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Abstract Lie-theoretic structures of type E8 (e.g., Lie groups and algebras, Iwahori–
Hecke algebras and Kazhdan–Lusztig cells, . . .) are considered to serve as a “gold
standard” when it comes to judging the effectiveness of a general algorithm for
solving a computational problem in this area. Here, we address a problem that oc-
curred in our previous work on decomposition numbers of Iwahori–Hecke algebras,
namely, the computation of invariant bilinear forms on so-called W -graph represen-
tations. We present a new algorithmic solution which makes it possible to produce
and effectively use the main results in further applications.

1 Introduction

This paper is concerned with the representation theory of Iwahori–Hecke algebras.
Such an algebra H is a certain deformation of the group algebra of a finite Coxeter
group W . In [7], the notion of “balanced representations” of H was introduced,
which has turned out to be useful in several applications. We mention here the con-
struction of cellular structures on H (see, e.g., [10, Chap. 2]), the determination of
decomposition numbers of H (see [11]), and the computation of Lusztig’s function
a : W → Z (see [8, §4]). To check whether a given representation of H is balanced
or not is a computationally hard problem; it involves the construction of a certain
invariant bilinear form on the underlying H -module. It has been conjectured in [7]
that so-called “W -graph representations” of H are always balanced. But even if
such a theoretical result were known to be true, certain applications (e.g., the de-
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termination of decomposition numbers) would still require the explicit knowledge
of the Gram matrices of the invariant bilinear forms. In this paper, we discuss algo-
rithms for the construction of these Gram matrices for W of exceptional type. The
biggest challenge—by far—is the case where W is of type E8. (The distinguished
role of E8 when it comes to performing explicit computations is highlighted in var-
ious recent survey articles; see, e.g., Garibaldi [6], Lusztig [19], Vogan [26]).

In the situations of interest to us, the algebra H is defined over the field of
rational functions K = Q(v) (where v is an indeterminate); it has a natural basis
{Tw | w ∈W}. Explicit models for the irreducible representations of H are known
by the work of Naruse [23], Howlett and Yin [15], [16]. Now let us fix an irreducible
matrix representation X : H →Kd×d . In order to show that X is balanced, one needs
to determine a non-zero symmetric matrix P ∈ Kd×d such that

PX(Tw) = X(Tw−1)tr P for all w ∈W ;

this matrix P then has to satisfy certain additional properties. Thus, the computation
of P essentially amounts to solving a system of linear equations; for theoretical
reasons, we know that this system has a unique solution up to multiplication by a
scalar. Rescaling a given solution by a suitable non-zero polynomial in Q[v], we can
assume that all entries of P are in Z[v] and that their greatest common divisor is±1;
then P is unique up to sign and is called a “primitive Gram matrix”. The general
theory also shows that a particular solution is given by

P0 = ∑
w∈W

X(Tw)
trX(Tw) ∈ Kd×d .

Thus, if the matrices X(Tw) (w ∈W ) are known and if |W | is not too large, then
we can simply perform the above summation and obtain P0; rescaling P0 yields a
primitive Gram matrix P. This procedure works for types F4, E6, for example.

Already for type E7, one needs to use a more sophisticated approach as described
in [11, §4.3], based on Parker’s “standard basis algorithm” [24], in combination with
interpolation and modular techniques. This also works for type E8, but it is efficient
only for irreducible representations of dimension up to about 2500. In our previous
work on decomposition numbers, this was sufficient to obtain the desired results for
type E8; see [11, Remark 4.10]. In principle, one could have run the above procedure
on all irreducible representations of type E8, but experiments showed that this would
have needed a total of nearly one year of CPU time. On the other hand, from a
strictly logical point of view, one does not need to know exactly how the Gram
matrices have been obtained, because as an independent verification one can simply
check that they form a solution to the above system of linear equations. However, to
store the various primitive Gram matrices requires about 28 GB of disk space, and
even the verification alone is a major task as it involves the computation of products
of (large) matrices with polynomial entries. — In any case, this raises a serious issue
of making sure that our results are reliable and reproducible.

In our view, the solution to deal with this issue is to develop better mathemati-
cal tools which make it possible to reproduce the results efficiently as needed, and
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this is what we will do in this paper. Indeed, for example, in order to deal with the
irreducible representation of largest dimension for type E8 (which is 7168), the old
approach would have needed roughly seven weeks of CPU time, while the one de-
scribed here requires only about 20 hours, which amounts to a factor of almost 60.
(See Section 9.1 for more details.) In view of the complexity of the task, and the ex-
periences made elsewhere with explicit computations in type E8 (see the references
cited above), it was clear that developing efficient methods would not be a standard,
let alone press-button application of existing tools from computer algebra. Maier et
al. [20] proposed an approach based on parallel techniques, but type E8 still seems
to be a major challenge there. Hence one of the purposes of this paper is to give a
systematic description of the (serial) methods we have used for the computation of
Gram matrices of invariant bilinear forms for Iwahori–Hecke algebras.

The basic strategy in our approach is to reduce computational linear algebra over
the Laurent polynomial ring Q[v,v−1] to linear algebra over the integers. Thus, gen-
erally speaking, we are faced with the problem of devising efficient tools to do
computational linear algebra over integral domains, not just over fields. In order
to do so, we build on general ideas from computational representation theory, more
precisely on the celebrated so-called MeatAxe philosophy [24], which comprises of
specially tailored, highly efficient techniques for computational linear algebra over
(small) finite fields. Attempts to generalize these ideas to linear algebra over the (in-
finite) field of rational numbers, and further to linear algebra over the integers have
been coined the IntegralMeatAxe [25]. The last word on this has not been said yet,
and in this paper we are trying to contribute here as well. (As future work, we are
planning to develop a full IntegralMeatAxe package along the present lines.) But
we are additionally going one step further by setting out to extend these ideas to
linear algebra over the univariate polynomial rings over the rationals or the integers.

To do so, the basic idea is to reduce to linear algebra over the integers by eval-
uating polynomials with rational coefficients at integral places, where we are us-
ing as few “small” places as possible, and to recover the polynomials in question
by a Chinese remainder technique. Hence this strategy, fitting nicely into the Inte-
gralMeatAxe philosophy, differs from those known to the literature, inasmuch we
are neither using modular methods (which would mean to go over to polynomial
rings over finite fields), nor are we in a position to use interpolation (which would
mean to use lots of places to evaluate at). Thus another purpose of this paper is to
give a detailed description of the new computational tasks arising in pursuing this
strategy, and how we have accomplished them. Although the choice of the material
presented is governed by our application to Iwahori–Hecke algebras, it is exhibited
with a view towards general applicability.

Here is an outline of the paper: In Section 2 we recall some basic facts about
representations of finite Coxeter groups and Iwahori–Hecke algebras, in particular
the notions of W -graphs, balancedness, and invariant bilinear forms. We conclude
with Theorem 2.10 saying that for the representations afforded by the W -graphs
given by Naruse [23], Howlett and Yin [15], [16] are actually balanced, and in Tables
1 and 2 we list some numerical data associated with their primitive Gram matrices.
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In the subsequent sections we describe our general approach towards linear al-
gebra over integral domains, which consists of a cascade of steps: In Section 3 we
first deal with linear algebra over Z. We discuss the key tasks of rational number
recovery and of finding integral linear dependencies. Both tasks are known to the
literature, but for the former we provide a variant containing a new feature, while
for the latter we proceed along another strategy, within the IntegralMeatAxe phi-
losophy. Subsequently, we apply this to computing nullspaces, inverses, and the
so-called “exponents” of matrices over Z. In Section 4 we then describe our gen-
eral approach to deal with polynomials, in view of our aim to do linear algebra
over polynomial rings. The key task is to recover a polynomial with rational co-
efficients from some of its evaluations at integral places. Here, we are aiming at
using as few “small” places as possible, whence we are not in a position to apply
interpolation, but we are using a Chinese remainder technique instead. Moreover,
we devise a method to recover a polynomial from some of its evaluations where the
latter are “rescaled” by unknown scalars; the necessity of being able to solve this
task is closely related to our use of the IntegralMeatAxe, hence to our knowledge
this method is new as well. In Section 5 we proceed to show how linear algebra
over Z and polynomial recovery, as discussed in earlier sections, can now be com-
bined to do linear algebra over Z[X ] and Q[X ], by devising methods to computing
nullspaces, inverses, exponents and products of matrices using this new approach.
In Section 6 we finally recall the “standard basis algorithm” originally developed in
[24] for computations over finite fields. We present a general variant for absolutely
irreducible matrix representations over an arbitrary field, show how this can be used
to compute homomorphisms between such representations, and discuss how the nec-
essary computations are facilitated over the fields Q and Q(X), using the tools we
have developed.

Having the general tools in place, in Section 7 we return to our particular appli-
cation of computing Gram matrices of invariant bilinear forms for W -graph repre-
sentations X of Iwahori–Hecke algebras. We proceed along the strategy which has
already been indicated in [11, Section 4.3], where here we take the opportunity to
provide full details. We begin by computing standard bases for the representations X
and X′, where the latter is given by X′(Tw) :=X(Tw−1)tr, for w ∈W . In order to find
suitable seed vectors to start with, we use an observation on restrictions of represen-
tations of Iwahori–Hecke algebras to parabolic subalgebras, which naturally leads
to certain distinguished elements of H having actions of co-rank one on X and X′.
To actually run the standard basis algorithm subsequently, we again revert to a spe-
cialization technique. In Section 8 we proceed by collecting a few observations on
the standard bases B and B′ of the representations X and X′ thus obtained. Indeed,
the matrix entries occurring seem to be much less arbitrary than expected from gen-
eral principles, but this has only been verified experimentally for the representations
under consideration here, while a priori proofs are largely missing (so far). The final
computational step then essentially is to determine the product B−1 ·B′, which up to
rescaling is a Gram matrix as desired. To do this efficiently, apart from the general
tools developed above, we make heavy use of the special form of the matrix entries
of B−1 ·B′ just mentioned. In the concluding Section 9 we provide running times
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and workspace requirements for our computations in types E7 and E8, and present
an explicit (tiny) example for type E6.

It should be clear from the above description that to pursue our novel approach
we had to solve quite a few tasks for which there was no pre-existing implementa-
tion, let alone in one and the same computer algebra system. To develop the neces-
sary new code, as our computational platform we have chosen the computer algebra
system GAP [4]. This system provides efficient arithmetics for the various basic
objects we need: (i) rational integers and rational numbers, which in turn are han-
dled by the GMP library [13]; (ii) row vectors and matrices over the integers, the
rationals or (small) finite fields, where in this context the entries of row vectors are
actually treated as immediate objects; (iii) floating point numbers, where the limited
built-in facilities are sufficient for our purposes. Moreover, the necessary input data
on Iwahori–Hecke algebras and their representations is provided by the computer
algebra system CHEVIE [21], which conveniently is a branch of GAP.
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2 Iwahori–Hecke algebras and balanced representations

We begin by recalling some basic facts about representations of finite Coxeter
groups and Iwahori–Hecke algebras; see [12], [10], [18] for further details.

2.1. We fix a finite Coxeter group W with set of simple reflections S; for w ∈W ,
we denote by l(w) the length of w with respect to S. Let L : W → Z be a weight
function as in [18], that is, we have L(ww′) = L(w)+ L(w′) whenever w,w′ ∈W
satisfy l(ww′) = l(w)+ l(w′). Such a weight function is uniquely determined by its
values L(s) for s ∈ S. We will assume throughout that

L(s)> 0 for all s ∈ S.

Let R⊆C be a subring and A = R[v,v−1] be the ring of Laurent polynomials over R
in the indeterminate v. Let H = HA(W,L) be the corresponding generic Iwahori–
Hecke algebra. Thus, H is an associative A-algebra which is free over A with a
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basis {Tw | w ∈W}; the multiplication is given by the following rule, where s ∈ S
and w ∈W :

TsTw =

{
Tsw if l(sw) = l(w)+1,

Tsw +(vL(s)− v−L(s))Ts if l(sw) = l(w)−1.

2.2. Let F ⊆ C be the field of fractions of R and assume that F is a splitting field
for W . (For example, we could take R = F = R since R is known to be a splitting
field for W .) Let Irr(W ) be the set of simple F [W ]-modules (up to isomorphism); we
shall use the following notation:

Irr(W ) = {Eλ | λ ∈Λ} and dλ = dimEλ (λ ∈Λ),

where Λ is a finite index set. Let K = F(v) be the field of fractions of A and HK =
K⊗A H be the K-algebra obtained by extension of scalars from A to K. Then HK
is a split semisimple algebra and there is a bijection between Irr(W ) and Irr(HK),
the set of simple HK-modules (up to isomorphism). Given λ ∈Λ , we denote by Eλ

v
a simple HK-module corresponding to Eλ . Then Eλ

v is uniquely determined (up to
isomorphism) by the following property. For w ∈W , we have

trace(Tw,Eλ
v ) ∈ F [v,v−1] and trace(w,Eλ ) = trace(Tw,Eλ

v )|v7→1.

