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Abstract. The 2-modular decomposition numbers of the faithful irreducible
ordinary characters of 3.McL are determined. The results are obtained by

using the computer algebra packages Moc and Meat-Axe, and by applying
condensation methods.

Introduction

The 2-modular Brauer characters of the simple group McL have been determined
by J. Thackray, see [11]. In the sequel we use the decomposition matrix for the
principal block as is given in section 3. The corresponding Brauer characters can
be found in [7] and in the library of the program system Gap, see [10], which also
contains the Brauer character tables of sporadic simple and related groups as far
as they are known. The ordinary character table of 3.McL can be found in [1] and
also in the library of the program system Gap, where the ordinary character tables
of all sporadic simple and related groups can be accessed.

There are four non-trivial 2-blocks of 3.McL consisting of faithful characters.
We follow the numbering made by the program system Gap. The third and fourth
block are of cyclic defect and are already discussed in [2]. The first and the second
block are of maximal defect and are complex conjugate to each other. Therefore,
it is sufficient to consider only the first block.

In the first section we apply character theoretic methods to find approximations
of the decomposition matrix of the first block. The results are written down in terms
of bases for the free abelian group of class functions generated by the projective
indecomposable characters lying in the first block. The underlying computations
have been made using the program system Moc, see [4]. Even though the proofs
have been found using a computer, due to the design of the system Moc, we are
able to give explicit proofs which can be checked by hand.

In the second section we give the proofs which could not be obtained by purely
character theoretic methods. Here we use the program system Meat-Axe, see [8].
Main tools in this section are fixed point condensation and condensation with prim-
itive idempotents. The latter is implicitly used to determine submodule structures.
As a reference see [9] and [6].
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Notation: A character is denoted by its degree, a lower case letter and, if it lies
in a non-trivial block, by a superscript indicating the block it belongs to according
to the numbering mentioned above. The principal block is abbreviated by pb. A
projective indecomposable character is denoted by an upper case Φ indexed by a
number. Most of the time we will be interested only in the component of a projective
character lying in the first block. We denote the projection of a character onto its
first block component by ε1.

Conjugacy classes and sums of roots of unity are denoted in the same way as
in [1]. Especially, a class of 3.McL is denoted by its image under the natural
homomorphism onto McL and by an additional superscript ranging from 1 to 3
if necessary. For example, the classes 1A1, 1A2 and 1A3 constitute the center of
3.McL.

1. The Moc-Part

1.1. The following set ψ1 of ordinary characters is a basis for the free abelian
group of class functions on the 2-regular classes generated by the irreducible Brauer
characters in the first block.

ψ1
1 := 126a1,

ψ1
2 := 126b1,

ψ1
3 := 19801,

ψ1
4 := 7921,

ψ1
5 := 51031,

ψ1
6 := 2376a1,

ψ1
7 := 2376b1,

ψ1
8 := 2520a1.

The irreducible ordinary characters in the first block decompose into ψ1 as follows.

ψ1
1 ψ1

2 ψ1
3 ψ1

4 ψ1
5 ψ1

6 ψ1
7 ψ1

8

126a1 1 . . . . . . .
126b1 . 1 . . . . . .
7921 . . . 1 . . . .

19801 . . 1 . . . . .
2376a1 . . . . . 1 . .
2376b1 . . . . . . 1 .
2520a1 . . . . . . . 1
2520b1 −2 −2 . 1 . 1 1 −1
27721 . . 1 1 . . . .
47521 . . 2 1 . . . .
51031 . . . . 1 . . .
78751 . . 1 1 1 . . .

8019a1 −1 −1 . 1 1 . 1 .
8019b1 −1 −1 . 1 1 1 . .

10395′1 −1 −1 . 1 1 1 1 .
10395a1 . . 1 1 1 . . 1
10395b1 −2 −2 1 2 1 1 1 −1
123751 −1 −1 1 1 1 1 1 .
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1.2. We obtain projective characters by tensoring defect zero characters and pro-
jective indecomposable characters lying in blocks of cyclic defect with ordinary
characters and irreducible Brauer characters already known. Let

Ω1 := ε1(7921 ⊗ 896a),

Ω2 := ε1(22pb ⊗ (6336a3 + 6336b3)),

Ω3 := ε1(22pb ⊗ 8064a),
Ω4 := ε1(126b1 ⊗ 896a).

