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Abstract

Let Lier(n) be the Lie module of the symmetric group &,, over a field F' of characteristic
p > 0, that is, Liep(n) is the left ideal of F'S,, generated by the Dynkin—Specht—Wever
element w,. We study the problem of parametrizing non-projective indecomposable sum-
mands of Liep(n), via describing their vertices and sources. Our main result shows that
this can be reduced to the case when n is a power of p. When n =9 and p = 3, and when
n = 8 and p = 2, we present a precise answer. This suggests a possible parametrization
for arbitrary prime powers.
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1 Introduction

The Lie module of the symmetric group &,, occurs in various contexts within algebra and
topology, where the name-giving property is its close relation to the free Lie algebra; for
more details, see for example the introduction in [14]. In the present paper, letting F' be an
algebraically closed field of characteristic p > 0, we realize the Lie module Lier(n) of &, for
n > 2, as the submodule F&,w, of the regular F'&,-module, where

wpi=1—c2)(1—c3)--(1—cy) € FG,

is the Dynkin—Specht—Wever element of F'S,,, where in turn ¢; € &,, is the backward cycle
(k,k—1,...,2,1). Moreover, dim(Liep(n)) = (n — 1)!; see A.5.

1.1. It is well known that w,% = nwy,. Hence if p does not divide n, then w,/n € F&, is
an idempotent, so that Liep(n) is then a direct summand of the regular F'S,,-module and is,
thus, projective. In the present paper we are interested in the case when p divides n, which
we assume from now on in this section. Then Liep(n) cannot be projective; for otherwise
dim(Lier(n)) = (n — 1)! would have to be divisible by the p-part of n!, which is not the case.
Therefore, in this case Liep(n) admits a decomposition

Liep(n) = Lieh (n) @ Lie‘}f(n),

where Liely (n) is a projective F'&,-module and where Lie%f(n) # {0} is a projective-free
F&,-module.

The asymptotic behaviour of the quotient dim(Lie}: (n))/ dim(Liep(n)) has recently been
studied by Erdmann—Tan [14], and by Bryant-Lim—Tan [5]. By [5, Thm. 1.2|, one has

dim(Lie} (n))

dim(Lieg(n)) — b

as n — oo in N~ {p¥ | k > 0}. Moreover, it is conjectured in [5] that this should remain
true when allowing n to vary over all natural numbers. This suggests that Lie%f(n) should be
small, compared with the entire Lie module Lier(n).



Moreover, by work of Erdmann—-Tan [15], we also know that the projective-free part
Lie%f(n) of Lier(n) always belongs to the principal block of F'G,,, and Bryant-Erdmann [4]
have studied indecomposable direct sum decompositions of the, necessarily projective, part of
Liep(n) not contained in the principal block of F'S,,. This leaves open, next to Lie%f(n), only
the direct sum decompositions of the component of Lie}: (n) belonging to the principal block
of F'&,,. We denote the principal block component of Lieg(n) by Lie%bl(n).

1.2. One key ingredient of our approach is a decomposition theorem, expressing Liep(n) as
a direct sum of pieces related to Lie modules Lier(p?), for various d such that p? divides
n. This is obtained by translating the Bryant—Schocker decomposition theorem [6] for Lie
powers to Lie modules, using work of Lim—Tan [24]. This paves the way to reduce questions
on Lie modules to the case when n is a power of p, and puts the Lie modules Liep(pd) into
the focus of study. In particular, one is tempted to ask whether there is a neat description of
the indecomposable direct summands of Liex(n) in terms of those of Liep(p?), where d varies
as indicated above. This has been fully accomplished for the case where p divides n but p?
does not, with a different line of reasoning, by Erdmann—Schocker [13], while the general case
remains a mystery and is subject to further investigations.

Very little information concerning the decomposition of the principal block component of
Lier(p?) is available in the literature, and the projective-free part Lie%f(pd) is very poorly
understood, even for very small exponents d: to our knowledge, the only cases dealt with
systematically are the modules Lie%f(p), that is, the case d = 1, by Erdmann—Schocker [13];
and, apart from the easy case Liep(4) = Lie%f(ll), there are just partial results for Liep(8), by
Selick—Wu [33]. The aim of this paper now is to investigate indecomposable direct summands
of Liep(p?), for a few further small values of p and d.

The major obstacle here is that, due to the exponential growth of the dimension of Lie
modules in terms of n, these modules quickly become very large. Hence, to proceed further
in this direction, we apply computational techniques. More precisely, by this approach we are
now able to give a complete description of the Lie modules Lier(8) of dimension 5040, and
Lier(9) of dimension 40320.

Actually, in both cases it turns out that the projective-free part of the Lie module is
already indecomposable, where Liel}f(S) has dimension 816, and Lier}f(Q) has dimension 1683.
In view of these results, and those on Lie%f(él) and Lie%f(p) mentioned above, the question

arises whether Liell)f(pd) is always indecomposable.

1.3. To analyze the projective-free part of Lier(n), we are, in particular, interested in the
Green vertices and sources of the indecomposable direct summands of Lie%f(n). Using the
reduction result mentioned above, to some extent we are able to reduce this problem for
arbitrary n to the case where n is a p-power.

Moreover, we are able to compute vertices and sources of Lie%f(8) and Lie%f(Q). It turns out
that both modules are endo-p-permutation modules, in the sense of Urfer [36], their vertices
are regular elementary abelian subgroups of Gg and &g, respectively, and their sources are
endo-permutation modules; in the sense of Dade [10], whose class in the Dade group we are
able to determine. It is surprising to us to see the class of endo-permutation modules appear
in this context.

Hence, in view of these results, and those concerning Lie%f(él) and Liefvf (p), one may wonder
whether Liell}f (p?), assumed to be indecomposable, always is an endo-p-permutation module
having regular elementary abelian vertices and endo-permutation sources, and, if so, what the



class of a source in the Dade group looks like. If this holds true, then, by our reduction results,
any indecomposable direct summand of any Lie module will have vertices and sources sharing
the same properties.

1.4. This paper is organized as follows: in Section 2 we provide the necessary prerequisites;
in particular, we recall the notions of Green vertices and sources, endo-permutation and endo-
p-permutation modules, and the Dade group.

In Section 3 we present a reduction, eventually showing that vertices and sources of inde-
composable direct summands of Lie modules in general can be described in terms of the results
in the p-power case. In order to do so, in Theorem 3.4 we provide a description of vertices and
sources of indecomposable direct summands of modules for wreath products, based on results
by Kiilshammer [23]. In Theorem 3.5 we present the decomposition theorem for Lie modules
mentioned above, and in Theorem 3.7 these are combined to prove the reduction result.

In Section 4 we collect the explicit computational results we have obtained for specific
examples; in particular, we revisit Liep(p) and Liep(4). We also discuss the major examples
Lier(8) and Lier(9), whose indecomposable direct sum decomposition we determine, together
with vertices and sources of the non-projective indecomposable direct summands occurring.
We then apply Theorem 3.7 to our computational data to derive Corollaries 4.7 and 4.8.

In order to make this paper sufficiently self-contained, in Appendix A we collect some
properties of Lie modules, some variations on the construction, as well as Lie powers and their
relation to Lie modules via the Schur functor. Many of these observations are certainly well
known to the experts, but explicit references are not too easy to find.

Finally, Appendix B is devoted to presenting some details of the computational ideas and
tools we have been using to deduce our results in Section 4.
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2 Prerequisites

2.1. Generalities. (a) Throughout this paper we assume that F is an algebraically closed
field of characteristic p > 0. Whenever G is a finite group, an F'G-module is understood to be
a left F'G-module of finite F-dimension, unless stated otherwise. If M and N are FG-modules
such that N is isomorphic to a direct summand of M then we write N | M.

Whenever G is a finite group, H is a normal subgroup of G, and M is an F[G/H]-module,
we denote by Infg / (M) the FG-module obtained from M via inflation. More generally, by
abuse of notation, given a fixed epimorphism of groups G — K and an FK-module M, we
denote the FG-module obtained via inflation with respect to this epimorphism by Inff((M )
as well.



(b) By &,, we denote the symmetric group of degree n > 1. We view permutations in
G, as maps, applied to the left, and then the product is composition of maps. So they are
multiplied from right to left; for instance, we have (1,2)(2,3) = (1,2, 3).

We assume the reader to be familiar with the basic notions of the representation theory of
the symmetric group. For detailed background information, we refer to [20, 21]. The Specht
modules S* of the group algebra F'&,, will, as usual, be labelled by the partitions A of n, and
the simple F'&,,-modules D* by the p-regular partitions of n. Furthermore, we denote by P*
a projective cover of D*.

(c) Whenever G is a finite group with subgroups H and K, we write H <qg K if H is
G-conjugate to a subgroup of K, and we write H =g K if H is G-conjugate to K.