2.3. The algebra HK is symmetric, with trace form τ : HK → K given by τ(T1) = 1
and τ(Tw) = 0 for 1 6=w∈W . The basis dual to {Tw |w∈W} is given by {Tw−1 |w∈
W}. By the general theory of symmetric algebras, there are well-defined elements
0 6= cλ ∈A (λ ∈Λ) such that the following orthogonality relations hold for λ ,µ ∈Λ :

∑
w∈W

trace(Tw,Eλ
v )trace(Tw−1 ,Eµ

v ) =

{
dλ cλ if λ = µ,

0 if λ 6= µ.

As observed by Lusztig, we can write each cλ uniquely in the form

cλ = fλ v−2aλ + linear combination of larger powers of v,

where fλ is a strictly positive real number and aλ is a non-negative integer. The
“a-invariants” aλ will play a major role in the sequel; these numbers are explic-
itly known for all types of W and all choices of L (see [10, §1.3], [18, Chap. 22]).
Alternatively, aλ can be characterized as follows:

aλ = min{i > 0 | vitrace(Tw,Eλ
v ) ∈ F [v] for all w ∈W}.

2.4. Let O ⊆ K be the localization of F [v] in the prime ideal (v), that is, O consists
of all fractions of the form f/g ∈K where f ,g ∈ F [v] and g(0) 6= 0. Let Xλ : HK→
Kdλ×dλ be a matrix representation afforded by Eλ

v . Following [7], we say that Xλ is
balanced if

vaλ Xλ (Tw) ∈ Odλ×dλ for all w ∈W .
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This concept plays a crucial role in the study of “cellular structures” on H (see [7])
and the determination of Kazhdan–Lusztig cells (see [8, §4]). It is known that every
Eλ

v affords a balanced representation. Note that, given some matrix representation
afforded by Eλ

v , the above condition is hard to verify since it involves representing
matrices for all w∈W . Much better for practical purposes is the following condition.

Proposition 2.5 (See [7, Prop. 4.3, Remark 4.4]). Assume that F ⊆ R. Let λ ∈ Λ

and Xλ : HK → Kdλ×dλ be a matrix representation afforded by Eλ
v . Then Xλ is

balanced if and only if there exists a symmetric matrix Ω λ ∈ GLdλ
(O) such that

Ω
λ Xλ (Ts) = Xλ (Ts)

tr
Ω

λ for all s ∈ S. (∗)

Remark 2.6. Note that, if a matrix Ω λ satisfies (∗), then it immediately follows that

Ω
λ Xλ (Tw−1) = Xλ (Tw)

tr
Ω

λ for all w ∈W .

Thus, Ω λ is the Gram matrix of a symmetric bilinear form 〈 , 〉λ : Eλ
v ×Eλ

v → K
which is HK-invariant in the sense that

〈Tw.e,e′〉λ = 〈e,Tw−1 .e′〉λ for all e,e′ ∈ Eλ
v and w ∈W .

Remark 2.7. Assume that F ⊆ R. Let λ ∈ Λ and Xλ : HK → Kdλ×dλ be a matrix
representation afforded by Eλ

v . Let E (Xλ ) be the set of all P ∈ Kdλ×dλ such that
PXλ (Ts) = Xλ (Ts)

tr P for s ∈ S. Since Xλ is irreducible, Schur’s Lemma implies
that all matrices in E (Xλ ) are scalar multiples of each other. By [10, Remark 1.4.9],
there is a specific element P0 ∈ E (Xλ ) given by

P0 := ∑
w∈W

Xλ (Tw)
trXλ (Tw) ∈ Kdλ×dλ ;

furthermore, we have det(P0) 6= 0. By the Schur Relations (see [12, 7.2.1]), we have

∑
w∈W

Xλ (Tw−1)P−1
0 Xλ (Tw) = trace(P−1

0 )cλ Idλ
.

Using the relation P0X
λ (Tw−1) = Xλ (Tw)

tr P0 for all w ∈W , we deduce that

trace(P−1
0 )cλ = 1.

This provides a direct criterion for checking if a given matrix P ∈ E (Xλ ) equals P0.
Furthermore, if P 6= 0 is an element of E (Xλ ), then P = cP0 for some 0 6= c ∈ K and
so cλ trace(P−1)P = cλ trace(P−1

0 )P0 = P0.

The following concept was introduced by Kazhdan–Lusztig [17] in the equal
parameter case (where L(s) = 1 for all s ∈ S); for the general case see [10, §1.4].

Definition 2.8. Let V be an HK-module with d := dimV < ∞. We say that V is
afforded by a W-graph if there exist
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• a basis {e1, . . . ,ed} of V ,
• subsets Ii ⊆ S for 1 6 i 6 d,
• and elements ms

i j ∈ A, where 1 6 i, j 6 d and s ∈ Ii \ I j,

such that the following hold. First, we require that

vL(s)ms
i j ∈ vR[v] and ms

i j = ms
i j|v7→v−1 for all 1 6 i, j 6 d, s ∈ Ii \ I j.

Furthermore, for s ∈ S, the action of Ts on V is given by

Ts.e j =

 vL(s) e j + ∑
16i6d:s∈Ii

ms
i j ei if s 6∈ I j,

−v−L(s) e j if s ∈ I j.

Thus, if V is afforded by a W -graph representation, then the action of Ts on V is
given by matrices of a particularly simple form.

It has been conjectured in [7] (see also [10, 1.4.14]) that, if the simple HK-
module Eλ

v is afforded by a W -graph, then the corresponding matrix representation
is balanced. We now turn to the problem of explicitly verifying if a given irreducible
matrix representation of HK is balanced or not.

2.9. We shall assume from now that W is a finite Weyl group and that we are in
the equal parameter case where L(s) = 1 for all s ∈ S; we may take R = Z, F = Q
in the above discussion. (The remaining cases have been dealt with in [7, Exam-
ples 4.5, 4.6].) It is known that every simple HK-module Eλ

v is afforded by a W -
graph; see [10, Theorem 2.7.2] and the references there. As far as W of exceptional
type is concerned, such W -graphs have been determined explicitly, by Naruse [23],
Howlett and Yin [15], [16]. They are available in electronic form through Michel’s
development version of the CHEVIE system; see [21]. Now let us fix λ ∈ Λ and
assume that Xλ : HK → Kdλ×dλ is a corresponding representation afforded by a
W -graph. Concretely, this will mean that we are given the collection of matrices
{Xs := Xλ (Ts) | s ∈ S}. Our aim is to find a matrix P = (pi j)16i, j6dλ

such that

PXs = X tr
s P for all s ∈ S. (∗)

This is a system of |S|d2
λ

homogeneous linear equations for the dλ (dλ + 1)/2 un-
known entries of P. (Recall that P is symmetric.) We know that P is uniquely de-
termined up to scalar multiples. Rescaling a given solution by a suitable non-zero
polynomial in Q[v], we can assume that all entries of P are in Z[v] and that their
greatest common divisor is ±1; then P is unique up to a sign. Such a solution P will
be called a primitive Gram matrix for Xλ . As in 2.7, a specific solution P0 can be
singled out by the condition that trace(P−1

0 )cλ = 1. We claim that

• the matrix P′0 := v2l(w0)P0 has entries in Z[v], and
• the non-zero entries of P′0 have degree at most 2l(w0).

Here, w0 denotes the longest element of W . Indeed, since all the entries of the ma-
trices Xs (s ∈ S) are in Z[v,v−1], the same will be true for P0 as well. The formulae



Invariant bilinear forms 9

in 2.8 show that each matrix vXs (s ∈ S) has entries in Z[v]. Hence, all matrices
vl(w0)Xλ (Tw) have entries in Z[v] and so P′0 has entries in Z[v]. Furthermore, the
non-zero entries of each matrix vXs have degree 0, 1 or 2. This yields the degree
bound for the entries of P′0.

Since the entries of P′0 are integer polynomials of bounded degree, we can deter-
mine P′0 by interpolation and modular techniques (Chinese remainder). Combining
this with the techniques described in [11, §4.3], one obtains an algorithm which can
be implemented in GAP in a straightforward way. Rescaling these matrices by suit-
able non-zero polynomials in Q[v], we obtain primitive Gram matrices as solutions
of (∗). This approach readily produces primitive Gram matrices for W of type F4, E6
and E7 in a few hours of computing time. As was already advertised in Section 1,
we also succeeded in obtaining primitive Gram matrices for type E8, where it is one
of the purposes of this paper to describe the methods involved.

Tables 1 and 2 contain some information about these primitive Gram matrices P:

1st column: usual names of the irreducible representations.
2nd column: maximum degree of a non-zero entry of P.
3rd column: maximum absolute value of a coefficient of an entry of P.
4th column: is the specialized matrix P|v→0 diagonal?
5th column: prime divisors of the determinant of P|v→0.

(No entry means that this determinant is ±1.)

We note that the primes in the 5th column are so-called “bad primes” for W (as in
[10, 1.5.11]). In particular, the fact that P|v→0 always has a non-zero determinant
means that det(P) ∈ O× (see Proposition 2.5). Thus, we can conclude:

Theorem 2.10. Let W be of type F4, E6, E7 or E8 and L(s) = 1 for all s∈ S. Then the
W-graph representations of Naruse [23], Howlett and Yin [15], [16] are balanced.

3 Linear algebra over the integers

As was already mentioned in Section 1, the basic strategy of our approach to de-
termine Gram matrices of invariant bilinear forms for representations of Iwahori–
Hecke algebras is to reduce computational linear algebra over the polynomial rings
Z[X ] or Q[X ], where from now on X denotes our favorite indeterminate, to computa-
tional linear algebra over the integers Z. Thus in this section we begin by describing
how we deal with matrices over Z, where we restrict ourselves to the aspects needed
for our present application.

Let us fix the following convention: For x,y ∈ Z, not both zero, let gcd(x,y) ∈
Z denote the positive greatest common divisor of x and y. A vector 0 6= v ∈ Qm,
where m ∈ N, is called primitive, if actually v ∈ Zm, and for the greatest common
divisor gcd(v) of its entries we have gcd(v) = 1. Clearly greatest common divisor
computations in Z yield a Q-multiple of v which is primitive. Similarly, a matrix
0 6= A ∈ Zm×n, where m,n ∈N, is called primitive, if actually A ∈ Zm×n, and for the
greatest common divisor gcd(A) of its entries we have gcd(A) = 1.
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3.1. Continued fractions and the Euclidean algorithm. The first computational
task we are going to discuss, in Section 3.4 below, is rational number recovery. This
has been discussed in the literature at various places, see for example [3, 22, 25]
or [5, Section 5.10]. (We also gratefully acknowledge additional private discussions
with R. Parker on this topic.) Although the ideas pursued in these references are
closely related to ours, none of them completely coincides with our approach, and
proofs (if given at all) are not too elucidating. Hence we present our approach in
detail, for which we need a few preparations first:

Continued fraction expansions. We recall a few notions from the theory of con-
tinued fraction expansions; as a general reference see for example [14, Chapter 10]:
Given ρ ∈ R such that ρ > 0, let

cf[q1,q2, . . .] = q1 +
1

q2 +
1

. . .

be its (regular) continued fraction expansion, where q1 ∈ N0 and qi ∈ N for i > 2.
This is obtained by letting q1 := bρc, and, as long as ρ 6= q1, proceeding recursively
with 1

ρ−q1
instead of ρ . This process terminates, after l > 1 steps say, if and only

if ρ ∈ Q; otherwise we let l := ∞. Truncating at i 6 l yields the i-th convergent
ρi := cf[q1, . . . ,qi] ∈ Q of ρ , hence we may write ρi := σi

τi
, where σi,τi ∈ N0 such

that τi > 1 and gcd(σi,τi) = 1. Letting additionally σ−1 := 0 and τ−1 := 1, as well
as σ0 := 1 and τ0 := 0, for i > 1 we get by induction

σi = qiσi−1 +σi−2 and τi = qiτi−1 + τi−2.