Ω1 Ω2 Ω3 Ω4 Ω5

126a1 . . . . .
126b1 . . . . .
7921 2 2 . . 2

19801 2 . . . 1
2376a1 . . 1 1 1
2376b1 . . 1 1 1
2520a1 1 1 1 1 2
2520b1 1 1 1 1 2
27721 4 2 . . 3
47521 6 2 . . 4
51031 4 1 1 . 3
78751 8 3 1 . 6

8019a1 6 3 2 1 6
8019b1 6 3 2 1 6

10395′1 6 3 3 2 7
10395a1 9 4 2 1 8
10395b1 9 4 2 1 8
123751 8 3 3 2 8

Since all entries in the sum Ω1 + Ω2 + Ω3 + Ω4 are even, we obtain the ordinary
character Ω5 by dividing all the entries by two. Since Ω5 vanishes on 2-singular
classes, it is a generalized projective character which can be written as a nonnega-
tive rational linear combination in the projective indecomposable characters of the
first block. Since the scalar products with all ordinary and hence with all Brauer
characters of this block are integral, it is a projective character.

1.3. Now we are able to give a first basis Ψ1 for the free abelian group of class
functions generated by the projective indecomposable characters lying in the first
block.

Ψ1
1 := ε1(2376a1 ⊗ (3520a+ 3520b)),

Ψ1
2 := ε1(126b1 ⊗ 896b),

Ψ1
3 := ε1(2520b1 ⊗ 896b),

Ψ1
4 := ε1(126a1 ⊗ 896a),

Ψ1
5 := Ω5,

Ψ1
6 := Ω2,

Ψ1
7 := Ω3,

Ψ1
8 := Ω4.
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Ψ1
1 Ψ1

2 Ψ1
3 Ψ1

4 Ψ1
5 Ψ1

6 Ψ1
7 Ψ1

8

126a1 1 1 . . . . . .
126b1 1 . 1 1 . . . .
7921 21 . 1 . 2 2 . .

19801 38 . 5 . 1 . . .
2376a1 35 1 7 1 1 . 1 1
2376b1 36 1 7 1 1 . 1 1
2520a1 44 . 6 . 2 1 1 1
2520b1 44 . 7 . 2 1 1 1
27721 59 . 6 . 3 2 . .
47521 97 . 11 . 4 2 . .
51031 95 1 13 1 3 1 1 .
78751 154 1 19 1 6 3 1 .

8019a1 150 1 20 1 6 3 2 1
8019b1 149 1 20 1 6 3 2 1

10395′1 185 2 27 2 7 3 3 2
10395a1 198 1 25 1 8 4 2 1
10395b1 198 1 26 1 8 4 2 1
123751 223 2 32 2 8 3 3 2

This is indeed a basis, as the determinant of the following scalar product matrix
(ψ1,Ψ1) equals 1. 

1 1 . . . . . .
1 . 1 1 . . . .

38 . 5 . 1 . . .
21 . 1 . 2 2 . .
95 1 13 1 3 1 1 .
35 1 7 1 1 . 1 1
36 1 7 1 1 . 1 1
44 . 6 . 2 1 1 1


1.4. Now we start to analyze the given situation to obtain a better approximation
of the decomposition matrix. Let

Ω6 := ε1(2520a1 ⊗ 896a),
Ω7 := ε1(2376b1 ⊗ (3520a+ 3520b)).

Then Ω1, Ω6 and Ω7 decompose into Ψ1 as follows.

Ψ1
1 Ψ1

2 Ψ1
3 Ψ1

4 Ψ1
5 Ψ1

6 Ψ1
7 Ψ1

8

Ω1 . . . . 2 −1 −1 −1
Ω6 . 1 −1 1 10 −9 3 −1
Ω7 −1 2 . 2 76 −55 13 −22

1.5. Assume the ordinary character 126a1 were reducible. Using the scalar product
matrix given above, we see that there is only one possibility to decompose 126a1.
But one of the summands would have a negative scalar product with Ω7. So 126a1

is irreducible. Since the composition of the outer automorphism of 3.McL and
complex conjugation transforms the character 126a1 into 126b1, the latter is also
irreducible. If 19801 were reducible, one of the summands would have a negative
scalar product with Ω6 or Ω7. Hence 19801 is irreducible, too. Now we use the
decomposition of the ordinary character 2520b1 in the basis ψ1 given above to obtain
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the following new Brauer characters, since 126a1 and 126b1 cannot be constituents
of ψ1

4 = 7921.

