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Abstract

Let LieF (n) be the Lie module of the symmetric group Sn over a �eld F of characteristic

p > 0, that is, LieF (n) is the left ideal of FSn generated by the Dynkin�Specht�Wever

element ωn. We study the problem of parametrizing non-projective indecomposable sum-

mands of LieF (n), via describing their vertices and sources. Our main result shows that

this can be reduced to the case when n is a power of p. When n = 9 and p = 3, and when

n = 8 and p = 2, we present a precise answer. This suggests a possible parametrization

for arbitrary prime powers.
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1 Introduction

The Lie module of the symmetric group Sn occurs in various contexts within algebra and
topology, where the name-giving property is its close relation to the free Lie algebra; for
more details, see for example the introduction in [14]. In the present paper, letting F be an
algebraically closed �eld of characteristic p > 0, we realize the Lie module LieF (n) of Sn, for
n > 2, as the submodule FSnωn of the regular FSn-module, where

ωn := (1− c2)(1− c3) · · · (1− cn) ∈ FSn

is the Dynkin�Specht�Wever element of FSn, where in turn ck ∈ Sn is the backward cycle
(k, k − 1, . . . , 2, 1). Moreover, dim(LieF (n)) = (n− 1)!; see A.5.

1.1. It is well known that ω2
n = nωn. Hence if p does not divide n, then ωn/n ∈ FSn is

an idempotent, so that LieF (n) is then a direct summand of the regular FSn-module and is,
thus, projective. In the present paper we are interested in the case when p divides n, which
we assume from now on in this section. Then LieF (n) cannot be projective; for otherwise
dim(LieF (n)) = (n− 1)! would have to be divisible by the p-part of n!, which is not the case.
Therefore, in this case LieF (n) admits a decomposition

LieF (n) = Liepr
F (n)⊕ Liepf

F (n),

where Liepr
F (n) is a projective FSn-module and where Liepf

F (n) 6= {0} is a projective-free
FSn-module.

The asymptotic behaviour of the quotient dim(Liepr
F (n))/ dim(LieF (n)) has recently been

studied by Erdmann�Tan [14], and by Bryant�Lim�Tan [5]. By [5, Thm. 1.2], one has

dim(Liepr
F (n))

dim(LieF (n))
−→ 1,

as n −→ ∞ in N r {pk | k > 0}. Moreover, it is conjectured in [5] that this should remain
true when allowing n to vary over all natural numbers. This suggests that Liepf

F (n) should be
small, compared with the entire Lie module LieF (n).
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Moreover, by work of Erdmann�Tan [15], we also know that the projective-free part
Liepf

F (n) of LieF (n) always belongs to the principal block of FSn, and Bryant�Erdmann [4]
have studied indecomposable direct sum decompositions of the, necessarily projective, part of
LieF (n) not contained in the principal block of FSn. This leaves open, next to Liepf

F (n), only
the direct sum decompositions of the component of Liepr

F (n) belonging to the principal block

of FSn. We denote the principal block component of LieF (n) by Liepbl
F (n).

1.2. One key ingredient of our approach is a decomposition theorem, expressing LieF (n) as
a direct sum of pieces related to Lie modules LieF (pd), for various d such that pd divides
n. This is obtained by translating the Bryant�Schocker decomposition theorem [6] for Lie
powers to Lie modules, using work of Lim�Tan [24]. This paves the way to reduce questions
on Lie modules to the case when n is a power of p, and puts the Lie modules LieF (pd) into
the focus of study. In particular, one is tempted to ask whether there is a neat description of
the indecomposable direct summands of LieF (n) in terms of those of LieF (pd), where d varies
as indicated above. This has been fully accomplished for the case where p divides n but p2

does not, with a di�erent line of reasoning, by Erdmann�Schocker [13], while the general case
remains a mystery and is subject to further investigations.

Very little information concerning the decomposition of the principal block component of
LieF (pd) is available in the literature, and the projective-free part Liepf

F (pd) is very poorly
understood, even for very small exponents d: to our knowledge, the only cases dealt with
systematically are the modules Liepf

F (p), that is, the case d = 1, by Erdmann�Schocker [13];

and, apart from the easy case LieF (4) = Liepf
F (4), there are just partial results for LieF (8), by

Selick�Wu [33]. The aim of this paper now is to investigate indecomposable direct summands
of LieF (pd), for a few further small values of p and d.

The major obstacle here is that, due to the exponential growth of the dimension of Lie
modules in terms of n, these modules quickly become very large. Hence, to proceed further
in this direction, we apply computational techniques. More precisely, by this approach we are
now able to give a complete description of the Lie modules LieF (8) of dimension 5040, and
LieF (9) of dimension 40320.

Actually, in both cases it turns out that the projective-free part of the Lie module is
already indecomposable, where Liepf

F (8) has dimension 816, and Liepf
F (9) has dimension 1683.

In view of these results, and those on Liepf
F (4) and Liepf

F (p) mentioned above, the question

arises whether Liepf
F (pd) is always indecomposable.

1.3. To analyze the projective-free part of LieF (n), we are, in particular, interested in the
Green vertices and sources of the indecomposable direct summands of Liepf

F (n). Using the
reduction result mentioned above, to some extent we are able to reduce this problem for
arbitrary n to the case where n is a p-power.

Moreover, we are able to compute vertices and sources of Liepf
F (8) and Liepf

F (9). It turns out
that both modules are endo-p-permutation modules, in the sense of Urfer [36], their vertices
are regular elementary abelian subgroups of S8 and S9, respectively, and their sources are
endo-permutation modules, in the sense of Dade [10], whose class in the Dade group we are
able to determine. It is surprising to us to see the class of endo-permutation modules appear
in this context.

Hence, in view of these results, and those concerning Liepf
F (4) and Liepf

F (p), one may wonder

whether Liepf
F (pd), assumed to be indecomposable, always is an endo-p-permutation module

having regular elementary abelian vertices and endo-permutation sources, and, if so, what the
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class of a source in the Dade group looks like. If this holds true, then, by our reduction results,
any indecomposable direct summand of any Lie module will have vertices and sources sharing
the same properties.

1.4. This paper is organized as follows: in Section 2 we provide the necessary prerequisites;
in particular, we recall the notions of Green vertices and sources, endo-permutation and endo-
p-permutation modules, and the Dade group.

In Section 3 we present a reduction, eventually showing that vertices and sources of inde-
composable direct summands of Lie modules in general can be described in terms of the results
in the p-power case. In order to do so, in Theorem 3.4 we provide a description of vertices and
sources of indecomposable direct summands of modules for wreath products, based on results
by Külshammer [23]. In Theorem 3.5 we present the decomposition theorem for Lie modules
mentioned above, and in Theorem 3.7 these are combined to prove the reduction result.

In Section 4 we collect the explicit computational results we have obtained for speci�c
examples; in particular, we revisit LieF (p) and LieF (4). We also discuss the major examples
LieF (8) and LieF (9), whose indecomposable direct sum decomposition we determine, together
with vertices and sources of the non-projective indecomposable direct summands occurring.
We then apply Theorem 3.7 to our computational data to derive Corollaries 4.7 and 4.8.

In order to make this paper su�ciently self-contained, in Appendix A we collect some
properties of Lie modules, some variations on the construction, as well as Lie powers and their
relation to Lie modules via the Schur functor. Many of these observations are certainly well
known to the experts, but explicit references are not too easy to �nd.

Finally, Appendix B is devoted to presenting some details of the computational ideas and
tools we have been using to deduce our results in Section 4.

Acknowledgement: The second author's research has been supported through a Marie Curie
Career Integration Grant (PCIG10-GA-2011-303774). The second and fourth authors have
been supported by the DFG Priority Programme `Representation Theory' (grant # DA1115/3-
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(grant # MU1824/3-1). The �rst and third authors have been supported by EPSRC Standard
Research Grant # EP/G025487/1.

We should like to thank the referee for his or her careful reading of an earlier version of
this article.

2 Prerequisites

2.1. Generalities. (a) Throughout this paper we assume that F is an algebraically closed
�eld of characteristic p > 0. Whenever G is a �nite group, an FG-module is understood to be
a left FG-module of �nite F -dimension, unless stated otherwise. IfM and N are FG-modules
such that N is isomorphic to a direct summand of M then we write N |M .

Whenever G is a �nite group, H is a normal subgroup of G, andM is an F [G/H]-module,
we denote by InfGG/H(M) the FG-module obtained from M via in�ation. More generally, by
abuse of notation, given a �xed epimorphism of groups G � K and an FK-module M , we
denote the FG-module obtained via in�ation with respect to this epimorphism by InfGK(M)
as well.
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(b) By Sn we denote the symmetric group of degree n > 1. We view permutations in
Sn as maps, applied to the left, and then the product is composition of maps. So they are
multiplied from right to left; for instance, we have (1, 2)(2, 3) = (1, 2, 3).

We assume the reader to be familiar with the basic notions of the representation theory of
the symmetric group. For detailed background information, we refer to [20, 21]. The Specht
modules Sλ of the group algebra FSn will, as usual, be labelled by the partitions λ of n, and
the simple FSn-modules Dλ by the p-regular partitions of n. Furthermore, we denote by P λ

a projective cover of Dλ.

(c) Whenever G is a �nite group with subgroups H and K, we write H 6G K if H is
G-conjugate to a subgroup of K, and we write H =G K if H is G-conjugate to K.

Next we recall the notions of vertices and sources of indecomposable modules over group
algebras, and we summarize some basic properties of endo-permutation modules over �nite
p-groups. The latter class of modules has been introduced by Dade [10], as generalizations of
permutation modules. They have proved to play an important role in the modular representa-
tion theory of �nite groups, and, as we shall see in subsequent sections, also appear naturally
in the context of Lie modules. For a detailed account on the theory of vertices and sources
we refer the reader to [30, Chap. 4.3]. Background information concerning endo-permutation
modules can be found in [10, 11] and in [34, �28].