Next we recall the notions of vertices and sources of indecomposable modules over group
algebras, and we summarize some basic properties of endo-permutation modules over finite
p-groups. The latter class of modules has been introduced by Dade [10], as generalizations of
permutation modules. They have proved to play an important role in the modular representa-
tion theory of finite groups, and, as we shall see in subsequent sections, also appear naturally
in the context of Lie modules. For a detailed account on the theory of vertices and sources
we refer the reader to [30, Chap. 4.3|. Background information concerning endo-permutation
modules can be found in [10, 11] and in [34, §28].

2.2. Vertices and sources. (a) Let G be a finite group, and let M be an indecomposable
FG-module. By Green’s Theorem [17], we can assign to M a G-conjugacy class of p-subgroups
of G, the vertices of M. A vertex ) of M is characterized by the property that ) is minimal
such that M is relatively Q-projective, that is, M is isomorphic to a direct summand of
the induced module Indg(N ), for some indecomposable F'Q-module N. In particular, M is
projective if and only if @ = {1}.

Given a vertex Q of M, an indecomposable F'()-module L such that M is isomorphic to a
direct summand of Indg(L) is called a Q-source of M, and is unique up to isomorphism and
conjugation with elements in Ng(Q). Moreover, @ is also a vertex of L.

(b) Let B be the block of FG containing M. If @ is a vertex of M then there are a
defect group R of B and a Sylow p-subgroup P of G such that Q < R < P. Moreover, as a
consequence of Green’s Indecomposability Theorem [17], |P : Q| divides dim(M).

(c) Suppose that H < G is any subgroup of G and that N is an indecomposable direct
summand of the restriction Res% (M) with vertex R and R-source L. Then there are a vertex
Q of M and a @-source L of M such that R < @ and L' | Resg(L). This is seen as follows:

Let Q be any vertex of M, and let L be any Q-source of M. Then we have L’ | Resf (N) |
Res% (M) and M | Indg(L), thus L' | Resg(lndg(L)). Now, by Mackey’s Theorem and the
fact that L’ has vertex R, this implies L’ | Res;Q(gL), for some g € G such that R < 9Q. But
9(@) is also a vertex of M, and 9L is a 9Q-source of M, whence the claim.

In particular, if H < G is such that M is relatively H-projective, then M | Ind% (Res% (M)
implies that there is an indecomposable direct summand of Resg(M ) sharing a vertex and a
source with M.

(d) Suppose, conversely, that H > G is a finite overgroup of G and that N is an indecom-
posable direct summand of Indg (M). Then, given a vertex @ of M and a @-source L of M,
there is a vertex P of N such that P < @, and there is some P-source of N that is isomorphic
to a direct summand of Resg(L). This is seen as follows:
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Let P be any vertex of N, and let L' be any P-source of N. Then, by Mackey’s Theorem
again, we get L' | Res}ILJQ(hL), for some h € H such that P < "Q. In other words, we have
O Res?_lp(
the claim. (Note that we cannot conclude that I s an arbitrary W' p_source of N, since
the conjugating element h might depend on the choice of L'.)

In particular, since M | Resf (IndZ (M), there is some indecomposable direct summand
of IndZ (M) sharing a vertex and a source with M.

—1 . —1 . —1
L), where " P is also a vertex of N, and *~ L’isa " P-source of N, whence

2.3. Endo-permutation modules. An F'G-module M, where G is a finite group, is called
an endo-permutation module if its F-endomorphism ring Endp(M) =2 M®M* is a permutation
FG-module. We list some properties of endo-permutation modules that we shall need later in
this paper:

(a) Permutation modules are endo-permutation modules. The class of endo-permutation
modules over finite p-groups is closed under taking F-linear duals, direct summands, tensor
products, restriction to subgroups, inflation from factor groups, and taking Heller translates €2
and Q! but it is neither closed under taking direct sums, nor under induction to finite over-
groups. In particular, any indecomposable endo-permutation module has endo-permutation
sources.

(b) The problem of classifying the indecomposable endo-permutation modules for finite
p-groups P has been worked on by various people. The final classification result was obtained
by Bouc [1], but when P is abelian, the following classification result is already due to Dade
[11]. We shall describe this result below; this is the version we shall need.

Note that it is indeed sufficient to classify the indecomposable endo-permutation F P-
modules with vertex P, since if M is an indecomposable endo-permutation F'P-module with
vertex () < P then any @Q-source S of M is an endo-permutation F'Q-module with vertex @,
and by Green’s Indecomposability Theorem |17| we have M = Indg(S ).

2.4 Theorem (|11, Thm. 12.5]). Let P be an abelian p-group, and let M be an indecomposable
endo-permutation FP-module with verter P. Then M s, up to isomorphism, the unique
indecomposable direct summand of

® Inlez/Q(QnQ (Fp/q))
|P:Q|=3

having vertex P. Here ng € Z, for Q < P, is uniquely determined by M if P/Q is non-cyclic;
otherwise ng is uniquely determined modulo 2.

In other words, the isomorphism types of indecomposable endo-permutation F'P-modules
with abelian vertex P are in bijection with the elements of the Dade group

D(P) > A > 7.2

|P:Q|>3, P/Q non-cyclic |P:Q|>3, P/Q cyclic

For a precise definition of the Dade group of an arbitrary p-group P and further details, see
[10] and [34, §29]. Whenever S is an indecomposable endo-permutation F'P-module with
vertex P, its image in ©(P) will be denoted by [S]. If S and S’ are indecomposable endo-
permutation F'P-modules with vertex P then their tensor product S ® S’ has a unique (up



to isomorphism) indecomposable direct summand T with vertex P, and the multiplication in
D(P) is then given by [S] - [S'] := [T].

2.5. Endo-p-permutation modules. According to Urfer [36, 35], one can weaken the
notion of endo-permutation modules as follows: an F'G-module M, where G is a finite group,
is called an endo-p-permutation module, if its F-endomorphism ring Endp(M) = M @ M* is a
p-permutation F'G-module, that is, all its indecomposable direct summands are trivial-source
modules.

(a) Again, one has the following standard properties of endo-p-permutation modules: endo-
permutation modules are endo-p-permutation modules. The class of endo-p-permutation mod-
ules is closed under taking F-linear duals, Heller translates, direct summands, tensor products,
restriction to subgroups, and inflation from factor groups, but it is neither closed under tak-
ing direct sums, nor under induction to finite overgroups. Note that for finite p-groups the
classes of endo-p-permutation modules and of endo-permutation modules coincide, thus any
indecomposable endo-p-permutation module has endo-permutation sources.

(b) A characterization of indecomposable endo-p-permutation module in terms of vertices
and sources is given in [36, Thm. 1.5]. For the cases of interest in the present paper it can be
rephrased as follows:

Let P < G be a p-group. As before, for any indecomposable endo-permutation F'P-module
S with vertex P let [S] € ©(P) be the associated element of the Dade group. Then [S] € ©(P)
is called G-stable if

Resbop([S]) = Resiyp([99]) € D(PNIP), forall geG.

Then, by [36, Thm. 1.5, an indecomposable FG-module with vertex P and P-source S is
an endo-p-permutation module if and only if S is an endo-permutation module such that [S]
is G-stable.

(¢) As in part (b), let P < G be a p-group. In good situations the G-stable elements of
D(P) are described by a Burnside-type fusion argument as follows:

Suppose Ng(P) controls fusion in P, that is, whenever @ < P and g € G are such that
9¢) < P, there are some h € Ng(P) and z € Cg(Q) such that g = hz. Then, by [36, Lemma
1.8, Prop. 1.9], an element [S] € ©(P) is G-stable if and only if it is fixed by the conjugation
action of Ng(P) on ©(P). (Note that we do not require an additional saturation condition
here, as is done in [36]: an inspection of the proofs of [36, Lemma 1.8, Prop. 1.9] shows that
they are valid under the assumptions made here.)

Moreover, if P is abelian then an element [S] € ®(P) is an Ng(P)-fixed point if and only if
the associated function Q — ng is constant on the Ng(P)-orbits on {Q < P | |P : Q| > 3}.

3 A Reduction Theorem

The aim of this section is to establish Theorem 3.7, which will allow for a partial reduction of
the question concerning vertices and sources of indecomposable direct summands of Lie%lc (n)
to the case where n is a p-power. The key ingredients will be Theorem 3.5, where we translate
properties of Lie powers into the language of Lie modules, and Theorem 3.4 on vertices of
indecomposable modules of wreath products. Therefore, we start out by collecting a number
of general facts on wreath products and their representations, which we shall then apply in
the context of Lie modules.



3.1. Wreath products and their modules. (a) Let G be a finite group, and consider the
wreath product
G166, :={(91,---,9n;0) | 91,---,gn € G, 0 € &, }.