2124a1 := 2376a1 − 126a1 − 126b1,
2124b1 := 2376b1 − 126a1 − 126b1.

We get the following scalar products ({2124a1, 2124b1},Ψ1).[
33 . 6 . 1 . 1 1
34 . 6 . 1 . 1 1

]
If 2124a1 or 2124b1 were reducible, one of the summands would have a negative
scalar product with Ω1, Ω6 or Ω7. Altogether, we have now determined five of the
eight irreducible Brauer characters in the first block.

1.6. The action of the Frobenius automorphism of a finite field of characteristic 2
on 2-modular Brauer characters is given by taking every complex root of unity to
its second power. We denote the composition of the Frobenius map and complex
conjugation by ℵ. It is easily seen that ℵ fixes both blocks of maximal defect.
The pairs of ordinary characters 2376a, b1, 2520a, b1, 8019a, b1 and 10395a, b1 are
interchanged by ℵ, the other ordinary characters in the first block are fixed.

1.7. As we have seen above, 2376a1 and 2376b1 have only the constituents 126a1

and 126b1 in common. Hence Ψ1
8 decomposes as a sum of two projective characters

which are conjugate under ℵ. Using character values on the 2-singular classes 14A1

and 30A1, we see that there are exactly two ways to decompose Ψ1
8 as such a sum,

let us say the a-branch and the b-branch.

Ψ1
8 = Φ6a + Φ7a = Φ6b + Φ7b.

The emerging projectives Φ6a,b and Φ7a,b are given as follows.

Ψ1
8 Φ6,a Φ7,a Φ6,b Φ7,b

126a1 . . . . .
126b1 . . . . .
7921 . . . . .

19801 . . . . .
2376a1 1 1 . 1 .
2376b1 1 . 1 . 1
2520a1 1 1 . . 1
2520b1 1 . 1 1 .
27721 . . . . .
47521 . . . . .
51031 . . . . .
78751 . . . . .

8019a1 1 . 1 . 1
8019b1 1 1 . 1 .

10395′1 2 1 1 1 1
10395a1 1 1 . . 1
10395b1 1 . 1 1 .
123751 2 1 1 1 1
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Using again the scalar product matrix (ψ1,Ψ1), we see that Ψ1
8 is a sum of at most

three projective indecomposable characters, hence the new projective characters
are indecomposable in either case.

1.8. If we use the argument on the constituents of 2376a1 and 2376b1 again, we
obtain the following new projective characters. Their decomposition into ordinary
characters is given in subsection 1.11.

Φ8 := Ψ1
7 −Ψ1

8,

Ω8 := Ψ1
5 −Ψ1

8.

Φ8 is indecomposable, as again a glance at the scalar product matrix (ψ1,Ψ1)
shows.

1.9. Let us now assume that the a-branch is correct. As Φ6,a and Φ7,a imply,
2124a1 is a modular constituent of 2520a1 and 2124b1 is one of 2520b1. Hence we
get the following new Brauer characters.

396a1a := 2520a1 − 2124a1,
396b1a := 2520b1 − 2124b1.

Note that the following relation holds on 2-regular classes.

7921 = 396a1a + 396b1a.

Hence 7921 has at least two different modular constituents. But up to now, we
have recognized five irreducible Brauer characters. None of them is a constituent
of 7921, as was remarked earlier. Since Φ8 is indecomposable, a further Brauer
character is contained in the ordinary character 51031. So there are exactly two
different irreducible Brauer characters φ1 and φ2 which are constituents of 7921.
Hence we have

396a1a = xaφ1 + yaφ2 and 396b1a = xbφ1 + ybφ2.

Since 396a1 and 396b1 are conjugate under ℵ, we have φℵ1 = φ2 and xa = yb,
xb = ya, hence

7921 = (xa + xb) · (φ1 + φ2).
But the row of the scalar product matrix corresponding to 7921 = ψ1

4 shows that
7921 contains at least one constituent with multiplicity 1. Therefore, 396a1 and
396b1 are irreducible.

1.10. Let Φ3 and Φ4 denote the projective indecomposable characters correspond-
ing to 396a1 and 396b1. As we will see later on, we obtain the same projective
indecomposable characters in case b, so we write Φ3,4 without a superscript. Φ3

and Φ4 are conjugate under ℵ and are summands of Ψ1
6. The projective indecom-

posable characters corresponding to 126a1, 126b1 and 19801 and Φ6,a, Φ7,a are not
summands of Ψ1

6. Since the scalar product of Ψ1
6 and 51031 equals 1, Ψ1

6 decomposes
as

Ψ1
6 = Φ3 + Φ4 + Φ8.