2.2. Vertices and sources. (a) Let G be a �nite group, and let M be an indecomposable
FG-module. By Green's Theorem [17], we can assign toM a G-conjugacy class of p-subgroups
of G, the vertices of M . A vertex Q of M is characterized by the property that Q is minimal
such that M is relatively Q-projective, that is, M is isomorphic to a direct summand of
the induced module IndGQ(N), for some indecomposable FQ-module N . In particular, M is
projective if and only if Q = {1}.

Given a vertex Q of M , an indecomposable FQ-module L such that M is isomorphic to a
direct summand of IndGQ(L) is called a Q-source of M , and is unique up to isomorphism and
conjugation with elements in NG(Q). Moreover, Q is also a vertex of L.

(b) Let B be the block of FG containing M . If Q is a vertex of M then there are a
defect group R of B and a Sylow p-subgroup P of G such that Q 6 R 6 P . Moreover, as a
consequence of Green's Indecomposability Theorem [17], |P : Q| divides dim(M).

(c) Suppose that H 6 G is any subgroup of G and that N is an indecomposable direct
summand of the restriction ResGH(M) with vertex R and R-source L′. Then there are a vertex
Q of M and a Q-source L of M such that R 6 Q and L′ | ResQR(L). This is seen as follows:

Let Q be any vertex of M , and let L be any Q-source of M . Then we have L′ | ResHR (N) |
ResGR(M) and M | IndGQ(L), thus L′ | ResGR(IndGQ(L)). Now, by Mackey's Theorem and the

fact that L′ has vertex R, this implies L′ | Res
gQ
R (gL), for some g ∈ G such that R 6 gQ. But

gQ is also a vertex of M , and gL is a gQ-source of M , whence the claim.
In particular, ifH 6 G is such thatM is relativelyH-projective, thenM | IndGH(ResGH(M))

implies that there is an indecomposable direct summand of ResGH(M) sharing a vertex and a
source with M .

(d) Suppose, conversely, that H > G is a �nite overgroup of G and that N is an indecom-
posable direct summand of IndHG (M). Then, given a vertex Q of M and a Q-source L of M ,
there is a vertex P of N such that P 6 Q, and there is some P -source of N that is isomorphic
to a direct summand of ResQP (L). This is seen as follows:
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Let P be any vertex of N , and let L′ be any P -source of N . Then, by Mackey's Theorem

again, we get L′ | Res
hQ
P (hL), for some h ∈ H such that P 6 hQ. In other words, we have

h−1
L′ | ResQ

h−1P
(L), where h

−1
P is also a vertex of N , and h−1

L′ is a h
−1
P -source of N , whence

the claim. (Note that we cannot conclude that h
−1
L′ is an arbitrary h−1

P -source of N , since
the conjugating element h might depend on the choice of L′.)

In particular, since M | ResHG (IndHG (M)), there is some indecomposable direct summand
of IndHG (M) sharing a vertex and a source with M .

2.3. Endo-permutation modules. An FG-module M , where G is a �nite group, is called
an endo-permutation module if its F -endomorphism ring EndF (M) ∼= M⊗M∗ is a permutation
FG-module. We list some properties of endo-permutation modules that we shall need later in
this paper:

(a) Permutation modules are endo-permutation modules. The class of endo-permutation
modules over �nite p-groups is closed under taking F -linear duals, direct summands, tensor
products, restriction to subgroups, in�ation from factor groups, and taking Heller translates Ω
and Ω−1, but it is neither closed under taking direct sums, nor under induction to �nite over-
groups. In particular, any indecomposable endo-permutation module has endo-permutation
sources.

(b) The problem of classifying the indecomposable endo-permutation modules for �nite
p-groups P has been worked on by various people. The �nal classi�cation result was obtained
by Bouc [1], but when P is abelian, the following classi�cation result is already due to Dade
[11]. We shall describe this result below; this is the version we shall need.

Note that it is indeed su�cient to classify the indecomposable endo-permutation FP -
modules with vertex P , since if M is an indecomposable endo-permutation FP -module with
vertex Q < P then any Q-source S of M is an endo-permutation FQ-module with vertex Q,
and by Green's Indecomposability Theorem [17] we have M ∼= IndPQ(S).

2.4 Theorem ([11, Thm. 12.5]). Let P be an abelian p-group, and letM be an indecomposable

endo-permutation FP -module with vertex P . Then M is, up to isomorphism, the unique

indecomposable direct summand of⊗
|P :Q|>3

InfPP/Q(ΩnQ(FP/Q))

having vertex P . Here nQ ∈ Z, for Q < P , is uniquely determined by M if P/Q is non-cyclic;

otherwise nQ is uniquely determined modulo 2.

In other words, the isomorphism types of indecomposable endo-permutation FP -modules
with abelian vertex P are in bijection with the elements of the Dade group

D(P ) ∼=

 ∑
|P :Q|>3, P/Q non-cyclic

Z

⊕
 ∑
|P :Q|>3, P/Q cyclic

Z/2Z

 .

For a precise de�nition of the Dade group of an arbitrary p-group P and further details, see
[10] and [34, �29]. Whenever S is an indecomposable endo-permutation FP -module with
vertex P , its image in D(P ) will be denoted by [S]. If S and S′ are indecomposable endo-
permutation FP -modules with vertex P then their tensor product S ⊗ S′ has a unique (up
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to isomorphism) indecomposable direct summand T with vertex P , and the multiplication in
D(P ) is then given by [S] · [S′] := [T ].

2.5. Endo-p-permutation modules. According to Urfer [36, 35], one can weaken the
notion of endo-permutation modules as follows: an FG-module M , where G is a �nite group,
is called an endo-p-permutation module, if its F -endomorphism ring EndF (M) ∼= M ⊗M∗ is a
p-permutation FG-module, that is, all its indecomposable direct summands are trivial-source
modules.

(a) Again, one has the following standard properties of endo-p-permutation modules: endo-
permutation modules are endo-p-permutation modules. The class of endo-p-permutation mod-
ules is closed under taking F -linear duals, Heller translates, direct summands, tensor products,
restriction to subgroups, and in�ation from factor groups, but it is neither closed under tak-
ing direct sums, nor under induction to �nite overgroups. Note that for �nite p-groups the
classes of endo-p-permutation modules and of endo-permutation modules coincide, thus any
indecomposable endo-p-permutation module has endo-permutation sources.

(b) A characterization of indecomposable endo-p-permutation module in terms of vertices
and sources is given in [36, Thm. 1.5]. For the cases of interest in the present paper it can be
rephrased as follows:

Let P 6 G be a p-group. As before, for any indecomposable endo-permutation FP -module
S with vertex P let [S] ∈ D(P ) be the associated element of the Dade group. Then [S] ∈ D(P )
is called G-stable if

ResPP∩gP ([S]) = Res
gP
P∩gP ([gS]) ∈ D(P ∩ gP ) , for all g ∈ G .

Then, by [36, Thm. 1.5], an indecomposable FG-module with vertex P and P -source S is
an endo-p-permutation module if and only if S is an endo-permutation module such that [S]
is G-stable.

(c) As in part (b), let P 6 G be a p-group. In good situations the G-stable elements of
D(P ) are described by a Burnside-type fusion argument as follows:

Suppose NG(P ) controls fusion in P , that is, whenever Q 6 P and g ∈ G are such that
gQ 6 P , there are some h ∈ NG(P ) and z ∈ CG(Q) such that g = hz. Then, by [36, Lemma
1.8, Prop. 1.9], an element [S] ∈ D(P ) is G-stable if and only if it is �xed by the conjugation
action of NG(P ) on D(P ). (Note that we do not require an additional saturation condition
here, as is done in [36]: an inspection of the proofs of [36, Lemma 1.8, Prop. 1.9] shows that
they are valid under the assumptions made here.)

Moreover, if P is abelian then an element [S] ∈ D(P ) is an NG(P )-�xed point if and only if
the associated function Q −→ nQ is constant on the NG(P )-orbits on {Q < P | |P : Q| > 3}.

3 A Reduction Theorem

The aim of this section is to establish Theorem 3.7, which will allow for a partial reduction of
the question concerning vertices and sources of indecomposable direct summands of Liepf

F (n)
to the case where n is a p-power. The key ingredients will be Theorem 3.5, where we translate
properties of Lie powers into the language of Lie modules, and Theorem 3.4 on vertices of
indecomposable modules of wreath products. Therefore, we start out by collecting a number
of general facts on wreath products and their representations, which we shall then apply in
the context of Lie modules.
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3.1. Wreath products and their modules. (a) Let G be a �nite group, and consider the
wreath product

G oSn := {(g1, . . . , gn;σ) | g1, . . . , gn ∈ G, σ ∈ Sn}.

Recall that the multiplication in G oSn is given by

(g1, . . . , gn;σ)(h1, . . . , hn;π) = (g1hσ−1(1), . . . , gnhσ−1(n);σπ) , (1)

for g1, . . . , gn, h1, . . . , hn ∈ G and σ, π ∈ Sn. Hence we have the natural epimorphism

: G oSn −→ Sn, (g1, . . . , gn;σ) 7−→ σ .

We denote by Gn the base group of G oSn, that is,

Gn = {(g1, . . . , gn; 1) | g1, . . . , gn ∈ G} P G oSn.

Moreover, letting σ] := (1, . . . , 1;σ) ∈ G oSn, for σ ∈ Sn, we get an isomorphism

S]
n := {σ] | σ ∈ Sn} ∼= Sn;

note that the map (−)] : Sn −→ G oSn is a section for the natural epimorphism : G oSn −→
Sn. More generally, if H 6 G and U 6 Sn then we further set U ] := {σ] | σ ∈ U} 6 S]

n, as
well as Hn := {(g1, . . . , gn; 1) | g1, . . . , gn ∈ H} 6 Gn, and

H o U := {(g1, . . . , gn;σ) | g1, . . . , gn ∈ H, σ ∈ U} 6 G oSn.