Recall that the multiplication in G &, is given by
(91, gni0)(ha, oo by ) = (g1hg-1(1)5 - - - Gnhg-1(n); 0T0) (1)
for g1,...,9n,h1,...,hy, € G and 0,7 € &,. Hence we have the natural epimorphism
TIG16, — 6y, (91,5 9n30) — 0.

We denote by G" the base group of G &, that is,

Moreover, letting of := (1,...,1;0) € G1&,, for 0 € &,,, we get an isomorphism
Sl ={o* |0 e6,}=6,;

note that the map (—)* : &, — G168, is a section for the natural epimorphism ~ : G &,, —
&,,. More generally, if H < G and U < &,, then we further set U := {0 | 0 € U} < &%, as
well as H" :=={(g1,.--,9n;1) | 91,---,9n € H} < G™, and

H2U :={(g1,---+9n;0) | 91, sgn € Hyo € U} < G1 6,

(b) Let M be an FG-module. Then the (outer) tensor product M®" = M @ --- @ M
becomes an F[G ! &,]-module via

(91, gni0) (@1 @ -+ @ Tp) i= G1T5-1(1) @+ * ® GnTo—1(n)

for g1,...,9n € G, 0 € &, and x1,...,x, € M. This module is called a tensor-induced
module.

From now on, we denote by A(m,n) the set of compositions of n with at most m non-zero
parts. If A = (A1,...,A\m) € A(m,n) then we denote by & the corresponding (standard)
Young subgroup Gy, x --- x &), of &,. With this notation,

(GZG)\l) X o X (GZG)\M) 2G16,<6G16,.
Thus, if M, ..., M,, are FG-modules, the (outer) tensor product
M®>\ — M{@M QR ® M®>\m
° m

carries an F[G ! &,]-module structure.

Moreover, suppose again that H < G and U < &, and let L be an F'U-module. Then,
via the map (—)f, the FU-module L can be viewed as an FU®-module, which we denote
by Lf. Via inflation along the natural epimorphism ~, the FU-module L becomes also an

F[H  Ul-module, which we denote by L := InfgzU(L). Thus we have Resg;U(E) =Lk

(c) Let N be an F'&,-module, and again let M be an FG-module. In this section, we
shall describe vertices and sources of indecomposable direct summands of the F[G1&,,]-module



M®"@N in terms of those of the indecomposable direct summands of M and N. We, therefore,
recall the structure of the indecomposable direct summands of the F[G ! &, ]-modules M®"
and N , respectively:

Let Ni,..., N; be pairwise non-isomorphic indecomposable F'&,-modules, and by, ...,b; €
N be such that N 2 b N1 @ - -- ® b N;. Then we get

l
N = Infd'""(N) = P b Inf ' (N;) = @D biV;,
=1 ]

where the F[G16,]-modules N; = Infgf“ (N;) are pairwise non-isomorphic and indecompos-
able. Thus, the indecomposable direct summmands of the F'&,-module N and those of the
F[G16,]-module N are in natural bijection, and hence in the sequel we may assume that N
is indecomposable.

As for M®" let My,..., M,, be pairwise non-isomorphic indecomposable F'G-modules,
and let aq,...,a, € N be such that

M=aM; @ - D anMy,.

Then we have the following well-known result; we include a proof for the readers’ convenience.

3.2 Lemma. With the notation as in 3.1(c),

M= P ey Indglen (MPM @@ MG
AeA(m,n)

is an indecomposable direct sum decomposition of the F|G 1 &,)-module M®™, for suitable
cy € N,

Proof. We have an isomorphism of F[G &,]-modules

MO =~ @ C)\'(@Ml(@"'@ﬁn);
A=(A15eAm)EA (M)

the inner sum being taken over all n-tuples (Ml, e ,Mn) of FG-modules satisfying
{1<j<n|Mj=M}Y=»X, for i=1,...,m.

The respective coefficient ¢y equals a}? - - - a)m.

Given A = (A1,..., Am) € A(m,n), the sum @(Ml ®-® Mn) is a transitive imprimitive
F[G6,]-module, and the direct summands M, ® -+ ® M, form a system of imprimitivity.
One of these direct summands equals M®* = Mfa’\l ® - @ ME>m, Its restriction to the base
group G" of G G, is indecomposable, and its inertial group in G &,, equals G &). Thus,
by [9, 50.2], we deduce that

@M1 ®-~~®M = Indgggz(M@‘)

and, by [23, Prop. 4.1], Indgsgz (M®*) is an indecomposable F[G ! &,]-module. O]



3.3. Wreath products and vertices. We retain the notation from 3.1(c). In particular,
we suppose that N is an indecomposable F'G&,-module. We now want to examine the vertices
and sources of the indecomposable direct summands of the F[G ! &,]-module M®" @ N ;a
description is given in Theorem 3.4 below. To this end, let P be a Sylow p-subgroup of G,
and for j = 1,...,m let R; be a vertex of the F"G-module Mj;.

(a) Now let L be an indecomposable direct summand of M®" @ N. Then, by 3.1(c) and
Lemma 3.2, there is some A = (A1,...,Ap) € A(m,n) such that L is isomorphic to a direct
summand of

~

md%S (MM @ N = IndgggZ(M®A ® Resgigi (V)

(€GN
=~ Indga” (M®* @ Infd'™ (Resg" (N))) -

Then, by [23, Prop. 5.1| and the discussion preceding it, there is an indecomposable direct
summand N’ of Resg” (V) such that

L= Indgsgz (L), where L' :=M*® N'.

In particular, L' is an indecomposable F[G ! &)]-module. Now, if Q' < &) is a vertex of N/,
then
Q:=(RMx-- xR x(Q)VF<G16,<G16, (2)

is a common vertex of L and L'

(b) We consider a common @Q-source S of the F[G ! &,]-module L and the F[G &,]-
module L'. To this end, we from now on additionally suppose that each of the F'G-modules
M, ..., M,, has trivial sources. Note that this, in particular, includes the case that all these
modules are projective.

Let Py = P\, x---x Py, be a Sylow p-subgroup of the Young subgroup 6, = G, x--- X
S,,,- Then, in consequence of |23, Prop. 1.2, Prop. 3.1],

Ry = (R} ><--~><R;\n’")mPf\:(RlzPAI)x-~-><(Rm2P,\m)<G26A

is a vertex of the indecomposable F[G1&,]-module M®*, and M®* is a trivial-source module,
that is, M®* | Imdf.;;GA (F'). (Note that the assertion on vertices is just a special case of (2).)

Suppose that S’ is a @Q’-source of the FSy-module N’. From [19, Prop. 2] we deduce that
the F[G1&,]-module N := Infglf’* (N') has vertex P1Q’, and &' := Infng/(S’) isa (P1Q")-
source of N'. Thus we have N’ ] Indggg? (§’ ). Hence Mackey’s Tensor Product Theorem shows
that there is some g € G1 &)y, such that L’ is a direct summand of Indgzek(Resg@(PZQ/)(g@)),
where

Q:=R\NIYP1Q)<G16,.

Hence S is a direct summand of RengGA(Indgl@(ResgPlQ/)(gs\’))), thus, by Mackey’s

Theorem, there is some h € G1 &), such that S is a direct summand of

hQ I(PQ’ = hg( P10’ ~
Indgmhé(ResQ%h@ h(Resé( Q )(95’/))) = Indgmhéj(ResQéhéQ )(hgg))_

~ h / ~
Since S has vertex @, we infer Q N"Q = @, so S is a direct summand of ReSQg(PZQ )(th’).



Now we consider the natural epimorphism ~ : G1&y — &y, and let ¢ := hg € &,. Then

Q=R x- xRy = (Q)=Q<mMP1Q)="Q .

Hence we have 0 € Ng, (Q’). Moreover, since the base group G™ acts trivially on §’, we
infer that Q N G™ = Ri\l X -+ x RM acts trivially on S, and since S’ is an indecomposable
FQ'-module, we finally conclude that

~ hg P ! o ~ ag
S = Res, ') ("957) = fd,(75").

Recall from 2.2 that, since S’ is a Q'-source of N/, so is 75",

(¢) Keep the notation as in part (b), and suppose additionally that the FG-module M
is projective, that is, Ry = --- = R, = {1}, thus Q = (Q')*. Furthermore, we now get
ot = (1,...,1;0) € Nge, ((Q")F), since o € Ng, (Q'). Hence we have S = (°8')F = (9.
Since S’ was an arbitrary Q’-source of N’, this shows that indeed every @’-source of N’, in
the way just described, yields a common Q-source of L and L'.

Altogether we have, in particular, now proved the following:

3.4 Theorem. Let M be an FG-module, let N be an indecomposable F&,,-module, and let
L be an indecomposable direct summand of the F|[G ! &,]-module M®™ @ N. Suppose that
M = @' a;M; is an indecomposable direct sum decomposition of the FG-module M. For
j=1 45

j=1,...,m, let R; be a vertex of M.