Hence we get Φ3 and Φ4 using character values on the 2-singular classes 14A1 and
30A1 as they are given in subsection 1.11.
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1.11. Since 7921 decomposes into irreducible Brauer characters as is given above,
we obtain the following projective character.

Ω9 := Ω8 − Φ3 − Φ4.

Altogether, the conclusions made above have led us to the following projective
characters.

Ψ1
5 Ψ1

6 Ψ1
7 Ψ1

8 Φ8 Φ3 Φ4 Ω8 Ω9

126a1 . . . . . . . . .
126b1 . . . . . . . . .
7921 2 2 . . . 1 1 2 .

19801 1 . . . . . . 1 1
2376a1 1 . 1 1 . . . . .
2376b1 1 . 1 1 . . . . .
2520a1 2 1 1 1 . 1 . 1 .
2520b1 2 1 1 1 . . 1 1 .
27721 3 2 . . . 1 1 3 1
47521 4 2 . . . 1 1 4 2
51031 3 1 1 . 1 . . 3 3
78751 6 3 1 . 1 1 1 6 4

8019a1 6 3 2 1 1 1 1 5 3
8019b1 6 3 2 1 1 1 1 5 3

10395′1 7 3 3 2 1 1 1 5 3
10395a1 8 4 2 1 1 2 1 7 4
10395b1 8 4 2 1 1 1 2 7 4
123751 8 3 3 2 1 1 1 6 4

1.12. Hence a second basis Ψ2 is given as follows.

Ψ2
1 := Ψ1

2,

Ψ2
2 := Ψ1

4,

Ψ2
3 := Φ3,

Ψ2
4 := Φ4,

Ψ2
5 := Ω9,

Ψ2
6 := Φ6,a,

Ψ2
7 := Φ7,a,

Ψ2
8 := Φ8.



8 GERHARD HISS, KLAUS LUX, AND JÜRGEN MÜLLER

Ψ2
1 Ψ2

2 Ψ2
3 Ψ2

4 Ψ2
5 Ψ2

6 Ψ2
7 Ψ2

8

126a1 1 . . . . . . .
126b1 . 1 . . . . . .
7921 . . 1 1 . . . .

19801 . . . . 1 . . .
2376a1 1 1 . . . 1 . .
2376b1 1 1 . . . . 1 .
2520a1 . . 1 . . 1 . .
2520b1 . . . 1 . . 1 .
27721 . . 1 1 1 . . .
47521 . . 1 1 2 . . .
51031 1 1 . . 3 . . 1
78751 1 1 1 1 4 . . 1

8019a1 1 1 1 1 3 . 1 1
8019b1 1 1 1 1 3 1 . 1

10395′1 2 2 1 1 3 1 1 1
10395a1 1 1 2 1 4 1 . 1
10395b1 1 1 1 2 4 . 1 1
123751 2 2 1 1 4 1 1 1

1.13. Let

Ω10 := ε1(2520b1 ⊗ 896b).

Ω10 decomposes into Ψ2 as follows.

Ψ2
1 Ψ2

2 Ψ2
3 Ψ2

4 Ψ2
5 Ψ2

6 Ψ2
7 Ψ2

8

Ω10 . 1 . 1 5 6 6 −3

Hence we obtain a new projective character Ω11 as

Ω11 := Ψ2
5 − Φ8,

and a third basis Ψ3 is given as follows.

Ψ3
1 := Ψ2

1,

Ψ3
2 := Ψ2

2,

Ψ3
3 := Φ3,

Ψ3
4 := Φ4,

Ψ3
5 := Ω11,

Ψ3
6 := Φ6,a,

Ψ3
7 := Φ7,a,

Ψ3
8 := Φ8.
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Ψ3
1 Ψ3

2 Ψ3
3 Ψ3

4 Ψ3
5 Ψ3

6 Ψ3
7 Ψ3

8

126a1 1 . . . . . . .
126b1 . 1 . . . . . .
7921 . . 1 1 . . . .