(b) Let M be an FG-module. Then the (outer) tensor product M⊗n = M ⊗ · · · ⊗M
becomes an F [G oSn]-module via

(g1, . . . , gn;σ)(x1 ⊗ · · · ⊗ xn) := g1xσ−1(1) ⊗ · · · ⊗ gnxσ−1(n),

for g1, . . . , gn ∈ G, σ ∈ Sn, and x1, . . . , xn ∈ M . This module is called a tensor-induced

module.
From now on, we denote by Λ(m,n) the set of compositions of n with at most m non-zero

parts. If λ = (λ1, . . . , λm) ∈ Λ(m,n) then we denote by Sλ the corresponding (standard)
Young subgroup Sλ1 × · · · ×Sλm of Sn. With this notation,

(G oSλ1)× · · · × (G oSλm) ∼= G oSλ 6 G oSn.

Thus, if M1, . . . ,Mm are FG-modules, the (outer) tensor product

M⊗λ := M⊗λ11 ⊗ · · · ⊗M⊗λmm

carries an F [G oSλ]-module structure.
Moreover, suppose again that H 6 G and U 6 Sn, and let L be an FU -module. Then,

via the map (−)], the FU -module L can be viewed as an FU ]-module, which we denote
by L]. Via in�ation along the natural epimorphism , the FU -module L becomes also an
F [H o U ]-module, which we denote by L̂ := InfHoUU (L). Thus we have ResHoU

U]
(L̂) = L].

(c) Let N be an FSn-module, and again let M be an FG-module. In this section, we
shall describe vertices and sources of indecomposable direct summands of the F [GoSn]-module
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M⊗n⊗N̂ in terms of those of the indecomposable direct summands ofM andN . We, therefore,
recall the structure of the indecomposable direct summands of the F [G o Sn]-modules M⊗n

and N̂ , respectively:
Let N1, . . . , Nl be pairwise non-isomorphic indecomposable FSn-modules, and b1, . . . , bl ∈

N be such that N ∼= b1N1 ⊕ · · · ⊕ blNl. Then we get

N̂ = InfGoSnSn
(N) ∼=

l⊕
i=1

bi InfGoSnSn
(Ni) =

l⊕
i=1

biN̂i,

where the F [G oSn]-modules N̂i := InfGoSnSn
(Ni) are pairwise non-isomorphic and indecompos-

able. Thus, the indecomposable direct summmands of the FSn-module N and those of the
F [G oSn]-module N̂ are in natural bijection, and hence in the sequel we may assume that N
is indecomposable.

As for M⊗n, let M1, . . . ,Mm be pairwise non-isomorphic indecomposable FG-modules,
and let a1, . . . , am ∈ N be such that

M ∼= a1M1 ⊕ · · · ⊕ amMm .

Then we have the following well-known result; we include a proof for the readers' convenience.

3.2 Lemma. With the notation as in 3.1(c),

M⊗n ∼=
⊕

λ∈Λ(m,n)

cλ · IndGoSnGoSλ(M⊗λ11 ⊗ · · · ⊗M⊗λmm )

is an indecomposable direct sum decomposition of the F [G o Sn]-module M⊗n, for suitable

cλ ∈ N.

Proof. We have an isomorphism of F [G oSn]-modules

M⊗n ∼=
⊕

λ=(λ1,...,λm)∈Λ(m,n)

cλ · (
⊕

M̃1 ⊗ · · · ⊗ M̃n),

the inner sum being taken over all n-tuples (M̃1, . . . , M̃n) of FG-modules satisfying

|{1 6 j 6 n | M̃j = Mi}| = λi, for i = 1, . . . ,m.

The respective coe�cient cλ equals aλ11 · · · aλmm .
Given λ = (λ1, . . . , λm) ∈ Λ(m,n), the sum

⊕
(M̃1⊗ · · · ⊗ M̃n) is a transitive imprimitive

F [G oSn]-module, and the direct summands M̃1 ⊗ · · · ⊗ M̃n form a system of imprimitivity.
One of these direct summands equals M⊗λ = M⊗λ11 ⊗ · · · ⊗M⊗λmm . Its restriction to the base
group Gn of G oSn is indecomposable, and its inertial group in G oSn equals G oSλ. Thus,
by [9, 50.2], we deduce that⊕

M̃1 ⊗ · · · ⊗ M̃n
∼= IndGoSnGoSλ(M⊗λ)

and, by [23, Prop. 4.1], IndGoSnGoSλ(M⊗λ) is an indecomposable F [G oSn]-module.
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3.3. Wreath products and vertices. We retain the notation from 3.1(c). In particular,
we suppose that N is an indecomposable FSn-module. We now want to examine the vertices
and sources of the indecomposable direct summands of the F [G o Sn]-module M⊗n ⊗ N̂ ; a
description is given in Theorem 3.4 below. To this end, let P be a Sylow p-subgroup of G,
and for j = 1, . . . ,m let Rj be a vertex of the FG-module Mj .

(a) Now let L be an indecomposable direct summand of M⊗n ⊗ N̂ . Then, by 3.1(c) and
Lemma 3.2, there is some λ = (λ1, . . . , λm) ∈ Λ(m,n) such that L is isomorphic to a direct
summand of

IndGoSnGoSλ(M⊗λ)⊗ N̂ ∼= IndGoSnGoSλ(M⊗λ ⊗ ResGoSnGoSλ(N̂))

∼= IndGoSnGoSλ(M⊗λ ⊗ InfGoSλSλ
(ResSnSλ

(N))) .

Then, by [23, Prop. 5.1] and the discussion preceding it, there is an indecomposable direct
summand N ′ of ResSnSλ

(N) such that

L ∼= IndGoSnGoSλ(L′), where L′ := M⊗λ ⊗ N̂ ′ .

In particular, L′ is an indecomposable F [G oSλ]-module. Now, if Q′ 6 Sλ is a vertex of N ′,
then

Q := (Rλ11 × · · · ×R
λm
m ) o (Q′)] 6 G oSλ 6 G oSn (2)

is a common vertex of L and L′.

(b) We consider a common Q-source S of the F [G o Sn]-module L and the F [G o Sλ]-
module L′. To this end, we from now on additionally suppose that each of the FG-modules
M1, . . . ,Mm has trivial sources. Note that this, in particular, includes the case that all these
modules are projective.

Let Pλ = Pλ1 ×· · ·×Pλm be a Sylow p-subgroup of the Young subgroup Sλ = Sλ1 ×· · ·×
Sλm . Then, in consequence of [23, Prop. 1.2, Prop. 3.1],

Rλ := (Rλ11 × · · · ×R
λm
m ) o P ]λ = (R1 o Pλ1)× · · · × (Rm o Pλm) 6 G oSλ

is a vertex of the indecomposable F [G oSλ]-moduleM⊗λ, andM⊗λ is a trivial-source module,
that is, M⊗λ | IndGoSλRλ

(F ). (Note that the assertion on vertices is just a special case of (2).)

Suppose that S′ is a Q′-source of the FSλ-module N ′. From [19, Prop. 2] we deduce that

the F [G oSλ]-module N̂ ′ := InfGoSλSλ
(N ′) has vertex P oQ′, and Ŝ′ := InfP oQ

′

Q′ (S′) is a (P oQ′)-
source of N̂ ′. Thus we have N̂ ′ | IndGoSλP oQ′ (Ŝ

′). Hence Mackey's Tensor Product Theorem shows

that there is some g ∈ G oSλ such that L′ is a direct summand of IndGoSλ
Q̃

(Res
g(P oQ′)
Q̃

(gŜ′)),

where
Q̃ := Rλ ∩ g(P oQ′) 6 G oSλ .

Hence S is a direct summand of ResGoSλQ (IndGoSλ
Q̃

(Res
g(P oQ′)
Q̃

(gŜ′))), thus, by Mackey's

Theorem, there is some h ∈ G oSλ such that S is a direct summand of

IndQ
Q∩hQ̃

(Res
hQ̃

Q∩hQ̃
h(Res

g(P oQ′)
Q̃

(gŜ′))) = IndQ
Q∩hQ̃

(Res
hg(P oQ′)
Q∩hQ̃

(hgŜ′)).

Since S has vertex Q, we infer Q ∩ hQ̃ = Q, so S is a direct summand of Res
hg(P oQ′)
Q (hgŜ′).
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Now we consider the natural epimorphism − : G oSλ −→ Sλ, and let σ := hg ∈ Sλ. Then

Q′ = (Rλ11 × · · · ×R
λm
m ) o (Q′)] = Q 6 hg(P oQ′) = σQ′ .

Hence we have σ ∈ NSλ(Q′). Moreover, since the base group Gn acts trivially on Ŝ′, we
infer that Q ∩ Gn = Rλ11 × · · · × Rλmm acts trivially on S, and since S′ is an indecomposable
FQ′-module, we �nally conclude that

S ∼= Res
hg(P oQ′)
Q (hgŜ′) ∼= InfQQ′(

σS′) .

Recall from 2.2 that, since S′ is a Q′-source of N ′, so is σS′.

(c) Keep the notation as in part (b), and suppose additionally that the FG-module M
is projective, that is, R1 = · · · = Rm = {1}, thus Q = (Q′)]. Furthermore, we now get
σ] = (1, . . . , 1;σ) ∈ NGoSλ((Q′)]), since σ ∈ NSλ(Q′). Hence we have S ∼= (σS′)] = σ]((S′)]).
Since S′ was an arbitrary Q′-source of N ′, this shows that indeed every Q′-source of N ′, in
the way just described, yields a common Q-source of L and L′.

Altogether we have, in particular, now proved the following:

3.4 Theorem. Let M be an FG-module, let N be an indecomposable FSn-module, and let

L be an indecomposable direct summand of the F [G o Sn]-module M⊗n ⊗ N̂ . Suppose that

M ∼=
⊕m

j=1 ajMj is an indecomposable direct sum decomposition of the FG-module M . For

j = 1, . . . ,m, let Rj be a vertex of Mj.

(a) There are some λ = (λ1, . . . , λm) ∈ Λ(m,n) and an indecomposable direct summand

N ′ of ResSnSλ
(N) such that L ∼= IndGoSnGoSλ(M⊗λ ⊗ N̂ ′). For every vertex Q′ 6 Sλ of N ′, the

group

Q := (Rλ11 × · · · ×R
λm
m ) o (Q′)] 6 G oSλ 6 G oSn

is a vertex of L.