(a) There are some X = (A1,...,A\m) € A(m,n) and an indecomposable direct summand
N’ of Resg?(N) such that L = Indgng(M@\ ® N'). For every vertex Q' < &y of N, the
group

Q:= (R x-- xRy % (Q)<G16,<G16,

1s a vertex of L.

(b) Suppose in addition that My, ..., My, are trivial-source modules. Then there is, more-
over, a Q'-source S’ of N’ such that Infg/(S’) is a Q-source of L. Here the inflation is taken
with respect to the natural epimorphism Q — Q.

(c) If M is a projective FG-module, and if X\ and N’ are as is part (a), then (Q')* is a
vertex of L. If " is any Q'-source of N’ then (S")* is also a (Q')F-source of L.

We now come back to Lie modules and their direct sum decompositions. The next theorem
is a consequence of the results in [3], [6] and [24]. The latter are concerned with Lie powers
of the general linear group, where for more details and the notation we are using we refer the
reader to Appendix A.

3.5 Theorem. Let k > 1 withp{ k. Then, for every s > 0, there is a projective F S pps-module
Xpips such that, for all d > 0, one has

¢ —

d
. ~ (G} d— X -
Liep (lp") = PInde e, , (X! @ Lier (™). ®)
t=0
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Proof. We fix n := kp?, for some d > 0, and consider the natural F[GL,(F)]-module E :=
F". In accordance with (8) in Appendix A, we denote by L"(E) the n-th Lie power of E.
Then, as explained in A.2(b), the Lie module Lier(n) is the image of the F[GL, (F")]-module
L™(E) under the Schur functor 20", taking n-homogeneous polynomial F[GLy,(F)]-modules
to F'S,,-modules.

By [3, Thm. 3.4, for all ¢ > 0 there are idempotents fi,: in the group algebra F&y,,,
only depending on p, k and t, but independent of n, such that there is an isomorphism of

F[GL,,(F)]-modules
d

P L (B« fr) (4)

t=0

L"(E)

I

here, as detailed in A.1(a), the group &, acts from the right on E®kP" by place permutations,
and we denote this action by x*.

Now fix some 0 < t < d, and set m := kp' and ¢ := p?~*. Suppose that V is any polynomial
F[GL,(F)]-module that is homogeneous of degree m, so that the Schur functor can be applied
to V, yielding the left F'&,,,-module 20" (V). Then, by [24, Cor. 3.2|, there is an isomorphism
of F'S,-modules -

W(LAV)) = ndS" o (W"(V)™ & Lier (9))

We apply this to our fixed direct summand on the right-hand side of (4), with V := E®™ x f,,.
Thus letting
X = W"(E®" * f)

yields the decomposition (3), and it remains to show that X, is a projective F'&,,-module,
and does not depend on the F[GL, (F')]-module E used to define it.

But, since n > m, the Schur functor Q0™ takes E®™ to the regular module F'&,,, and the
isomorphism 20" (E®™) = F'S,, translates the place permutation action into right multipli-
cation. Thus we deduce

X = WH(E®™ x f,) = W(E®™) % f, 2 FSpy - frn,
which is of course a projective F'S,,-module, and independent of n. O

Note that also for the case k = 1, which is excluded from the present discussion, we have
a decomposition similar to (3), but in this case becoming trivial inasmuch as for t = 0 we get
the trivial F'&1-module X; = F', and X+ = {0} for ¢ > 1. Thus the crucial question arising
now is whether the projective modules Xy, in the decomposition (3) could possibly be {0}.
The next lemma, based on the calculations in [5], shows that this is not the case, a result
which will be essential for Theorem 3.7 below.

3.6 Lemma. Keep the notation as in Theorem 3.5. Then Xy, # {0}, for all t > 0.
Proof. For t > 0, write

dlm(kat) . dlm(kat)

TR Qim(Liep(kpt)) | (kpt — 1)

Note that, taking d = ¢ in Theorem 3.5, we see that X}, is isomorphic to a submodule of the
Lie module Liep(kp'). Thus 0 < @y, < 1 and it suffices to show that ay,: > 0. Now observe

11



that, in the notation of [5, page 851], we have X}, = C(kp'). Hence, by [5, (10)],

t

/ 7

xkpt =1- E ai($kpt—i)p y
=1

where a) = (kp'=H)~(®'=1_ Since k > 1, we have

i oo
S g <Y<Y KT <N kT = (k-1 <1
=1 ; ; j=1

=1 =1
Therefore, xj,: > 0. O

We are now in a position to formulate the following result, reducing the problem of de-
termining vertices of indecomposable direct summands of Liel}f(n) to the case where n is a
p-power.

3.7 Theorem. Let n = k- p?, for some d >0 and some k > 1 with p{ k.

(a) Let L be an indecomposable direct summand of Liep(n) with vertex Q. There is an
integer t € {0,...,d}, a composition X of p?t, and an indecomposable direct summand L' of

S 4—
Resg’;d "(Liep(p?=t)) such that
Q <es, (Q)F < 6& <Gyt 16,0 <6,y for every vertex Q" of L'

(b) In the situation of part (a), if S" is a Q'-source of L', then there is a Q-source S of
L such that S | Resg?,)u((S’)ﬁ). Moreover, there is an indecomposable direct summand K of

Lier(p®™t) having a vertex R with Q' < R. Furthermore, there is an R-source T of K such
that S’ | Resg, (T).

(c) Conwversely, let 0 < t < d, and let K be any indecomposable direct summand of
Liep(p?~t) with vertex R. Then there is an indecomposable direct summand L of Liep(n)
with vertex RY, and every R-source of K is then also an Rf-source of L.

Proof. Parts (a) and (b) are immediate consequences of 2.2, Theorem 3.4 and Theorem 3.5.
Note that here we need the fact that the F'Gy,.-modules Xj,,+ in Theorem 3.5 are projective.

It remains to prove (c). So let t € {0,...,d}. Let further X be any indecomposable
direct summand of the F'&y-module Xj,+; note that here we need Lemma 3.6 to ensure that
all the projective modules in Theorem 3.5 are indeed non-zero. Now consider the one-part
partition A = (p?~*) of p?~*. Then, by 3.3, we get the indecomposable F[S},: & ,a—]-module
L' = X®" " @ K. By Theorem 3.4(c), L' has vertex R*, and every R-source T of K yields
the Rf-source T% of L'. As we have remarked in 2.2(d), there is an indecomposable direct
summand L of Indg:p“epd_t (L) with vertex R* and Rf-source T%. By Theorem 3.5, we have

Indg:pt S 0 (L") | Liep(n), and hence assertion (c) follows. O
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4 Computational Data

In this section we present our computational results concerning the Lie modules for some
symmetric groups. Before doing so, we need a few preparations. More details on specific
computational techniques and implementations used to obtain the results of this section are
given in Appendix B.

4.1. Some subgroups of symmetric groups. (a) We shall use the following convention
for denoting the Sylow p-subgroups of the symmetric group &,,: suppose first that n = p?, for
some d > 0. Moreover, we set P, := 1 and P, := C), where C), := ((1,2,...,p)), as well as

Ppiv1 =Pt Cpy={(g91,---,9p;0) | g1, -, 9p € Ppi, 0 € Cp} for i>1.

Note that the multiplication in P11 is as explained in (1). For i > 0, we view P, as a
subgroup of &, in the obvious way. Then, by [21, 4.1.22, 4.1.24], P, is a Sylow p-subgroup
of &,,, which can be generated by the following elements in &,:

pi~t
gi=[[k+p L k+2p7 ! k+(p-1)p ") with j=1,....d.
k=1

Next suppose that p | n, but n is not necessarily a p-power. Consider the p-adic expansion
n = Z‘;:lajpij, forsome s > 1,41 > ... >4, > 1l,and 1 < oj <p—1forj=1,...,s.
By [21, 4.1.22, 4.1.24], P, := [}, H?jle P,
direct factor P, ; is acting on {1,... P, Py 5 is acting on {p" +1,...,2p"}, and so on.

If n is not divisible by p, let m < n be maximal such that p | m, and set P, := P, so
that P, is a Sylow p-subgroup of &,, also in this case.

is then a Sylow p-subgroup of &,,. Here, the

(b) For d > 1 we denote by E,« the following maximal elementary abelian subgroup of
Pa that acts regularly on {1,...,p%}: recall thg generators gi, ..., gq of P, from (a) above.
Forj=1,...,d—1,1let gj 41 := Hf:_ol g§+1gjg;i1, and for [ =1,...,d—j— 1, we inductively

set
p—1

95,j+1,..5++1 = H 9}+l+1 "G5 g+1, 4 gj_ﬁlﬂ .
i=0
Then E,a := (91,..d592,....d> - - -+ 9d—1,d> 9d), and we get |Ea| = p?. Letting n := p? and
Q := E,a, we determine the structure of Ng, (Q):

Since Q < G,, is an abelian transitive subgroup, it is self-centralizing, and thus Ng, (Q)/Q
is isomorphic to a subgroup of GL4(p). Moreover, since the affine linear group AGL4(p) =
Cg x GLg(p) acts transitively and faithfully on its elementary abelian subgroup C’g, there is
an embedding AGL4(p) — &,,, mapping Cg to Q. Hence we conclude that

N, (Q) = Q % GL4(p).

