 3-modular character tables of
the sporadic simple Harada-Norton group and its automorphism group.

1. Introduction

The present paper is a contribution to the modular ATLAS project [31]. The aim of the project is to classify the modular representations of the simple groups and their bicyclic extensions given in the ATLAS [2], by computing their Brauer characters, or equivalently, their decomposition numbers.

In particular for the sporadic simple groups this is a challenging task. In lieu of a unified theory for these groups, the solution of this problem has always relied on computational methods, and especially on the MeatAxe (see [25]) developed by Parker and Thackray in the late 1970's. However, even though the MeatAxe has evolved into a host of programmes to analyse modules of matrix algebras, the open problems in the modular ATLAS project defy a direct application: owing to the magnitude of the computational problems, memory and time constraints render a naive approach utterly infeasible.

To regain computational tractability, Parker and Thackray established the condensation method (see [28]). The idea of condensation is that given a module V for an algebra A, one considers the condensed module $V e$ of the algebra $e A e$ for some suitably chosen idempotent $e \in A$. The condensation functor from mod A to mod-eAe has a number of interesting properties, among the most important of which is that it maps simple modules to simple modules or zero, and composition series to series whose layers are simple or zero. For a detailed introduction to condensation see [27], for example. Unfortunately, the use of condensation introduces the generation problem (see [20], for example): for computational purposes we need to work with a feasibly small generating set for the condensed algebra eAe, yet such a set is not known in general, and we therefore devote time and energy to verify our condensation results.

Results. In this paper we determine the decomposition numbers of the sporadic simple Harada-Norton group HN and its automorphism group HN. 2 in characteristics 2 and 3. More precisely, the decomposition matrices of the 2-blocks of positive defect of HN and HN. 2 are determined in Section 2, where the results for HN are given in Tables 3 and 6, and those for HN. 2 are given in Tables 7 and 8. For the reader's convenience we give the degrees of Brauer characters lying in the principal

1	132	132	760	2650
2650	3344	15904	31086	31086
34352	34352	43416	43416	177286
217130	1556136			

Table 1. Brauer character degrees in the principal 2-block of HN

1	133	133	760	3344
8778	8778	9139	12264	12264
31768	31768	137236	147061	255037
339702	339702	496924	496924	783696

TABLE 2. Brauer character degrees in the principal 3-block of HN

2-block of HN in Table 1. The characteristic 3 case is dealt with in Section 3, where the results for HN are given in Tables 9, 16 and 17, and those for the principal block of HN.2, being the only block not Morita equivalent to a block of HN, are given in Table 19. The degrees of the irreducible Brauer characters in the principal 3-block of HN are restated in Table 2.

The results obtained here are also accessible in [31] and will be through the CTblLib database [1] in GAP [4]. Since the Brauer trees of HN and HN. 2 have already been determined in [7] and the characteristic 5 case has been tackled in [14], this completes the modular ATLAS project for HN. Moreover, since the decomposition matrix of the non-principal 3-block of HN of defect 2 was known prior to the completion of the present paper, it was the starting point of further investigations into this block carried out in [9].
The proofs for the two characteristics are quite different:
In characteristic 2, the non-principal block may be treated entirely theoretically. It possesses a semi-dihedral defect group of order 16, and we may therefore use Erdmann's classification [3] of possible decomposition matrices for such blocks to determine its decomposition matrix. The true challenge lies in the principal block. Here we use condensation, but since there are no condensation subgroups readily available which allow the application of [20, Theorem 2.7], we are forced to verify the condensation results. As the dimensions of the simple modules with the exception of the last are small enough, we construct bases for these simple modules in order to show that the degrees of the Brauer atoms produced (see [6, Definition 3.2.1]), which are lower bounds for the degrees of the Brauer characters, are maximal, i.e. the atoms are in fact characters. We can then show that the last atom is a character, too.

For the automorphism group the result is immediate from the ordinary character table.

In characteristic 3, we start by investigating the block of defect 2 by choosing a basic set of projective characters and improving it pursuing a strategy first employed in [18]: We consider the endomorphism ring E of a suitably chosen projective lattice, and by Fitting correspondence compare the decomposition numbers of E with those of the block in question (see [10, Ch.II.12]). ¿From the practical side, we
consider a direct summand of a projective permutation module, so that the regular representation of E is just the associated condensed module. Actually, here we are better off with the generation problem: since the regular action of E is faithful we are able to determine the dimension of the condensed algebra in question. Alone, this strategy turns out to be computationally tractable only for projective modules leading to non-faithful trace idempotents, so that after this analysis we are still left with several possible cases for the decomposition matrix.

These cases are then greatly reduced in parallel to our treatment of the principal block, which relies entirely on condensation. There are several condensation subgroups available which are normal in maximal subgroups, making them ideal candidates for [20, Theorem 2.7]. However, we still do not find any single suitable one whose trace idempotent is faithful. Therefore, we choose two condensation subgroups such that no simple module is annihilated by both condensation idempotents. This introduces a new problem: given the simple modules of one condensed algebra, we have to match them to the simple modules of the other condensed algebra, in order to gain the complete picture of the composition factors of the original module. We use [22] to overcome this problem (see also [21]).

For the automorphism group HN.2, a simple application of Clifford theory already gives the bulk of its Brauer characters. The remaining ones are once more determined through condensation, reusing the condensation infrastructure we have established for the simple group.

Background. In the sequel, we assume the reader to be familiar with the basics of ordinary and modular group representation theory, and in particular its computational aspects, as are for example exposed in $[6,15]$. We employ the particular choice of Brauer lifts using Conway polynomials as in [8]. Character theoretic computations are carried out in GAP, whose facilities are also used to explicitly compute with permutation and matrix groups; in particular we use the orb package [19]. Module theoretic computations are done using the MeatAxe and its extensions [26], and as a computational workhorse we apply condensation of tensor products, respectively homomorphism spaces, as described in [12] and [16]. For a general introduction to condensation we refer the reader to [27], and to [13] for a treatise on peakword condensation. As a source of explicit data we use the database CTbILib in GAP, as well as the web-based database [29], also accessible via the GAP package AtlasRep [30]. Next to matrix and permutation representations for many of the groups in [2], given in standard generators in the sense of [32] where available, the latter in particular also contains straight line programmes to find maximal subgroups and conjugacy class representatives.

Let us fix some notation which will hold throughout the paper. Let G denote the Harada-Norton group HN. Characters, representations, and modules are given by their degrees, respectively dimensions. By a slight abuse of notation, we therefore do not distinguish between a module, the representation it affords, and the associated Brauer character. If there is more than one character of the same degree we affix subscripts to distinguish them. The ordinary characters are numbered as they are numbered in the character tables of CTbILib, which generally corresponds to the numbering given in [2]. In the decomposition matrices we also indicate this numbering next to the character degrees if necessary. If χ is an ordinary character we let χ^{\prime} denote its restriction to the p-regular classes, where p is the characteristic
of the field currently considered. Moreover, we stick to group theoretic notation as is used in [2].
¿From the ordinary character table of G and $G .2$, see [2], we see that all character fields are 2-elementary abelian, thus by [8, Section I.5] the quadratic extension $\operatorname{GF}\left(p^{2}\right)$ of any finite prime field $\operatorname{GF}(p)$ is a splitting field for G and $G .2$. We let F denote $\operatorname{GF}\left(p^{2}\right)$ in the sequel, and let (Q, R, F) denote a p-modular splitting system for G and G.2.

2. Characteristic 2

The 2-modular characters of G are distributed over three blocks, two of which have positive defect: the principal block B_{0} of defect $d=14$, having $k=45$ ordinary and $l=17$ modular characters, and the block B_{1} of defect $d=4$, having $k=8$ ordinary and $l=3$ modular characters. The block of defect 0 consists of the ordinary character χ_{46}.
2.1. Proof for the block B_{1}. By [11, Section 9] the defect group of Block B_{1} is a semidihedral group of order 16. In [3, Section 11] Erdmann lists all possible decomposition matrices for such blocks, such that we are left with to decide which of the four cases in Lemmas 11.4, 11.6, 11.9, and 11.11 holds:

To distinguish Erdmann's notation from ATLAS notation, we write here ϑ where she uses χ. In this notation [3, Theorem 11.1], work of Olsson [24] implies that B_{1} has four characters $\vartheta_{1}, \ldots, \vartheta_{4}$ of height zero, three characters $\vartheta_{1}^{*}, \ldots, \vartheta_{3}^{*}$ of height one for which $\vartheta^{* \prime}:=\vartheta_{1}^{* \prime}=\vartheta_{2}^{* \prime}=\vartheta_{3}^{* \prime}$, and a single character $\hat{\vartheta}$ of height two. Moreover, $\vartheta_{1}, \ldots, \vartheta_{4}$ can be chosen such that

$$
\begin{aligned}
& \delta_{1} \vartheta_{1}^{\prime}+\delta_{2} \vartheta_{2}^{\prime}=-\delta_{3} \vartheta_{3}^{\prime}-\delta_{4} \vartheta_{4}^{\prime}=\vartheta^{* \prime} \\
& \delta_{2} \vartheta_{2}^{\prime}+\delta_{4} \vartheta_{4}^{\prime}=-\delta_{1} \vartheta_{1}^{\prime}-\delta_{3} \vartheta_{3}^{\prime}=\hat{\vartheta}^{\prime}
\end{aligned}
$$

where $\delta_{1}, \ldots, \delta_{4} \in\{ \pm 1\}$. In particular, choosing any $\vartheta_{i} \in\left\{\vartheta_{1}, \ldots, \vartheta_{4}\right\}$ and $\vartheta_{r}^{*} \in$ $\left\{\vartheta_{1}^{*}, \ldots, \vartheta_{3}^{*}\right\}$, we conclude that $\left\{\vartheta_{i}^{\prime}, \vartheta_{r}^{* \prime}, \hat{\vartheta}^{\prime}\right\}$ is a basic set of Brauer characters. Actually, as is easily seen, the above conditions determine $\vartheta_{1}, \ldots, \vartheta_{4}$ and $\delta_{1}, \ldots, \delta_{4}$ uniquely up to the permutation interchanging $\delta_{1} \vartheta_{1} \leftrightarrow-\delta_{4} \vartheta_{4}$ and $\delta_{2} \vartheta_{2} \leftrightarrow-\delta_{3} \vartheta_{3}$, and by the positivity of character degrees we are left with the four cases

$$
\left[\delta_{1}, \ldots, \delta_{4}\right] \in\{[1,1,-1,-1],[1,-1,-1,1],[-1,1,-1,1],[1,1,-1,1]\}
$$

corresponding to the Lemmas cited above.
By computing the actual heights of the characters in B_{1}, we conclude that $\left\{\vartheta_{1}, \ldots, \vartheta_{4}\right\}=\left\{\chi_{17}, \chi_{37}, \chi_{45}, \chi_{49}\right\}$, and $\left\{\vartheta_{1}^{*}, \ldots, \vartheta_{3}^{*}\right\}=\left\{\chi_{34}, \chi_{35}, \chi_{36}\right\}$, and $\hat{\vartheta}=$ χ_{44}. Decomposing the restrictions of the ordinary characters in B_{1} into the basic set $\left\{\chi_{17}^{\prime}, \chi_{34}^{\prime}, \chi_{44}^{\prime}\right\}$ we obtain the matrix of Table 3, where the characters belonging to the basic set are indicated by bold face. This shows that we have

$$
\begin{aligned}
\vartheta_{1} & =\chi_{37}, \quad \vartheta_{2}=\chi_{17}, \quad \vartheta_{3}=\chi_{49}, \quad \vartheta_{4}=\chi_{45} \\
\delta_{1} & =1, \quad \delta_{2}=-1, \quad \delta_{3}=-1, \quad \delta_{4}=1
\end{aligned}
$$

that is, by [3, Lemma 11.6] the decomposition matrix of B_{1} is as given in Table 3.