(b) Suppose in addition that M1, . . . ,Mm are trivial-source modules. Then there is, more-

over, a Q′-source S′ of N ′ such that InfQQ′(S
′) is a Q-source of L. Here the in�ation is taken

with respect to the natural epimorphism Q −→ Q′.

(c) If M is a projective FG-module, and if λ and N ′ are as is part (a), then (Q′)] is a

vertex of L. If S′ is any Q′-source of N ′ then (S′)] is also a (Q′)]-source of L.

We now come back to Lie modules and their direct sum decompositions. The next theorem
is a consequence of the results in [3], [6] and [24]. The latter are concerned with Lie powers
of the general linear group, where for more details and the notation we are using we refer the
reader to Appendix A.

3.5 Theorem. Let k > 1 with p - k. Then, for every s > 0, there is a projective FSkps-module

Xkps such that, for all d > 0, one has

LieF (kpd) ∼=
d⊕
t=0

Ind
S
kpd

Skpt oSpd−t
(X⊗p

d−t

kpt ⊗ ̂LieF (pd−t)) . (3)

10



Proof. We �x n := kpd, for some d > 0, and consider the natural F [GLn(F )]-module E :=
Fn. In accordance with (8) in Appendix A, we denote by Ln(E) the n-th Lie power of E.
Then, as explained in A.2(b), the Lie module LieF (n) is the image of the F [GLn(F )]-module
Ln(E) under the Schur functor Wn, taking n-homogeneous polynomial F [GLn(F )]-modules
to FSn-modules.

By [3, Thm. 3.4], for all t > 0 there are idempotents fkpt in the group algebra FSkpt ,
only depending on p, k and t, but independent of n, such that there is an isomorphism of
F [GLn(F )]-modules

Ln(E) ∼=
d⊕
t=0

Lp
d−t

(E⊗kp
t ∗ fkpt) ; (4)

here, as detailed in A.1(a), the group Skpt acts from the right on E⊗kp
t
by place permutations,

and we denote this action by ∗.
Now �x some 0 6 t 6 d, and setm := kpt and q := pd−t. Suppose that V is any polynomial

F [GLn(F )]-module that is homogeneous of degree m, so that the Schur functor can be applied
to V , yielding the left FSm-module Wm(V ). Then, by [24, Cor. 3.2], there is an isomorphism
of FSn-modules

Wn(Lq(V )) ∼= IndSn
SmoSq(W

m(V )⊗q ⊗ L̂ieF (q)) .

We apply this to our �xed direct summand on the right-hand side of (4), with V := E⊗m ∗fm.
Thus letting

Xm := Wm(E⊗m ∗ fm)

yields the decomposition (3), and it remains to show that Xm is a projective FSm-module,
and does not depend on the F [GLn(F )]-module E used to de�ne it.

But, since n > m, the Schur functor Wm takes E⊗m to the regular module FSm, and the
isomorphism Wm(E⊗m) ∼= FSm translates the place permutation action into right multipli-
cation. Thus we deduce

Xm = Wm(E⊗m ∗ fm) = Wm(E⊗m) ∗ fm ∼= FSm · fm ,

which is of course a projective FSm-module, and independent of n.

Note that also for the case k = 1, which is excluded from the present discussion, we have
a decomposition similar to (3), but in this case becoming trivial inasmuch as for t = 0 we get
the trivial FS1-module X1

∼= F , and Xpt = {0} for t > 1. Thus the crucial question arising
now is whether the projective modules Xkpt in the decomposition (3) could possibly be {0}.
The next lemma, based on the calculations in [5], shows that this is not the case, a result
which will be essential for Theorem 3.7 below.

3.6 Lemma. Keep the notation as in Theorem 3.5. Then Xkpt 6= {0}, for all t > 0.

Proof. For t > 0, write

xkpt :=
dim(Xkpt)

dim(LieF (kpt))
=

dim(Xkpt)

(kpt − 1)!
.

Note that, taking d = t in Theorem 3.5, we see that Xkpt is isomorphic to a submodule of the
Lie module LieF (kpt). Thus 0 6 xkpt 6 1 and it su�ces to show that xkpt > 0. Now observe

11



that, in the notation of [5, page 851], we have Xkpt = C(kpt). Hence, by [5, (10)],

xkpt = 1−
t∑
i=1

a′i(xkpt−i)
pi ,

where a′i = (kpt−i)−(pi−1). Since k > 1, we have

t∑
i=1

a′i(xkpt−i)
pi 6

t∑
i=1

a′i 6
t∑
i=1

k−(pi−1) <
∞∑
j=1

k−j = (k − 1)−1 6 1 .

Therefore, xkpt > 0.

We are now in a position to formulate the following result, reducing the problem of de-
termining vertices of indecomposable direct summands of Liepf

F (n) to the case where n is a
p-power.

3.7 Theorem. Let n = k · pd, for some d > 0 and some k > 1 with p - k.

(a) Let L be an indecomposable direct summand of LieF (n) with vertex Q. There is an

integer t ∈ {0, . . . , d}, a composition λ of pd−t, and an indecomposable direct summand L′ of

Res
S
pd−t

Sλ
(LieF (pd−t)) such that

Q 6Sn (Q′)] 6 S]
λ 6 Skpt oSpd−t 6 Sn , for every vertex Q′ of L′ .

(b) In the situation of part (a), if S′ is a Q′-source of L′, then there is a Q-source S of

L such that S | Res
(Q′)]

Q ((S′)]). Moreover, there is an indecomposable direct summand K of

LieF (pd−t) having a vertex R with Q′ 6 R. Furthermore, there is an R-source T of K such

that S′ | ResRQ′(T ).

(c) Conversely, let 0 6 t 6 d, and let K be any indecomposable direct summand of

LieF (pd−t) with vertex R. Then there is an indecomposable direct summand L of LieF (n)
with vertex R], and every R-source of K is then also an R]-source of L.

Proof. Parts (a) and (b) are immediate consequences of 2.2, Theorem 3.4 and Theorem 3.5.
Note that here we need the fact that the FSkpt-modules Xkpt in Theorem 3.5 are projective.

It remains to prove (c). So let t ∈ {0, . . . , d}. Let further X be any indecomposable
direct summand of the FSkpt-module Xkpt ; note that here we need Lemma 3.6 to ensure that
all the projective modules in Theorem 3.5 are indeed non-zero. Now consider the one-part
partition λ = (pd−t) of pd−t. Then, by 3.3, we get the indecomposable F [Skpt oSpd−t ]-module

L′ := X⊗p
d−t ⊗ K̂. By Theorem 3.4(c), L′ has vertex R], and every R-source T of K yields

the R]-source T ] of L′. As we have remarked in 2.2(d), there is an indecomposable direct
summand L of IndSn

Skpt oSpd−t
(L′) with vertex R] and R]-source T ]. By Theorem 3.5, we have

IndSn
Skpt oSpd−t

(L′) | LieF (n), and hence assertion (c) follows.
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4 Computational Data

In this section we present our computational results concerning the Lie modules for some
symmetric groups. Before doing so, we need a few preparations. More details on speci�c
computational techniques and implementations used to obtain the results of this section are
given in Appendix B.

4.1. Some subgroups of symmetric groups. (a) We shall use the following convention
for denoting the Sylow p-subgroups of the symmetric group Sn: suppose �rst that n = pd, for
some d > 0. Moreover, we set P1 := 1 and Pp := Cp, where Cp := 〈(1, 2, . . . , p)〉, as well as

Ppi+1 := Ppi o Cp = {(g1, . . . , gp;σ) | g1, . . . , gp ∈ Ppi , σ ∈ Cp} for i > 1 .

Note that the multiplication in Ppi+1 is as explained in (1). For i > 0, we view Ppi as a
subgroup of Spi in the obvious way. Then, by [21, 4.1.22, 4.1.24], Pn is a Sylow p-subgroup
of Sn, which can be generated by the following elements in Sn:

gj :=

pj−1∏
k=1

(k, k + pj−1, k + 2pj−1, . . . , k + (p− 1)pj−1) with j = 1, . . . , d .

Next suppose that p | n, but n is not necessarily a p-power. Consider the p-adic expansion
n =

∑s
j=1 αjp

ij , for some s > 1, i1 > . . . > is > 1, and 1 6 αj 6 p − 1 for j = 1, . . . , s.

By [21, 4.1.22, 4.1.24], Pn :=
∏s
j=1

∏αj
lj=1 Ppij ,lj is then a Sylow p-subgroup of Sn. Here, the

direct factor Ppi1 ,1 is acting on {1, . . . , pi1}, Ppi1 ,2 is acting on {pi1 + 1, . . . , 2pi1}, and so on.
If n is not divisible by p, let m < n be maximal such that p | m, and set Pn := Pm, so

that Pn is a Sylow p-subgroup of Sn also in this case.

(b) For d > 1 we denote by Epd the following maximal elementary abelian subgroup of
Ppd that acts regularly on {1, . . . , pd}: recall the generators g1, . . . , gd of Ppd from (a) above.

For j = 1, . . . , d− 1, let gj,j+1 :=
∏p−1
i=0 g

i
j+1gjg

−i
j+1, and for l = 1, . . . , d− j− 1, we inductively

set

gj,j+1,...,j+l+1 :=

p−1∏
i=0

gij+l+1 · gj,j+1,...,j+l · g−ij+l+1 .

Then Epd := 〈g1,...,d, g2,...,d, . . . , gd−1,d, gd〉, and we get |Epd | = pd. Letting n := pd and
Q := Epd , we determine the structure of NSn(Q):

Since Q 6 Sn is an abelian transitive subgroup, it is self-centralizing, and thus NSn(Q)/Q
is isomorphic to a subgroup of GLd(p). Moreover, since the a�ne linear group AGLd(p) ∼=
Cdp o GLd(p) acts transitively and faithfully on its elementary abelian subgroup Cdp , there is
an embedding AGLd(p) −→ Sn, mapping Cdp to Q. Hence we conclude that

NSn(Q) ∼= Qo GLd(p).