Thus Ng, (Q) acts transitively on each of the sets {R < Q | |R| = p'}, for 0 < i < d,
and the stabilizer Ny, (g)(R) induces the full automorphism group on any subgroup R < Q.
Hence Ng, (Q) controls fusion in @, in the sense of 2.5.
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4.2 Example. If p = 2 and n = 4 then

Py =((1,2),(1,3)(2,4)) and
Ey = <(172)(374)7 (1a3)(2a4)>'

If p=2 and n = 8 then

Ps = ((1,2),(1,3)(2,4), (1,5)(2,6)(3,7)(4,8)) and

&
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If p=3and n =9 then

Py = ((1,2,3),(1,4,7)(2,5,8)(3,6,9)) and
Eo = ((1,2,3)(4,5,6)(7,8,9), (1,4,7)(2,5,8)(3,6,9)).

4.3 Remark. (a) Before proceeding to computationally substantial examples, for later use
we recall the following well-known case: by [13, Cor. 9] the projective-free part Lie%f (p) of the
Lie module Lieg(p) is indecomposable, and actually isomorphic to the Specht module Sp=1.1)
of dimension p — 1, hence

Lie%f(p) = Q(F) as FS,-modules.

Hence Lie%f(p) has vertex E, = Cp, of course, and Q(F) is an Ej-source, having dimension
p—1. Note that the F'Ey,-module Q(F) is an endo-permutation module. Thus, from Theorem
2.4 and the remarks in 2.5 and 4.1(b) we conclude that Lie%f(p) is an endo-p-permutation
module.

(b) In view of the subsequent results, we ask ourselves whether Lie%1c (p) itself possibly is
an endo-permutation F'Sp-module. Indeed, for p = 2 we have Liep(2) = Lielj’,f(Z) = F, hence
Lie%f(Z) is even a permutation FSy-module.

For p = 3 we have Liep(3) = Lie%f(fi) ~ Q(F), and from the theory of blocks of cyclic
defect it is immediate that

Lieb (3) @ LieP (3)* = Q(F) @ Q(F)* = F & P2V |

where D31) is the sign representation. Note that, in accordance with part (a), all indecom-
posable direct summands of Lie‘l}f(B) ® Lie%f(B)* are indeed trivial-source modules.

To show that LieI}’;f(3)®Lie§’,f(3)* is not a permutation F'G3-module, assume to the contrary
that it is. Thus, by dimension reasons we conclude that P is an indecomposable transitive
permutation FSs-module, but P21 does not have the trivial module as an epimorphic image,
a contradiction.

We now turn to specific examples, dealt with by computational techniques. However,
efficient machine treatment is only feasible for modules over finite fields. Hence, as explained
in A.2(b), we pass from the Lie F&,-module Lier(n), defined over the algebraically closed
field F, to its Fj-form Liey(n), defined over the prime field IF,,.
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4.4. Examining Lies(4). Let p = 2. We examine the Fo&4-module Liey(4).

(a) By A.5, dim(Liez(4)) = 3! = 6. A dimension consideration shows that Liey(4) can-
not contain a projective direct summand, hence Lies(4) coincides with its projective-free part
Liegf(él). Moreover, it is easily checked computationally, that Liegf(ll) is absolutely indecom-
posable, more precisely we have

Lieb' (4) =2 Q~1(DGY),

where DG = Infgg(D(Q’l)) is the simple Fo&4-module of dimension 2, and the inflation is
along the natural isomorphism &4/F; = &3. Since D@D s a pro jective simple FoG&3-module,
D®BY is a trivial-source module with vertex Ey. Thus we conclude that Liegf(él) has vertex
Ey, and Q71(F) = FoEy/ Soc(F2Ey) is an Ey-source, having dimension 3.

Note that Q7 !(Fy) is an endo-permutation module. Thus from Theorem 2.4, and the
remarks in 2.5 and 4.1(b), we conclude that Liegf(ll) is an endo-p-permutation module.

(b) In view of the above and the subsequent results, it seems worthwhile to show that
Liegf(él) is not an endo-permutation FoGS4-module. To this end, we compute an explicit
indecomposable direct sum decomposition of Lieb (4) @ Lieb! (4)*:

Lieh'(4) ® Lie} (4)* = DGV @ Ind§* (F2) & PY © 3. PG | (5)

where both projective indecomposable Fo& 4 -modules P@ and PGY have dimension 8. Note
that, in accordance with part (a), we indeed observe that all indecomposable direct summands
of Liegf(él) ® Liegf(él)* are trivial-source modules.

To show that Lieb' (4)@Lieb' (4)* is not a permutation Fo&,-module, assume to the contrary
that it is. Then there is some H < &4 such that DB g isomorphic to a direct summand of
Ind$?* (F2) and such that Ind5*(F2) is isomorphic to a direct summand of Liegf(él) ® Liegf(él)*.
In particular, D1 is then relatively H-projective, and since, by (a), By < &y is a vertex of
DBV we infer E4 < H. On the other hand, H cannot possibly contain a Sylow 2-subgroup
of By, since otherwise Indg4 (F9) would have the trivial Fo&4-module as a direct summand.
This leaves the cases H € {FE4,204} where 24 is the alternating group of degree 4. But if
H =2y then DY 4 Ind$* (Fy), and if H = Ey then 2- DGV | Tnd$* (Fy). In either case, we
obtain a contradiction.

4.5. Examining Lies(8). Let p = 2. We examine the FoGg-module Liey(8).

(a) By A.5(a), dim(Lie2(8)) = 7! = 5040. Moreover, using the 2-modular decomposition
matrix of Sg and [4, Cor. 3.4], we find dim(Liegbl(8)) = 4016. By work of Selick-Wu [33], it

is known that
Liel™ (8) = Liel (8) @ 2 - P62 g PO g 4. p431) ©)

and we infer that dim(Liegf(S)) = 816 = 2% .3 -17. We have verified the decomposition
(6) independently, with the computational techniques described in Appendix B. In addition
to the calculations in [33], we have checked explicitly that Liegf(S) is actually absolutely
indecomposable.

(b) We shall subsequently describe the vertices and sources of the projective-free part
Liegf(S). In order to do so, we consider the restriction of Liegf(8) to the Sylow 2-subgroup P
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of Gg; note that, since |Pg| = 27, from 2.2 we conclude that every vertex of Liegf(8) has order
at least 8. Our computations yield the following decomposition:

Res?? (Lieh (8)) = My @ Ma ® (cyc),

where ‘(cyc)’ denotes a direct sum of absolutely indecomposable Fq Pg-modules with vertex
Z(Pg) of order 2, and with trivial sources.
The direct summand My is absolutely indecomposable of dimension 96, and has vertex

V=((1,3)(2,4)(5,6)(7,8), (1,4)(2,3)(5,8)(6,7)) = Cy x Co

of order 4, and a V-source isomorphic to FoV/ Soc(FoV) = Q~1(Fy). In particular, the sources
of M are endo-permutation modules.

The remaining direct summand, M, is absolutely indecomposable of dimension 336, and
has vertex Fg and an Eg-source S of dimension 21 satisfying

Endp, ()= S®@S*=F,e @ 2 -Wnd5(F) e (proj),
Q<Es, |Q|=2

where ‘(proj)’ denotes a projective FyEg-module. Consequently, Endp,(S) is a permutation
Fy Eg-module, that is, S is an endo-permutation FyFg-module. In fact, by Theorem 2.4, the
isomorphism type of S is determined by the following isomorphism, which is easily verified
computationally, using the techniques in Appendix B:

PF) o Q) Ifg (7 (F2)myq)) = S @ (proj).
Q<Fs, 1Q|=2

Note that S is the only non-projective direct summand occurring.
In conclusion, this shows that Liegf(8) has vertex Eg and endo-permutation source S. In
particular, by 2.5 and 4.1(b), we conclude that Liegf(S) is an endo-p-permutation module.

4.6. Examining Lie3(9). Next let p = 3. We examine the F3&g-module Lies(9).

(a) By A.5(a), dim(Lieg(9)) = 8! = 40320. Moreover, using the 3-modular decomposition
matrix of Sy and [4, Cor. 3.4], we find dim(Lie5”(9)) = 16020, where LieS”(9) denotes the
principal block component of Lieg(9). Employing the techniques described in Appendix B, we
obtain the following decomposition

& Lieb'(9),

where hence Liegf(Q) has dimension 1683 = 32 - 11 - 17, and turns out to be absolutely inde-
composable.