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Φ_{3}
$\mathbf{1 7}$	214016	1	\cdot	\cdot
$\mathbf{3 4}$	1361920	\cdot	1	\cdot
35	1361920	\cdot	1	\cdot
36	1361920	.	1	\cdot
37	1575936	1	1	\cdot
$\mathbf{4 4}$	2985984	\cdot	\cdot	1
45	3200000	1	.	1
49	4561920	1	1	1

Table 3. The decomposition matrix of the 2-block B_{1} of HN
2.2. Proof for the principal block B_{0}. Our proof for the principal block relies on the tried and tested formula of applying the MeatAxe in conjunction with condensation. Owing to the modest dimensions of the first few irreducible representations of G, the first five nontrivial ones are available through [29]. This way we obtain $132_{1}, 132_{2}, 760,2650_{1}$, and 2650_{2}; where 2650_{1} yields 2650_{2} by taking the contragredient. Also available from the same source is the smallest non-trivial irreducible representation of the sporadic Baby Monster group B in characteristic 2. The restriction of this 4370-dimensional module yields the composition factors

$$
4370 \downarrow_{G}=3344+760+132_{1}+132_{2},
$$

thus adding 3344 to our collection of simple modules we have available for further computations. Also owing to the small size of these modules, we may compute their Brauer characters explicitly by lifting eigenvalues, where the necessary straight line programmes to restrict from B to HN and to find conjugacy class representatives are also available at [29].

The eighth Brauer character in the principal block may also be computed with a plain application of the MeatAxe: Chopping the tensor product $132_{1} \otimes 132_{2}$ gives the composition factors

$$
132_{1} \otimes 132_{2}=15904+2 \times 760
$$

and lets us derive the Brauer character of 15904 from the tensor product of the Brauer characters. As the direct analysis of even larger tensor products with the MeatAxe is considerably slowed and ultimately rendered infeasible due to the increased module dimensions, we determine the remaining nine simple modules and their Brauer characters with the help of condensation.

As our condensation subgroup K we choose a Sylow 3-subgroup of order 243 of the alternating group on 12 letters which in turn is the largest maximal subgroup of G, and condense with the corresponding trace idempotent e; here, a straight line programme to find the largest maximal subgroup of G is available in [29], and Sylow subgroups of permutation groups can be computed in GAP. Unfortunately, for our choice of condensation subgroup, there are at present no computationally efficient methods available to deal with the generation problem (see [20]). Here we arbitrarily choose a few elements $g_{i} \in G$, and have to allow for the possibility that the corresponding condensed elements $e g_{i} e$ generate a proper subalgebra \mathcal{C} of

	-	$\stackrel{\sim}{\sim}$	$\begin{array}{\|c} \text { N } \\ \underset{\sim}{2} \end{array}$	$\stackrel{O}{i}$	$\begin{aligned} & 5 \\ & \stackrel{1}{0} \\ & \text { No } \end{aligned}$		$\underset{\sim}{\underset{\sim}{*}}$		$\begin{aligned} & \mathscr{O} \\ & \stackrel{y}{0} \\ & \otimes \\ & \stackrel{N}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{Q}{\bullet} \\ & \otimes \\ & \otimes \\ & \mathbb{N} \\ & \stackrel{O}{0} \end{aligned}$	$\begin{aligned} & \stackrel{Q}{\circ} \\ & \otimes \\ & \otimes \\ & \stackrel{Q}{1} \end{aligned}$	0 0 0 0 \otimes $\stackrel{\rightharpoonup}{2}$ $\stackrel{\rightharpoonup}{2}$	H $\underset{\sim}{2}$ \cdots	$132_{2} \otimes 3344$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & N \\ & \otimes \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 8 8 0 1	
$k 1$	1			2	2	20	6	6	6	40	12	46
$k 2_{1}$.	1	2	2	6	3	4	4	22	6	23
$k 2_{2}$.	- .	1	2	2	6	4	4	4	22	6	23
$k 6_{1}$.	-	.	.	1	8	.	.	.	5	2	8
$k 6_{2}$.	-	.	.	.	1	8	1	.	.	5	2	8
$k 12$.	-	.	1	.		.	2	.	.	3	1	2	2	10	5	11
$k 28$.	-	1	.	.	.	10		.	.	2	4	8
$k 62$.	-	1	.	.	4	1	2	2	12	4	10
$k 1181$.	-	1	.	1		.			2
$k 118{ }_{2}$	1			2
$k 160{ }_{1}$.	-	1	1	1	7	1	5
$k 160_{2}$	1	1	1	6	1	5
$k 164{ }_{1}$		2	.			1	2	1	2	4
$k 164{ }_{2}$.	-	2		1	2	1	1	2	4
$k 706$.	-	.	-		1	.	.	4		3
k922	.	-	2	.	1	1	2	2	2
$k 6344$.	-		1
k908		-	.	.	.		-	.		.				.		2	
$k 5652$.	-		1	.
k14072			.											.			1

Table 4. Condensation results for $p=2$ for HN
the condensed group algebra $e F G e$. We apply the condensation of tensor products technique described in $[12,16]$.

The results are presented in Table 4, in which we display the multiplicities of the composition factors of the condensed tensor products given, where we denote the simple \mathcal{C}-modules by their dimension, preceded by the letter ' k '. We also condense the known simple $F G$-modules of the principal block individually in order to match them to simple \mathcal{C}-modules. Note that we condense the tensor product $132_{1} \otimes 132_{2}$, even though we were able to compute its decomposition directly: it is more efficient to condense the tensor product than to deal with the module 15904 alone.

Our next task is to determine which simple \mathcal{C}-modules are composition factors of simple $e F G e$-modules coming from simple $F G$-modules of its principal block. To this end, it turns out that the restrictions of the ordinary characters indicated by bold face in Table 6 are a basic set of Brauer characters for the principal block. A basic set of Brauer characters for block B_{1} was already given in Table 3, and adding χ_{46}^{\prime} we obtain a complete basic set of Brauer characters.

Then, by decomposing the Brauer characters of the tensor products considered into this basic set, we see that only the last two contain composition factors which lie outside of the principal block. As a manner of speaking, we say that a simple \mathcal{C}-module belongs to a block of $F G$ if it is a composition factor of the restriction to \mathcal{C} of a condensed simple $F G$-module lying in that block.

By computing the multiplicity of the trivial character of K in the restrictions to K of the basic set characters and the known Brauer characters, we determine the dimensions of the corresponding condensed modules. Of course, these are upper bounds for the dimensions of their simple \mathcal{C}-constituents.

Also, decomposing the characters of the last two tensor products in the basic set of B_{0} and the irreducible Brauer characters of the other blocks, gives that 214016 occurs twice, and 1361920 occurs once as a constituent of $760 \otimes 3344$. The single defect zero module 3424256 appears once in $2650_{1} \otimes 2650_{2}$.

We compute the dimensions of the condensed modules whose Brauer characters constitute the basic set. From this it is immediate that $k 14072$ is a composition factor of the condensed defect zero module 3424256 restricted to \mathcal{C} : it is simply too large to fit into any of the other modules. As the dimension of the \mathcal{C}-module is equal to the dimension computed of 3424256 condensed, we conclude that $k 14072$ is the irreducible restriction of the latter module, and therefore belongs to the defect zero block.

The simple 1361 920-dimensional modules of B_{1} condense to modules of dimension 5652 . By summing up the dimensions of the composition factors by their multiplicities as given in the second to last column of Table 4, it is plain to see that $k 5652$ appears in one of the condensed simple modules of the same dimension, as the sum obtained is less. Thus $k 5652$ too is an irreducible restriction of a condensed simple module lying in B_{1} and therefore belongs to B_{1}.

For $k 908$ we verify computationally that it also originates from a module outside of the principal block: employing the MeatAxe and peakword techniques, we find a uniserial submodule of $760 \otimes 3344$ condensed with head and socle isomorphic to $k 908$ and containing $k 5652$ as the only additional composition factor. Therefore there is a non-trivial extension of $k 5652$ by $k 908$, and as $k 5652$ belongs to B_{1} so must $k 908$.

Thus all appearing \mathcal{C}-modules, except $k 908, k 5652$, and $k 14072$, belong to the principal block. Hence the matrix A comprising the first 17 rows of Table 4 describes the condensed modules of the B_{0}-components of the modules given at its top. It is immediate that A has full rank. Therefore, as B_{0} has $l=17$ Brauer characters, by [5, Proposition 1] condensation with respect to our chosen subgroup K defines a faithful functor from mod- B_{0} to mod-e $B_{0} e$. Furthermore, by [14, Theorem 4.1] taking as b the B_{0}-components of the Brauer characters afforded by the modules indexing the columns of Table 4, the product $b A^{-1}$ gives a basic set of Brauer atoms for B_{0}.

As the possibility that \mathcal{C} is a proper subalgebra of $e F G e$ remains, the degrees of the Brauer atoms are lower bounds for the degrees of the irreducible Brauer characters. Therefore in order to verify that the Brauer atoms are in fact the Brauer characters, we need to show that the simple $F G$-modules possess these dimensions. This is achieved by constructing bases for almost all simple modules through uncondensation: With the help of the MeatAxe we can determine the socle series of the condensed tensor products considered, and may therefore seek a suitably small

TABLE 5. Socle series of select submodules of some tensor products
submodule U of the condensed module $V e$ which contains a condensed version of the simple module S we would like to construct. The subspace embedding of $V e$ into V therefore embeds a basis of U into V, and with standard MeatAxe functionality we may construct a basis of the smallest G-invariant subspace of V containing the embedded basis of U. Ideally, we have $U=S e$, and we are done after having constructed a basis of S. However, if $S e$ does not lie in the socle of V, we need to iterate this procedure by working along an ascending composition series of U.