Thus NSn(Q) acts transitively on each of the sets {R 6 Q | |R| = pi}, for 0 6 i 6 d,
and the stabilizer NNSn (Q)(R) induces the full automorphism group on any subgroup R 6 Q.
Hence NSn(Q) controls fusion in Q, in the sense of 2.5.
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4.2 Example. If p = 2 and n = 4 then

P4 = 〈(1, 2), (1, 3)(2, 4)〉 and

E4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉.

If p = 2 and n = 8 then

P8 = 〈(1, 2), (1, 3)(2, 4), (1, 5)(2, 6)(3, 7)(4, 8)〉 and

E8 = 〈(1, 2)(3, 4)(5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8), (1, 5)(2, 6)(3, 7)(4, 8)〉.

If p = 3 and n = 9 then

P9 = 〈(1, 2, 3), (1, 4, 7)(2, 5, 8)(3, 6, 9)〉 and

E9 = 〈(1, 2, 3)(4, 5, 6)(7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9)〉.

4.3 Remark. (a) Before proceeding to computationally substantial examples, for later use
we recall the following well-known case: by [13, Cor. 9] the projective-free part Liepf

F (p) of the
Lie module LieF (p) is indecomposable, and actually isomorphic to the Specht module S(p−1,1)

of dimension p− 1, hence

Liepf
F (p) ∼= Ω(F ) as FSp-modules .

Hence Liepf
F (p) has vertex Ep = Cp, of course, and Ω(F ) is an Ep-source, having dimension

p−1. Note that the FEp-module Ω(F ) is an endo-permutation module. Thus, from Theorem
2.4 and the remarks in 2.5 and 4.1(b) we conclude that Liepf

F (p) is an endo-p-permutation
module.

(b) In view of the subsequent results, we ask ourselves whether Liepf
F (p) itself possibly is

an endo-permutation FSp-module. Indeed, for p = 2 we have LieF (2) ∼= Liepf
F (2) ∼= F , hence

Liepf
F (2) is even a permutation FS2-module.

For p = 3 we have LieF (3) ∼= Liepf
F (3) ∼= Ω(F ), and from the theory of blocks of cyclic

defect it is immediate that

Liepf
F (3)⊗ Liepf

F (3)∗ ∼= Ω(F )⊗ Ω(F )∗ ∼= F ⊕ P (2,1) ,

where D(2,1) is the sign representation. Note that, in accordance with part (a), all indecom-
posable direct summands of Liepf

F (3)⊗ Liepf
F (3)∗ are indeed trivial-source modules.

To show that Liepf
F (3)⊗Liepf

F (3)∗ is not a permutation FS3-module, assume to the contrary
that it is. Thus, by dimension reasons we conclude that P (2,1) is an indecomposable transitive
permutation FS3-module, but P (2,1) does not have the trivial module as an epimorphic image,
a contradiction.

We now turn to speci�c examples, dealt with by computational techniques. However,
e�cient machine treatment is only feasible for modules over �nite �elds. Hence, as explained
in A.2(b), we pass from the Lie FSn-module LieF (n), de�ned over the algebraically closed
�eld F , to its Fp-form Liep(n), de�ned over the prime �eld Fp.

14



4.4. Examining Lie2(4). Let p = 2. We examine the F2S4-module Lie2(4).

(a) By A.5, dim(Lie2(4)) = 3! = 6. A dimension consideration shows that Lie2(4) can-
not contain a projective direct summand, hence Lie2(4) coincides with its projective-free part
Liepf

2 (4). Moreover, it is easily checked computationally, that Liepf
2 (4) is absolutely indecom-

posable, more precisely we have

Liepf
2 (4) ∼= Ω−1(D(3,1)) ,

where D(3,1) ∼= InfS4
S3

(D(2,1)) is the simple F2S4-module of dimension 2, and the in�ation is

along the natural isomorphism S4/E4
∼= S3. Since D(2,1) is a projective simple F2S3-module,

D(3,1) is a trivial-source module with vertex E4. Thus we conclude that Liepf
2 (4) has vertex

E4, and Ω−1(F2) = F2E4/ Soc(F2E4) is an E4-source, having dimension 3.
Note that Ω−1(F2) is an endo-permutation module. Thus from Theorem 2.4, and the

remarks in 2.5 and 4.1(b), we conclude that Liepf
2 (4) is an endo-p-permutation module.

(b) In view of the above and the subsequent results, it seems worthwhile to show that
Liepf

2 (4) is not an endo-permutation F2S4-module. To this end, we compute an explicit
indecomposable direct sum decomposition of Liepf

2 (4)⊗ Liepf
2 (4)∗:

Liepf
2 (4)⊗ Liepf

2 (4)∗ ∼= D(3,1) ⊕ IndS4
A4

(F2)⊕ P (4) ⊕ 3 · P (3,1) , (5)

where both projective indecomposable F2S4-modules P (4) and P (3,1) have dimension 8. Note
that, in accordance with part (a), we indeed observe that all indecomposable direct summands
of Liepf

2 (4)⊗ Liepf
2 (4)∗ are trivial-source modules.

To show that Liepf
2 (4)⊗Liepf

2 (4)∗ is not a permutation F2S4-module, assume to the contrary
that it is. Then there is some H 6 S4 such that D(3,1) is isomorphic to a direct summand of
IndS4

H (F2) and such that IndS4
H (F2) is isomorphic to a direct summand of Liepf

2 (4)⊗Liepf
2 (4)∗.

In particular, D(3,1) is then relatively H-projective, and since, by (a), E4 P S4 is a vertex of
D(3,1), we infer E4 6 H. On the other hand, H cannot possibly contain a Sylow 2-subgroup
of S4, since otherwise IndS4

H (F2) would have the trivial F2S4-module as a direct summand.
This leaves the cases H ∈ {E4,A4} where A4 is the alternating group of degree 4. But if
H = A4 then D(3,1) - IndS4

H (F2), and if H = E4 then 2 ·D(3,1) | IndS4
H (F2). In either case, we

obtain a contradiction.

4.5. Examining Lie2(8). Let p = 2. We examine the F2S8-module Lie2(8).

(a) By A.5(a), dim(Lie2(8)) = 7! = 5040. Moreover, using the 2-modular decomposition
matrix of S8 and [4, Cor. 3.4], we �nd dim(Liepbl

2 (8)) = 4016. By work of Selick�Wu [33], it
is known that

Liepbl
2 (8) ∼= Liepf

2 (8)⊕ 2 · P (6,2) ⊕ P (5,3) ⊕ 4 · P (4,3,1) , (6)

and we infer that dim(Liepf
2 (8)) = 816 = 24 · 3 · 17. We have veri�ed the decomposition

(6) independently, with the computational techniques described in Appendix B. In addition
to the calculations in [33], we have checked explicitly that Liepf

2 (8) is actually absolutely
indecomposable.

(b) We shall subsequently describe the vertices and sources of the projective-free part
Liepf

2 (8). In order to do so, we consider the restriction of Liepf
2 (8) to the Sylow 2-subgroup P8
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of S8; note that, since |P8| = 27, from 2.2 we conclude that every vertex of Liepf
2 (8) has order

at least 8. Our computations yield the following decomposition:

ResS8
P8

(Liepf
2 (8)) = M1 ⊕M2 ⊕ (cyc),

where `(cyc)' denotes a direct sum of absolutely indecomposable F2P8-modules with vertex
Z(P8) of order 2, and with trivial sources.

The direct summand M2 is absolutely indecomposable of dimension 96, and has vertex

V := 〈(1, 3)(2, 4)(5, 6)(7, 8), (1, 4)(2, 3)(5, 8)(6, 7)〉 ∼= C2 × C2

of order 4, and a V -source isomorphic to F2V/ Soc(F2V ) ∼= Ω−1(F2). In particular, the sources
of M2 are endo-permutation modules.

The remaining direct summand, M1, is absolutely indecomposable of dimension 336, and
has vertex E8 and an E8-source S of dimension 21 satisfying

EndF2(S) ∼= S ⊗ S∗ ∼= F2 ⊕
⊕

Q<E8, |Q|=2

2 · IndE8
Q (F2)⊕ (proj),

where `(proj)' denotes a projective F2E8-module. Consequently, EndF2(S) is a permutation
F2E8-module, that is, S is an endo-permutation F2E8-module. In fact, by Theorem 2.4, the
isomorphism type of S is determined by the following isomorphism, which is easily veri�ed
computationally, using the techniques in Appendix B:

Ω3(F2)⊗
⊗

Q<E8, |Q|=2

InfE8

E8/Q
(Ω−1((F2)E8/Q)) ∼= S ⊕ (proj).

Note that S is the only non-projective direct summand occurring.
In conclusion, this shows that Liepf

2 (8) has vertex E8 and endo-permutation source S. In
particular, by 2.5 and 4.1(b), we conclude that Liepf

2 (8) is an endo-p-permutation module.

4.6. Examining Lie3(9). Next let p = 3. We examine the F3S9-module Lie3(9).

(a) By A.5(a), dim(Lie3(9)) = 8! = 40320. Moreover, using the 3-modular decomposition
matrix of S9 and [4, Cor. 3.4], we �nd dim(Liepbl

3 (9)) = 16020, where Liepbl
3 (9) denotes the

principal block component of Lie3(9). Employing the techniques described in Appendix B, we
obtain the following decomposition

Liepbl
3 (9) ∼= 2 · P (7,12) ⊕ 5 · P (6,3) ⊕ 3 · P (6,2,1) ⊕ 4 · P (5,22) ⊕ 2 · P (4,3,2) ⊕ P (42,1) ⊕ 4 · P (32,2,1)

⊕ Liepf
3 (9),

where hence Liepf
3 (9) has dimension 1683 = 32 · 11 · 17, and turns out to be absolutely inde-

composable.