(b) To describe the vertices and sources of the projective-free part Liegf(9), we first note
that from |Py| = 3 and 2.2 we conclude that every vertex of Liegf(Q) has order at least 9. We
determine an indecomposable direct sum decomposition of the restriction of Liegf(9) to Py,

and get
Resp? (Lie}' (9)) = N1 &2 Ny &4 - N3 & (proj),
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where No 2 N3 are absolutely indecomposable of dimension 54 each, having non-conjugate
cyclic vertices of order 3, and endo-permutation sources of dimension 2.

The direct summand N is absolutely indecomposable of dimension 144, and has vertex
Eg9 and an Fy-source S’ of dimension 16 satisfying

Ends,(S) 2 8@ () 2Fse P  Indy(Fs) @ (proj).
Q<E97 ‘Q|:3

Consequently, Endg, (S’) is a permutation F3zFEg-module, that is, S’ is an endo-permutation
F3FE9-module. Its isomorphism type, in the sense of Theorem 2.4, is determined by the fol-
lowing isomorphism, where again S’ is the only non-projective direct summand occurring:

Q2(F) 0 Q) Infp o (UFs)mq) = S @ (proj).
Q<Ey,|Q|=3

Also this decomposition is verified computationally by the techniques described in Appendix B.
In conclusion, this shows that Liegf(9) has vertex Fy and endo-permutation source S’. In
particular, by 2.5 and 4.1(b), we conclude that Liegf(9) is an endo-p-permutation module.

Exploiting the computational data collected above, and applying Theorem 3.7, we now
obtain the following results. Note that these, by virtue of B.6 and the property Liep(n) =
F ®p, Liey(n), may safely be stated in terms of the Lie modules Lier(n) again.

4.7 Corollary. Let p=2 and n =k - 2%, where k > 1 is odd and 0 < d < 3, and let L be an
indecomposable direct summand of Liep(n).

(a) Let Q < &, be a vertex of L, and let S be a Q-source. Then Q is elementary abelian
of order |Q| < 2¢, and S is an endo-permutation module.

(b) Suppose that |Q| is maximal amongst the orders of the vertices of all the indecom-
posable direct summands of Liep(n). Then one has Q =g, Egd < ng < B 16y < Gy,
wm particular, Q is uniquely determined up to S, -conjugation. Moreover, every Eqa-source of
Lie%f(Qd) is an Egd—source of L.

Proof. To show (a), by Theorem 3.7 and 2.2(c), there is some integer t € {0, ...,d}, and there
is an indecomposable direct summand L’ of Liep(29~*) with vertex R such that Q <g, R <
G4.9:0854—1 < &,,. (Note that the image of the map (—)* depends on the particular choice of .)
Moreover, we observe from the results of 4.4, 4.5 and Remark 4.3 that all the indecomposable
direct summands of Lier(297%) are either projective, or are isomorphic to Lie%f(2d_t) and have
elementary abelian vertex of order 24~ and endo-permutation sources. Finally, recall that the
property of being an endo-permutation module is retained under restriction to subgroups and
under taking direct summands.

To show (b), recall again that if L is an indecomposable direct summand of Lieg(n) then
there is some t < d such that the vertices of L are conjugate to subgroups of Egd_t. Now
note that, by Theorem 3.7(c), there indeed is an indecomposable direct summand of Liep(n)
having a vertex that is &,-conjugate to Egd. Thus, if |Q| is maximal then we have |Q| = 2,

and @Q is 6,-conjugate to Egd;

and K = Lie%f(2d). By Theorem 3.7(c) again, every Fqa-source of Lie%f(2d) is an Egd—source
of L. O

hence we may assume that ) = Egd. But this forces t = 0
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The following result deals with the case where p = 3. The proof is completely analogous
to that of Corollary 4.7, and is thus left to the reader.

4.8 Corollary. Let p =3 and n = k- 3%, where k > 1 is such that 31k, and 0 < d < 2, and
let L be an indecomposable direct summand of Liep(n).

(a) Let Q < &, be a vertex of L, and let S be a Q-source. Then Q is elementary abelian
of order |Q| < 3%, and S is an endo-permutation module.

(b) Let |Q| be mazimal amongst the orders of the vertices of all the indecomposable direct
summands of Liep(n). Then one has Q =g, Egd < 6§d < 6,163 < G,y in particular, Q
15 uniquely determined up to S, -conjugation. Moreover, every Esa-source of Lie%f(Sd) s an

Egd—source of L.

A Appendix: The Lie Module of the Symmetric Group

In this appendix we list some properties of the Lie F'&,-module, and briefly discuss variations.
Many of these observations are certainly well known to the experts, but explicit references are
not too easy to find. Thus we recall them here for the readers’ convenience, and to make this
paper as self-contained as possible.

A.1. Lie powers. (a) Let GL,(F) be the general linear group over F', where n > 1, which
acts naturally on E where E := F", and let {e1,...,e,} be the standard basis of E. We
may view &, as a subgroup of GL,(F'), by identifying a permutation = € &, with the
corresponding permutation matrix in GL, (F).

The r-th tensor power E€", where r > 1, is an F|[GL, (F)]-module by way of the diagonal
action. Thus, via restriction, E®" becomes an F'S,-module, where the symmetric group &,,
acts by

TR RUp—> 7T Q- Qmv., for wvi,...,v, € E, m€G,.

On the other hand, E®" also carries a right F'&,-action ‘*’ via place permutations, which
hence centralizes the F[GL,,(F')]-action:

J:v1®~-®v,~>—>(v1®---®vT)*a:vU(1)®---®vg(r), for vi,...,v, € E, 0€6,.

(b) We regard the tensor algebra T(E) = @, E“" as a Lie algebra in the usual way, i.e.
with bracket [a,b] = ab — ba. We consider the Lie bracket

kot E®%2 — E®2 4 @ vy —> [v1,v2] == V] ®Ug — vy ®uvy, for wvi,ve € E.
More generally, we have the (left-normed) Lie bracket
K BT — E®" 01 ®@ - @ vy — [[v1,02,...,00] = [+ [[1, v2], 03], ..., v0],

for all r > 2, and for completeness we also let k1 := id.

Hence we have k, € Endp(E®"), for all r > 1, where we assume Endp(E®") to act on
E®" from the right, the action also being denoted by ‘+’. The image (11 ® -+ ®@v,.) x Kk, € E®"
of a pure tensor v1 ® - -+ ® v, € E®" is called an (iterated) Lie bracket of length r. Hence, by
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definition, for all » > 2 we have (v ® -+ @ vy) * Ky = [(V1 ® -+ - ® Vy_1) * Kp_1,Vy]. Moreover,
for r > 1, the right adjoint action of T'(F) translates into

('U ® (Ul Q& vr) * 57‘) e [1}, (Ul Q- ® Ur) * ’ir] € E®(T+1)- (7)
The map &, centralizes the F[GL,(F")]-action, hence the image
L"(E):= E®* %k, C E®" (8)

of K, is an F[GL,(F)]-submodule of E®", called the rth Lie power of E, where of course we
have L'(E) = F" * k1 = E xid = E. Thus we obtain the free Lie algebra on {ei,...,e,}

L(E) =L (E) CT(E).

r>1

The fact that L(E) is free as a Lie algebra is well known, and is due to Witt.

(c¢) The action of &, is induced by the place permutation of some element w, € F'S, which
we will now show.

For r > 1 let ¢, :== (r,r —1,...,1) € &,. Note that, of course, ¢; = 1. Then the place
permutation action yields

(N Qu)*e, =, QU Q- ®up_1), for wv,...,v, €E.

Now, for r = 2, we have (v; ® va) * ko = [v1,v2] = V1 ® V2 — V2 @ V1 = (V1 @ v2) * (1 — ¢2),
while for r > 3 and vy,...,v, € E we get

(M@ @) *k, = (1N - @Ur_1) ¥ kr_1) DV —Vr @ (V1 @ -+ @ Vp_1) * Kp_1)
=@ @v) * (ko1 ®id) = (11 @ --- @ v) * (k1 ®1d) * ¢
=W ® Qv * (kr—1 ®1d) * (1 — ).

Thus, by induction on r > 2, this gives k, = * (1 —co)* (1 —c3)*---* (1 —¢,) : E®" — E®"
so that, for r > 2, we have

wr=1-c))(1—c3)--(1—¢) € F&,,

and L"(F) = E®" %k, = E®" xw,. The element w, is called the Dynkin-Specht—Wever element
of F&,; for completeness, since k1 = id, we let w1 := ¢ € F&1. Note that we even have
wy € F,&,., where I, is the prime field of F'.