Recall that we have already chopped up the tensor product $132_{1} \otimes 132_{2}$ completely, hence we are done with that. Within the condensed tensor products $132_{1} \otimes 760,760 \otimes 760,132_{1} \otimes 2650_{1}$, and $132_{1} \otimes 3344$, respectively, we find suitable submodules whose socle series we give in Table 5. Note that for every pair of modules conjugate under the outer automorphism, which of course is seen on the level of characters, it is sufficient to construct a basis of only one member. Therefore the four modules of Table 5 allow us to verify the dimensions of almost all Brauer characters except the one corresponding to $k 6344$. For the practical realisation of these computations, it is important to note that we do not need to construct a representation of the action of G on any of the huge tensor product spaces: using the natural isomorphism $M \otimes N \cong \operatorname{Hom}_{F}\left(M^{*}, N\right)$ (see [17, Lemma 2.6]) we only need to work with the available representations of the tensor factors. The computational demand of the necessary calculations involved is bounded by the construction of the 250589 -dimensional module containing the uncondensed $k 922$ which itself is 217130 -dimensional. As we are able to work over the field with two elements in this case, the memory needed to construct and store this space is less than 8 GB of RAM.

With only the last Brauer atom of degree 1556136 left to prove to be a Brauer character, we can avoid the unwieldy construction of a basis for this module: We additionally condense the tensor product $V:=2650_{1} \otimes 3344$ instead. Let S denote the simple $F G$-module such that its Brauer character φ contains the Brauer atom α of degree 1556136 as a summand. Since φ is a constituent of the basic set character χ_{39}^{\prime}, and the latter has degree 2031480 , we conclude that φ contains α as a summand with multiplicity precisely one.

A calculation with the MeatAxe gives that head and socle of $V e \downarrow_{\mathcal{C}}$ are isomorphic, and have structure

$$
k 160_{1} \oplus k 6344 \oplus k 12288 .
$$

By the above we have $43416_{1} e=k 160_{1}$ and $2985984 e=k 12288$, and $S e \downarrow_{\mathcal{C}}$ has $k 6344$ as a composition factor. Recall that e is a faithful condensation idempotent,
and that the Brauer atom α alone already accounts for the condensed dimension 6344 , that is $\varphi=\alpha$ is equivalent to $S e=k 6344$, but due to the generation problem this does not immediately follow from the above statement, and neither it is clear how socle and head of $V e$ and thus of V look like. But, with the possible exception of φ, we have proved that all simple $e F G e$-modules restrict irreducibly to \mathcal{C}, and that two such $e F G e$-modules are isomorphic if their restrictions to \mathcal{C} are. Hence we conclude that both the head and the socle of V have at most the constituents $43416_{1}, 2985984$ and S; in particular, the constituents $132_{1 / 2}$ and 760 do not occur.

We now additionally choose another condensation subgroup, namely the normal subgroup 5_{+}^{1+4} of the sixth maximal subgroup $M_{6}:=5_{+}^{1+4}: 2_{-}^{1+4} .5 .4$. To distinguish this condensation from the previous one, we denote the trace idempotent of 5_{+}^{1+4} by e^{\prime} and prefix the simple $e^{\prime} F G e^{\prime}$-modules by the letter ' c '. By [20, Theorem 2.7] we obtain a generating system of $e^{\prime} F G e^{\prime}$ of 128 elements, if we condense the 126 non-identity double coset representatives of $M_{6} \backslash G / M_{6}$ and the two generators for M_{6}, obtained through a straight line programme available at [29].

As we know all irreducible Brauer characters except φ, we can determine the dimensions of their condensed modules with respect to e^{\prime}. This shows that e^{\prime} is not faithful; indeed, precisely the simple modules $132_{1 / 2}$ and 760 condense to the zero module. We identify the possible composition factors of the 2772 -dimensional condensed module $V e^{\prime}$ by applying the MeatAxe. We again find that head and socle of $V e^{\prime}$ are isomorphic, and have structure

$$
c 8 \oplus c 1152 \oplus c 960
$$

where $43416_{1} e^{\prime}=c 8,2985984 e^{\prime}=c 960$ and $S e^{\prime}=c 1152$. Again, a consideration of condensed dimensions shows that α alone accounts for the dimension 1152 , which implies that $\varphi-\alpha$ is a sum of multiples of $132_{1 / 2}$ and 760 .

Moreover, as we look at $V e^{\prime}$ as an $e^{\prime} F G e^{\prime}$-module, uncondensing (in theory, not in practice!) the submodule of $V e^{\prime}$ isomorphic to $c 1152$ yields a submodule U of V having a simple head isomorphic to S, whose radical has only constituents condensing to the zero module, that is amongst $132_{1 / 2}$ and 760 . But since none of the latter occur in the socle of V we conclude that U is isomorphic to S, in other words S occurs in the socle of V, and similarly in the head of V as well.

We now return to our established faithful condensation setup and reconsider $V e$: Assume that $\varphi \neq \alpha$. Then, as α is a summand of φ with multiplicity one, hence $k 6344$ occurs only once as a constituent of $S e \downarrow_{\mathcal{C}}$, we conclude that the head or the socle of $V e \downarrow_{\mathcal{C}}$ (or both) contain a condensed module of at least one of $132_{1 / 2}$ and 760 , which is not the case, and thus is a contradiction. Hence we conclude that the last Brauer atom α coincides with φ, thus is an irreducible Brauer character.

The decomposition matrix of the principal block is given in Table 6.
2.3. The Automorphism Group in Characteristic 2. The 2-modular characters of $G .2$ are distributed over three blocks, each covering precisely one of the 2-blocks of G : the principal block B_{0} of defect $d=15$, having $k=63$ ordinary and $l=12$ modular characters, the block B_{1} of defect $d=5$, having $k=13$ ordinary and $l=3$ modular characters, and the block B_{2} of defect $d=1$, having $k=2$ ordinary and $l=1$ modular characters.

The task of determining the decomposition numbers of $G .2$ in characteristic 2 is easy: every Brauer character of G invariant under the outer automorphism gives

χ	$\chi(1)$	φ_{1}	φ_{2}	φ_{3}	φ_{4}	φ_{5}	φ_{6}	φ_{7}	φ_{8}	φ_{9}	φ_{10}	φ_{11}	φ_{12}	φ_{13}	φ_{14}	φ_{15}	φ_{16}	φ_{17}
1	1	1
2	133	1	.	1
3	133	1	1
4	760	1
5	3344	1
6	8778	2	.	1	1	1	.	1
7	8778	2	1	.	1	1	.	1
8	8910	2	1	1	1	1	.	1
9	9405	1	.	.	1	1	1	1
10	16929	1	1	1	.	.	1	.	1
11	35112	1	1	.	.	.
12	35112	1	1
13	65835	1	2	1	1	1	.	.	.
14	65835	1	1	2	1	.	.	1
15	69255	3	2	2	1	1	1	1	1	.	.	1
16	69255	3	2	2	1	1	1	1	1	.	.	.	1
18	267520	6	2	2	2	2	1	2	2	1	.
19	270864	6	2	2	2	2	1	3	2	-	.	-	1	.
20	365750	8	3	3	2	2	3	1	1	.	.	1	1	1	1	1	.	.
21	374528	6	2	2	1	1	2	1	1	2	1	1	.	.
22	374528	6	2	2	1	1	2	1	1	1	2	1	.	.
23	406296	6	4	4	.	.	1	.	2	.	.	1	1	1	1	.	1	.
24	653125	13	7	7	2	2	3	2	4	.	.	2	2	.	.	1	1	-
25	656250	12	6	6	1	2	3	1	3	.	.	1	2	1	1	1	1	.
26	656250	12	6	6	2	1	3	1	3	.	.	2	1	1	1	1	1	.
27	718200	14	8	9	2	2	2	2	4	.	1	2	2	1	.	1	1	.
28	718200	14	9	8	2	2	2	2	4	1	.	2	2	.	1	1	1	-
29	1053360	26	12	12	6	6	7	5	6	.	.	3	3	1	1	2	1	.
30	1066527	19	11	11	2	2	5	1	5	1	-	3	3	1	2	2	1	.
31	1066527	19	11	11	2	2	5	1	5	.	1	3	3	2	1	2	1	.
32	1185030	20	12	12	2	2	5	1	4	1	1	3	3	3	3	2	1	.
33	1354320	24	14	14	2	2	6	1	8	.	.	4	4	1	1	2	2	.
38	1625184	30	16	16	4	4	7	4	10	.	.	4	4	1	1	2	3	-
39	2031480	14	8	8	2	2	2	2	4	.	.	2	2	.	.	.	1	1
40	2375000	20	8	8	4	4	6	2	2	.	.	3	3	2	2	2	.	1
41	2407680	50	26	26	8	8	13	6	14	.	.	7	7	2	2	4	3	.
42	2661120	48	28	28	5	5	8	4	14	1	1	7	7	2	2	4	4	-
43	2784375	25	14	14	3	3	5	2	5	1	1	4	4	2	2	2	1	1
47	3878280	48	27	27	7	7	10	6	12	1	1	7	7	3	3	3	3	1
48	4156250	52	29	29	7	7	11	5	13	1	1	8	8	3	3	4	3	1
50	4809375	65	36	36	9	9	14	7	17	1	1	10	10	3	3	5	4	1
51	5103000	68	38	38	8	8	14	6	18	1	1	10	10	4	4	5	5	1
52	5103000	68	38	38	8	8	14	6	18	1	1	10	10	4	4	5	5	1
53	5332635	71	41	41	8	8	16	5	17	2	2	11	11	6	6	6	4	1
54	5878125	81	47	47	9	9	16	7	22	2	2	12	12	5	5	6	6	1

Table 6. The decomposition matrix of the principal 2-block B_{0} of HN
just one Brauer character of $G .2$, while the pairs of Brauer characters of G whose members are interchanged by the outer automorphism induce to one Brauer character of G.2. Therefore, using the results of the previous section we can immediately give the three decomposition matrices in Tables 7 and 8.

3. Characteristic 3

In characteristic 3 , the simple group G possesses three blocks of positive defect: the principal block B_{0} of defect $d=6$, having $k=33$ ordinary and $l=20$ modular characters, the block B_{1} of defect $d=2$, having $k=9$ ordinary and $l=7$ modular characters, and the block B_{2} of defect $d=1$, having $k=3$ ordinary and $l=2$ modular characters. Moreover, there are nine blocks of defect 0 , consisting of the ordinary characters $\left\{\chi_{15}, \chi_{16}, \chi_{30}, \chi_{31}, \chi_{44}, \chi_{47}, \chi_{51}, \chi_{52}, \chi_{53}\right\}$.