Hence the sequences [σ1,σ2, . . . ,σl ] and [τ2,τ3, . . . ,τl ] are strongly increasing.
Now let ρ = a

b ∈Q, where a,b ∈ N. Then the continued fraction expansion of ρ

can be computed by the extended Euclidean algorithm, see [1, Algorithm 1.3.6], as
follows: Setting r0 := a and r1 := b, for 1 6 i 6 l let recursively qi ∈ N0 and

ri+1 := ri−1−qiri ∈ N0 such that ri+1 < ri,

where l > 1 is defined by rl > 0 but rl+1 = 0; actually we have qi > 1 for i > 2, and
of course rl = gcd(a,b). Hence the sequence [r1, . . . ,rl+1] has non-negative entries
and is strongly decreasing. Moreover, setting s0 := 1 and t0 := 0, as well as s1 := 0
and t1 := 1, and for 1 6 i 6 l letting recursively

si+1 := si−1−qisi and ti+1 := ti−1−qiti,

we get ri = sia+ tib. Then it is immediate by induction that σi = (−1)i · ti+1 and
τi = (−1)i+1 · si+1, for i > 1, and hence

ρi =−
ti+1

si+1
, where gcd(si+1, ti+1) = 1, for 1 6 i 6 l.
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Hence the sequences [−s3,s4,−s5 . . . ,±sl+1] and [−t2, t3,−t4 . . . ,±tl+1] have posi-
tive entries and are strongly increasing. Finally, a direct computation yields

ρ−ρi =
a
b
− σi

τi
=

τia−σib
τib

=
si+1a+ ti+1b

si+1b
=

ri+1

bsi+1
, for 1 6 i 6 l.

Another view on the Euclidean algorithm. For a,b ∈ N we consider the Z-lattice

La,b := 〈[1,a], [0,b]〉Z ⊆ Z2.

Then we have |det(La,b)| = b, and it is immediate that [x,y] ∈ Z2 is an element of
La,b if and only if y≡ ax (mod b). Note that if 0 6= [x,y] ∈ La,b is primitive, then we
necessarily have gcd(x,b) = 1. Moreover, the extended Euclidean algorithm shows
that La,b = 〈[si,ri], [si+1,ri+1]〉Z, for all 0 6 i 6 l. We collect a few properties of La,b:

Lemma 3.2. (a) For all 0 6 i 6 l +1 we have 〈[si,ri]〉Q∩La,b = 〈[si,ri]〉Z.
(b) We have 〈[si,ri]〉Q = 〈[s j,r j]〉Q, where 1 6 i, j 6 l +1, if and only if i = j.

Proof. We first show that whenever [x,y] ∈ La,b such that 0 < |y| < ri, for some
0 6 i 6 l, then |x|> |si+1|: We may assume that i > 2. Let c,d ∈ Z such that

[x,y] = [c,d] ·
[

si ri
si+1 ri+1

]
,

where we may assume that c 6= 0, which entails d 6= 0 as well. Since ri > ri+1 > 0,
this implies c · d < 0. Since the sequence [s2,−s3,s4,−s5 . . . ,±sl+1] has positive
entries, we get |x|= |csi +dsi+1|= |c| · |si|+ |d| · |si+1|> |si+1|, as asserted.

(a) We may assume that i > 2. Moreover, for i = l + 1 letting [x,0] ∈ La,b, it is
immediate from ax≡ 0 (mod b) that |sl+1|= b

rl
= b

gcd(a,b) divides x. Hence we may

assume i 6 l, too. Then let d 6= 1 be a divisor of gcd(si,ri) such that 1
d · [si,ri] ∈ La,b.

Then we have 0< | ri
d |< ri and | si

d |< |si|6 |si+1|, contradicting the statement above.
(b) It follows from (a) that there are c,d ∈ Z such that [s j,r j] = c · [si,ri] and

[si,ri] = d · [s j,r j]. Hence we get cd = 1, and since the sequence [r1, . . . ,rl+1] has
non-negative entries and is strongly decreasing, we infer ri = r j and i = j. ut

Note that the statement in (b) is trivial if [si,ri] is primitive, that is gcd(si,ri) = 1.
But this is not always fulfilled, as the example in [5, Example 5.27] shows.

Proposition 3.3. (a) Let [x,y] ∈ La,b such that x 6= 0 and |x| · |y|6 b
2 . Then we have

[x,y] ∈ 〈[si,ri]〉Z, for a unique 2 6 i 6 l + 1. In particular, if [x,y] is primitive then
we have [x,y] = [si,ri] or [x,y] =−[si,ri].

(b) Assume there is 0 6= [x,y] ∈ La,b such that ‖[x,y]‖ :=
√

x2 + y2 <
√

b. Then
there is a unique 2 6 i 6 l + 1 such that ‖[si,ri]‖ <

√
b, and the shortest non-zero

elements of La,b are precisely [si,ri] and −[si,ri].

Proof. (a) Since [x,y] ∈ La,b there is z ∈ Z such that y = xa− zb. Then we have
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b
− z

x

∣∣∣= |y|
b · |x|

=
|x| · |y|
b · |x|2

6
1

2 · |x|2
.

Thus by Legendre’s Theorem, see [14, Section 10.15, Theorem 184], we infer that
z
x occurs as a convergent in the continued fraction expansion of ρ = a

b , that is, there
is 2 6 i 6 l +1 such that z

x = ρi−1. This yields

y
x
=

xa− zb
x

= a− zb
x

= a−bρi−1 = b(ρ−ρi−1) =
ri

si
.

Hence we have [x,y]∈ 〈[si,ri]〉Q, and thus from Lemma 3.2 we get [x,y]∈ 〈[si,ri]〉Z,
together with the uniqueness statement.

(b) Assume first that x = 0, then by Lemma 3.2 we infer that b divides y, and
hence ‖[x,y]‖ > b >

√
b, a contradiction. Hence we have x 6= 0. Moreover, from

(x− y)2 = x2 + y2−2xy > 0 we get 2 · |x| · |y|6 x2 + y2 = ‖[x,y]‖2 < b, hence from
(a) we see that there is 2 6 i 6 l + 1 such that [x,y] = 〈[si,ri]〉Z. Thus in particular
we have ‖[si,ri]‖<

√
b.

In order to show uniqueness, and the statement on shortest elements, let 0 6=
[x′,y′]∈ La,b such that ‖[x′,y′]‖<

√
b. Then, as above, there is 26 i6 l+1 such that

[x′,y′] = 〈[s j,r j]〉Z, hence in particular we have ‖[s j,r j]‖ <
√

b. Then Hadamard’s
inequality, see [5, Theorem 16.6], implies that

det
([si ri

s j r j

])
6 ‖[si,ri]‖ · ‖[s j,r j]‖< b.

Since |det(La,b)| = b divides det
([si ri

s j r j

])
this entails 〈[si,ri]〉Q = 〈[s j,r j]〉Q, and

hence i = j by Lemma 3.2. ut

A comparison of the above treatment with the references already mentioned
seems to be in order: The statement of Proposition 3.3(a) is roughly equivalent to [3,
Theorem] and [22, Theorem 1], respectively. Alone, the proof given in [3] appears
to be too concise, and provides a slightly worse bound for b to be large enough.
And [22, Theorem 1] is attributed in turn to [2], while for a proof the reader is re-
ferred to [5]. Unfortunately, [5, Theorem 5.26] is not immediately conclusive for the
statements under consideration here.

The main difference between the above-mentioned approaches and ours is the
break condition used to actually determine the index i referred to in Proposition
3.3(a): In [2, 3, 5] a bound on the residues ri is used, while in [22, Section 3] the
quotients qi are considered instead (yielding a randomized algorithm). In contrast, in
our decisive Proposition 3.3(b) we are using the minimum of the lattice La,b, which
hence treats both the ri and si (in other words the the unknown numbers y and x) on
a “symmetric” footing. To our knowledge, this point of view is new, its algorithmic
relevance being explained below.
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3.4. Recovering rational numbers. We are now prepared to describe our first com-
putational task, which will appear both in computations over Z in Section 3.5, and
over the polynomial ring Q[X ] in Section 4.2:

Let x ∈ N and 0 6= y ∈ Z such that gcd(x,y) = 1. Assume we are given a,b ∈ N
such that gcd(x,b) = 1 and y ≡ ax (mod b); note that since x is invertible modulo
b we may write y

x ≡ a (mod b) instead, which we will feel free to do if convenient.
Now, if b is large enough compared to x and |y|, the task is to recover y

x ∈ Q from
its congruence class a (mod b).

In view of Proposition 3.3(b), this is straightforward: Assuming that x2 +y2 < b,
the Z-lattice La,b = 〈[1,a], [0,b]〉Z ⊆ Z2 has precisely two shortest non-zero ele-
ments, namely the primitive elements ±[x,y]. In other words, the rational number
y
x ∈Q can be found by computing a shortest non-zero element of La,b. This in turn
can be done algorithmically by the Gauß reduction algorithm for Z-lattices of rank
2, see [1, Algorithm 1.3.14]. Moreover, compared to the general case, for the partic-
ular lattice La,b we have a better break condition: We may stop early as soon as we
have found an element [x,y] ∈ La,b such that x2 + y2 < b. If then [x,y] is primitive,
the rational number y

x fulfills all assumptions made, where of course its correctness
has to be verified independently. Otherwise, if [x,y] is not primitive, or the shortest
element [x′,y′] ∈ La,b found fulfills x′2 + y′2 > b, then we report failure. Thus, in
practice, we choose b small, and rerun the above algorithm with b increasing, until
we find a valid candidate passing independent verification.

At this stage, we should point out the algorithmic advantage of our approach,
compared to the other ones mentioned: The latter refer to the convergents of contin-
ued fraction expansions, and thus to the full sequence of non-negative residues of
the extended Euclidean algorithm. In contrast, the Gauß reduction algorithm to find
a lattice minimum proceeds by iterated pair reduction, starting with the pair [0,b]
and [1,a]. Although this is essentially equivalent to running the extended Euclidean
algorithm on a and b, here we are allowed to use best approximation. This amounts
to using numerically smallest residues, instead of non-negative ones as was neces-
sary in the context of continued fraction expansions. Although we have not carried
out a detailed comparison, it is well-known that this saves a non-negligible amount
of quotient and remainder steps.

3.5. Finding linear combinations. We are now going to describe the basic task we
are faced with in order to be able to do computational linear algebra over Z. To
do so, we of course avoid the Gauß algorithm over Q, but we also do not refer to
pure “lattice algorithms”, as they are called in [1, Section 2.1], for example those
to compute Hermite normal forms or reduced lattice bases described in [1, Section
2.4–2.7]. Instead, we use a modular technique, which is a keystone to make use
of the ideas of the MeatAxe in the framework of the IntegralMeatAxe. To our
knowledge, this has only been discussed very briefly in the literature, for example
in [3, 25]. Moreover, our approach differs from those cited, at least in detail; in
particular, [3] only allows for regular square matrices.

To describe the computational task, we again need some preparations first: Given
a (rectangular) matrix A∈Zm×n, with Q-linearly independent rows w1, . . . ,wm ∈Zn,
where m,n ∈ N, let
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L := 〈w1, . . . ,wm〉Z 6 Zn

be the Z-lattice spanned by the rows of A, and let L 6 L̂ 6 Zn be its pure closure
in Zn, that is the smallest pure Z-sublattice of Zn containing L. Then the index
det(L) := [L̂ : L] is finite; of course, if m = n then we have det(L) = |det(A)|. Thus
for any vector v ∈ Zn, we have v ∈ L̂ if and only of there is a ∈ N such that av ∈ L;
in this case, if a is chosen minimal then it divides det(L).

Now, given v ∈ Zn, the task is to decide whether or not v ∈ L̂, and if this is the
case to compute a1, . . . ,am ∈ Z and a ∈ N such that gcd(a,a1, . . . ,am) = 1 and

v =
1
a
·

m

∑
j=1

a jw j =
1
a
· [a1, . . . ,am] ·A;

in this case a and the ai are uniquely determined.

The p-adic decomposition algorithm. To do so, we choose a (large) prime p. Then
reduction modulo p yields the matrix A ∈ Fm×n

p over the prime field Fp. We assume
that the rows w1, . . . ,wm ∈ Fn

p of A are Fp-linearly independent as well; otherwise
we choose another prime p. By the structure theory of finitely generated modules
over principal ideal domains, this condition is equivalent to saying L̂ = L, which in
turn is equivalent to p not dividing det(L). In particular, the independence condition
on w1, . . . ,wm ∈ Fn

p is fulfilled for all but finitely many primes p.
Thus we have v ∈ L̂ if and only if v ∈ L = 〈w1, . . . ,wm〉Fp , solving the decision

problem. Furthermore, if v∈ L̂ then set v0 := v, and for d ∈N0 proceed successively
as follows: Since vd ∈ L̂, there are [ad,1, . . . ,ad,m] ∈ Zm such that − p

2 < ad, j 6
p
2 for

all 1 6 j 6 m, and

vd =
m

∑
j=1

ad,1w j = [ad,1, . . . ,ad,m] ·A ∈ Fn
p.