(b) To describe the vertices and sources of the projective-free part Liepf
3 (9), we �rst note

that from |P9| = 34 and 2.2 we conclude that every vertex of Liepf
3 (9) has order at least 9. We

determine an indecomposable direct sum decomposition of the restriction of Liepf
3 (9) to P9,

and get
ResS9

P9
(Liepf

3 (9)) ∼= N1 ⊕ 2 ·N2 ⊕ 4 ·N3 ⊕ (proj),
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where N2 6∼= N3 are absolutely indecomposable of dimension 54 each, having non-conjugate
cyclic vertices of order 3, and endo-permutation sources of dimension 2.

The direct summand N1 is absolutely indecomposable of dimension 144, and has vertex
E9 and an E9-source S′ of dimension 16 satisfying

EndF3(S′) ∼= S′ ⊗ (S′)∗ ∼= F3 ⊕
⊕

Q<E9, |Q|=3

IndE9
Q (F3)⊕ (proj).

Consequently, EndF3(S′) is a permutation F3E9-module, that is, S′ is an endo-permutation
F3E9-module. Its isomorphism type, in the sense of Theorem 2.4, is determined by the fol-
lowing isomorphism, where again S′ is the only non-projective direct summand occurring:

Ω−2(F3)⊗
⊗

Q<E9, |Q|=3

InfE9

E9/Q
(Ω((F3)E9/Q)) ∼= S′ ⊕ (proj).

Also this decomposition is veri�ed computationally by the techniques described in Appendix B.
In conclusion, this shows that Liepf

3 (9) has vertex E9 and endo-permutation source S′. In
particular, by 2.5 and 4.1(b), we conclude that Liepf

3 (9) is an endo-p-permutation module.

Exploiting the computational data collected above, and applying Theorem 3.7, we now
obtain the following results. Note that these, by virtue of B.6 and the property LieF (n) ∼=
F ⊗Fp Liep(n), may safely be stated in terms of the Lie modules LieF (n) again.

4.7 Corollary. Let p = 2 and n = k · 2d, where k > 1 is odd and 0 6 d 6 3, and let L be an

indecomposable direct summand of LieF (n).

(a) Let Q 6 Sn be a vertex of L, and let S be a Q-source. Then Q is elementary abelian

of order |Q| 6 2d, and S is an endo-permutation module.

(b) Suppose that |Q| is maximal amongst the orders of the vertices of all the indecom-

posable direct summands of LieF (n). Then one has Q =Sn E]
2d
6 S]

2d
6 Sk o S2d 6 Sn;

in particular, Q is uniquely determined up to Sn-conjugation. Moreover, every E2d-source of

Liepf
F (2d) is an E]

2d
-source of L.

Proof. To show (a), by Theorem 3.7 and 2.2(c), there is some integer t ∈ {0, . . . , d}, and there
is an indecomposable direct summand L′ of LieF (2d−t) with vertex R such that Q 6Sn R

] 6
Sk·2t oS2d−t 6 Sn. (Note that the image of the map (−)] depends on the particular choice of t.)
Moreover, we observe from the results of 4.4, 4.5 and Remark 4.3 that all the indecomposable
direct summands of LieF (2d−t) are either projective, or are isomorphic to Liepf

F (2d−t) and have
elementary abelian vertex of order 2d−t and endo-permutation sources. Finally, recall that the
property of being an endo-permutation module is retained under restriction to subgroups and
under taking direct summands.

To show (b), recall again that if L is an indecomposable direct summand of LieF (n) then
there is some t 6 d such that the vertices of L are conjugate to subgroups of E]

2d−t
. Now

note that, by Theorem 3.7(c), there indeed is an indecomposable direct summand of LieF (n)

having a vertex that is Sn-conjugate to E
]
2d
. Thus, if |Q| is maximal then we have |Q| = 2d,

and Q is Sn-conjugate to E]
2d
; hence we may assume that Q = E]

2d
. But this forces t = 0

and K = Liepf
F (2d). By Theorem 3.7(c) again, every E2d-source of Liepf

F (2d) is an E]
2d
-source

of L.
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The following result deals with the case where p = 3. The proof is completely analogous
to that of Corollary 4.7, and is thus left to the reader.

4.8 Corollary. Let p = 3 and n = k · 3d, where k > 1 is such that 3 - k, and 0 6 d 6 2, and
let L be an indecomposable direct summand of LieF (n).

(a) Let Q 6 Sn be a vertex of L, and let S be a Q-source. Then Q is elementary abelian

of order |Q| 6 3d, and S is an endo-permutation module.

(b) Let |Q| be maximal amongst the orders of the vertices of all the indecomposable direct

summands of LieF (n). Then one has Q =Sn E
]
3d
6 S]

3d
6 Sk oS3d 6 Sn; in particular, Q

is uniquely determined up to Sn-conjugation. Moreover, every E3d-source of Liepf
F (3d) is an

E]
3d
-source of L.

A Appendix: The Lie Module of the Symmetric Group

In this appendix we list some properties of the Lie FSn-module, and brie�y discuss variations.
Many of these observations are certainly well known to the experts, but explicit references are
not too easy to �nd. Thus we recall them here for the readers' convenience, and to make this
paper as self-contained as possible.

A.1. Lie powers. (a) Let GLn(F ) be the general linear group over F , where n > 1, which
acts naturally on E where E := Fn, and let {e1, . . . , en} be the standard basis of E. We
may view Sn as a subgroup of GLn(F ), by identifying a permutation π ∈ Sn with the
corresponding permutation matrix in GLn(F ).

The r-th tensor power E⊗r, where r > 1, is an F [GLn(F )]-module by way of the diagonal
action. Thus, via restriction, E⊗r becomes an FSn-module, where the symmetric group Sn

acts by
π : v1 ⊗ · · · ⊗ vr 7−→ πv1 ⊗ · · · ⊗ πvr, for v1, . . . , vr ∈ E, π ∈ Sn.

On the other hand, E⊗r also carries a right FSr-action `∗' via place permutations, which
hence centralizes the F [GLn(F )]-action:

σ : v1 ⊗ · · · ⊗ vr 7−→ (v1 ⊗ · · · ⊗ vr) ∗ σ = vσ(1) ⊗ · · · ⊗ vσ(r), for v1, . . . , vr ∈ E, σ ∈ Sr.

(b) We regard the tensor algebra T (E) =
⊕

r>1E
⊗r as a Lie algebra in the usual way, i.e.

with bracket [a, b] = ab− ba. We consider the Lie bracket

κ2 : E⊗2 −→ E⊗2, v1 ⊗ v2 7−→ [v1, v2] := v1 ⊗ v2 − v2 ⊗ v1, for v1, v2 ∈ E.

More generally, we have the (left-normed) Lie bracket

κr : E⊗r −→ E⊗r, v1 ⊗ · · · ⊗ vr 7−→ [[v1, v2, . . . , vr] := [· · · [[v1, v2], v3], . . . , vr] ,

for all r > 2, and for completeness we also let κ1 := id.
Hence we have κr ∈ EndF (E⊗r), for all r > 1, where we assume EndF (E⊗r) to act on

E⊗r from the right, the action also being denoted by `∗'. The image (v1⊗· · ·⊗ vr) ∗κr ∈ E⊗r
of a pure tensor v1 ⊗ · · · ⊗ vr ∈ E⊗r is called an (iterated) Lie bracket of length r. Hence, by
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de�nition, for all r > 2 we have (v1 ⊗ · · · ⊗ vr) ∗ κr = [(v1 ⊗ · · · ⊗ vr−1) ∗ κr−1, vr]. Moreover,
for r > 1, the right adjoint action of T (E) translates into

(v ⊗ (v1 ⊗ · · · ⊗ vr) ∗ κr) ∗ κr+1 = [v, (v1 ⊗ · · · ⊗ vr) ∗ κr] ∈ E⊗(r+1). (7)

The map κr centralizes the F [GLn(F )]-action, hence the image

Lr(E) := E⊗r ∗ κr ⊆ E⊗r (8)

of κr is an F [GLn(F )]-submodule of E⊗r, called the rth Lie power of E, where of course we
have L1(E) = Fn ∗ κ1 = E ∗ id = E. Thus we obtain the free Lie algebra on {e1, . . . , en}

L(E) :=
⊕
r>1

Lr(E) ⊆ T (E) .

The fact that L(E) is free as a Lie algebra is well known, and is due to Witt.

(c) The action of κr is induced by the place permutation of some element ωr ∈ FSr which
we will now show.

For r > 1 let cr := (r, r − 1, . . . , 1) ∈ Sr. Note that, of course, c1 = 1. Then the place
permutation action yields

(v1 ⊗ · · · ⊗ vr) ∗ cr = (vr ⊗ v1 ⊗ · · · ⊗ vr−1), for v1, . . . , vr ∈ E .

Now, for r = 2, we have (v1 ⊗ v2) ∗ κ2 = [v1, v2] = v1 ⊗ v2 − v2 ⊗ v1 = (v1 ⊗ v2) ∗ (1− c2),
while for r > 3 and v1, . . . , vr ∈ E we get

(v1 ⊗ · · · ⊗ vr) ∗ κr = ((v1 ⊗ · · · ⊗ vr−1) ∗ κr−1)⊗ vr − vr ⊗ ((v1 ⊗ · · · ⊗ vr−1) ∗ κr−1)

= (v1 ⊗ · · · ⊗ vr) ∗ (κr−1 ⊗ id)− (v1 ⊗ · · · ⊗ vr) ∗ (κr−1 ⊗ id) ∗ cr
= (v1 ⊗ · · · ⊗ vr) ∗ (κr−1 ⊗ id) ∗ (1− cr).

Thus, by induction on r > 2, this gives κr = ∗ (1− c2) ∗ (1− c3) ∗ · · · ∗ (1− cr) : E⊗r −→ E⊗r,
so that, for r > 2, we have

ωr := (1− c2)(1− c3) · · · (1− cr) ∈ FSr ,

and Lr(E) = E⊗r ∗κr = E⊗r ∗ωr. The element ωr is called the Dynkin�Specht�Wever element

of FSr; for completeness, since κ1 = id, we let ω1 := c1 ∈ FS1. Note that we even have
ωr ∈ FpSr, where Fp is the prime �eld of F .