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Φ_{3}	Φ_{4}	Φ_{5}	Φ_{6}	Φ_{7}	Φ_{8}	Φ_{9}	Φ_{10}	Φ_{11}	Φ_{12}
1	1	1
2	1	1
3	266	2	1
4	760	-	.	.	1
5	760	.	.	-	1
6	3344	1
7	3344	1
8	17556	4	1	2	.	2
9	8910	2	1	1	.	1
10	8910	2	1	1	.	1
11	9405	1	.	1	1	1
12	9405	1	.	1	1	1
13	16929	1	1	.	1	.	1
14	16929	1	1	.	1	.	1
15	70224	.	.	.	2	1	.	.	.
16	131670	2	3	1	.	1	.	.	.
17	138510	6	4	2	2	2	2	.	1
20	267520	6	2	2	1	2	2	1	.
21	267520	6	2	2	1	2	2	1	.
22	270864	6	2	2	1	3	2	1	.
23	270864	6	2	2	1	3	2	1	.
24	365750	8	3	2	3	1	1	.	1	1	1	.	.
25	365750	8	3	2	3	1	1	.	1	1	1	.	.
26	749056	12	4	2	4	.	.	.	2	3	2	.	.
27	406296	6	4	.	1	.	2	.	1	1	.	1	.
28	406296	6	4	.	1	.	2	.	1	1	.	1	.
29	653125	13	7	2	3	2	4	.	2	.	1	1	.
30	653125	13	7	2	3	2	4	.	2	.	1	1	.
31	1312500	24	12	3	6	2	6	.	3	2	2	2	.
32	1436400	28	17	4	4	4	8	1	4	1	2	2	.
33	1053360	26	12	6	7	5	6	.	3	1	2	1	.
34	1053360	26	12	6	7	5	6	.	3	1	2	1	.
35	2133054	38	22	4	10	2	10	1	6	3	4	2	.
36	1185030	20	12	2	5	1	4	1	3	3	2	1	.
37	1185030	20	12	2	5	1	4	1	3	3	2	1	.
38	1354320	24	14	2	6	1	8	.	4	1	2	2	.
39	1354320	24	14	2	6	1	8	.	4	1	2	2	.
45	1625184	30	16	4	7	4	10	.	4	1	2	3	.
46	1625184	30	16	4	7	4	10	.	4	1	2	3	.
47	2031480	14	8	2	2	2	4	.	2	.	.	1	1
48	2031480	14	8	2	2	2	4	.	2	.	.	1	1
49	2375000	20	8	4	6	2	2	.	3	2	2	.	1
50	2375000	20	8	4	6	2	2	.	3	2	2	.	1
51	2407680	50	26	8	13	6	14	.	7	2	4	3	.
52	2407680	50	26	8	13	6	14	-	7	2	4	3	.
53	2661120	48	28	5	8	4	14	1	7	2	4	4	.
54	2661120	48	28	5	8	4	14	1	7	2	4	4	.
55	2784375	25	14	3	5	2	5	1	4	2	2	1	1
56	2784375	25	14	3	5	2	5	1	4	2	2	1	1
63	3878280	48	27	7	10	6	12	1	7	3	3	3	1
64	3878280	48	27	7	10	6	12	1	7	3	3	3	1
65	4156250	52	29	7	11	5	13	1	8	3	4	3	1
66	4156250	52	29	7	11	5	13	1	8	3	4	3	1
69	4809375	65	36	9	14	7	17	1	10	3	5	4	1
70	4809375	65	36	9	14	7	17	1	10	3	5	4	1
71	5103000	68	38	8	14	6	18	1	10	4	5	5	1
72	5103000	68	38	8	14	6	18	1	10	4	5	5	1
73	5103000	68	38	8	14	6	18	1	10	4	5	5	1
74	5103000	68	38	8	14	6	18	1	10	4	5	5	1
75	5332635	71	41	8	16	5	17	2	11	6	6	4	1
76	5332635	71	41	8	16	5	17	2	11	6	6	4	1
77	5878125	81	47	9	16	7	22	2	12	5	6	6	1
78	5878125	81	47	9	16	7	22	2	12	5	6	6	1

Table 7. The decomposition matrix of the principal 2-block B_{0} of HN .2

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Φ_{3}	Φ_{1}
18	214016	1	.	.	
19	214016	1	.	.	
40	1361920	.	1		
41	1361920		1	.	
42	2723840	.	2		
43	1575936	1	1	.	
44	1575936	1	1		
57	2985984	.	.	1	
58	2985984	-	.	1	
59	3200000	1	.	1	
60	3200000	1	.	1	
67	4561920	1	1	1	
68	4561920	1	1	1	.
61	3424256	.	.		1
62	3424256	.	.		1

Table 8. The decomposition matrices of the 2-blocks B_{1} and B_{2} of HN. 2

χ	$\chi(1)$	Φ_{1}	Φ_{2}
23	406296	1	.
38	1625184	.	1
39	2031480	1	1

Table 9. The decomposition matrix of the 3-block B_{2} of HN

The decomposition matrix of the 3 -block B_{2}, reproduced in Table 9, follows immediately from the Brauer-Dade theory of blocks with cyclic defect groups, and has previously been published in [7].
3.1. Proof for the block B_{1}, part 1. We begin with a basic set of projective characters displayed in Table 10, where we also give a basic set of Brauer characters, comprising of the restrictions of the ordinary characters indicated by bold face. The origin of the projective characters is given there as well, where $1_{B_{1}}$ denotes the associated block idempotent, $M_{6}=5_{+}^{1+4}: 2_{-}^{1+4} .5 .4$ is the sixth maximal subgroup of G (see [2]), which is a 3^{\prime}-subgroup, the character φ_{2} is the linear character of M_{6} of order 2 , the character φ_{3} is one of the two linear characters of order 4 , and φ_{7} is one of the two rational valued characters of degree 5 . Note that the character of the B_{1}-component of $\operatorname{Ind}_{M_{6}}^{G}\left(\varphi_{7}\right)$ decomposes into the ordinary characters of B_{1} with even coefficients, hence dividing by 2 still yields a projective character. The remaining projective characters are products of irreducible characters of G, one factor of which is a character of defect zero.

Table 10. A first basic set of projective characters for B_{1}

We now pursue a strategy first employed in [18]. Let M_{6}^{\prime} denote the unique subgroup of M_{6} of index 2 . Hence the $R G$-permutation module on the cosets of M_{6}^{\prime} is a projective $R G$-lattice. Put

$$
E:=\operatorname{End}_{R G}\left(\operatorname{Ind}_{M_{6}^{\prime}}^{G}(R) \cdot 1_{B_{1}}\right)
$$

note that (Q, R, F) is a splitting system for E. The B_{1}-component of the associated permutation character $\Psi:=\operatorname{Ind}_{M_{6}}^{G}\left(\varphi_{1}+\varphi_{2}\right)$, where φ_{1} is the trivial character, decomposes into the ordinary characters of B_{1} as given in Table 10. In particular, $Q \otimes_{R} E$ has eight irreducible characters.

We consider $\bar{E}:=F \otimes_{R} E$, and proceed to determine its regular representation. In practice, a straight line programme to find M_{6} is available in [29]. Using the facilities provided by GAP it is then easy to find M_{6}^{\prime}, and the permutation representation of G on the 273030912 cosets in $M_{6}^{\prime} \backslash G$, realised as a G-orbit of vectors in a suitable matrix representation of G. Then the regular representation of \bar{E} is obtained by a direct condense technique, using the orb package [19]; for details see [18].

It turns out that \bar{E} has five simple modules $3 a, 1 a, 1 b, 2 c, 2 a$ of the respective dimensions, and the Cartan matrix C of \bar{E} is found to be as given in Table 11. Let $D \in \mathbb{N}_{0}^{8 \times 5}$ be the decomposition matrix of E. It is easy to check that the matrix equation $D^{t} D=C$ has, up to a permutation of rows, the matrix given in Table 11 as its only solution. (We have already chosen the ordering with some foresight such that a later reordering of rows or columns is unnecessary.)

Hence it remains to show how the rows of the matrix in Table 11 correspond to rows of Table 10. The regular character of E shows that

$$
\begin{array}{ll}
\left\{1_{1}, 1_{2}\right\} \leftrightarrow\left\{\chi_{10}, \chi_{37}\right\}, & \left\{3_{1}, 3_{2}\right\} \leftrightarrow\left\{\chi_{8}, \chi_{49}\right\} \\
\left\{4_{1}, 4_{2}\right\} \leftrightarrow\left\{\chi_{33}, \chi_{50}\right\}, & \left\{5_{1}, 5_{2}\right\} \leftrightarrow\left\{\chi_{32}, \chi_{43}\right\},
\end{array}
$$

	$\Phi_{3 a}$	$\Phi_{1 a}$	$\Phi_{1 b}$	$\Phi_{1 c}$	$\Phi_{2 a}$
	$3 a$	$1 a$	$1 b$	$1 c$	$2 a$
3_{1}	1	\cdot	\cdot	\cdot	\cdot
1_{1}	\cdot	1	\cdot	\cdot	\cdot
5_{1}	1	1	1	\cdot	\cdot
4_{1}	1	\cdot	\cdot	1	\cdot
1_{2}	\cdot	\cdot	\cdot	1	\cdot
5_{2}	1	\cdot	1	1	\cdot
3_{2}	\cdot	\cdot	1	\cdot	1
4_{2}	\cdot	1	1	\cdot	1

Table 11. Decomposition matrix and Cartan matrix of E

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Ψ_{3}	Φ_{4}	Φ_{5}	Ψ_{6}	Φ_{7}	Ψ^{\prime}
$\mathbf{8}$	8910	1
$\mathbf{1 0}$	16929	.	1
$\mathbf{1 9}$	270864	.	.	1	1
$\mathbf{3 2}$	1185030	1	1	.	1	.	1	.	1
$\mathbf{3 3}$	1354320	1	.	.	.	1	2	.	.
$\mathbf{3 7}$	1575936	.	.	1	.	1	1	.	1
43	2784375	1	.	1	1	1	3	.	2
$\mathbf{4 9}$	4561920	.	.	2	1	.	6	1	2
50	4809375	.	1	3	1	.	5	1	3

TABLE 12. A second basic set of projective characters for B_{1}
while χ_{19} is not met. The basic set of Table 10 shows in particular that χ_{8}^{\prime} is an irreducible Brauer character, and the associated projective indecomposable character Φ_{1} is contained three times as a summand in the projective character Ψ. Thus $\Phi_{3 a}$ is the Fitting correspondent of Φ_{1}, and part of the matching is

$$
3_{1} \leftrightarrow \chi_{8} \quad \text { and } \quad 3_{2} \leftrightarrow \chi_{49} .
$$

This yields 8 remaining cases. To be a valid matching, the projective indecomposable characters of E have to decompose into the basic set of projective characters in Table 10 with integral coefficients. It is easily checked using GAP that this necessary condition is only fulfilled for

$$
1_{1} \leftrightarrow \chi_{10}, \quad 1_{2} \leftrightarrow \chi_{37}, \quad 4_{1} \leftrightarrow \chi_{33}, \quad 4_{2} \leftrightarrow \chi_{50}, \quad 5_{1} \leftrightarrow \chi_{32}, \quad 5_{2} \leftrightarrow \chi_{43} .
$$

This gives five of the seven projective indecomposable characters for block B_{1}, and together with Ψ_{3} and Ψ_{6} we obtain the basic set of projective characters displayed in Table 12.