A.2. Lie modules and the Schur functor. (a) Now let n > r. Then the classical Schur
functor 20" takes homogeneous polynomial F[GL, (F)]-modules of degree r to F'&,-modules,
where, more precisely, an F[GL,,(F)]-module V is mapped to its (1")-weight space 20" (V).
In particular, for the F[GL, (F)]-module E®" one gets the following:

As mentioned above, the natural GL, (F)-action on E®" induces a permutation action of
&, and thus also a permutation action of &,., on E®". The vector e; ®---®e, € E®" affords
a regular &,-orbit and, hence, induces an embedding of the regular F'&,-module into E®" via

F&, — E®T, T Te1® - Q@mer =ep1) @+ Qenp), for m€&,.
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The image of this embedding equals the (1")-weight space
QUT(E@””) = SpanF({eﬂ.(l) @ - @ en(r) |me &} C E®"

of the F|GL,(F)]-module E®". Moreover, the place permutation action of &, on E®" re-
stricts to 20"(E®"), and via the above isomorphism 20" (E®") = FS, translates into right
multiplication on F&,..

From now on, suppose that n = r, which is the case most relevant to us.

(b) Now one defines the Lie module Liep(n) of F'S,, as the (1")-weight space of the nth
Lie power L"(FE), that is,
Liep(n) := Q0" (L"(E)) C E®".

From L"(E) = E®" x k,, C (E)®" one thus gets
Liep(n) = W"(E®" * k,) = W(E®") x ky, = Spang({[[ex(1); - -s exm)] | ™ € Gn}).

Via the isomorphism 20" (E®") = F'S,, of F&,-modules, Lier(n) can be regarded as a sub-
module of the regular F'G,-module F'G,,. Since the action of k, is induced by the place
permutation action of w,, we get

Liep(n) 2 F&,, - w, C F&,. (9)

Note that, in particular, Liep(1) = F, the trivial F&;-module. We shall sometimes write a -
in a product to make it easier to read.
Moreover, we observe that Liep(n) is already realized over the prime field F,, of F, that
is, letting
Liey(n) :=Fp&, - w, C F,6, as F,&,-modules,

we get Liep(n) = F ®p, Liey(n) as F&,-modules. We have made use of this in order to
facilitate explicit computations, see B.2.

A.3. Variations on Lie modules. Since there also exist slight modifications of the above
modules in the literature, we briefly comment on variations of the construction:

(a) Firstly, starting with another vector e;) ® -+ ® e € E®" where m € &, leads
to a different identification of Liep(n) with a submodule of F'S,,, namely to the F'&,-module
F&,, - mw,n~!, that is, amounts to relabelling.

(b) Secondly, taking right-normed Lie brackets instead, for r > 2 one gets
KBS s BT 0y @ @0y e (01,0, 0] 1= [0, [0 [or1] ]

we again let &} :=id. Since [v1,v2,...,v.]] = (=1)"" 1 [[vr, vp—1,...,0v1], for 7 > 1, we get

ko= (=1)""' % w, x k, : B — E®" where w, € &, is the longest element of &, in the

Coxeter sense, that is,
wy = (L,r)(2,r —1)--

Thus this construction yields Lien(n) = 20" (E®") k), = W (E®")xwy,*k, = W E®" ) kK, =
Liep(n).
(c) Lastly, we analyze the F'&,-module F'&,, - w!, C F'S,,, where

whi= 1=, Y1 =c ) -(1—ct) € FG,

n—1
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is the image of w, under the F-algebra anti-automorphism ¢ : F'G,, — F&,, defined by
t:m+— 71 for 7 € S,. Then we have an isomorphism of left F&,-modules

F&,  -w;, = (FG, -wy)",

where the latter F'G,,-module denotes the contragredient dual of F'G,, - w,. This fact is most
elegantly established by recalling that group algebras are, in particular, symmetric algebras,
and using the general isomorphism (10) in Remark A.4 below. Thus we briefly deviate to
establish this:

A.4 Remark. Let A be a finite-dimensional symmetric F-algebra with symmetrizing F-
bilinear form (-|-). That is, (:|-) is associative, symmetric, and non-degenerate. Hence

A — Homp (A, F), a — (b (bla)), for a,be A,
is an isomorphism of (A, A)-bimodules. Letting w € A, this induces an isomorphism
Homp(Aw, F) = A/(Aw)t
of right A-modules, where - denotes taking orthogonal spaces with respect to (-|-). Moreover,
(Aw)yt ={a e A| (Awla) =0} ={a € A| (Alwa) =0} = {a € A | wa =0} =: ker(w-).
Since A/ker(w-) = im(w-) = wA, this yields an isomorphism of right A-modules
Homp(Aw, F) 2 A/(Aw)t = A/ker(w - ) Z im(w-) = wA.

Finally, suppose that there is an involutory F-algebra anti-automorphism ¢: A — A, a —
a*. Then, whenever M is a right A-module, one can define a left A-module structure on M
by a -z := xa*, for x € M, a € A. Denoting the resulting module by M*, one, in particular,
gets (wA)" = Aw' as left A-modules. Thus one has an isomorphism of left A-modules

Homp(Aw, F)" = (wA)" = Aw'. (10)

A.5. Properties of Lie modules. Lastly, we collect a couple of properties of Lie modules.

(a) We exhibit an explicit F-basis of Liep(n). Firstly, any element of Liep(n) is an F-

linear combination of Lie brackets of the form [[en, €x(1) - - -, €x(n—1)], where 7 € &, 1. This is
clear for n < 2 anyway, and for n > 3 is seen as follows: letting w be a Lie bracket involving a
subset of {e1,...,€;-1,€i41,...,€n—1}, where 1 <i < n— 1, we have [[w, e;, e,] = [en, [e5, W],

where, by (7), the latter can be written as a sum of Lie brackets having e, as their first
component.

Now, since expanding [[en, €x(1)---;€x(n—1)] into the standard F-basis of E®" yields a
unique summand having e, as its first component, namely e, ® ;) ® -+ @ €r(,_1), We
conclude that

{Heny €r(1)s -+ eﬂ(nfl)} ’ e 671—1} - LleF(n)

is F-linearly independent, thus is an F-basis. Moreover, since

[[ens ex(1), - - - ,ew(n_l)] =m-[len,€1,...,en_1] =7 -cpn - [[e1,€2,...,€n] for we S,_q,
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the above F-basis can also be written as
{m-cn-ler...,en] | ™€ Sp_1} C Liep(n).

Thus Resg” _ (Liep(n)) is isomorphic to the regular module F'&,_1, in particular saying
that dimp(Liep(n)) = (n—1)!. Moreover, since [[e1,...,e,] = (61 Q- ®ey,) *wy, € Liep(n) is
sent to w, € F'&,, via the isomorphism (9), this means that an F-basis of F'&,, -w, is obtained
as

{m-cp-wn|meES,1}.

As we shall explain in B.3, this F-basis has been particularly useful to facilitate the explicit
computations; note that, by the observations in A.2, this is even an Fj-basis of Lie,(n) =
F,G,, - wp.

(b) We now show that w2 = n-w, € F'S,, in particular implying that 1 -w, € 'S, is an
idempotent whenever p t n. We proceed in various steps:

Firstly, we show that for n > 1 we have w,,-(e1®- - -®e,,) = [[e1, ..., e,] € E®™: this is clear
for n = 1 anyway, and for n = 2 we have wy- (e1 ®ez) = (1 —c2) (61 ®e2) = €1 Rex—ea®e; =
(e1 ® e2) % ko. For n > 3, arguing by induction and using w, = wp—1 - (1 — ¢,) € FS,,, we get

wp (1@ ®ep)=wp-1- (610 Rep—€,Qe1 @ Rep_1)
(1 ® - @en-1)*kn-1)Pen — €, @ ((e1® -+ @ en_1) * kn-1)
[

(61 Q- Q& en—l) * Kn—1, en]

=(e1® - ®ep)*kin =[l€1,...,6n].

Secondly, we show that for n > 2 we have w,_1¢p, - [[e1,...,en] = —[[e1,...,en] € E®™
Recall that r,, € Endp(E®") centralizes the F[GL,,(F)]-action. Then, using (7) we get

Wn—1Cn - (61 ® - R ep) *kp = (en Qwp—1- (€1 Q- Ren_1)) * kp,
=(e,®(e1® - ®ep_1)*Kp_1) * kn
= [en, (€1 ® - ®en_1) * Kp_1]
=—[(e1® - ®en_1) *kin_1,e€n]
=—(e1® - ®ep) * K.

Combining these computations we get
Wn—lcn'wn'(el®"'®en) = _Wn'(€1®"'®en)a
thus translating via the isomorphism 0" (E®") & F&,, yields wp_1¢p - wp = —wy, € F&,,.