Then we let
vd+1 :=

1
p
·
(

vd− [ad,1, . . . ,ad,m] ·A
)
∈ Zn.

Hence we have vd+1 ∈ L̂ as well, and we may recurse. This yields

v≡
( d

∑
i=0

pi · [ai,1, . . . ,ai,m]
)
·A≡

[ d

∑
i=0

piai,1, . . . ,
d

∑
i=0

piai,m

]
·A (mod pd+1Zn),

or equivalently

a j

a
≡

d

∑
i=0

piai, j (mod pd+1), for all 1 6 j 6 m.

Thus, if v ∈ L, or equivalently a = 1, then since− pd+1

2 < ∑
d
i=0 piai, j 6

pd+1

2 there
is some d ∈ N0 such that vd+1 = 0, implying that a j = ∑

d
i=0 piai, j, for all 1 6 j 6
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m, without further independent verification necessary. Otherwise, if v ∈ L̂ \L, then
applying rational number recovery for some d ∈ N0 large enough, see Section 3.4,
reveals the vector 1

a · [a1, . . . ,am]∈Qm; note that under the assumptions made p does
not divide a. In the latter case correctness is independently verified by computing
[a1, . . . ,am] ·A ∈ Zn and checking whether it equals av ∈ Zn.

Modular computations. In practice, to check w1, . . . ,wm ∈ Fn
p for Fp-linear inde-

pendence, and to compute the vectors [ad,1, . . . ,ad,m] ∈ Fm
p we use ideas taken from

the MeatAxe. In particular, in order to keep the depth d needed smallish, but still
to be able to make efficient use of fast arithmetic over small finite prime fields,
we choose the prime p amongst the largest primes smaller than 28 = 256. (In our
application we for example use p = 251 as the default prime.)

3.6. Nullspace. In the framework of the IntegralMeatAxe there is a general method
to compute a Z-basis of the row kernel of a matrix with entries in Z, see [25]. But
in view of the application to row kernels of matrices over Q[X ] in Section 5.1, here
we only deal with the following restricted nullspace problem:

Given a matrix A ∈ Qm×n, where m,n ∈ N, such that dimQ(ker(A)) = 1, where
ker(A) denotes the row kernel of A, compute a primitive vector v ∈ Zm such that
ker(A) = 〈v〉Q; then v is unique up to sign.

To do so, by going over to a suitable Q-multiple we may assume that A ∈ Zm×n.
Let w1, . . . ,wm ∈ Zn be the rows of A. We may assume that w1 6= 0, since other-
wise we trivially set v := [1,0, . . . ,0] ∈ Zm. Then for 2 6 i 6 m we successively
check, using the p-adic decomposition algorithm in Section 3.5, whether or not
wi ∈ 〈w1, . . . ,wi−1〉Q. If this is not the case, that is {w1 . . . ,wi} is Q-linearly in-
dependent, then if w1, . . . ,wi ∈ Fn

p turns out to be Fp-linearly independent we in-
crement i, while otherwise we return failure in order to choose another prime
p. If {w1 . . . ,wi} is Q-linearly dependent, then the p-adic decomposition algo-
rithm returns a1, . . . ,ai−1 ∈ Z and a ∈ N such that gcd(a,a1, . . . ,ai−1) = 1 and
wi =

1
a ·∑

i−1
j=1 a jw j. Thus v := [a1, . . . ,ai−1,−a,0, . . . ,0] ∈ ker(A)6 Zm is primitive.

3.7. Inverse. Matrix inversion over Q, from the point of view of reducing to com-
putations over Z as much as possible, can be formulated as the following task:

Given a matrix A ∈Qn×n, where n ∈N, such that det(A) 6= 0, compute B ∈ Zn×n

and c ∈ N, such that A−1 = 1
c ·B ∈ Qn×n and the overall greatest common divisor

gcd(B,c) of the entries of B and c equals gcd(B,c) = 1; then (B,c) is unique.
To do so, by going over to a suitable Q-multiple we may assume that A ∈ Zn×n.

Then the equation BA = c ·En, where En denotes the identity matrix, implies that
gcd(B) divides c, and hence B is necessarily primitive. Solving the equations X A =
En, for the unknown matrix X ∈Qn×n, amounts to writing the rows of the identity
matrix as Q-linear combinations of the rows of A, which is done using the p-adic
decomposition algorithm in Section 3.5; recall that the rows of A indeed are assumed
to be Q-linearly independent.

3.8. The exponent of a matrix. Given a square matrix A ∈ Zn×n such that det(A) 6=
0 as above, the number c ∈ N found in the expression A−1 = 1

c ·B, where B ∈ Zn×n

is chosen to be primitive, turns out to have another interpretation:
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Let im(A)6Zn be the Z-span of the rows of A. By the structure theory of finitely
generated modules over principal ideal domains, the annihilator of the Z-module
Zn/im(A) is a non-zero ideal of Z, the positive generator exp(A) of which is called
the exponent of A. Moreover, exp(A) divides det(A), which in turn divides some
power of exp(A). Thus the prime divisors of exp(A) are precisely the primes p ∈ Z
such that A ∈ Fn×n

p is not invertible.
Now, actually exp(A) and c coincide: From BA = c ·En we conclude that (cZ)n 6

im(A), hence exp(A) divides c; conversely, since (exp(A) ·Z)n 6 im(A) there is
B′ ∈ Zn×n such that B′A = exp(A) ·En, implying that exp(A) ·B = c ·B′, which by
the primitivity of B shows that c divides exp(A). In other words, computing the
inverse of A as described in Section 3.7 also yields a method to compute exp(A).

4 Computing with polynomials

Having the necessary pieces of linear algebra over the integers in place, in this sec-
tion we describe computational aspects of single polynomials, before we turn to
linear algebra over polynomials rings in Section 5.

4.1. Polynomial arithmetic. As our general strategy is to use linear algebra over
Z or Q to do linear algebra over Z[X ] or Q[X ], for all arithmetically heavy com-
putations we recurse to Z or Q. Consequently, for the remaining pieces of explicit
computation in Z[X ] or Q[X ] we may use a simple straightforward approach:

We use our own standard arithmetic for polynomials over Z or Q, where a
polynomial 0 6= f = ∑

d
i=0 ziX i ∈ Q[X ] is just represented by its coefficient list

[z0, . . . ,zd ] ∈ Qd+1 of length d + 1, where d = deg( f ). Thus we avoid structural
overhead as much as possible, and may use directly the facilities to handle row
vectors provided by GAP. But we would like to stress that this is just tailored for
our aim of doing linear algebra over polynomial rings, and not intended to become
a new general-purpose polynomial arithmetic. For example, we are not providing
asymptotically fast multiplication, as is for example described in [5, Section 8.3].

In particular, we only rarely need to compute polynomial greatest common di-
visors. Hence we avoid sophisticated (modular) techniques, as are for example de-
scribed and compared in [5, Chapter 6], but we are content with a simple variant
of the Euclidean algorithm: Assuming that the operands have integral coefficients,
by going over to Q-multiples if necessary, in order to avoid coefficient explosion
we just use denominator-free pseudo-division as described in [1, Algorithm 3.1.2],
and Collins’s sub-resultant algorithm given in [1, Algorithm 3.3.1], albeit the latter
without intermediate primitivisation.

On the other hand, we very often have to evaluate polynomials at various places,
where our strategy is to use as few of these specializations as possible, so that eval-
uation at distinct places is done step by step. Thus we are not in a position to use
multi-point evaluation techniques, as are for example described in [5, Section 10.1].
Hence we are just using the Horner scheme, which under these circumstances is
well-known to need the optimal number of multiplications.



Invariant bilinear forms 19

We now describe the special tasks needed to be solved in our approach:

4.2. Recovering polynomials. The aim is to recover a polynomial with rational
coefficients, which we are able to evaluate at arbitrary integral places, from as few
such evaluations (at “small” places) as possible. More precisely:

Let 0 6= f := ∑
d
i=0 ziX i ∈Q[X ] be a polynomial of degree d = deg( f ) ∈ N0, hav-

ing coefficients zi =
yi
xi
∈Q, where xi ∈N and yi ∈ Z such that gcd(xi,yi) = 1. Then

the task is to find pairwise coprime places b1, . . . ,bk ∈ Z\{0,±1}, for some (small)
k ∈ N, such that the degree d and the coefficients z0, . . . ,zd of f can be computed
from the values f (b1), . . . , f (bk) ∈ Q alone. Note that, in particular, we do not as-
sume that k > d, so that polynomial interpolation is not applicable. (Actually, in our
application we often enough have k� d, where for example k ∼ 5, but d . 200.)

To this end, let b := ∏
k
j=1 |b j| ∈ N, and assume that we have gcd(xi,b) = 1 and

x2
i + y2

i < b for all 0 6 i 6 d. Hence the congruence classes zi ≡ yi
xi

(mod b j) and
f (b j) (mod b j) are well-defined, and for the constant coefficient of f we get

z0 ≡
d

∑
i=0

zibi
j ≡ f (b j) (mod b j), for 1 6 j 6 k.

Thus by the Chinese Remainder Theorem, see for example [1, Theorem 1.3.9], there
is a unique congruence class a (mod b), where a∈Z, such that a≡ z0 (mod b). To
compute a ∈ Z, we let a j ∈ Z such that

f (b j)≡ a j (mod b j), for 1 6 j 6 k.

An application of Chinese remainder lifting in Z to the congruence classes a1
(mod b1), . . . ,ak (mod bk) yields the congruence class a (mod b), and by our
choice of b applying rational number recovery as described in Section 3.4 reveals
z0 ∈ Q. Now we recurse to f̃ := f−z0

X ∈ Q[X ], whose value at the place b j can of

course be determined directly from f (b j) as f̃ (b j) =
f (b j)−z0

b j
∈Q.

Chinese remainder lifting. Hence, apart from rational number recovery, the key
computational task to be solved is to perform Chinese remainder lifting in Z:

We are using the straightforward approach based on the extended Euclidean algo-
rithm, as is described in [1, Section 1.3.3]. Since we are computing many lifts with
respect to the same places b1, . . . ,bk, we make use of a precomputation step, as in
[1, Algorithm 1.3.11]. But, since again for reasons of time and memory efficiency
we are choosing small places b j, the specially tailored approach in [1, Algorithm
1.3.11] to keep the intermediate numbers occurring small, at the expense of needing
more multiplications, does not pay off as experiments show. Moreover, as we are
computing the values f (b j) for 1 6 j 6 k step by step, where even the number k of
places is not determined in advance, we cannot take advantage of fast Chinese re-
mainder lifting techniques, as are described for example in [5, Section 10.3], either.

Our strategy is to rerun the above algorithm with k increasing, choosing small
integral 2 6 b1 < b2 < · · · < bk, and to discard quickly erroneous guesses by an
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independent verification, until the correct answer passing the verification is found.
By the above discussion, this happens after finitely many iterations. Before that, if
b = |∏k

j=1 b j| is too small, or not coprime to all the denominators xi, the Chinese
remainder lifting process does not terminate, or it terminates with a wrong guess.
To catch the first case, we impose a degree bound, and stop the lifting process with
a failure message if it is exceeded, in order to increment k. (In our application, 200
turned out to be a suitable degree bound in all cases.)

To catch the second case, we only allow for denominators xi dividing an imposed
bound. This is justified, since rational number recovery as described in Section 3.4
is a trade-off between finding the numerator y and the denominator x of the rational
number y

x to be reconstructed: In practice, we typically encounter small denomina-
tors x and large numerators y, which escape the Gauß reduction algorithm if b is
chosen too small, since then the latter tends to return a larger denominator x′ > x
and a smaller numerator |y′|< |y|. (In our application, denominator bounds such as
small 2-powers, or 12, or 20 turned out to be sufficient in all cases.)