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Ψ_{3}^{\prime}	Φ_{4}	Φ_{5}	Ψ_{6}	Φ_{7}
$\mathbf{8}$	8910	1
$\mathbf{1 0}$	16929	.	1
$\mathbf{1 9}$	270864	.	.	1
$\mathbf{3 2}$	1185030	1	1	.	1	.	1	.
$\mathbf{3 3}$	1354320	1	.	.	.	1	2	.
$\mathbf{3 7}$	1575936	.	.	1	.	1	1	.
43	2784375	1	.	1	1	1	3	.
$\mathbf{4 9}$	4561920	.	.	1	1	.	6	1
50	4809375	.	1	2	1	.	5	1

TABLE 13. A third basic set of projective characters for B_{1}

The projective character Ψ^{\prime} given in the last column of Table 12 is obtained as $\left(\chi_{2} \cdot \chi_{30}\right) \cdot 1_{B_{1}}$. We have

$$
\Psi^{\prime}=\Psi_{3}+\Phi_{4}-\Phi_{7} .
$$

Since Φ_{7} and Φ_{4} are projective indecomposable, this relation implies that

$$
\Psi_{3}^{\prime}:=\Psi_{3}-\Phi_{7}
$$

is a projective character. We obtain the new basic set of projective characters displayed in Table 13. ¿From this table it is evident that in order to obtain the projective indecomposable character Φ_{3} contained in Ψ_{3}^{\prime}, we may subtract Φ_{7} at most once from Ψ_{3}^{\prime}. Likewise, we consider the decomposition

$$
\Phi_{6}=\Psi_{6}-a \cdot \Phi_{4}-b \cdot \Phi_{5}-c \cdot \Phi_{7}, \quad \text { where } 0 \leq a, b \leq 1 \text { and } 0 \leq c \leq 5-a
$$

This leaves 44 possibilities for the decomposition matrix of B_{1}. We postpone the proof which of these possibilities holds until after our treatment of the principal block, as with little effort we can eliminate three quarters of these possibilities in parallel to determining the Brauer characters of B_{0}.
3.2. Proof for the principal block B_{0}. As in our treatment of G in characteristic 2, we begin by constructing several small dimensional representations. In [29] we readily find 133_{1} and 133_{2}, which are conjugate under the outer automorphism of G, and 760. Furthermore, restricting the smallest non-trivial irreducible representation of the sporadic Baby Monster group B also available from [29] gives the composition factors

$$
4371 \downarrow_{G}=1+133_{1}+133_{2}+760+3344
$$

all of which are liftable. As the tensor products $133_{1} \otimes 133_{1}$ and $133_{1} \otimes 133_{2}$ allow a direct treatment with the MeatAxe, we also chop these modules obtaining

$$
\begin{aligned}
& 133_{1} \otimes 133_{1}=1+8778_{1}+8910 \\
& 133_{1} \otimes 133_{2}=760+16929
\end{aligned}
$$

in the process. Choosing basic sets of Brauer characters for B_{0} and B_{1} as indicated in bold face in Tables 13 and 16, respectively, we see that 8910 and 16929 afford two of the irreducible Brauer characters of B_{1} already known. Hence, we readily
obtain the Brauer character of 8778_{1}, and applying the outer automorphism to 8778_{1} gives 8778_{2}.

To determine the remaining Brauer characters, we employ condensation again. As condensation subgroups we choose $K_{1} \cong 2^{3} .2^{2} .2^{6}$ of order 2048 , which is the largest normal 2-subgroup of the ninth maximal subgroup $M_{9} \cong 2^{3} .2^{2} .2^{6} .\left(3 \times L_{3}(2)\right)$ of G, and $K_{2} \cong 5^{2} .5 .5^{2}$ of order 3125 , which is the largest normal 5 -subgroup of the tenth maximal subgroup $M_{10} \cong 5^{2} .5 \cdot 5^{2} .4 A_{5}$ of G (see [2]). A straight line programme to find M_{10} is available in [29]. Following the construction given in [23, Section 3, p. 365] we can similarly procure a straight line programme for the ninth maximal subgroup by computing its intersection with the maximal subgroup A_{12}. The normal subgroups in question are then easily found using the facilities to deal with permutation groups provided by GAP.

The reason for choosing two condensation subgroups becomes evident, if we calculate the dimensions of the condensed simple modules known via their Brauer characters: we see that the corresponding trace idempotent e_{1} annihilates the pairs $\left(133_{1}, 133_{2}\right)$ and ($8778_{1}, 8778_{2}$), whereas the trace idempotent e_{2} of the second condensation subgroup K_{2} annihilates 760 and 3344 . Condensing every module with both idempotents allows us to counteract the blind spots produced by condensing with just either of the two.

By [20, Theorem 2.7] condensing the non-identity representatives of the double cosets in $M_{9} \backslash G / M_{9}$ and $M_{10} \backslash G / M_{10}$ together with generators for the maximal subgroups gives generating sets for $e_{1} F G e_{1}$ and $e_{2} F G e_{2}$, consisting of 387 and 643 elements, respectively. Words for the double coset representatives can be computed using orb, realising the permutation representations of G on the $264515 ? 625$ cosets in $M_{9} \backslash G$, and the 364041216 cosets in $M_{10} \backslash G$, as G-orbits of vectors in suitable matrix representations of G; again we spare the details of the actual computations.

As working with 1030 generators simultaneously is cumbersome to impossible, we adopt the strategy to consider the algebras $\mathcal{C}_{1} \leq e_{1} F G e_{1}$ and $\mathcal{C}_{2} \leq e_{2} F G e_{2}$, each generated by the condensed elements corresponding to the following six elements

$$
\begin{equation*}
a, b, a b, b a, a^{2}, a b a \tag{1}
\end{equation*}
$$

where a and b are standard generators of G. We apply the condensation of tensor products technique described in $[12,16]$ to the modules listed in Table 14, where the simple module 12264_{1} which we also use will be constructed in the process, and chop the condensed modules using the six group elements of (1).

For any $F G$-module M the idea now is to consider a composition series of $M e_{i} \downarrow_{\mathcal{C}_{i}}$ for $i=1,2$, which can be obtained with the MeatAxe. Let \mathcal{B}_{i} be a basis of $M e_{i}$ adapted to the composition series computed, i.e. with respect to \mathcal{B}_{i} the action of elements of \mathcal{C}_{i} on $M e_{i} \downarrow_{\mathcal{C}_{i}}$ is given by lower block-triangular matrices, for which the block-diagonal gives the representations on the composition factors. We can prove that every composition factor of $M e_{i}$ restricts irreducibly to \mathcal{C}_{i} by checking if the lower block-diagonal structure is preserved by all generators of $e_{i} F G e_{i}$ with respect to the basis \mathcal{B}_{i}. Moreover, we check that two composition factors are isomorphic as $e_{i} F G e_{i}$-modules if they are as \mathcal{C}_{i}-modules. This is applied to the tensor products $760 \otimes 8778_{1}$ and $3344 \otimes 3344$. Thus all \mathcal{C}_{1} - and \mathcal{C}_{2}-modules appearing as composition factors in the modules can be uniquely extended to $e_{1} F G e_{1}$ - and $e_{2} F G e_{2}$-modules, respectively.

For the identification which simple $e_{1} F G e_{1}$-module corresponds to which simple $e_{2} F G e_{2}$-module, we now adopt the improved matching method detailed in [22].

Using our basic sets of B_{0} and B_{1}, together with the Brauer characters of B_{2} and the characters of defect zero, it is plain to see which composition factors outside of B_{0} and B_{1} appear in the tensor products $760 \otimes 8778_{1}$ and $3344 \otimes 3344$. The dimensions of their condensed modules are also readily determined. These dimensions are almost sufficient to identify these modules, and thus to omit them immediately from the condensation results, except that there is a constituent of dimension 96 for the condensation subgroup K_{2} being the condensed module of the irreducible Brauer character 406296 in the block B_{2} of defect 1. Running the matching algorithm shows that this constituent matches with a constituent of dimension 243 for the condensation subgroup K_{1}, hence can be uniquely identified. Moreover, the decompositions of both tensor products into our basic sets of B_{0} and B_{1} (see Table 15) show that the character χ_{49}^{\prime} of the basic set of Table 13 does not occur in either decomposition. Hence by the results obtained in 3.1, the irreducible Brauer character corresponding to the projective indecomposable Φ_{7} is not a constituent of either of these tensor products. Thus their restrictions to $B_{0} \oplus B_{1}$ contain at most 26 distinct constituents.

The result of the matching algorithm run on the components in the condensed blocks of B_{0} and B_{1} yields the pairs of 'matched composition factors' given by the second and third columns of Table 14. Note that the algorithm does not identify the simple $F G$-module to which a condensed module corresponds; this will be proved in the following. More precisely, we indeed find the matching between the constituents as shown, where only $k 1_{1}$ and $k 9$ for the condensation subgroup K_{1}, and $c 3_{1 / 2}, c 8_{1 / 2}$ and $c 16_{1 / 2}$ for the condensation subgroup K_{2} remain 'unmatched'. This means that either we have missed existing matchings, or there is none because of non-faithful condensation. Since we have already constructed the simple modules $133_{1 / 2}, 760$, $3344,8778_{1 / 2}$, and will do so for the simple modules $12264_{1 / 2}$ later on, we can identify all of the 'unmatched' constituents as condensed simple modules, and thus show by using their Brauer characters that there indeed is no matching for them.

Thus we count 26 non-isomorphic simple modules occurring as 'matched composition factors' in the condensation results. Hence, all simple modules of the principal block B_{0}, and all but one simple module of B_{1} arise as composition factors in the two tensor products. Furthermore, we have a bijection between these simple $F G$-modules and the above 'matched composition factors'.

The strategy now is as follows: We proceed through the columns of Tables 14 and 15 , and compare the multiplicities of the 'matched composition factors' with the decomposition of the Brauer characters of the tensor products in question into the basic sets of B_{0} and B_{1}. This way we collect successively the information how the basic set characters decompose into irreducible Brauer characters. Using this information, it is straightforward to determine the Brauer characters which correspond to the 'matched composition factors'. We therefore omit the elementary calculations and only state the individual results:

- Condensing the simple modules, which are explicitly known as matrix representations, first reveals

$$
1 e_{1} \mapsto k 1_{2}, 760 e_{1} \mapsto k 1_{1}, 3344 e_{1} \mapsto k 9,133_{1} e_{2} \mapsto c 3_{2}, 133_{2} e_{2} \mapsto c 3_{1} .
$$