A.2. Lie modules and the Schur functor. (a) Now let n > r. Then the classical Schur

functor Wr takes homogeneous polynomial F [GLn(F )]-modules of degree r to FSr-modules,
where, more precisely, an F [GLn(F )]-module V is mapped to its (1r)-weight space Wr(V ).
In particular, for the F [GLn(F )]-module E⊗r one gets the following:

As mentioned above, the natural GLn(F )-action on E⊗r induces a permutation action of
Sn, and thus also a permutation action of Sr, on E⊗r. The vector e1⊗· · ·⊗ er ∈ E⊗r a�ords
a regular Sr-orbit and, hence, induces an embedding of the regular FSr-module into E⊗r via

FSr −→ E⊗r, π 7−→ πe1 ⊗ · · · ⊗ πer = eπ(1) ⊗ · · · ⊗ eπ(r), for π ∈ Sr.
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The image of this embedding equals the (1r)-weight space

Wr(E⊗r) = SpanF ({eπ(1) ⊗ · · · ⊗ eπ(r) | π ∈ Sr}) ⊆ E⊗r

of the F [GLn(F )]-module E⊗r. Moreover, the place permutation action of Sr on E⊗r re-
stricts to Wr(E⊗r), and via the above isomorphism Wr(E⊗r) ∼= FSr translates into right
multiplication on FSr.

From now on, suppose that n = r, which is the case most relevant to us.

(b) Now one de�nes the Lie module LieF (n) of FSn as the (1n)-weight space of the nth
Lie power Ln(E), that is,

LieF (n) := Wn(Ln(E)) ⊆ E⊗n .

From Ln(E) = E⊗n ∗ κn ⊆ (E)⊗n one thus gets

LieF (n) = Wn(E⊗n ∗ κn) = Wn(E⊗n) ∗ κn = SpanF ({[[eπ(1), . . . , eπ(n)] | π ∈ Sn}).

Via the isomorphism Wn(E⊗n) ∼= FSn of FSn-modules, LieF (n) can be regarded as a sub-
module of the regular FSn-module FSn. Since the action of κn is induced by the place
permutation action of ωn, we get

LieF (n) ∼= FSn · ωn ⊆ FSn. (9)

Note that, in particular, LieF (1) ∼= F , the trivial FS1-module. We shall sometimes write a ·
in a product to make it easier to read.

Moreover, we observe that LieF (n) is already realized over the prime �eld Fp of F , that
is, letting

Liep(n) := FpSn · ωn ⊆ FpSn as FpSn-modules,

we get LieF (n) ∼= F ⊗Fp Liep(n) as FSn-modules. We have made use of this in order to
facilitate explicit computations, see B.2.

A.3. Variations on Lie modules. Since there also exist slight modi�cations of the above
modules in the literature, we brie�y comment on variations of the construction:

(a) Firstly, starting with another vector eπ(1) ⊗ · · · ⊗ eπ(n) ∈ E⊗n, where π ∈ Sn, leads
to a di�erent identi�cation of LieF (n) with a submodule of FSn, namely to the FSn-module
FSn · πωnπ−1, that is, amounts to relabelling.

(b) Secondly, taking right-normed Lie brackets instead, for r > 2 one gets

κ′r : E⊗r −→ E⊗r, v1 ⊗ · · · ⊗ vr 7−→ [v1, v2, . . . , vr]] := [v1, [v2, . . . , [vr−1,vr] · · · ]];

we again let κ′1 := id. Since [v1, v2, . . . , vr]] = (−1)r−1 · [[vr, vr−1, . . . , v1], for r > 1, we get
κ′r = (−1)r−1 ∗ wr ∗ κr : E⊗r −→ E⊗r, where wr ∈ Sr is the longest element of Sr in the
Coxeter sense, that is,

wr = (1, r)(2, r − 1) · · ·

Thus this construction yields Lie′F (n) = Wn(E⊗n)∗κ′n = Wn(E⊗n)∗wn∗κn = Wn(E⊗n)∗κn =
LieF (n).

(c) Lastly, we analyze the FSn-module FSn · ωιn ⊆ FSn, where

ωιn := (1− c−1
n )(1− c−1

n−1) · · · (1− c−1
2 ) ∈ FSn
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is the image of ωn under the F -algebra anti-automorphism ι : FSn −→ FSn de�ned by
ι : π 7−→ π−1, for π ∈ Sn. Then we have an isomorphism of left FSn-modules

FSn · ωιn ∼= (FSn · ωn)∗,

where the latter FSn-module denotes the contragredient dual of FSn · ωn. This fact is most
elegantly established by recalling that group algebras are, in particular, symmetric algebras,
and using the general isomorphism (10) in Remark A.4 below. Thus we brie�y deviate to
establish this:

A.4 Remark. Let A be a �nite-dimensional symmetric F -algebra with symmetrizing F -
bilinear form 〈·|·〉. That is, 〈·|·〉 is associative, symmetric, and non-degenerate. Hence

A −→ HomF (A,F ), a 7−→ (b 7−→ 〈b|a〉), for a, b ∈ A,

is an isomorphism of (A,A)-bimodules. Letting ω ∈ A, this induces an isomorphism

HomF (Aω,F ) ∼= A/(Aω)⊥

of right A-modules, where ⊥ denotes taking orthogonal spaces with respect to 〈·|·〉. Moreover,

(Aω)⊥ = {a ∈ A | 〈Aω|a〉 = 0} = {a ∈ A | 〈A|ωa〉 = 0} = {a ∈ A | ωa = 0} =: ker(ω · ).

Since A/ker(ω · ) ∼= im(ω · ) = ωA, this yields an isomorphism of right A-modules

HomF (Aω,F ) ∼= A/(Aω)⊥ = A/ker(ω · ) ∼= im(ω · ) = ωA.

Finally, suppose that there is an involutory F -algebra anti-automorphism ι : A −→ A, a 7−→
aι. Then, whenever M is a right A-module, one can de�ne a left A-module structure on M
by a · x := xaι, for x ∈ M, a ∈ A. Denoting the resulting module by M ι, one, in particular,
gets (ωA)ι ∼= Aωι as left A-modules. Thus one has an isomorphism of left A-modules

HomF (Aω,F )ι ∼= (ωA)ι ∼= Aωι . (10)

A.5. Properties of Lie modules. Lastly, we collect a couple of properties of Lie modules.

(a) We exhibit an explicit F -basis of LieF (n). Firstly, any element of LieF (n) is an F -
linear combination of Lie brackets of the form [[en, eπ(1), . . . , eπ(n−1)], where π ∈ Sn−1. This is
clear for n 6 2 anyway, and for n > 3 is seen as follows: letting w be a Lie bracket involving a
subset of {e1, . . . , ei−1, ei+1, . . . , en−1}, where 1 6 i 6 n− 1, we have [[w, ei, en] = [en, [ei, w]],
where, by (7), the latter can be written as a sum of Lie brackets having en as their �rst
component.

Now, since expanding [[en, eπ(1), . . . , eπ(n−1)] into the standard F -basis of E⊗n yields a
unique summand having en as its �rst component, namely en ⊗ eπ(1) ⊗ · · · ⊗ eπ(n−1), we
conclude that

{[[en, eπ(1), . . . , eπ(n−1)] | π ∈ Sn−1} ⊆ LieF (n)

is F -linearly independent, thus is an F -basis. Moreover, since

[[en, eπ(1), . . . , eπ(n−1)] = π · [[en, e1, . . . , en−1] = π · cn · [[e1, e2, . . . , en] for π ∈ Sn−1,
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the above F -basis can also be written as

{π · cn · [[e1, . . . , en] | π ∈ Sn−1} ⊆ LieF (n).

Thus ResSnSn−1
(LieF (n)) is isomorphic to the regular module FSn−1, in particular saying

that dimF (LieF (n)) = (n−1)!. Moreover, since [[e1, . . . , en] = (e1⊗· · ·⊗en)∗ωn ∈ LieF (n) is
sent to ωn ∈ FSn via the isomorphism (9), this means that an F -basis of FSn ·ωn is obtained
as

{π · cn · ωn | π ∈ Sn−1}.

As we shall explain in B.3, this F -basis has been particularly useful to facilitate the explicit
computations; note that, by the observations in A.2, this is even an Fp-basis of Liep(n) =
FpSn · ωn.

(b) We now show that ω2
n = n ·ωn ∈ FSn, in particular implying that 1

n ·ωn ∈ FSn is an
idempotent whenever p - n. We proceed in various steps:

Firstly, we show that for n > 1 we have ωn ·(e1⊗· · ·⊗en) = [[e1, . . . , en] ∈ E⊗n: this is clear
for n = 1 anyway, and for n = 2 we have ω2 · (e1⊗e2) = (1−c2) · (e1⊗e2) = e1⊗e2−e2⊗e1 =
(e1 ⊗ e2) ∗ κ2. For n > 3, arguing by induction and using ωn = ωn−1 · (1− cn) ∈ FSn, we get

ωn · (e1 ⊗ · · · ⊗ en) = ωn−1 · (e1 ⊗ · · · ⊗ en − en ⊗ e1 ⊗ · · · ⊗ en−1)

= ((e1 ⊗ · · · ⊗ en−1) ∗ κn−1)⊗ en − en ⊗ ((e1 ⊗ · · · ⊗ en−1) ∗ κn−1)

= [(e1 ⊗ · · · ⊗ en−1) ∗ κn−1, en]

= (e1 ⊗ · · · ⊗ en) ∗ κn = [[e1, . . . , en] .