4.3. Degree detection. We keep the setting of Section 4.2. The technique to be de-
scribed now has arisen out of an attempt to determine the degree of f without deter-
mining its coefficients. Actually, it deals with the following more general situation
(whose relevance for our computations will be explained in Section 4.5 below):

Assume that instead of the values f (b1), . . . , f (bk) we are only able to compute
“rescaled values” a1 f (b1), . . . ,ak f (bk) ∈ Q, with scalar factors a j ∈ Q such that
a j > 0, which are only known to come from a finite pool R of positive rational
numbers associated with f . Thus the task now becomes to find k ∈ N and coprime
places b1, . . . ,bk ∈Z\{0,±1} as above, allowing to determine f up to some positive
rational scalar multiple, that is to find a f ∈ Q[X ], for some a ∈ Q such that a > 0;
note that this also determines all the quotients a j

a .
To this end, we let α1, . . . ,αd ∈ C be the complex roots of f , and set µ :=

max{0, |α1|, . . . , |αd |}. Moreover, since R is a finite set, we have

δ := min{| ln(a′)− ln(a)| ∈ R;a,a′ ∈R, a 6= a′}> 0.

Now, let k > 2, and for the places b1, . . . ,bk we additionally assume that

(1+2d) ·µ < b1 < · · ·< bk and ln(bk)− ln(b1)< δ ;

hence, in particular, the f (b j) are non-zero and have the same sign. The necessity of
these choices will become clear below. But this forces us to show that for all k > 2
and all x > 0 and δ > 0 there actually exist pairwise coprime integers b1 < · · · <
bk such that x < b1 and ln

( bk
b1

)
< δ . Indeed, we are going to show that the latter

can always be chosen to be primes (where the mere existence proof to follow is
impractical, but in practice considering small primes works well, see Example 4.4):

Let p0 < p1 < · · · be the sequence of all primes exceeding x, and assume to the
contrary that for all k-subsets thereof, q1 < · · ·< qk say, we have ln

( qk
q1

)
> δ . Then

we have pk−1 > eδ · p0, and thus p j(k−1) > e jδ · p0, for all j ∈ N. Using the prime
number function π(x) := |{p ∈ N; p prime, p 6 x}| this implies
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π(e jδ · p0)6 π(p0)+ j(k−1).

From this we get

lim
j→∞

π(e jδ · p0) · ln(e jδ · p0)

e jδ · p0
6 lim

j→∞

(
π(p0)+ j(k−1)

)
·
(

jδ + ln(p0)
)

e jδ · p0
= 0,

contradicting the Prime Number Theorem, see [14, Section 1.8, Theorem 6], saying
that limx→∞

π(x)·ln(x)
x = 1.

Growth behavior of polynomials. We now consider the growth behavior of the
polynomial f . For x > µ we have

∂

∂x

(
f (x)

)
= zd ·

∂

∂x

( d

∏
r=1

(x−αr)
)
= f (x) ·

d

∑
r=1

1
x−αr

,

implying
∂

∂x

(
ln( f (x))

)
=

∂

∂x

(
f (x)

)
· 1

f (x)
=

d

∑
r=1

1
x−αr

.

Thus, for 1 6 i < j 6 k, by the mean value theorem for derivatives there is bi < β <
b j such that

ln( f (b j))− ln( f (bi))

ln(b j)− ln(bi)
=

d

∑
r=1

β

β −αr
.

Since by assumption bi > (1+2d) ·µ > (1+2d) · |αr|, we have∣∣∣ β

β −αr
−1
∣∣∣= ∣∣∣ αr

β −αr

∣∣∣6 |αr|
β −|αr|

<
|αr|

(1+2d) · |αr|− |αr|
6

1
2d

for all 1 6 r 6 d. All differences β −αr ∈ C having positive real parts, we get

d <
ln( f (b j))− ln( f (bi))

ln(b j)− ln(bi)
< d +

1
2
.

Moreover, by assumption we have 0 < ln(b j)− ln(bi)< δ 6 | ln(a j)− ln(ai)|, hence∣∣∣ ln(a j)− ln(ai)

ln(b j)− ln(bi)

∣∣∣> 1.

Now, letting bxe := bx+ 1
2c ∈ Z denote the integer nearest to x ∈ R, we set

di j :=
⌊ ln(a j f (b j))− ln(ai f (bi))

ln(b j)− ln(bi)

⌉
=
⌊ ln( f (b j))− ln( f (bi))

ln(b j)− ln(bi)
+

ln(a j)− ln(ai)

ln(b j)− ln(bi)

⌉
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for all 16 i, j 6 k such that i 6= j; note that di j = d ji. Hence from the above estimates
we infer that di j = d if and only if ai = a j. In particular, all these numbers di j
coincide if and only if a1 = · · ·= ak, hence in this case immediately determining d.

Combinatorial translation. Thus our task can now be rephrased in combinato-
rial terms as follows: For c ∈ Z let Γd+c be the undirected graph on the vertex set
{1, . . . ,k}, whose edges are the 2-subsets {i, j} ⊆ {1, . . . ,k} such that di j = d + c.

Then by the above discussion the connected components of Γd are complete
graphs, whose vertex sets coincide with the sets of j ∈ {1, . . . ,k} such that the as-
sociated scalars a j assume one and the same value. On the other hand, if Γd+c, for
some c 6= 0, has a complete connected component with r > 2 vertices b j1 < · · ·< b jr ,
then for all i, j ∈ { j1, . . . , jr} such that i < j we have

c−1 <
∣∣∣ ln(a j)− ln(ai)

ln(b j)− ln(bi)

∣∣∣< c+
1
2
.

Thus we infer that the sequence a j1 , . . . ,a jr is strictly increasing if c > 0, and strictly
decreasing if c < 0. In particular this implies that r 6 |R|. In other words, as soon
as we find a complete connected component of a graph Γd+c having more than |R|
elements, then we may conclude that c = 0, and we have determined d. Moreover,
if k > |R|2 than this case actually happens.

Our algorithm to determine the degree d of f , and a f for some a > 0, is now
straightforward: Again our strategy is to increase k step by step, and to choose places
2 6 b1 < b2 < · · · < bk such that b1 is growing and ln(bk)− ln(b1) tends to zero.
Having made a choice, we compute the numbers di j ∈ Z for all 1 6 i < j 6 k; note
that here we do not see a way to avoid using non-exact floating point arithmetic
(to evaluate logarithms), while everywhere else we are computing exactly. For all
numbers d′ ∈ Z thus occurring we then determine the graph Γd′ . Amongst all the
graphs found we choose one, again Γd′ say, having a complete connected component
of maximal cardinality, with vertex set J ⊆{1, . . . ,k} say. Then we run polynomial
recovery, see Section 4.2, using the places {b j; j ∈J } and the values {a j f (b j); j ∈
J }, with degree bound d′.

4.4. An example. Here is an example to illustrate the above process. (It is a modified
version of an example which actually occurred in our application.) Assume as places
b j, for 1 6 j 6 k = 13, we have chosen the rational primes between 29 and 79, and
evaluating the unknown polynomial f has resulted in the list of values a j f (b j) given
in Table 3; the scalars a j are of course not known either.

Then it turns out that the numbers d′ ∈ Z, where 1 6 i < j 6 13, come from an
34-element subset of {−27, . . . ,71}. For seven of them the associated graph Γd′ has
a connected component with at least three vertices, but only for two of them we find
a complete connected component amongst them: The graph Γ7 has a complete con-
nected component consisting of the vertices B0 := {47,61,79}, while the graph Γ13
consists of three connected components, which all are complete, having the vertices

B1 := {37,43,47,53,67,73}, B2 := {31,41,61,71}, B3 := {29,59,79}.
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Running polynomial recovery, see Section 4.2, using the places B0 fails by exceed-
ing the degree bound. But running it using B1 yields a f = ∑

13
i=0 ziX i ∈ Z[X ], where

[z0, . . . ,z13] = [1,4,8,11,12,12,12,12,12,12,11,8,4,1],

while running it using B2 and B3 yields 1
5 ·a f ∈Q[X ] and 1

25 ·a f ∈Q[X ], respec-
tively. Thus we indeed have d = deg( f ) = 13, and assuming that a = 1 we have
determined the scalars a j, for 1 6 j 6 13, as well. Note that the bounds assumed in
Section 4.2 are fulfilled; and the roots of f turning out to be complex roots of unity,
implying µ = 1, the bounds assumed in Section 4.3 are fulfilled as well.

It should be noted that for the preceding discussion we have chosen k large
enough to exhibit the occurrence of the erroneous set B0, for which we indeed
observe that the associated scalars a j are pairwise distinct. But this also reveals an-
other practical observation, at least for polynomials occurring in the applications in
Section 5: The scalars a j, here coming from the three-element set R = {1, 1

5 ,
1
25},

typically are not uniformly distributed throughout R, but the scalar a j = 1 occurs
much more frequently than the other ones.

As was already mentioned, in practice we instead increase k step by step. Then
for the smallest k > 3 such that the graph Γ13 has a complete connected component
with at least three vertices, that is for k = 6, we find the set B := {37,43,47} of
places, indeed being associated to the case a j = 1. Now polynomial recovery using
B readily returns f ; note that the bounds assumed in Section 4.2 are still fulfilled.

Table 3 An example for degree detection

j b j a j f (b j) a j

1 29 471132000262895400 1
25

2 31 5556161802048405504 1
5

3 37 271378870503231142344 1

4 41 203982274364082601464 1
5

5 43 1885780898401789278912 1

6 47 5946135224244400779264 1

7 53 28077873950889396256392 1

8 59 4493456499569142283200 1
25

9 61 34577756822169042208584 1
5

10 67 581970465933078043504704 1

11 71 246522309921169431519744 1
5

12 73 1766015503219395154436952 1

13 79 196427398952317706342400 1
25

4.5. Catching projectivities. We now have to explain where the conditions imposed
in Section 4.3 come from: Typically, for example for the tasks described in Sections
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5.1 and 5.2, our aim is to determine a matrix over Z[X ] or Q[X ] by computing var-
ious specializations first, that is evaluating at certain places b1, . . . ,bk, performing
some linear algebra over Z or Q, as described in Section 3, for each of the spe-
cializations, and then lifting back to polynomials as explained in Section 4.2. But
the linear algebra step in between might only be unique up to a scalar in Q, which
additionally depends on the particular specialization considered. On the other hand,
the matrix we are looking for might also only be unique up to a scalar in Q(X).

Let us now, again, agree on the following convention: Given f ,g ∈ Z[X ], not
both zero, let gcd( f ,g) ∈ Z[X ] denote the polynomial greatest common divisor of
f and g with positive leading coefficient. A vector 0 6= v ∈Q[X ]m, where m ∈ N, is
called primitive, if actually v ∈ Z[X ]m, and for the greatest common divisor gcd(v)
of its entries we have gcd(v) = 1. Clearly greatest common divisor computations
in Z and in Z[X ] yield a Q(X)-multiple of v which is primitive. Similarly, a matrix
A ∈ Q[X ]m×n, where m,n ∈ N, is called primitive, if actually A ∈ Z[X ]m×n, and for
the greatest common divisor gcd(A) of its entries we have gcd(A) = 1.

Specializing primitive vectors. Hence, in the above context the task is to recover a
primitive vector [ f1, . . . , fm] ∈ Z[X ]m not from specializations [ f1(b j), . . . , fm(b j)] ∈
Zm, for 1 6 j 6 k, but from “rescaled” versions [a j f1(b j), . . . ,a j fm(b j)] ∈ Qm in-
stead. This places us in the setting of Section 4.3, but it remains to justify the as-
sumption that the scalars a j ∈Q involved indeed come from a finite pool:

Proposition 4.6. Let f1, . . . , fm ∈ Z[X ], where m ∈ N, such that gcd( f1, . . . , fm) =
1 ∈ Z[X ]. Then there is a finite set P ⊆ N such that for all b ∈ Z we have

gcd( f1(b), . . . , fm(b)) ∈P.