	K_{1}	K_{2}		$\begin{aligned} & \stackrel{N}{\tilde{\circ}} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\sim}{9} \end{aligned}$	$\begin{aligned} & \mathscr{H} \\ & \underset{\sim}{2} \\ & \otimes \\ & \underset{\sim}{\otimes} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \stackrel{\ominus}{\circ} \\ \otimes \\ \otimes \\ -1 \\ \stackrel{\rightharpoonup}{0} \end{gathered}$					$\begin{aligned} & \stackrel{\infty}{\perp} \\ & \stackrel{1}{\infty} \\ & \otimes \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\sim}{~} \end{aligned}$		$\begin{aligned} & \overrightarrow{-} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{1}{*} \\ & \otimes \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \infty \\ & \otimes \\ & \underset{\sim}{\circ} \end{aligned}$
760	$k 1_{1}$	-	.	1	.	1	.	2	2	3	5	16	1	3
1	$k 1_{2}$	c1	1	.	.	1	1	2	1	4	1	6	.	3
1332	-	$c 31$.	.	.	1	1	2	.	2	.	4	.	1
1331	-	$c 32$	1	2	.	2	2	4	.	1
9139	$k 8$	$c 7$	2	3	1	7	2	13	1	3
3344	$k 9$	-	.	.	2	1	2	5	4	6	2	15		3
12264_{1}	-	$c 8_{1}$.	.	.	1	.	1	.	2	3	10	1	2
$12264{ }_{2}$	-	$c 8_{2}$.	.	.	1	.	1	.	2	3	10	1	2
31768_{1}	$k 26{ }_{1}$	$c 83$.	.	1	.	.	2	2	3	2	9	1	3
31768_{2}	$k 26_{2}$	$c 84$.	.	.	2	.	2	2	3	1	9	.	4
87781	-	$c 16{ }_{1}$	1	.	.	.	1	.	.	.	4	4	.	.
87782	-	$c 16{ }_{2}$.	.	.	1	1	4	.	
137236	$k 50$	c40	1	2	.	4	1	2
147061	$k 89$	c33	1	.	2	1	2
$339702{ }_{2}$	$k 1381$	c962	2	2	.	
$339702{ }_{1}$	$k 1382$	c961	2	.	
255037	k173	c89	1	2	.	3	1	6	.	
496924_{1}	$k 260{ }_{1}$	c1681	1	1
496924_{2}	k2602	c1682	1
783696	k322	c272	1	1	1
40338	k18	c6	-	.	.	1
8910	$k 27_{1}$	c18	1	.	.	.	1	1	.	1	.	2	.	1
16929	$k 272$	c9		1	.	.	.	1	.	1	.	2	.	1
270864	k105	c96	1	.	2	.	.	2	.	1
1159191	$k 618$	c387	1	.	
1305072	k702	c384	1	.	.	1	.	2

Table 14. Condensation results for $p=3$ for HN
$-133_{1} \otimes 133_{1}$ and $133_{1} \otimes 133_{2}$: These are condensed to match the composition factors, which we have already determined but not computed as explicit matrix representations:

$$
8778_{1} e_{2} \mapsto c 16_{1}, 8778_{2} e_{2} \mapsto c 16_{2}, 8910 e_{1} \mapsto k 27_{1}, 16929 e_{1} \mapsto k 27_{2}
$$

χ	$\chi(1)$				$\begin{aligned} & \stackrel{\otimes}{2} \\ & \otimes \\ & \otimes \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{Q}{1} \\ & \otimes \\ & \stackrel{\circ}{1} \end{aligned}$	- ${ }_{\square}^{\text {¢ }}$	$\begin{aligned} & \underset{H}{H} \\ & \infty \\ & \otimes \\ & \otimes \\ & \dot{O} \end{aligned}$		$$			$$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \\ & \otimes \\ & \underset{\infty}{\otimes} \end{aligned}$
1	1	1	.	.	.	1	1		1		1	1	1	2
2	133		.	.	.		1	.	.	1		-2	-1	-1
3	133	.	.	.	1		1	.		-1	.	-2	-1	-1
4	760		1	.	.	.	1	1	.	.	.	-1		-2
5	3344	.	.	1	.	1	.	1	.	-1	-2	-1	-2	-2
6	8778	1	.		-1	1	-1	.	-1	1	-1	1		1
7	8778	.	.	.	1	1	.		.	.	1	-2	-1	-3
9	9405	1	1	.	2	1	4	2	2	3
11	35112	.	.	1	-1	.	1	1	.	1	3	3	2	3
12	35112	.	.	.	2	.	2	1	1	1	5	-1	2	-1
13	65835	.	.	.	1	.	1	.	1	1	2	-3	-1	-4
17	214016	1	1	.	1	.	1	
18	267520	1	2	.	2	1	4			
21	374528	2	1		2
22	374528	2	2	1		2
24	653125	1	.	2	.		3
25	656250		1	1	1
26	656250		1	1	1
29	1053360	1	1	1	1
35	1361920	-1		
8	8910	1				1	1		1	.	1	.		
10	16929	.	1	.			1	.	1	.	1	.	1	
19	270864	.	.	.		1	.	1	.	.	1			1
32	1185030	.	.	-	-	1			1
33	1354320		1	
37	1575936		.					1	.		1		1	1
49	4561920			1

Table 15. Decompositions into basic sets for B_{0} and B_{1}
$133_{1} \otimes 3344:$ This yields the Brauer characters 31768_{1} and its conjugate 31768_{2} :

$$
31768_{1} e_{1} \mapsto k 26_{1}, 31768_{2} e_{1} \mapsto k 26_{2}
$$

- $133_{1} \otimes 760$: The only basic set character needed to express the Brauer character of $133_{1} \otimes 760$ whose modular constituents are not yet known is χ_{13}, of degree 65835 .

Hence we obtain

$$
\begin{equation*}
\chi_{13}^{\prime}=1+760+8778_{1}+c 8_{1}+c 8_{2}+31768_{1} \tag{2}
\end{equation*}
$$

where we denote the unknown Brauer characters in this decomposition by their corresponding condensed modules. To determine these Brauer characters, we analyse the condensed tensor product with the MeatAxe. Its socle series is revealed to be

$$
\begin{gather*}
c 8_{4} \\
c 8_{2} \\
c 16_{2} \tag{3}\\
c 8_{1} \oplus c 1 \\
c 8_{4} \oplus c 3_{1}
\end{gather*}
$$

Analogously to our approach in Section 2.2, we construct a basis for the uncondensed submodule of Loewy length two, with head $c 8_{1}$ and socle $c 8_{4} \oplus c 3_{1}$. With it we construct a representation of the module condensing to $c 8_{1}$, giving 12264_{1}. As $133_{1} \otimes 760$ is self-dual, but the contragredient of 12264_{1} gives a new simple module 12264_{2}, which can be checked with the representation, we can derive from the socle series in (3) that

$$
12264_{1} e_{2} \mapsto c 8_{1}, 12264_{2} e_{2} \mapsto c 8_{2}
$$

¿From (2) we explicitly obtain the Brauer character of the sum $12264_{1}+12264_{2}$. Let σ denote the trivial extension of the nontrivial Galois automorphism of $\mathbb{Q}(\sqrt{5})$ to the algebraic number field containing all values of the ordinary characters. The character table of G (see [2]) reveals that the outer automorphism acts on the ordinary characters as the product of σ and complex conjugation. Now, since 12264_{2} is the contragredient of 12264_{1}, and both are interchanged by the action of the outer automorphism (which can again be checked with the representations obtained and a straightline programme for the action of the outer automorphism available in [29]), their characters are invariant under the action of the Galois group of $\mathbb{Q}(\sqrt{5})$. It therefore follows that 12264_{1} and 12264_{2} are rational on all classes except the pairs $19 A / B$ and $40 A / B$ (note that irrationalities on $35 A / B$ only appear as values of defect zero characters). Since we have constructed representations for 12264_{1}, and straight line programs for conjugacy class representatives of G are available in [29], we can compute representatives for $19 A$ and $40 A$, and the Brauer character value of the respective representative. We find that 12264_{1} assumes the value $b 19$ on $19 A$ and $i 10$ on $40 A$, using the notation in [2]. The values on all classes with rational values are simply obtained by dividing all the values of the character sum $12264_{1}+12264_{2}$ by 2. Thus, this construction yields the Brauer characters 12264_{1} and 12264_{2}.

- $760 \otimes 760$ and $1_{A_{12}}^{G}$: Considering both columns of Tables 14 and 15 gives the equations

$$
\begin{aligned}
\chi_{9}^{\prime}+\chi_{18}^{\prime} & =133_{1}+133_{2}+3344+2 \times k 8+k 173 \\
\chi_{9}^{\prime}+2 \chi_{18}^{\prime} & =133_{1}+133_{2}+2 \times 3344+3 \times k 8+2 \times k 173
\end{aligned}
$$

This allows us to derive the constituents of χ_{9}^{\prime} and χ_{18}^{\prime} as

$$
\begin{aligned}
\chi_{9}^{\prime} & =9139+133_{1}+133_{2} \\
\chi_{18}^{\prime} & =255037+9139+3344
\end{aligned}
$$

and considering the component of $760 \otimes 760$ in B_{1} we recover the Brauer character 270 864, hence we see that

$$
9139 e_{1} \mapsto k 8,255037 e_{1} \mapsto k 173,270864 e_{1} \mapsto k 105
$$

$-760 \otimes 3344$ and $1_{2 . \mathrm{HS} .2}^{G}:$ From $1_{2 . \mathrm{HS} .2}^{G}$ we obtain the relation

$$
\begin{aligned}
k 50+k 89=\chi_{24}^{\prime} & -1-2 \times 9139-2 \times 3344-12264_{1}-12264_{2} \\
& -31768_{1}-31768_{2}-255037
\end{aligned}
$$

In particular we derive from this decomposition that both $k 89$ and $k 50$ belong to the principal block.

Now considering $760 \otimes 3344$, from the decomposition into the basic sets in Table 15 we infer that, since $k 50$ lies in B_{0}, the other occurring unknown simple module $k 702$ lies in B_{1}. With the help of the basic sets we may separate the character of the tensor product restricted to B_{0} and B_{1} into its block components, and obtain via

$$
\begin{aligned}
k 50 & =\chi_{17}^{\prime}-1-760-3344-31768_{1}-31768_{2}-9139 \\
k 702 & =\chi_{37}^{\prime}-270864
\end{aligned}
$$

the Brauer characters 137236 of B_{0} and 1305072 of B_{1}.
Reconsidering the above relation derived from $1_{2 . \mathrm{HS} .2}^{G}$ yields the Brauer character 147061 of B_{0}, thus

$$
137236 e_{1} \mapsto k 50,147061 \mapsto k 89,1305072 e_{1} \mapsto k 702
$$

- $133_{1} \otimes 8778_{1}$: Here we obtain the decomposition

$$
\chi_{22}^{\prime}=2 \times 760+12264_{1}+12264_{2}+8778_{1}+k 138_{1}
$$

Hence we get an irreducible Brauer character of degree 339702 , which we call 339702_{2} as it appears in the second basic set character of degree 374528 . Applying the outer automorphisms gives 339702_{1}, hence

$$
339702_{2} e_{1} \mapsto k 138_{1}, 339702_{1} e_{1} \mapsto k 138_{2}
$$

$3344 \otimes 3$ 344: Again separating the character into its block components with our basic sets, we see that this tensor product yields one yet unknown simple module of B_{0} and likewise one yet unknown simple module of B_{1}. Thus we obtain a Brauer character 783696 of B_{0}, and another Brauer character 1159191 of B_{1}. Computing the dimensions of the corresponding simple condensed modules with these characters, we see that

$$
783696 e_{1} \mapsto k 322,1159191 e_{1} \mapsto k 618
$$

$-133_{1} \otimes 12264_{1}$: This tensor product gives the relation

$$
\chi_{25}^{\prime}+\chi_{26}^{\prime}-\chi_{35}^{\prime}=k 260_{1}+1+12264_{1}+147061
$$

Therefore we have a new Brauer character 496924_{1}. ¿From the latter we obtain its contragredient 496924_{2}, hence

$$
496924_{1} e_{1} \mapsto k 260_{1}, 496924_{2} e_{1} \mapsto k 260_{2}
$$

Thus we have determined all irreducible Brauer characters of B_{0} at this stage, and we give the 3 -modular decomposition matrix of this Block in Table 16.