Secondly, we show that for n > 2 we have ωn−1cn · [[e1, . . . , en] = −[[e1, . . . , en] ∈ E⊗n:
Recall that κn ∈ EndF (E⊗n) centralizes the F [GLn(F )]-action. Then, using (7) we get

ωn−1cn · (e1 ⊗ · · · ⊗ en) ∗ κn = (en ⊗ ωn−1 · (e1 ⊗ · · · ⊗ en−1)) ∗ κn
= (en ⊗ (e1 ⊗ · · · ⊗ en−1) ∗ κn−1) ∗ κn
= [en, (e1 ⊗ · · · ⊗ en−1) ∗ κn−1]

= −[(e1 ⊗ · · · ⊗ en−1) ∗ κn−1, en]

= −(e1 ⊗ · · · ⊗ en) ∗ κn.

Combining these computations we get

ωn−1cn · ωn · (e1 ⊗ · · · ⊗ en) = −ωn · (e1 ⊗ · · · ⊗ en),

thus translating via the isomorphism Wn(E⊗n) ∼= FSn yields ωn−1cn · ωn = −ωn ∈ FSn.
Thirdly, and �nally, we show that ω2

n = n · ωn ∈ FSn, for n > 1: this is clear for n = 1
anyway, and for n = 2 we have ω2

2 = (1 − c2)2 = ω2 − c2ω2 = 2ω2. Then, for n > 3 we have
ω2
n = ωn−1(1− cn)ωn = ωn−1ωn − ωn−1cnωn, where, by induction, the �rst summand equals

ω2
n−1(1− cn) = (n− 1)ωn−1(1− cn) = (n− 1)ωn.

The second summand being −ωn−1cnωn = ωn, this yields ω2
n = (n− 1)ωn + ωn = nωn.
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B Appendix: Computational Tools

We now give a description of the tools from computational group theory and computational
representation theory we have employed, and indicate the computational ideas used to obtain
the explicit results concerning some larger Lie modules in Section 4. As a general background
reference, see [25].

B.1. To deal with �nite groups, in particular permutation groups, matrix groups and p-
groups, and to examine their structure, for example determining subgroup lattices and �nding
subgroup coset representatives, we use the general purpose computer algebra systems MAGMA
[7] and GAP [16]. Moreover, we make use of the character table library CTblLib [2] of GAP,
which provides electronic access to the data collected in the Atlas [8] and in the ModularAtlas
[22, 37]; these databases, in particular, contain the explicit 2- and 3-modular decomposition
matrices for various symmetric groups given in [20, App.] or [21, App. I].

Additionally, we have used the more specialized computer algebra systemMeatAxe [31, 32],
and its extensions [26, 27, 28, 29], to deal with various aspects concerning matrix represen-
tations over (small) �nite �elds. Apart from general linear algebra, these tools, in particular,
allow us to �nd composition series and direct sum decompositions, including isomorphism
checks of simple and indecomposable modules, respectively, and to �nd splitting �elds and to
check absolute indecomposability; moreover, they enable us to compute homomorphism spaces
and endomorphism rings, to determine radical and socle series, and to compute submodule
lattices; apart from these analytic capabilities, they also provide the constructions needed
below, such as Kronecker products and the computation of Heller translates.

B.2. To facilitate explicit computations, we make use of the observation in A.2, saying that
LieF (n) ∼= F ⊗Fp Liep(n) as FSn-modules, where

Liep(n) := FpSn · ωn ⊆ FpSn as FpSn-modules.

Thus we are indeed reduced to considerations of permutation representations, and matrix
representations over �nite (prime) �elds.

Having got our hands on the FpSn-module Liep(n), the task then is to �nd a decomposition
Liep(n) ∼= Liepf

p (n) ⊕ Liepr
p (n) into its projective-free and projective part, respectively, to

determine how Liepr
p (n) decomposes into projective indecomposable modules, and what the

indecomposable direct summands of Liepf
p (n) look like. However, the examples of Lie modules

Liep(n) to be dealt with here are too large to simply apply to them the general techniques
available to compute direct sum decompositions. Hence we have to proceed otherwise to �nd
Liepf

p (n) in the �rst place; after all, by the asymptotic results mentioned in the introduction,
we expect Liepf

p (n) to be small compared with Liep(n), small enough to allow for a detailed
analysis.

By [15], we know that, in order to detect Liepf
p (n), we only need to consider the component

Liepbl
p (n) of Liep(n) belonging to the principal p-block of FpSn. Using the p-modular decom-

position matrix of Sn, which is available for all cases considered here, and [4, Cor. 3.4], we
may determine dim(Liepbl

p (n)) in advance, and [4, Thm. 3.1] also tells us the projective inde-
composable direct summands of Liep(n)/Liepbl

p (n), so that next to Liepf
p (n) only the projective

indecomposable direct summands of Liepbl
p (n) have to be determined.
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B.3. To �nd an Fp-basis of Liep(n) or Liepbl
p (n) in the �rst place, let εn ∈ FpSn be the

centrally primitive idempotent belonging to the principal p-block of FpSn; recall that εn can
be computed from the ordinary character table of Sn. We now use the observation in A.5,
saying that an Fp-basis of Liep(n) is

{π · cn · ωn | π ∈ Sn−1} ⊆ Liep(n) ⊆ FpSn ,

implying that an Fp-spanning set of Liepbl
p (n) is given as

{π · cn · ωn · εn | π ∈ Sn−1} ⊆ Liep(n) · εn = Liepbl
p (n) ⊆ FpSn .

Hence our starting point is the regular representation FpSn of Sn, equipped with its
natural Fp-basis. Determining the permutation action of elements of Sn on coordinate vectors
with respect to this basis essentially amounts to computing with permutations in Sn. This
allows us to apply successively all elements of Sn−1 to cn ·ωn ∈ FpSn and cn ·ωn · εn ∈ FpSn,
respectively; to do this e�ciently, we �rst �nd a Schreier tree of Sn−1 in terms of some
generating set, our favourite one being {(1, . . . , n− 1), (1, 2)}.

Thus having found an Fp-basis of Liep(n), we directly determine the action of a generating
set of Sn, our favourite one again being {(1, . . . , n), (1, 2)}. For Liepbl

p (n), before doing so, we
pick an Fp-basis out of the Fp-spanning set obtained. These tasks are e�ciently solved using
the linear algebra routines available in the MeatAxe.

B.4. Next we proceed to �nd the projective indecomposable direct summands of Liepbl
p (n).

To do so, we apply a technique based on the considerations in [26]. In order to describe this
we �rst recall the relevant notions:

Let A be a �nite-dimensional K-algebra, where K is any �eld, and let S be a simple
A-module. Then, the endomorphism algebra EndA(S) is a skew �eld, and for a ∈ A let-
ting ker(aS) denote the kernel of the K-endomorphism of S induced by the action of a, we
have dim(EndA(S)) | dim(ker(aS)). Now a ∈ A is called an S-peakword, if dim(ker(a2

S)) =
dim(EndA(S)), and ker(aT ) = {0} for all simple A-modules T not isomorphic to S. In par-
ticular, if K is a splitting �eld of A, then the �rst condition just becomes dim(ker(a2

S)) =
dim(ker(aS)) = 1. In practice, peakwords are found by a random search, yielding a Monte
Carlo method, which for the case of K being a (small) �nite �eld is available in the MeatAxe.

Let now M be an A-module, and let a ∈ A be an S-peakword. Then, by [26, Thm.2.5],
the set of all submodules L of M such that L/Rad(L) ∼= S concides with the set of all
cyclic submodules of M generated by some v ∈

⋃
i>1 ker(aiM ) r {0}. Thus, in particular, all

submodules of M isomorphic to the projective cover PS of S are found this way, and for a
cyclic submodule L as above we have L ∼= PS if and only if dim(L) = dim(PS). Thus, if A is a
self-injective algebra, a random search through

⋃
i>1 ker(aiM ) yields a Monte Carlo method to

�nd a largest direct summand of M being the direct sum of copies of PS . Note that dim(PS)
is indeed known in advance in all explict cases considered here, and that, if K is a (small)
�nite �eld, then techniques to compute cyclic submodules are available in the MeatAxe.

B.5. Thus, quotienting out the projective direct summands found, we now have Liepf
p (n) in

our hands, at least with high probability. In all cases considered here this module turns out to
be small enough to apply to it the general techniques available in the MeatAxe to �nd direct
sum decompositions. The latter techniques would also �nd a projective direct summand left
over, thus providing a veri�cation of the above Monte Carlo results. Actually, for the examples
considered here, this even shows that Liepf

p (n) is indecomposable and non-projective.
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Hence we may now assume that we have got a non-projective indecomposable FpSn-
module M , for which we have to �nd a vertex and a source. In order to do so, we consider
the restriction ResSnPn (M) of M to the Sylow p-subgroup Pn of Sn; recall from 2.2 that, since

M is relatively Pn-projective, ResSnPn (M) has an indecomposable direct summand sharing a
vertex and a source with M .

Hence we may assume that M is an FpP -module, where P is a p-group. Again, we
have to �nd direct sum decompositions, which can be speeded up by detecting particular
indecomposable direct summands beforehand. Namely, in case of an FpP -module the strategy
described in B.4 specializes to the following: the set of all submodules L of M such that
L/Rad(L) is simple is precisely the set of all non-zero cyclic submodules of M . (Note that,
in terms of the language used above, since the trivial module is the only simple FpP -module,
the zero element in FpP is a peakword.) This leads to a straightforward Monte Carlo method
to �nd a largest direct summand of M that is the direct sum of copies of the regular module
FpP ; see [12, Sect. 3.2].

Quotienting out projective direct summands we again, in all cases considered here, end up
with a module whose direct sum decomposition can be computed with the general techniques
available in the MeatAxe.

Hence we may �nally assume that M is an indecomposable non-projective FpP -module
such that we are in a position to use the techniques described in [12, Sect. 3.1], whose basic
ingredient is Higman's Criterion for relative projectivity; an implementation is available in
MAGMA.

B.6. Finally, to make sure that computational results are still valid when going over to the
algebraically closed �eld F again, we always check that the indecomposable modules found are
actually absolutely indecomposable; techniques to achieve that are available in the MeatAxe.
Recall that it is well known that Fp is a splitting �eld of FpSn, hence absolute indecomposabil-
ity is automatic anyway for the simple modules and the projective indecomposable modules
found.
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