19801 . . . . 1 . . .
2376a1 1 1 . . . 1 . .
2376b1 1 1 . . . . 1 .
2520a1 . . 1 . . 1 . .
2520b1 . . . 1 . . 1 .
27721 . . 1 1 1 . . .
47521 . . 1 1 2 . . .
51031 1 1 . . 2 . . 1
78751 1 1 1 1 3 . . 1

8019a1 1 1 1 1 2 . 1 1
8019b1 1 1 1 1 2 1 . 1

10395′1 2 2 1 1 2 1 1 1
10395a1 1 1 2 1 3 1 . 1
10395b1 1 1 1 2 3 . 1 1
123751 2 2 1 1 3 1 1 1

1.14. If we assume the b-branch to be correct, we obtain the following Brauer
characters.

396a1b := 2520a1 − 2124b1,
396b1b := 2520b1 − 2124a1.

All conclusions made for the a-branch can analogously be made in this case, so here
the third basis is as follows.

Ψ3
1 Ψ3

2 Ψ3
3 Ψ3

4 Ψ3
5 Ψ3

6 Ψ3
7 Ψ3

8

126a1 1 . . . . . . .
126b1 . 1 . . . . . .
7921 . . 1 1 . . . .

19801 . . . . 1 . . .
2376a1 1 1 . . . 1 . .
2376b1 1 1 . . . . 1 .
2520a1 . . 1 . . . 1 .
2520b1 . . . 1 . 1 . .
27721 . . 1 1 1 . . .
47521 . . 1 1 2 . . .
51031 1 1 . . 2 . . 1
78751 1 1 1 1 3 . . 1

8019a1 1 1 1 1 2 . 1 1
8019b1 1 1 1 1 2 1 . 1

10395′1 2 2 1 1 2 1 1 1
10395a1 1 1 2 1 3 . 1 1
10395b1 1 1 1 2 3 1 . 1
123751 2 2 1 1 3 1 1 1

1.15. The remaining questions are, whether Ψ3
8 is contained in Ψ3

1 and Ψ3
2 and

whether and how often it is contained in Ψ3
5. This is obviously equivalent to deter-

mining the constituents of 51031, which is the aim of the next section.
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2. The Meat-Axe-Part

2.1. If F is an arbitrary field and H is a subgroup of a finite group G with order
|H| not divisible by the characteristic of F , let

e := |H|−1 ·
∑
h∈H

h

denote the corresponding idempotent in the group algebra FG. For an FG-module
V the eFGe-module V e is called the condensed module with respect to H. If
{a1, a2, . . . } is a set of generators for G, then the subalgebra of eFGe generated by
the condensed elements {ea1e, ea2e, . . . } is called the condensation algebra. It is not
necessarily equal to eFGe. A constituent of V e as a module for the condensation
algebra is called genuine, if it is also a constituent of V e as a module for eFGe.
Furthermore, for g ∈ G we have the following formula

TraceV e(ege) = |H|−1 ·
∑
h∈H

TraceV (gh).

Traces on an FG-module V can be computed using the corresponding Brauer char-
acter. Recall that the dimension of a condensed module can be calculated using
scalar products, provided the Brauer character of the given module is known, since
the condensed module is the set of vectors in V which are fixed by H.

2.2. First we construct transitive permutation representations of 3.McL on 275
and 66825 points. The representation on 66825 points is faithful and its submodule
structure will be used to determine the last missing irreducible Brauer character and
to compute traces on certain condensed elements to decide which of the branches
a or b is correct. The representation on 275 points is a representation of McL,
since the center acts trivially, hence we can identify an element of 3.McL with
its homomorphic image in McL. We need this representation to make use of the
program system Gap. Here we use a Schreier-Sims algorithm to examine certain
group elements with respect to conjugay, for instance.

2.3. We obtain the representations mentioned above using the presentation of
3.McL and McL given in [1] and a Todd-Coxeter coset enumeration. {cef, dcfd}
generates a subgroup U4(3) of index 275 in McL. L. Soicher has given a set of
elements which generate a subgroup 2 ·A8 of index 66825 in 3.McL, see [3]. Using
the Todd-Coxeter process again, we see that

A := abc and B := def

are generators for 3.McL and for McL. Now let

C := (AB)5B,

D := (AB)3B,

E := (AB)4B,

F := (AB)2B(AB)3B,

Z := (ABA)−7.

C is an element of the 6A class of McL. D defines the 15A class of McL to be the
class it lies in. E is an element of order 7 and F one of order 11. Z is a central
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element, of order three in 3.McL and trivial in McL. Thus the class 1A2 of 3.McL
is defined to be the class Z lies in.