Proof. Note first that by assumption f1, . . . , fm do not have any common zeroes,
so that gcd( f1(b), . . . , fm(b)) ∈ N is well-defined for any b ∈ Z. We proceed by
induction on m∈N. For m= 1 we have f1 =±1, and we may let P := {±1}. Hence
let m > 2, where we may assume that all the fi, for 1 6 i 6 m, are non-constant.
Letting g := gcd( f1, . . . , fm−1) ∈ Z[X ] we have gcd(g, fm) = 1 Letting gi := fi/g ∈
Z[X ] for 1 6 i 6 m−1, we have gcd(g1, . . . ,gm−1) = 1, thus by induction let Q ⊆N
be a set as asserted associated with g1, . . . ,gm−1. Now, given b ∈ Z, we may write

x := gcd( f1(b), . . . , fm(b)) = gcd(g(b)g1(b), . . . ,g(b)gm−1(b), fm(b))

as x = yz, where y= gcd(g(b), fm(b)), and z divides gcd(g1(b), . . . ,gm−1(b), fm(b)).
Hence z divides gcd(g1(b), . . . ,gm−1(b)), and thus divides an element of Q. More-
over, from gcd(g, fm) = 1 we infer that the resultant ρ := res(g, fm) ∈ Z is differ-
ent from zero, see [5, Corollary 6.20], which by [5, Corollary 6.21] implies that
y = gcd(g(b), fm(b)) divides ρ . Thus the set P of all positive divisors of the ele-
ments of ρQ := {ρr ∈ N;r ∈Q} is as desired. ut
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5 Linear algebra over polynomial rings

As was already mentioned, our general strategy to determine matrices over Z[X ] or
Q[X ] is to specialize first at integral places, to apply linear algebra techniques as
described in Section 3 to the matrices over Z or Q thus obtained, and subsequently
to recover the polynomial entries in question by the Chinese remainder lifting tech-
nique described in Section 4.2, applying degree detection as described in Section
4.3 if necessary. In this section we describe how we can do linear algebra over Z[X ]
or Q[X ] using this approach.

Since we are faced with both sparse and dense matrices, we keep two correspond-
ing formats for matrices over polynomial rings. (In our application, representing ma-
trices for W -graph representations, see Definition 2.8, are extremely sparse, while
Gram matrices for them, see Remark 2.6, typically are dense; see also Example
9.2). We have conversion and multiplication routines between them, but whenever
it comes to linear algebra computations we always use the dense matrix format.
From the arithmetical side, we are only using standard matrix multiplication, but no
asymptotically faster methods, as are for example indicated in [5, Section 12.1].

5.1. Nullspace. We have developed a solution to the following restricted nullspace
problem only (which is sufficient for our application):

Given a matrix A ∈ Q[X ]m×n, where m,n ∈ N, such that rkQ[X ](ker(A)) = 1, the
task is to determine a primitive vector v ∈ Z[X ]m such that ker(A) = 〈v〉Q[X ]; then
the vector v is unique up to sign.

To do so, by going over to a suitable Q(X)-multiple we may assume that
A ∈ Z[X ]m×n is primitive. Then we specialize the matrix A successively at inte-
gral places b1, . . . ,bk, yielding matrices A(b j) ∈ Zm×n. Since the rank condition on
A is equivalent to saying that det(A′) = 0 for all (m×m)-submatrices A′ of A, while
there is an ((m− 1)× (m− 1))-submatrix A′′ of A such that det(A′′) 6= 0, we have
rkZ(ker(A(b))) > 1 for any b ∈ Z, and for all but finitely many such b we indeed
have rkZ(ker(A(b))) = 1. Thus we may assume that all the chosen specializations
A(b j) also fulfill rkZ(ker(A(b j))) = 1. Note that this provides an implicit check
whether the rank condition on A indeed holds.

Hence we are in a position to compute the row kernels ker(A(b j)) = 〈v j〉Z 6 Zm

as described in Section 3.6, where the v j ∈ Zm are primitive, for all 1 6 j 6 k. Thus
the latter are of the form v j =

1
a j
· v(b j), where a j = gcd(v(b j)) ∈ N, and v ∈ Z[X ]m

is the desired primitive solution vector from above. By Proposition 4.6 we conclude
that the scalars a j involved indeed come from a finite pool only depending on v.

Now applying degree detection, see Section 4.3, and polynomial recovery, see
Section 4.2, yields candidate vectors 0 6= ṽ ∈Q[X ]m, which by going over to a suit-
able Q-multiple can be assumed to be primitive. Then the correctness of ṽ can be
independently verified by explicitly computing ṽA and checking whether this is zero.

5.2. Inverse. Given a matrix A ∈ Q[X ]n×n, where n ∈ N, such that det(A) 6= 0, the
task is to find B ∈ Z[X ]n×n and c ∈ Z[X ], such that A−1 = 1

c ·B ∈ Q(X)n×n and the
overall greatest common divisor gcd(B,c) ∈ Z[X ] of the entries of B and c equals
gcd(B,c) = 1; then the pair (B,c) is unique up to sign.



26 Meinolf Geck and Jürgen Müller

To do so, by going over to a suitable Q-multiple we may assume that A ∈
Z[X ]n×n. Thus the equation BA = c ·En implies that gcd(B) divides c, and hence
B is primitive. Then we specialize the matrix A successively at integral places
b1, . . . ,bk, yielding matrices A(b j) ∈ Zn×n. Since for all but finitely many b ∈ Z
we have det(A(b)) 6= 0, we may assume that all the chosen specializations A(b j)
indeed also fulfill det(A(b j)) 6= 0. Note that this provides an implicit check whether
the invertibility condition on A indeed holds.

Hence we are in a position to compute the inverses A(b j)
−1 ∈ Qn×n as de-

scribed in Section 3.7, yielding B j ∈ Zn×n and c j ∈ Z, such that B j is primitive
and A(b j)

−1 = 1
c j
·B j, for all 1 6 j 6 k. Thus, if B ∈ Z[X ]n×n and c ∈ Z[X ] are the

desired solutions from above, we infer

B j =
1
a j
·B(b j) and c j =

1
a j
· c(b j), where a j := gcd(B(b j),c(b j)) ∈ N.

By Proposition 4.6 we conclude that the scalars a j involved indeed come from a
finite pool only depending on B and c.

Now applying degree detection, see Section 4.3, and polynomial recovery, see
Section 4.2, yields candidate solutions B̃ ∈ Q[X ]n×n and c̃ ∈ Q[X ]n, for which by
going over to a suitable Q-multiple we may assume that c̃ ∈ Z[X ]n and B̃ ∈ Z[X ]n×n

is primitive. Then the correctness of (B̃, c̃) can be independently verified by explic-
itly computing AB̃ and checking whether it equals c̃ ·En.

5.3. The exponent of a matrix. In view of the discussion in Section 3.8, and noting
that Q[X ] is a principal ideal domain as well, we pursue the analogy between matrix
inverses over Z and over Q[X ] still a little further. Indeed, given a square matrix A ∈
Z[X ]n×n such that det(A) 6= 0 as above, the polynomial c ∈ Z[X ] in the expression
A−1 = 1

c ·B, where B∈Z[X ]n×n is chosen primitive, again has another interpretation:
Let the exponent exp(A)∈Z[X ] of A be a primitive generator of the annihilator of

the Q[X ]-module Q[X ]n/im(A), where im(A)6Q[X ]n is the Q[X ]-span of the rows
of A; then exp(A) is unique up to sign. Then, similar to Section 3.8, we conclude
that exp(A) and c are associated in Q[X ], and thus the primitivity of exp(A) yields

c = gcd(c) · exp(A) ∈ Z[X ].

In other words, computing the inverse of A as described in Section 5.2 also yields
a method to compute the exponent of A as exp(A) = 1

gcd(c) · c. Moreover, c governs
modular invertibility of A as follows:

Proposition 5.4. We keep the notation of Section 5.3. Let {0} 6= pC Z[X ] be a
prime ideal, let Qp := Quot(Z[X ]/p) be the field of fractions of the integral do-
main Z[X ]/p, and let Ap ∈ (Z[X ]/p)n×n be the matrix obtained from A by reduction
modulo p. Then Ap is invertible in Qn×n

p if and only if c 6∈ p.

Proof. The prime ideals of Z[X ] being well-understood, we are in precisely one of
the following cases: (i) We have p = (p), where p ∈ Z is a prime; then we have
Qp
∼= Quot(Fp[X ]) = Fp(X), a rational function field; (ii) we have p = ( f ), where
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f ∈ Z[X ] is non-constant and irreducible, hence in particular is primitive; then we
have Qp

∼= Q[X ]/( f ), an algebraic number field; (iii) we have p = (p, f ), where p
and f are as above; then we have Qp = Z[X ]/p∼= Fp[X ]/( f ), a finite field.

Now Ap is non-invertible in Qn×n
p if and only if det(A) ∈ p, which holds if and

only if there is an irreducible divisor of det(A) being contained in p. Thus is suffices
to determine (i) the primes p ∈ Z, and (ii) the non-constant irreducible polynomials
f ∈ Z[X ] dividing det(A) in Z[X ].

(i) From A−1 = 1
det(A) · adj(A) ∈Q(X)n×n, where adj(A) ∈ Z[X ]n×n is the adjoint

matrix of A, we infer that c divides det(A) in Z[X ]. Hence any prime p ∈ Z dividing
gcd(c) also divides det(A) in Z[X ]. Conversely, if p does not divide gcd(c), then
p-modular reduction yields AB = cEn 6= 0 ∈ Fp[X ]n×n, hence det(A) 6= 0 ∈ Fp[X ].
Hence the primes p∈Z we are looking for are precisely the prime divisors of gcd(c).

(ii) This is equivalent to finding the irreducible polynomials in Q[X ] dividing
det(A) in Q[X ]. Again similar to Section 3.8 we conclude that the latter are precisely
the irreducible polynomials dividing exp(A). Hence the polynomials f ∈ Z[X ] we
are looking for are precisely the non-constant irreducible divisors of 1

gcd(c) · c. ut

5.5. Product. Given matrices A ∈Q[X ]l×m and B ∈Q[X ]m×n, where l,m,n ∈N, the
task is to compute their product AB ∈Q[X ]l×n.

This is straightforwardly done: Again, by going over to suitable Q-multiples we
may assume that A ∈ Z[X ]l×m and B ∈ Z[X ]m×n. Then we specialize the matrices A
and B successively at integral places b1, . . . ,bk, yielding matrices A(b j) ∈ Zl×m and
B(b j)∈Zm×n, whose products A(b j)B(b j)∈Zl×n we compute. Now applying poly-
nomial recovery, see Section 4.2, yields candidate solutions C̃ ∈Q[X ]l×n. (Note that
since no “rescaling” takes place here it is not necessary to apply degree detection.)

As for correctness, there are a few necessary conditions which can be used as
break conditions in polynomial recovery: All entries of C̃ must be polynomials with
integer coefficients, and the degrees of the entries of the input matrices yield bounds
on the degrees of those of C̃. But these conditions are far from being sufficient, so
that, in contrast to the tasks in Sections 5.1 and 5.2, here we do not have a general
way of independently verifying correctness. (In our application, as a very efficient
break condition we have used the fact that the entries of C̃ have to be of a particular
form, see Section 8.4.)

5.6. An alternative approach. The idea of our approach is, essentially, to reduce
computations over Q[X ] to computations over Z, where lifting back to polynomials
is done in one step by combining specialization and Chinese remainder lifting. In
consequence, we almost entirely use arithmetic in characteristic zero (except the
use of a large prime field in the p-adic decomposition algorithm in Section 3.5). But
it seems to be worth-while to say a few more words on the following “two-step”
approach, which was already mentioned briefly in Sections 1 and 2.9:

Assume our aim is to determine a matrix 0 6= A ∈ Q[X ]m×n, where m,n ∈ N. To
this end, we choose pairwise distinct places b1, . . . ,bk ∈ Z, for some k ∈N such that
k > d, where d ∈ N0 is the maximum of the degrees of the non-zero entries of A.
Thus, if we are able to compute the specializations A(b j) ∈Qn×n, for 1 6 j 6 k, we
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may recover the entries of A by polynomial interpolation, as for example is described
in [5, Section 10.2]. In turn, to find the specializations A(b j) we choose pairwise
distinct primes p1, . . . , pl ∈ N, for some l ∈ N, such that the denominators of all the
entries of A(b j) are coprime to pi, for all 1 6 j 6 k and 1 6 i 6 l. Then reduction
modulo the chosen primes yields matrices Api(b j)∈ Fm×n

pi
. Hence, if ∏

l
i=1 pi is large

enough, and we are able to compute the modular reductions Api(b j), for 1 6 i 6 l,
then rational number recovery, see Section 3.4, reveals the entries of A(b j). Hence
this reduces finding the matrix A to finding the matrices Api(b j) over prime fields,
for which we in turn may use techniques of the MeatAxe.

Thus here specialization and Chinese remainder lifting are done in two sepa-
rate steps, aiming at taking advantage of the efficiency of computations in prime
characteristic. But the “two-step” approach has severe disadvantages: The number
k of places to specialize at is at least as large as the degree of the polynomials in
question, hence many more and larger b j than in our approach are needed, increas-
ing time and memory requirements, presumably drastically. (In our application this
means k . 200.) Moreover, in order to use rational number recovery, the number l of
primes used for modular reduction must not be too small, at the expense of possibly
loosing the very fast arithmetic over small finite fields, which otherwise is a major
advantage of the MeatAxe.