- $760 \otimes 8778_{1}$: Finally, considering the last column of Table 14 we obtain another Brauer character of B_{1} : we derive the decomposition

$$
\chi_{33}^{\prime}=k 18+1305072+8910
$$

which immediately yields the Brauer character 40338 , hence

$$
40338 e_{1} \mapsto k 18
$$

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Φ_{3}	Φ_{4}	Φ_{5}	Φ_{6}	Φ_{7}	Φ_{8}	Φ_{9}	Φ_{10}	Φ_{11}	Φ_{12}	Φ_{13}	Φ_{14}	Φ_{15}	Φ_{16}	Φ_{17}	Φ_{18}	Φ_{19}	Φ_{20}
1	1	1												
2	133	.	1		
3	133	.	.	1	
4	760	.	.	.	1	
5	3344	1			
6	8778			.	.	.	1		
7	8778	1		
9	9405	.	1	1	1	
11	35112	1	1	
12	35112	1		1	
13	65835	1	.	.	1	.	1	.	.	1	1	1								.	
14	65835	1	.	.	1	-	.	1	.	1	1	.	1			.		.		.	
17	214016	1	.	.	1	1	.	.	1	.	.	1	1	1	
18	267520			.		1	.		1	1		.	.	.	
20	365750	1	1	1	1	1	.	.	2	,	1	1	1	.	.	1	.	-		.	
21	374528	.	.	.	2	.	.	1	.	1	1	1	.	.	.	
22	374528		.	.	2	,	1	.	.	1	1	.						1	.	.	
24	653125	1	.	-	1	2	.	.	2	1	1	1	1	1	1	1	.	.		.	
25	656250	1	-	1	,	.	.	.	1	.	.	.	1	,	
26	656250	1	-	.	,	.	.	,	,	,	1	.	,	.	1	;	i	.	.	1	
27	718200	.	;	1	2	2	,	1	2	1	1	1	1	.	.	1	1	;	.	.	
28	718200	.	1	.	2	2	1		2	1	1	1	1	.	.	1	.	1	.	.	
29	1053360		.	.	3	.	1	1		2	2	1	1	1					.	.	1
34	1361920	.	.	.	3	3	.	.	${ }^{2}$	2	2	1	1	1	1	1	1	1	.		
35	1361920	.	.	.	2	1	.	.	1	1	1	.	.	.	1		1	1	,	1	
36	1361920		.	,	2	1	.	.	1	1	1	.	.	.	1		1	1	1		
40	2375000	2	1	1	3	3	.	.	3	2	2	1	1	.	2	1	1	1	1	1	.
41	2407680	2	1	1	1	1	.	.	2	2	2	2	2	1	2	.		.	1	1	1
42	2661120	2	1	1	4	2	.	.	4	3		1	1	,	2	2	1	1	1	1	
45	3200000	1	1	1	3	2	.	.	2	3	3	1	1	1	3		1	1	1	1	1
46	3424256	2	1	1	5	2	1	1	3	4	4	2	2	1	2	1	1	1	1	1	1
48	4156250	1		.	7	4	1	1	2	5	5	2	2	2	3	.	2	2	1	1	1
54	5878125	2	1	1	9	5	1	1	3	6	6	2	2	1	4	.	3	3	2	2	1

Table 16. The decomposition matrix of the principal 3-block B_{0} of HN .

χ	$\chi(1)$	Φ_{1}	Φ_{2}	Φ_{3}	Φ_{4}	Φ_{5}	Φ_{6}	Φ_{7}
$\mathbf{8}$	8910	1
$\mathbf{1 0}$	16929	.	1
$\mathbf{1 9}$	270864	.	.	1
$\mathbf{3 2}$	1185030	1	1	.	1	.	.	.
$\mathbf{3 3}$	1354320	1	.	.	.	1	1	.
$\mathbf{3 7}$	1575936	.	.	1	.	1	.	.
43	2784375	1	.	1	1	1	1	.
$\mathbf{4 9}$	4561920	.	.	.	1	.	1	1
50	4809375	.	1	1	1	.	.	1

Table 17. The decomposition matrix of the 3 -block B_{1} of HN
3.3. The proof for the block B_{1}, part 2. At the end of Section 3.1 we were left with 44 possible decomposition matrices. Having determined all but one irreducible Brauer character of B_{1}, it is now elementary that $a=1=b$, and thus only ten cases remain.

To obtain more information on the last unknown Brauer character of B_{1}, we condense the tensor product $3344 \otimes 9139$, which may be done over the field with three elements, making the computation more efficient. As we have complete knowledge of all other blocks, it is trivial to only consider the part of the tensor product lying in B_{1}. It is furthermore sufficient to only condense with respect to the condensation subgroup K_{2}. We obtain the composition factors

$$
8910,16929,40338,2 \times 270864,2 \times 1159191,1305072, c 1047,
$$

where $c 1047$ may possibly be just a composition factor of the condensed last simple module restricted to \mathcal{C}_{2}. A comparison with the basic set of B_{1} (see the last column of Table 15) yields the relation

$$
\chi_{49}^{\prime}=40338+1159191+c 1047
$$

from which we obtain a Brauer atom of degree 3362391 . The latter is a lower bound for the degree of the last irreducible Brauer character. Inspecting its possible degrees given by the ten possible decomposition matrices, we see that the obtained lower bound is in fact maximal, that is we have $c=4$ and $\Phi_{3}=\Psi_{3}^{\prime}-\Phi_{7}$. Hence the atom is the character sought, and we give the decomposition matrix of B_{1} in Table 17.
3.4. The Automorphism Group in Characteristic 3. The characters of the automorphism group $G .2$ of G fall into seventeen 3 -blocks, five of which have positive defect: the principal block B_{0} of defect $d=6$, having $k=42$ ordinary and $l=22$ modular characters, two blocks of defect $d=2$, each having $k=9$ ordinary and $l=7$ modular characters, covering the block B_{1} of defect 2 of G, and two blocks of defect $d=1$, each having $k=3$ ordinary and $l=2$ modular characters, covering the block B_{2} of defect 1 of G.

As G is a normal subgroup of $G .2$, by Clifford's theorem the irreducible Brauer characters of $G .2$ come in two flavours: if an irreducible Brauer character of G is not
invariant under the action of the outer automorphism, then induction to $G .2$ yields an irreducible Brauer character; if the character is invariant, then it possesses two extensions to $G .2$, where one extension may be derived from the other by changing the signs of its values on the outer classes. As it turns out, we may distinguish both extensions by the sign of their value on the outer class $2 C$. Hence, denoting a Brauer character by its degree, we additionally affix a superscript + or - to identify the extension.

As each of the blocks B_{1} and B_{2} of G is covered by two blocks of the automorphism group $G .2$ of the same defect, restriction defines a Morita equivalence between such a block of $G .2$ and B_{1} respectively B_{2} of G. Therefore the decomposition matrix for either block of defect 2 is given in Table 17, and the decomposition matrix of either block of defect 1 is given in Table 9. We may therefore focus on the principal block B_{0} of $G .2$.

Owing to the abundance of pairs of characters conjugate under the outer automorphism, most Brauer characters of B_{0} are immediately obtained through induction. We must therefore only determine the extensions of the invariant Brauer characters.
¿From Section 3 it is immediate that the invariant Brauer characters 1, 760, and 3344 of G are liftable. Furthermore, we may deduce that the restriction of the ordinary character $9405^{ \pm}$has the constituents 266 and $9139^{ \pm}$. Therefore we only have to establish the extensions of the four Brauer characters 137236,147061 , 255037 , and 783696 of G. Of course, one extension determines the other, and therefore it suffices to just determine one member of every pair.

This is achieved by using condensation again. For the automorphism group, we choose the same setup as for the simple group, which allows us to use the computational infrastructure already in place. In other words, owing to our previous work in Section 3.2, we can again use the six elements of (1) in G plus one element α of the class $2 C$ of $G .2$, which is a member of a set of standard generators of G. 2 (see [29]). Let $\mathcal{D}_{i} \leq e_{i} F G e_{i}$ be the algebra generated by these elements, hence we have $\mathcal{C}_{i} \leq \mathcal{D}_{i}$. As our condensation subgroups are contained in G we have $V e_{i} \downarrow_{e_{i} F G e_{i}}=\left(V \downarrow_{G}\right) e_{i} \downarrow_{e_{i} F G e_{i}}$ for any $F[G .2]$-module V. Hence, the dimensions of condensed modules are clear from the onset.

Moreover, if a simple $F G$-module S is not invariant, that is there is a simple $F G$ module $T \not \approx S$ being the image of S under the outer automorphism, and $S \uparrow^{G .2}$ is simple, then we have $\left(\left(S \uparrow^{G .2}\right) e_{i} \downarrow_{\mathcal{D}_{i}}\right) \downarrow_{\mathcal{C}_{i}}=S e_{i} \downarrow_{\mathcal{C}_{i}} \oplus T e_{i} \downarrow_{\mathcal{C}_{i}}$, where $S e_{i} \downarrow_{\mathcal{C}_{i}} \neq T e_{i} \downarrow_{\mathcal{C}_{i}}$. Thus $\left(S \uparrow^{G .2}\right) e_{i} \downarrow_{\mathcal{D}_{i}}$ either is simple, of dimension twice the dimension of $S e_{i} \downarrow_{c_{i}}$, or has two non-isomorphic constituents extending $S e_{i} \downarrow_{\mathcal{C}_{i}}$ and $T e_{i} \downarrow_{\mathcal{C}_{i}}$, respectively. If S is invariant and it extends to $G .2$ as $S^{ \pm}$, then $\left(S^{ \pm} e_{i} \downarrow_{\mathcal{D}_{i}}\right) \downarrow_{\mathcal{C}_{i}}=S e_{i} \downarrow_{\mathcal{C}_{i}}$ implies that both $S^{ \pm} e_{i} \downarrow_{\mathcal{D}_{i}}$ are simple. Moreover, since the actions of α on $S^{ \pm}$differ just by sign, we conclude that the actions of $e_{i} \alpha e_{i}$ on $S^{ \pm} e_{i}$ also differ by sign only. Hence $e_{i} \alpha e_{i}$ acts by the zero map on $S^{+} e_{i}$ if and only if it does so on $S^{-} e_{i}$, and in this case we have $S^{+} e_{i} \downarrow_{\mathcal{D}_{i}} \cong S^{-} e_{i} \downarrow_{\mathcal{D}_{i}}$. Otherwise we have $S^{+} e_{i} \downarrow_{\mathcal{D}_{i}} \not \approx S^{-} e_{i} \downarrow_{\mathcal{D}_{i}}$, as by Schur's Lemma any isomorphism is scalar and hence commutes with the action of $e_{i} \alpha e_{i}$. Thus to decide which case occurs we only have to consider the action of $e_{i} \alpha e_{i}$ on either of $S^{ \pm} e_{i}$.