2.4. The next task is to construct a suitable condensation subgroup. We define

A′ := (A(AB(ABB)2(AB)3B)−1BAB(ABB)2(AB)3B)2,

B′′ := (AB(ABB)2(AB)3B)−4((AB)3B)5(AB(ABB)2(AB)3B)4Z,

B′′′ := ((A′B′′)5B′′)−1(A′B′′)2B′′(A′B′′)5B′′,

B′ := B′′′
−1
A′B′′′.

Using the representation on 275 points, we see that {A′, B′} generates an extraspe-
cial group 31+2 in McL, that contains two elements of the 3A class and 24 elements
of the 3B class. Let e denote the idempotent defined by 31+2.

2.5. Now we examine the condensed module corresponding to the representation
of 3.McL on 66825 points. We have to do the computations over GF (4), since this
is the splitting field of 3.McL in characteristic 2. The permutation character is
given by

12·A8 ↑3.McL := χpb + χ1 + χ2,

where

χpb := 1 + 252 + 1750 + 5103 + 5544 + 9625,

χ1 := 27721 + 51031 + 6336a1 + 80641,

χ2 := 27722 + 51032 + 6336a2 + 80642.

Here χpb denotes the part of the permutation character that belongs to the principal
block, whereas χ1 and χ2 denote the parts that belong to blocks for which the
central element Z acts by scalar multiplication by the chosen primitive third root
of unity ω ∈ GF (4) and by ω2 respectively. Let

εpb := 1 + Z + Z2.

This is the centrally primitive idempotent in the group algebra of 〈Z〉 over GF (4)
which corresponds to the trivial representation of 〈Z〉. Hence the images of the
action of εpb and 1 − εpb on the permution module give rise to summands which
correspond to χpb and χ1 + χ2 respectively. Therefore we obtain two summands
U855 and U1662 of dimensions 855 and 1662 of the condensed module as a module
for the condensation algebra generated by {eAe, eBe} which correspond to χpb and
χ1 + χ2 respectively.

2.6. We consider U1662. Since eZe does not act trivially on U1662, it follows that
the chosen subgroup does not contain the center of 3.McL, hence {A′, B′} gen-
erates an extraspecial group 31+2 in 3.McL. We find the following direct sum
decomposition

U1662
∼= U1

295 ⊕ U1
232 ⊕ U1

304 ⊕ U2
295 ⊕ U2

232 ⊕ U2
304,

where the summands correspond to χ1 and χ2 as is indicated by the superscripts.
Again the summands are indexed by their dimensions. Since U1,2

232 and U1,2
304 are ir-

reducible, whereas U1,2
295 are not, the former ones belong to the ordinary characters

of degrees 6336 and 8064 which are in blocks of defect 0 or 1, whereas the latter
ones belong to the blocks of maximal defect we are interested in. Now it follows
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by considering scalar products and the dimensions of the condensed modules corre-
sponding to the character of degrees 6336 and 8064 that 31+2 contains two elements
of the 3A1 class and 24 elements of the 3B class of 3.McL.

2.7. U1
295 has the following constituents as a module for the condensation algebra
16a,
16b,
74a with multiplicity 2,
115,

and the following socle series

74a, 16a⊕ 16b⊕ 115a, 74a.

According to a theorem of Zassenhaus, see [5], Theorem 17.3., U1
295 has a genuine

submodule of dimension 106 that corresponds to the ordinary character 27721, so
the unique submodule of U1

295 of this dimension is genuine. Analogously, using
the ordinary character 51031, the unique submodule of U1

295 of dimension 189 is
genuine. Hence their intersection, which equals the socle of U1

295, is also genuine.
Therefore the ordinary characters 27721 and 51031 have a constituent in common,
this must be the irreducible Brauer character 19801. Furthermore, since 51031 is
the sum of exactly two irreducible Brauer characters, 51031 decomposes as

51031 = 19801 + 31231.

Hence we obtain projective indecomposable characters as follows.

Φ1 := Ψ3
1 − Φ8,

Φ2 := Ψ3
2 − Φ8,

Φ5 := Ψ3
5 − Φ8.

The resulting decomposition matrix for the first block is given at the end of this
section.