Actually, apart from our own experiences, this kind of approach is pursued in
[20], and the figures on timings and memory consumption given there seem to sup-
port the above comments. But it should be stressed that the emphasis of [20] is on
parallelizing this kind of computations, which we here do not consider at all.

6 Computing with representations

As was already mentioned in Section 1, in our application we will make use of a
suitable variant of the “standard basis algorithm”, which was originally used in [24]
for computations over finite fields. In this section we present the necessary ideas
from computational representation theory, which can be formulated in terms of the
following general setting:

6.1. Standard bases. Let A be a K-algebra, where K is a field, being generated
by the (ordered) set A1, . . . ,Ar, where r ∈ N0. Moreover, let X : A → Kn×n be an
absolutely irreducible matrix representation of A , where n ∈ N. Then the task is to
find a “canonical” K-basis of the row space Kn with respect to the representation X,
where we consider right actions, as is common in the computational world.

To this end, let A0 ∈A such that dimK(ker(X(A0))) = 1; note that whenever X
is irreducible such an element A0 exists if and only if X is absolutely irreducible.
This leads to the following breadth-first search algorithm; see also [24]: Choose a
seed vector 0 6= u∈ ker(X(A0)), let B := [u] and T := [[0,0]], and set i := 1. As long
as i does not exceed the cardinality of B, let v be the i-th element of B. Then for
1 6 j 6 r let successively w := v ·X(A j), and check whether or not w ∈ 〈B〉K . If so,
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then discard w; if not, then append w to B, and append [i, j] to T. Having done this
for all j, increment i and recurse.

Since the growing set B is K-linearly independent throughout, this algorithms
terminates after at most n loops. After termination, 〈B〉K is a non-zero submodule
of the irreducible A -module Kn, and thus B indeed is a K-basis. (Of course, we
may terminate early, without any further checking, as soon as the cardinality of
B equals n, since from this point on B would not change anymore anyway.) The
(ordered) set B is called a standard basis of Kn with respect to the representation X,
the generators A1, . . . ,Ar, and the distinguished element A0, and the “bookkeeping
list” T is called the associated Schreier tree.

Strictly speaking, B also depends on the chosen seed vector, but it is essentially
unique in the following sense: If 0 6= ũ ∈ ker(X(A0)) gives rise to the standard basis
B̃ with Schreier tree T̃, then we have ũ = c · u, for some 0 6= c ∈ K, and thus B̃ =
c ·B and T̃= T. Moreover, using the Schreier tree T= [[i1, j j], . . . , [in, jn]], we may
recover B = [u1, . . . ,un], up to a scalar, without any searching as follows: Choose
0 6= u1 ∈ ker(X(A0)), and for 2 6 k 6 n let successively uk := uik ·X(A jk).

In practice. We are able to run the above standard basis algorithm in the following
particular cases: If K is a (small) finite field, then this can of course be done using
ideas from the MeatAxe, as is already described in [24].

More important from our point of view is the case K =Q. Then we may assume
that u∈Zn, and if additionally X(Ai)∈Zn×n, for all 16 i6 r, then we have B⊆Zn,
hence the key step in the above algorithm, to decide whether or not w ∈ 〈B〉Q, can
be done using the p-adic decomposition algorithm in Section 3.5, where whenever
B is enlarged we also check whether its p-modular reduction B⊆ Fn

p is Fp-linearly
independent; if not, then we return failure in order to choose another prime p. (Note
that this is reminiscent of the strategy in Section 3.6.)

6.2. Computing homomorphisms. We return to the general setting in Section 6.1,
and let X′ : A → Kn×n be a matrix representation of A , which is equivalent to
X. Then a standard basis B′ = [v′1, . . . ,v

′
n] of Kn with respect to the representation

X′ is found by choosing 0 6= v′1 ∈ ker(X′(A0)) and just applying the Schreier tree
T = [[i1, j j], . . . , [in, jn]] already known from the standard basis computation for X
by letting successively v′k := v′ik ·X

′(A jk), for 2 6 k 6 n; note that by assumption we
indeed have dimK(ker(X′(A0))) = 1.

Now let 0 6=C ∈ Kn×n be an A -homomorphism from X to X′, that is we have

X(A) ·C =C ·X′(A) for all A ∈A ;

of course, it suffices to require this condition for the generators A1, . . . ,Ar only.
Since X is absolutely irreducible, it follows that C ∈ GLn(K) and is unique up to a
scalar. Moreover, we have ker(X(A0)) ·C = ker(X′(A0)), and thus going over from
the standard bases B and B′ with respect to X and X′, respectively, to the asso-
ciated invertible matrices B and B′ with rows v1, . . . ,vn ∈ Kn and v′1, . . . ,v

′
n ∈ Kn,

respectively, we get B ·C = B′, or equivalently

C = B−1 ·B′ ∈ GLn(K).
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Thus to determine C we have to perform the following steps: find A0 ∈A such
that dimK(ker(X(A0))) = 1; compute ker(X(A0))6Kn and ker(X′(A0))6Kn; com-
pute a Schreier tree T with respect to X ∼= X′ and A0; apply the Schreier tree T in
order to compute standard bases B and B′ of Kn with respect to X and X′, respec-
tively; going over to matrices, compute the inverse B−1 ∈GLn(K); and compute the
product C = B−1 ·B′ ∈ GLn(K).

In practice. If K =Q(X), the nullspaces required can be found as described in Sec-
tion 5.1, where we may assume that v1 and v′1 are primitive. Moreover, computing
matrix inverses and matrix products can be done as described in Sections 5.2 and
5.5, respectively; by multiplying with a suitable element of K we may assume that C
is primitive as well, then C is unique up to sign. Hence for our application it remains
to describe how a distinguished element and a Schreier tree can be found, and we
have to give an efficient break condition for the algorithm in Section 5.5.

7 Finding standard bases for W -graph representations

We have now described the necessary infrastructure from linear algebra over integral
domains, and some relevant general ideas how to compute with representations, to
proceed to the explicit determination of Gram matrices of invariant bilinear forms
for balanced representations of Iwahori–Hecke algebras. We recall the setting of
Section 2.9, which we keep from now on:

Let (W,S) be a finite Coxeter group, and let HA ⊆HK be the associated generic
Iwahori–Hecke algebras with equal parameters over the ring A = Z[v,v−1] and
the field K = Q(v), respectively, being generated by {Ts;s ∈ S}. Moreover, let
Xλ : HK → Kn×n, where n = dλ , be a W -graph representation associated with
λ ∈Λ , and let

(Xλ )′ : HK → Kn×n : Tw 7→ Xλ (Tw−1)tr for all w ∈W.

As far as computer implementations are concerned, it is more convenient and
more efficient to work with row vectors instead of column vectors. Therefore, we
will now work throughout with right actions rather than left actions as in Section
2. Our aim is to find a primitive Gram matrix P ∈ Z[v]n×n for Xλ , that is, using the
language of right actions, a primitive matrix such that

Xλ (Tw) ·P = P · (Xλ )′(Tw) for all w ∈W.

Thus the task is to find a non-zero HK-homomorphism from Xλ to (Xλ )′. In order
to use the approach described in Section 6.2, we proceed as follows, where the basic
idea of this strategy has already been indicated in [11, Section 4.3]:

7.1. Finding seed vectors. To find a suitable seed vector u1 ∈ Kn for the standard
basis algorithm with respect to Xλ , we proceed as follows:
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Specializing v 7→ 1 we from HA recover the group algebra Q[W ], and Xλ corre-
sponds to an irreducible representation Yλ : Q[W ]→Qn×n. In particular, the index
and sign representations of HK , given by indH : Ts 7→ v and sgnH : Ts 7→ −v−1,
respectively, for all s∈ S, correspond to the trivial and sign representations of Q[W ],
given by 1W : s 7→ 1 and sgnW : s 7→ −1, respectively.

As was observed by Benson and Curtis (see [12, Section 6.3] and the references
there), there is a subset J ⊆ S (depending on λ , and in general not being unique),
such that the restriction of Yλ to the parabolic subgroup W̃ := WJ 6 W associated
with J fulfills

dimQ
(
HomQ[W̃ ](sgnW̃ ,Yλ )

)
= 1.

Note that J = /0 and J = S if and only if Yλ equals 1W and sgnW , respectively.
Letting H̃K ⊆HK be the parabolic subalgebra associated with J, this implies

dimK
(
Hom

H̃K
(sgn

H̃
,Xλ )

)
= 1.

In other words, we equivalently have

dimK

(⋂
s∈J

ker
(
Xλ (Ts + v−1)

))
= 1.

Now we are going to use the fact that Xλ is a W -graph representation: Using the
I-sets associated with Xλ , see Definition 2.8, we conclude that ker(Xλ (Ts+v−1)) =
〈ei;s ∈ Ii〉K for all s ∈ S, where ei ∈ Kn denotes the i-th “unit” vector. This implies⋂

s∈J

ker
(
Xλ (Ts + v−1)

)
= 〈ei;J ⊆ Ii〉K .

Hence we may let u1 := ei, where 1 6 i 6 n is the unique index such that J ⊆ Ii.
Note that this conversely also yields a way to find all subsets of S fulfilling the

Benson–Curtis condition: We run through all subsets J ⊆ S, and just check whether
there is precisely one index 1 6 i 6 n such that J ⊆ Ii.

7.2. Finding a distinguished element. The above immediate approach strongly
uses the fact that Xλ is a W -graph representation. Thus, in order to find a suit-
able seed vector u′1 ∈ Kn for the standard basis algorithm with respect to (Xλ )′ we
specify a distinguished element T λ ∈HK such that dimK(ker(Xλ (T λ ))) = 1. Let

T λ :=
(
∑
s∈J

Ts
)
+ v−1 · |J| ∈HA ⊆HK .

Hence we have
⋂

s∈J ker(Xλ (Ts+v−1))6 ker(Xλ (T λ )), and it remains to be shown
that dimK(ker(Xλ (T λ ))) = 1:

Assume to the contrary that dimK(ker
(
Xλ (T λ )))> 2. Then letting

σJ :=
1
|J|
·∑

s∈J
s ∈Q[W̃ ],
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specializing v 7→ 1 shows that dimQ(ker(Yλ (1+σJ))) > 2 as well. Since for any
vector u ∈ ker(Yλ (1+σJ)) we have u ·Yλ (σ k

J ) = (−1)k ·u, for all k ∈ N0, Lemma
7.3 proven below implies that 〈u〉Q 6 Kn is Q[W̃ ]-invariant and carries the sign
representation. Thus we have dimQ(HomQ[W̃ ](sgnW̃ ,Yλ ))> 2, a contradiction.

Lemma 7.3. For ε ∈ {0,1} let Wε := {w ∈W ; sgn(w) = (−1)ε}. Moreover, let

σS :=
1
|S|
·∑

s∈S
s ∈Q[W ].

Then, with respect to the natural topology on Q[W ]∼=Q|W |, we have

lim
k→∞

σ
2k+ε

S =
1
|Wε |
· ∑

w∈Wε

w ∈Q[W ].

Proof. We consider the Markov chain with (finite) state space W = W0
.
∪W1, and

transition matrix M = regW (σS)∈Q|W |×|W |, where regW : Q[W ]→Q|W |×|W | denotes
the regular matrix representation of Q[W ]. In other words, the matrix entry Mw,w′ ,
where w,w′ ∈W , is given as

Mw,w′ :=

{
1
|S| , if w′ = ws for some s ∈ S,

0, otherwise.

Now, since sgn(ws) = −sgn(w) for all w ∈W and s ∈ S, we conclude that M2 =
regW (σ2

S ) induces Markov chains on both W0 and W1. Moreover, since any element
of W can be written as a word of length at most l(w0) in the generators S, we
infer that M2l(w0) has positive entries in both the block submatrices belonging to
W0 and W1, respectively. Hence the induced Markov chains are both irreducible and
aperiodic. They thus converge towards stationary distributions, which since M is
doubly-stochastic are both equal to the respective uniform distributions. Thus, in
particular, the initial state σ ε

S ∈ 〈Wε〉Q yields

lim
k→∞

σ
2k+ε

S = σ
ε
S ·
(

lim
k→∞

(M2)k)= 1
|Wε |
· ∑

w∈Wε

w.

ut

7.4. Finding standard bases. The distinguished element T λ can now be used to
find a primitive vector u′1 ∈ ker((Xλ )′(T λ )). Next, having both seed vectors u1 and
u′1 in place, we aim at computing the associated standard bases B with respect to
Xλ , and B′ with respect to (Xλ )′, for the A-algebra generated by {vTs;s ∈ S}. But
since we do not have a standard basis algorithm available for representations over
the field K, we again use suitable specializations:

Given a place 0 6= b ∈ Z, let Yλ
b : HQ → Qn×n be the representation of HQ

obtained by specializing v 7→ b, that is, considering HQ as the Q-algebra generated
by {bTs;s ∈ S} we have
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Yλ
b : bTs 7→

(
Xλ (vTs)

)
(b) := Xλ (vTs)|v7→b ∈ Zn×n;

thus in particular for b = 1, identifying HQ with Q[W ], we recover Yλ
1 =Yλ .