Thirdly, and finally, we show that w? = n - w, € F&,, for n > 1: this is clear for n = 1

anyway, and for n = 2 we have w3 = (1 — c2)? = wy — cawg = 2wy. Then, for n > 3 we have

w,% = wp-1(1 — ¢p)wp = Wp—1Wn — Wp—1CnWwn, where, by induction, the first summand equals

W2 (1=cp)=n—-Dwp1(1—cp) = (n—1)w,.

The second summand being —wy,—1cpw, = wy, this yields w,% =(n—1)wn + wy, = nw,.
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B Appendix: Computational Tools

We now give a description of the tools from computational group theory and computational
representation theory we have employed, and indicate the computational ideas used to obtain
the explicit results concerning some larger Lie modules in Section 4. As a general background
reference, see [25].

B.1. To deal with finite groups, in particular permutation groups, matrix groups and p-
groups, and to examine their structure, for example determining subgroup lattices and finding
subgroup coset representatives, we use the general purpose computer algebra systems MAGMA
[7] and GAP [16]. Moreover, we make use of the character table library CTblLib 2] of GAP,
which provides electronic access to the data collected in the Atlas [8] and in the ModularAtlas
[22, 37|; these databases, in particular, contain the explicit 2- and 3-modular decomposition
matrices for various symmetric groups given in [20, App.] or [21, App. I].

Additionally, we have used the more specialized computer algebra system MeatAxe [31, 32],
and its extensions [26, 27, 28, 29|, to deal with various aspects concerning matrix represen-
tations over (small) finite fields. Apart from general linear algebra, these tools, in particular,
allow us to find composition series and direct sum decompositions, including isomorphism
checks of simple and indecomposable modules, respectively, and to find splitting fields and to
check absolute indecomposability; moreover, they enable us to compute homomorphism spaces
and endomorphism rings, to determine radical and socle series, and to compute submodule
lattices; apart from these analytic capabilities, they also provide the constructions needed
below, such as Kronecker products and the computation of Heller translates.

B.2. To facilitate explicit computations, we make use of the observation in A.2, saying that
Liep(n) = F ®p, Lie,(n) as F'&,-modules, where

Liey(n) :==Fp6,, - w, C F,6,, as F,&,-modules.

Thus we are indeed reduced to considerations of permutation representations, and matrix
representations over finite (prime) fields.

Having got our hands on the F,&,-module Lie,(n), the task then is to find a decomposition
Lie,(n) = Liegf(n) @ Lie)"(n) into its projective-free and projective part, respectively, to
determine how Liegr(n) decomposes into projective indecomposable modules, and what the
indecomposable direct summands of Liegf(n) look like. However, the examples of Lie modules
Lie,(n) to be dealt with here are too large to simply apply to them the general techniques
available to compute direct sum decompositions. Hence we have to proceed otherwise to find
Liegf(n) in the first place; after all, by the asymptotic results mentioned in the introduction,
we expect Liegf(n) to be small compared with Lie,(n), small enough to allow for a detailed
analysis.

By [15], we know that, in order to detect Liegf(n), we only need to consider the component
Liegbl(n) of Liep(n) belonging to the principal p-block of F,&,,. Using the p-modular decom-
position matrix of &,,, which is available for all cases considered here, and [4, Cor. 3.4], we
may determine dim(Liegbl(n)) in advance, and [4, Thm. 3.1] also tells us the projective inde-
composable direct summands of Lie,(n)/ Liegbl(n), so that next to Liegf(n) only the projective
indecomposable direct summands of Liegbl(n) have to be determined.
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B.3. To find an Fp-basis of Liey(n) or Liegbl(n) in the first place, let €, € F,&,, be the
centrally primitive idempotent belonging to the principal p-block of [F,&,; recall that €, can
be computed from the ordinary character table of &,. We now use the observation in A.5,
saying that an [F)-basis of Lie,(n) is

{m-cp-wp|meBu_1} CLiey(n) CF,G,,
implying that an [F,-spanning set of Liegbl(n) is given as
{m-cp-wp €| meSy_1} CLiey(n)- e, = Liegbl(n) CF,6,.

Hence our starting point is the regular representation F,&,, of &,, equipped with its
natural Fp-basis. Determining the permutation action of elements of &,, on coordinate vectors
with respect to this basis essentially amounts to computing with permutations in &,,. This
allows us to apply successively all elements of &,,_1 to ¢, -w, € F,&,, and ¢, - wy, - €, € F6,,
respectively; to do this efficiently, we first find a Schreier tree of &,,_1 in terms of some

generating set, our favourite one being {(1,...,n —1),(1,2)}.
Thus having found an F,-basis of Lie,(n), we directly determine the action of a generating
set of &,,, our favourite one again being {(1,...,n),(1,2)}. For Liegbl(n), before doing so, we

pick an [F-basis out of the F)-spanning set obtained. These tasks are efficiently solved using
the linear algebra routines available in the MeatAxe.

B.4. Next we proceed to find the projective indecomposable direct summands of Liegbl(n).
To do so, we apply a technique based on the considerations in [26]. In order to describe this
we first recall the relevant notions:

Let A be a finite-dimensional K-algebra, where K is any field, and let S be a simple
A-module. Then, the endomorphism algebra End4(S) is a skew field, and for a € A let-
ting ker(ag) denote the kernel of the K-endomorphism of S induced by the action of a, we
have dim(End4(S)) | dim(ker(as)). Now a € A is called an S-peakword, if dim(ker(a%)) =
dim(End4(95)), and ker(ar) = {0} for all simple A-modules T not isomorphic to S. In par-
ticular, if K is a splitting field of A, then the first condition just becomes dim(ker(a%)) =
dim(ker(ag)) = 1. In practice, peakwords are found by a random search, yielding a Monte
Carlo method, which for the case of K being a (small) finite field is available in the MeatAxe.

Let now M be an A-module, and let @ € A be an S-peakword. Then, by [26, Thm.2.5],
the set of all submodules L of M such that L/Rad(L) = S concides with the set of all
cyclic submodules of M generated by some v € | ;5 ker(a%,) ~ {0}. Thus, in particular, all
submodules of M isomorphic to the projective cover Pg of S are found this way, and for a
cyclic submodule L as above we have L = Pg if and only if dim(L) = dim(Ps). Thus, if Ais a
self-injective algebra, a random search through J;, ker(a’,) yields a Monte Carlo method to
find a largest direct summand of M being the direct sum of copies of Pg. Note that dim(Ps)
is indeed known in advance in all explict cases considered here, and that, if K is a (small)
finite field, then techniques to compute cyclic submodules are available in the MeatAxe.

B.5. Thus, quotienting out the projective direct summands found, we now have Liegf(n) in
our hands, at least with high probability. In all cases considered here this module turns out to
be small enough to apply to it the general techniques available in the MeatAxe to find direct
sum decompositions. The latter techniques would also find a projective direct summand left
over, thus providing a verification of the above Monte Carlo results. Actually, for the examples
considered here, this even shows that Liegf(n) is indecomposable and non-projective.
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Hence we may now assume that we have got a non-projective indecomposable [F,&,,-
module M, for which we have to find a vertex and a source. In order to do so, we consider
the restriction ResP:(M) of M to the Sylow p-subgroup P, of &,; recall from 2.2 that, since

M is relatively P,-projective, Resgg (M) has an indecomposable direct summand sharing a
vertex and a source with M.

Hence we may assume that M is an [F,P-module, where P is a p-group. Again, we
have to find direct sum decompositions, which can be speeded up by detecting particular
indecomposable direct summands beforehand. Namely, in case of an F, P-module the strategy
described in B.4 specializes to the following: the set of all submodules L of M such that
L/Rad(L) is simple is precisely the set of all non-zero cyclic submodules of M. (Note that,
in terms of the language used above, since the trivial module is the only simple F, P-module,
the zero element in F, P is a peakword.) This leads to a straightforward Monte Carlo method
to find a largest direct summand of M that is the direct sum of copies of the regular module
F,P; see [12, Sect. 3.2].

Quotienting out projective direct summands we again, in all cases considered here, end up
with a module whose direct sum decomposition can be computed with the general techniques
available in the MeatAxe.

Hence we may finally assume that M is an indecomposable non-projective [F, P-module
such that we are in a position to use the techniques described in [12, Sect. 3.1], whose basic
ingredient is Higman’s Criterion for relative projectivity; an implementation is available in

MAGMA.

B.6. Finally, to make sure that computational results are still valid when going over to the
algebraically closed field F' again, we always check that the indecomposable modules found are
actually absolutely indecomposable; techniques to achieve that are available in the MeatAxe.
Recall that it is well known that IF,, is a splitting field of FF,,&,,, hence absolute indecomposabil-
ity is automatic anyway for the simple modules and the projective indecomposable modules
found.
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