2.8. Our last aim is to show that the a-branch is correct. If we consider only the
ordinary characters of McL, the classes 7A, 7B and 15A, 15B may be exchanged
arbitrarily, this amounts to a renumbering of the ordinary characters. But since we
assume the irreducible Brauer characters of McL to be as given in section 3, we
have already made a choice concerning classes of elements of orders 7 and 15. If we
exchange 7A and 7B, we have also to exchange 15A and 15B, if we do not want to
alter the set of irreducible Brauer characters. So our task now is to determine the
class of McL the element E lies in.

2.9. We consider U855. This module corresponds to a representation of McL,
since Z acts trivially on it. It has the following constituents as a module for the
condensation algebra.

1a with multiplicity 9,
4a with multiplicity 6,
14a with multiplicity 5,
28a with multiplicity 4,
28b with multiplicity 4,
72a,
72b,
128a with multiplicity 3.
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Since we already know the irreducible Brauer characters of McL, all of these con-
stituents are readily recognized to be genuine. Using scalar products, we see that
the constituents of dimension 72 correspond to the irreducible McL-modules of
dimension 2124. Furthermore we have

Trace72a(eCe) = Trace72b(eCe) = 1.

2.10. Using the representation of McL on 275 points, we find the coset C · 31+2

to contain the following elements.
4 elements of order 5,
1 element of order 6,
5 elements of order 7,
1 element of order 8,
2 elements of order 9,
3 elements of order 10,
7 elements of order 11,
1 element of order 12,
2 elements of order 14,
1 element of order 15.

The conjugacy class of the element of order 6 is determined by counting its fixed
points, it is in the 6A class. The element of order 15 is in the 15A class, since it is
conjugate to D. The elements of order 7 or 14 have the following class distribution

7A, 7A, 7A, 7B, 7B, 14B, 14B or 7A, 7A, 7B, 7B, 7B, 14A, 14A.

The first case is true if and only if E lies in the 7B class. Now we compute
Trace72a(eCe) and Trace72b(eCe) for both class distributions, using the trace for-
mula given in section 2.1 and that the sum of roots of unity

b7 reduces to 0,
b7∗∗ reduces to 1,
b15 reduces to 1,
b15∗∗ reduces to 0,
b11 + b11∗∗ reduces to 1

modulo 2. In the first case, we find

Trace72a(eCe) = Trace72b(eCe) = 1,

in the second one
Trace72a(eCe) = Trace72b(eCe) = 0.

So the first case is correct, and E is in the 7B class.

2.11. Next we consider the constituents 16a and 16b of U1
295, which correspond to

the irreducible Brauer characters of degree 396 lying in the first block as is again
seen by taking scalar products. Examining the traces of eFe on these consituents
we get ω and ω2.

2.12. The coset F ·31+2 is found to contain the following elements when examined
using the representation on 275 points.

1 element of the 6B class,
3 elements of order 7 with class distribution 7A, 7A, 7B,
2 elements of order 8,
4 elements of order 11,



14 GERHARD HISS, KLAUS LUX, AND JÜRGEN MÜLLER

7 elements of order 12,
4 elements of order 14 with class distribution 14A, 14B, 14B, 14B,
1 element of the 15A class,
5 elements of order 30 with class distribution 30A, 30B, 30B, 30B, 30B.

The class of the element of order 6 is determined by counting fixed points, the
classes of the elements of order 7 or 14 are determined by comparing these elements
with the element E which is now known to be in the 7B class, and the element
D is used to determine the classes of the elements of order 15 or 30. The element
distribution of the coset F · 31+2 in the representation on 66825 points is the same
one, provided the classes cited above are substituted by their preimages under the
natural homomorphism. It is not necessary to know the exact class distribution
on the elements of order 6, 8, 11, 12, 24 or 33, since we are only interested in
traces on the constituents of dimension 16 and the Brauer characters of degree 396
are constant on the relevant classes. Multiplying by Z gives the following class
distribution on the elements of order 7, 14, 21 or 42.

7A2, 7A3, 7B1, 14A1, 14B2, 14B3, 14B3.

2.13. Now we have to determine the classes of elements of order 15 and 30 in the
coset considered above. Let

Y0 := A′
2
B′A′,

Y1 := (FB′A′)10,

Y2 := (FA′B′2A′B′)10,

Y3 := (FB′A′B′2)10,

Y4 := (FB′2A′)10,

Y5 := (FA′2B′2A′B′)10,

Y6 := (FB′A′2)5,

where Y1, . . . , Y5 are the tenth powers of the five elements of order 30 and and Y6

the fifth power of the element of order 15 in the coset F · 31+2, and Y0 is one of
the elements of the 3A1 class in the subgroup 31+2. Using the uniquely determined
tenth and fifth powermaps of 3.McL, we see that Y1, . . . , Y5 are elements lying in
the 3A1,2,3 classes. We have the following class multiplication coefficients, which
have been computed using a Dixon-Schneider algorithm and the ordinary character
table of 3.McL.