The modules considered are given in Table 18, all of whose restrictions to G have already been considered in Table 14, where in Table 18 we only give the composition factors lying in the principal block, since restriction to B_{0} of the condensation results

	K_{1}	K_{2}				$\begin{aligned} & \hline+\underset{\sim}{+} \\ & \underset{\sim}{2} \\ & \otimes \\ & + \\ & \underset{\infty}{+} \\ & \infty \end{aligned}$
1^{+}	$k 1_{1}^{\prime}$	$c 1_{1}^{\prime}$	1	.	4	5
1^{-}	$k 1_{2}^{\prime}$	$c 1_{2}^{\prime}$.	1	.	1
266	-	$c 6^{\prime}$	1	.	2	4
760^{+}	$k 1_{3}^{\prime}$	-	.	2	1	5
760^{-}	$k 1_{4}^{\prime}$	-	.	.	2	11
$3344{ }^{+}$	$k 9_{1}^{\prime}$	-	2	1	6	11
$3344{ }^{-}$	$k 9_{2}^{\prime}$	-	.	3		4
9139^{+}	$k 8_{1}^{\prime}$	$c 7_{1}^{\prime}$	2	.	5	8
9139^{-}	$k 8_{2}^{\prime}$	$c 7_{2}^{\prime}$.	1	2	5
17556	-	c32 ${ }^{\prime}$	1			4
24528	-	$c 16_{1}^{\prime}$.	.	2	10
63536	$k 52^{\prime}$	c 16_{2}^{\prime}	.	2	3	9
137236^{+}	$k 50_{1}^{\prime}$	$c 40{ }_{1}^{\prime}$.	.	2	4
137236^{-}	$k 50_{2}^{\prime}$	$c 40_{2}^{\prime}$.	1	.	
147061^{+}	k89'	c33'	.	.	1	2
147061^{-}			.	-	.	
255037^{+}	$k 173_{1}^{\prime}$	$c 89{ }_{1}^{\prime}$	1	.	3	5
255037^{-}	$k 173_{2}^{\prime}$	c89 ${ }_{2}^{\prime}$.	.	.	1
679404	$k 276{ }^{\prime}$	c192 ${ }^{\prime}$.	.	.	2
$783696{ }^{+}$.	.	
$783696{ }^{-}$	$k 322^{\prime}$	$c 272^{\prime}$.	.	.	1
993848			.			

Table 18. Condensation results for $p=3$ for HN. 2
is easily achieved. Thus the matching between the simple modules of the condensed algebras \mathcal{D}_{1} and \mathcal{D}_{2} can be derived from the matching obtained in Section 3.2. We moreover see that $\left(S \uparrow^{G .2}\right) e_{i} \downarrow_{\mathcal{D}_{i}}$ is simple for all non-invariant simple $F G$-modules occurring, and $S^{ \pm} e_{i} \downarrow_{\mathcal{D}_{i}}$ is simple for all invariant simple $F G$-modules occurring. Furthermore, we can conclude from the condensation results that $S^{+} e_{i} \downarrow_{\mathcal{D}_{i}}$ and $S^{-} e_{i} \downarrow_{\mathcal{D}_{i}}$ are non-isomorphic. The matching of a condensed module to a member of a pair of extensions follows from the characters of the considered modules and through the subsequent analysis of the columns of Table 18 as follows.

The representations needed to condense the modules of Table 18 are again obtained by restricting the 4371-dimensional representation of the Baby Monster group B to G.2:

$$
4371 \downarrow_{G .2}=1^{-}+266+760^{-}+3344^{-}
$$

from which we immediately obtain 760^{+}and 3344^{+}.

- To identify the condensed modules belonging to 760^{+}and 3344^{+}, we condense them individually to reveal that

$$
760^{+} e_{1} \mapsto k 1_{3}^{\prime}, 3344^{+} e_{1} \mapsto k 9_{1}^{\prime}
$$

to distinguish the composition factors found here from earlier ones notationally we add a dash.

- From the character of $760^{+} \otimes 760^{+}$it is clear that the extension 255037^{+}is a constituent: The restriction to B_{0} of $760^{+} \otimes 760^{+}$is the sum $\chi_{1}^{\prime}+\chi_{6}^{\prime}+\chi_{8}^{\prime}+\chi_{11}^{\prime}+\chi_{20}^{\prime}$. By the previous section and the above we know that χ_{20}^{\prime} has as its constituents 3344^{+}and extensions of 255037 , and 9139 . As χ_{20}^{\prime} takes the value 384 on the class $2 C$, and 3344^{+}and $9139^{ \pm}$take the values 36 and ± 51, respectively, the consituent of χ_{20}^{\prime} of degree 255037 also assumes a positive value on $2 C$, i.e. it is 255037^{+}.

Hence for the component in B_{0}, Table 18 leaves the two possibilities

$$
1^{+}+266+2 \times 3344^{+}+17556+2 \times 9139^{ \pm}+255037^{+}
$$

i.e., either 9139^{+}or 9139^{-}is a constituent. Assuming 9139^{-}is, it turns out that the character χ_{20}^{\prime} cannot be written as a linear combination of the known Brauer characters with non-negative integer coefficients. Hence, 9139^{+}is a constituent, from which we obtain 255037^{+}explicitly. Furthermore, we identify the condensed modules

$$
9139^{+} e_{1} \mapsto k 8_{1}^{\prime}, 255037^{+} e_{1} \mapsto k 173_{1}^{\prime} .
$$

- Each of the three modules $760^{+} \otimes 3344^{+}, 1_{4 . \mathrm{HS} .2}^{G .2}$ and $3344^{+} \otimes 3344^{+}$only introduces one new composition factor which is an extension of a simple $F G$-module. Hence we may easily deduce their corresponding Brauer characters 137236^{-}and 147061^{+}, and 783969^{-}, where

$$
137236^{-} e_{1} \mapsto k 50_{2}^{\prime}, 147061^{+} e_{1} \mapsto k 89^{\prime}, 783969^{-} e_{1} \mapsto k 322^{\prime}
$$

The decomposition matrix for the principal 3-block of $G .2$ is given in Table 19.

Table 19. The decomposition matrix of the principal 3-block B_{0} of HN. 2

References

1. Thomas Breuer, CTblLib - a GAP package, Version 1.1.3, http://www.gap-system.org/ Packages/ctbllib.html, 2004.
2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985, Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.
3. Karin Erdmann, Algebras and semidihedral defect groups. II, Proc. London Math. Soc. (3) 60 (1990), no. 1, 123-165.
4. The GAP Group, http://www.gap-system.org, GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008.
5. Anne Henke, Gerhard Hiss, and Jürgen Müller, The 7-modular decomposition matrices of the sporadic O'Nan group, J. London Math. Soc. (2) 60 (1999), no. 1, 58-70.
6. G. Hiss, C. Jansen, K. Lux, and R. A. Parker, Computational Modular Character theory, http://www.math.rwth-aachen.de/MOC/CoMoChaT.
7. G. Hiss and K. Lux, Brauer trees of sporadic groups, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1989.
8. C. Jansen, K. Lux, R. Parker, and R. Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press Oxford University Press, New York, 1995, Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications.
9. Shigeo Koshitani and Jürgen Müller, Broué's abelian defect group conjecture holds for the Harada-Norton sporadic simple group HN, J. Algebra 324 (2010), no. 3, 394-429. MR 2651342
10. P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910 (85h:20002)
11. Peter Landrock, The non-principal 2-blocks of sporadic simple groups, Comm. Algebra 6 (1978), no. 18, 1865-1891.
12. K. Lux, M. Neunhöffer, and F. Noeske, Condensation of homomorphism spaces, LMS J. Comput. Math., submitted for publication.
13. Klaus Lux, Jürgen Müller, and Michael Ringe, Peakword condensation and submodule lattices: an application of the MEAT-AXE, J. Symbolic Comput. 17 (1994), no. 6, 529-544.
14. Klaus Lux, Felix Noeske, and Alexander J. E. Ryba, The 5-modular characters of the sporadic simple Harada-Norton group HN and its automorphism group HN.2, J. Algebra 319 (2008), no. 1, 320-335.
15. Klaus Lux and Herbert Pahlings, Representations of groups, Cambridge Studies in Advanced Mathematics, vol. 124, Cambridge University Press, Cambridge, 2010, A computational approach. MR 2680716
16. Klaus Lux and Markus Wiegelmann, Condensing tensor product modules, The atlas of finite groups: ten years on (Birmingham, 1995), London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp. 174-190. MR MR1647421 (99i:20018)
17. , Determination of socle series using the condensation method, J. Symbolic Comput. 31 (2001), no. 1-2, 163-178, Computational algebra and number theory (Milwaukee, WI, 1996).
18. J. Müller, On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen, 2003.
19. Jürgen Müller, Max Neunhöffer, and Felix Noeske, orb - a GAP package, Version 3.7, http://www.gap-system.org/Packages/orb.html, 2011.
20. Felix Noeske, Tackling the generation problem in condensation, J. Algebra 309 (2007), no. 2, 711-722.
21., Matching simple modules of condensed algebras, LMS J. Comput. Math. 11 (2008), 213-222.
21. , Matching simple modules of condensation algebras, (in preparation).
22. S. P. Norton and R. A. Wilson, Maximal subgroups of the Harada-Norton group, J. Algebra 103 (1986), no. 1, 362-376.
23. Jørn Børling Olsson, On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), no. 2, 212-241. MR MR0376841 (51 \#13016)
24. R. A. Parker, The computer calculation of modular characters (the meat-axe), Computational group theory (Durham, 1982), Academic Press, London, 1984, pp. 267-274.
25. Michael Ringe, C-MeatAxe, version 2.4, http://www.math.rwth-aachen.de/homes/MTX/, 2009.
26. A. J. E. Ryba, Computer condensation of modular representations, J. Symbolic Comput. 9 (1990), no. 5-6, 591-600, Computational group theory, Part 1.
27. Jon G. Thackray, Modular representations of some finite groups, Ph.D. thesis, University of Cambridge, 1981.
28. R. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbott, ATLAS of Finite Group Rrepresentations, http://brauer.maths. qmul.ac.uk/Atlas/v3, 2006.
29. R. A. Wilson, R. A. Parker, S. Nickerson, J. Bray, and T. Breuer, AtlasRep - a GAP interface to the ATLAS of Finite Group Rrepresentations, Version 1.4.0, http://www.gapsystem.org/Packages/atlasrep.html, 2008.
30. R. A. Wilson, J. G. Thackray, R. A. Parker, F. Noeske, J. Müller, K. Lux, F. Lübeck, C. Jansen, G. Hiss, and T. Breuer, The modular Atlas project, http://www.math.rwthaachen.de/~MOC, 1998.
31. Robert A. Wilson, Standard generators for sporadic simple groups, J. Algebra 184 (1996), no. 2, 505-515.

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
E-mail address: G.H.: Gerhard.Hiss@math.rwth-aachen.de
E-mail address: J.M.: Juergen.Mueller@math.rwth-aachen.de
E-mail address: F.N.: Felix.Noeske@math.rwth-aachen.de
E-mail address: J.T.: jgt@pobox.com