4A1 10A1 10A2 10A3 5A2 5A3 5B2 56B3

3A1, 3A1 4 5 . . . . . .
3A1, 3A2 . . 5 . . . 10 .
3A1, 3A3 . . . 5 . . . 10
3A2, 3A2 . . . 5 . . . 10
3A2, 3A3 4 5 . . . . . .
3A2, 3A3 . . 5 . . . 10 .

Since Y0Y1, Y1Y2 and Y2Y4 have orders 10, 10 and 4 respectively and Y0 is in the
3A1 class, it follows that the same is true for Y1, Y2 and Y4. Since Y1Y5 and Y1Y5Z

2

have orders 30 and 10 respectively, Y5 lies in the 3A2 class. Since Y3Y5 has order
10, Y3 is in the 3A3 class. Finally, since Y1Y6 and Y1Y6Z have orders 15 and 5
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respectively, Y6 lies in the 3A3 class. Using powermaps again, we obtain the class
distribution of the elements of order 15 and 30 in the coset F · 31+2 as

15A2, 30A1, 30B1, 30B1, 30B2, 30B3.

2.14. Now we are able to compute the traces on the condensed modules that cor-
respond to the irreducible Brauer characters of degree 396. The needed reductions
of certain sums of roots of unity modulo 2 have been given in section 2.10. For the
a-branch we indeed obtain ω and ω2, but for the b-branch we get 0 and 1. So the
a-branch is correct.

2.15. Finally, we can write down the decomposition matrix for the first block.

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

126a1 1 . . . . . . .
126b1 . 1 . . . . . .
7921 . . 1 1 . . . .

19801 . . . . 1 . . .
2376a1 1 1 . . . 1 . .
2376b1 1 1 . . . . 1 .
2520a1 . . 1 . . 1 . .
2520b1 . . . 1 . . 1 .
27721 . . 1 1 1 . . .
47521 . . 1 1 2 . . .
51031 . . . . 1 . . 1
78751 . . 1 1 2 . . 1

8019a1 . . 1 1 1 . 1 1
8019b1 . . 1 1 1 1 . 1

10395′1 1 1 1 1 1 1 1 1
10395a1 . . 2 1 2 1 . 1
10395b1 . . 1 2 2 . 1 1
123751 1 1 1 1 2 1 1 1

The columns correspond to the following list of irreducible Brauer characters

126a1, 126b1, 396a1, 396b1, 19801, 2124a1, 2124b1, 31231.
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3. Appendix

The decomposition matrix of the principal block of 3.McL as we use it in the
previous text is as follows.

1pb 1 . . . . . . .
22pb . 1 . . . . . .

231pb 1 . 1 . . . . .
252pb . 1 1 . . . . .
770pb . 1 . 1 . . . .

770∗pb . 1 . . 1 . . .
1750pb 2 1 1 1 1 . . .
4500pb . 1 1 . . 1 1 .
4752pb . 2 2 . . 1 1 .
5103pb 1 1 . 1 1 . . 1
5544pb 4 . 2 1 1 . . 1
8019pb 1 3 . 1 2 . 1 1

8019∗pb 1 3 . 2 1 1 . 1
8250pb 2 3 1 1 2 . 1 1

8250∗pb 2 3 1 2 1 1 . 1
9625pb 1 3 1 1 1 1 1 1

10395pb 1 4 1 2 1 1 1 1
10395∗pb 1 4 1 1 2 1 1 1

The columns correspond to the following list of irreducible Brauer characters.

1, 22, 230, 748, 748∗, 2124, 2124∗, 3584.

This decomposition matrix has been determined by J. Thackray, see [11]. The
matrix used here is in accordance with the irreducible Brauer characters given in
[7]. The decomposition matrix given in [11] is obtained by interchanging the rows
corresponding to 8019pb, 8019∗pb and 8250pb, 8250∗pb and by interchanging the
columns corresponding to 2124pb and 2124∗pb. This is equivalent to a renumbering
of classes of elements of order 7 and 15.
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