Now we compare a putative run of the standard basis algorithm, as described in
Section 6.1, with respect to the seed vector u1 ∈Z[v]n and the generators {Xλ (vTs)∈
Z[v]n×n;s ∈ S}, with a run with respect to the specialized seed vector u1(b) ∈ Zn

and the generators {Yλ
b (bTs) ∈ Zn×n;s ∈ S}. These successively produce standard

bases B⊆ Z[v]n and C⊆ Zn, respectively. We show by induction on the cardinality
0 6 m 6 n of the intermediate sets B, that for all but finitely many b the set C is
obtained by specializing B, and that the Schreier trees found in both runs coincide:

Indeed, the key steps are to decide for some w := u ·Xλ (vTs) ∈ Z[v]n whether
or not w ∈ 〈B〉K , and similarly for its specialization w(b) := u(b) ·Yλ

b (bTs) ∈ Zn

whether or not w(b) ∈ 〈C〉Q. Identifying B and C with matrices B ∈ Z[v]m×n and
C ∈Zm×n, respectively, we have C =B(b). Considering the matrix Bw ∈Z[v](m+1)×n

obtained by concatenating B and w, we have w 6∈ 〈B〉K if and only if there is an
((m+ 1)× (m+ 1))-submatrix B′ of Bw such that det(B′w) 6= 0. Similarly, we have
w(b) 6∈ 〈C〉Q if and only if there is an ((m+1)× (m+1))-submatrix C′ of Cw(b) =

Bw(b) ∈ Z(m+1)×n such that det(C′) 6= 0. Hence, whenever w(b) 6∈ 〈C〉Q we also
have w 6∈ 〈B〉K , and conversely for all but finitely many b from w 6∈ 〈B〉K we may
conclude that w(b) 6∈ 〈C〉Q. (We have used a similar argument in Section 5.1.)

Thus assuming that 0 6= b ∈ Z is suitably chosen, we may just run the standard
basis algorithm for the seed vector u1(b) = u1 = ei ∈ Zn, the i-th “unit” vector,
and the generators Yλ

b (bTs) ∈ Zn×n, as described in Section 6.1, yielding a Schreier
tree T. Letting w1 := 1 ∈W , and wi := w j · s ∈W , if [ j,s] is the i-th entry in T, for
2 6 i 6 n, we thus obtain reduced expressions of the elements wi ∈W , and hence the
number of steps needed to find the i-th element of C equals the length l(wi)∈N0. (In
practice, it turns out that choosing either b = 1 or b = 2 is sufficient, where actually
almost always b = 1 works.)

Applying the Schreier tree T to u1 and {Xλ (vTs);s ∈ S} this yields a standard
basis B ⊆ Z[v]n of Kn. Similarly, applying T to u′1 ∈ Z[v]n and {(Xλ )′(vTs) ∈
Z[v]n×n;s ∈ S} we get a standard basis B′ ⊆ Z[v]n of Kn. But note that this does
not ensure that the A-lattices 〈B〉A and 〈B′〉A are invariant under the A-algebras
generated by {Xλ (vTs);s ∈ S} and {(Xλ )′(vTs);s ∈ S}, respectively. (In practice
they are not, typically.)

8 Finding Gram matrices for W -graph representations

We keep the setting of Section 7; in particular Xλ still is a W -graph representation.
Having found standard bases B and B′ for Xλ and (Xλ )′, respectively, we pro-
ceed by writing them as matrices B ∈ Z[v]n×n and B′ ∈ Z[v]n×n, respectively, where
by construction both B and B′ are primitive. In order to complete the final task of
computing the product B−1 ·B′ ∈ Z[v]n×n efficiently, we need a few preparations.
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8.1. Palindromicity. Let ∗ : K→ K be the involutory field automorphism given by
∗ : v 7→ v−1. Hence A is ∗-invariant, and by entry-wise application we get involutory
module automorphisms on Kn and An, and algebra automorphisms on Kn×n and
An×n, all of which will also be denoted by ∗.

A polynomial 0 6= f ∈Z[v] is called (k-)palindromic, for some k ∈N0, if vk · f ∗ =
f ∈ A, and f is called (k-)skew-palindromic if vk · f ∗ = − f ∈ A. In these cases,
letting δ ( f ) ∈ N0 be the maximum power of v dividing f in Z[v], we have k =
δ ( f )+deg( f ). Hence f is palindromic or skew-palindromic if and only if f ∈ Z[v]
and f ∗ ∈ Z[v−1] are associated in A. Moreover, if f is k-skew-palindromic, then
specializing v 7→ 1 we get f (1) = − f (1), implying that v− 1 divides f in Z[v];
similarly, if f is k-palindromic, then specializing v 7→ −1 we get (−1)k · f (−1) =
f (−1), implying that k is even, or v+1 divides f in Z[v].

Proposition 8.2. (a) Let P ∈ Z[v]n×n be a primitive Gram matrix for Xλ . Then we
have vm ·P∗ = P, where m = mP ∈N is even and coincides with the maximum of the
degrees of the non-zero entries of P.

(b) For the primitive seed vector u′1 ∈ Z[v]n we have vm · (u′1)∗ = u′1, where m =
mu′1
∈ N0 is even and coincides with the maximum of the degrees of the non-zero

entries of u′1. (Trivially, the analogous statement holds for u1 ∈ Z[v]n with mu1 = 0.)

Proof. Letting En ∈ An×n be the identity matrix, by Definition 2.8 for s ∈ S we have

Xλ (Ts)
∗ = Xλ (Ts)− (v− v−1) ·En = Xλ

(
Ts− (v− v−1)

)
.

In particular, this yields

Xλ (Ts + v−1)∗ = Xλ (Ts)
∗+ v ·En = Xλ

(
Ts− (v− v−1)

)
+ v ·En = Xλ (Ts + v−1).

(a) We consider the matrix P∗ ∈ Z[v−1]n×n: For all s ∈ S we have

Xλ (Ts) ·P∗ =
(
Xλ
(
Ts− (v− v−1)

)
·P
)∗

=
(

P ·Xλ
(
Ts− (v− v−1)

)tr
)∗

=
(

P ·Xλ (Ts)
∗ tr
)∗

=
(

P ·Xλ (Ts)
tr∗
)∗

= P∗ ·Xλ (Ts)
tr.

Now m = mP ∈ N as above is minimal such that vmP∗ ∈ Z[v]n×n, hence we infer
that vmP∗ is a primitive Gram matrix for Xλ as well, and thus we have vmP∗ = P
or vmP∗ = −P. Assume the latter case holds, then all non-zero entries of P are m-
skew-palindromic, implying that v−1 divides gcd(P), contradicting the primitivity
of P. Hence we have vmP∗ = P, that is all non-zero entries of P are m-palindromic.
Assume that m is odd, then we infer that v+ 1 divides gcd(P), again contradicting
the primitivity of P. Hence m is even.

(b) We consider the vector (u′1)
∗ ∈ Z[v−1]n: We have

(u′1)
∗ · (Xλ )′(T λ ) =

(
u′1 · (Xλ )′(T λ )∗

)∗
=
(

u′1 ·
(
∑
s∈J

Xλ (Ts + v−1)
)tr∗
)∗
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=
(

u′1 ·
(
∑
s∈J

Xλ (Ts + v−1)
)tr
)∗

=
(

u′1 · (Xλ )′(T λ )
)∗

= 0.

Now m = mu′1
∈N0 as above is minimal such that vm · (u′1)∗ ∈ Z[v]n, hence we infer

that vm · (u′1)∗ is primitive. Thus from dimK(ker((Xλ )′(T λ ))) = 1 we conclude that
vm · (u′1)∗ = u′1 or vm · (u′1)∗ =−u′1. Now we argue as above. ut

8.3. Properties of the standard bases. We have a closer look at the standard bases
B and B′, and the associated matrices B and B′, where we assume B to be chosen
according to Section 7.4. The facts collected are largely due to experimental ob-
servation, and will be helpful in the final computational steps in Section 8.4. Still,
these properties seem to be stronger than expected from general principles, and it
should be worth-while to try and prove the particular observations specified below.
(In particular, we have checked the standard bases associated with all subsets J ⊆ S
fulfilling the Benson–Curtis condition, see Section 7.1, for the types E6, E7 and E8.)

Recall that for all s ∈ S we have

(vTs)
−1 = v−1 ·

(
Ts− (v− v−1)

)
= v−2 ·

(
vTs− (v2−1)

)
,

hence by the proof of Proposition 8.2 we get

Xλ (vTs)
∗ = v−1 ·Xλ

(
Ts− (v− v−1)

)
= v−2 ·Xλ

(
vTs− (v2−1)

)
= Xλ

(
(vTs)

−1).
The elements of B. For any ui ∈B, where 2 6 i 6 n, we have ui = u j ·Xλ (vTs), for
some 1 6 j < i and s ∈ S. This yields

v2 ·u j = v2 ·ui ·Xλ
(
(vTs)

−1)= ui ·Xλ
(
vTs− (v2−1)

)
.

We conclude that gcd(ui) ∈ Z[v] and gcd(u j) ∈ Z[v] are associated in A. Hence by
recursion, since u1 is primitive, we infer that gcd(ui) = vdi ∈ Z[v] for some di ∈N0.

Moreover, we have d j 6 di 6 d j + 2. Since d1 = 0 = l(w1), this implies di 6
2l(wi) for all 1 6 i 6 n, where wi ∈W is as in Section 7.4. (Experiments show
that all three cases di ∈ {d j,d j +1,d j +2} actually occur.) But the growth behavior
of the di seems to be more restricted than given by these bounds: Considering the
case l(wi) = 1, we have wi = s for some s∈ S such that the “unit” vector u1 is not an
eigenvector of Ts, hence using the shape of Xλ (vTs) we conclude that di = 1= l(wi).

Now, experimentally, we have made the following

Observation 1. We have di 6 l(wi)+1, for all 1 6 i 6 n.

(Actually, almost always we have got di 6 l(wi), for all 1 6 i 6 n, where often
we have even seen equality throughout; the only cases found where actually di =
l(wi)+1, for some i, are for type E8, the representation labeled by 3200x, and two
out of the twelve Benson–Curtis subsets of generators.)

The matrix B. Letting 1 6 j < i 6 n and s ∈ S be as above, we get

v2 ·u∗i = v2 ·u∗j ·Xλ (vTs)
∗ = u∗j ·Xλ

(
vTs− (v2−1)

)
.
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Since the standard basis algorithm is a breadth-first search, from u∗1 = u1 we con-
clude that there is lower unitriangular matrix U ∈ Kn×n and a diagonal matrix
D = diag[v2l(w1), . . . ,v2l(wn)] ∈ Z[v]n×n, such that

D ·B∗ =U ·B.

(Note that if the A-lattice 〈B〉A was invariant under the A-algebra generated by
{Xλ (vTs);s ∈ S}, then we even had U ∈ An×n.)

In particular, letting l := ∑
n
i=1 l(wi) ∈ N0, we infer that

det(B) = v2l ·det(B∗),

hence det(B) ∈ Z[v] is palindromic. Letting exp(B) ∈ Z[v] denote the exponent of
B in the sense of Section 5.3, it follows from Proposition 5.4 that the non-constant
irreducible polynomials dividing det(B) are precisely those dividing exp(B). Now,
experimentally, we have made the following

Observation 2. Any irreducible divisor of exp(B) in Z[v] is monic and palindromic.

(Actually, in general the entries of the matrix B are neither palindromic nor skew-
palindromic; moreover, quite often exp(B) is a product of cyclotomic polynomials,
but this does not always happen.)

In particular, if ûtr
k ∈ Z[v]1×n denotes the k-th column of B, for 1 6 k 6 n, then

gcd(ûk)∈Z[v] divides det(B), hence gcd(ûk) is palindromic as well. (Actually, con-
trary to gcd(uk) = vdk , in general the gcd(ûk) are not just powers of v.)

The elements of B′. The recursion used in the standard basis algorithm only de-
pends on the Schreier tree T, but is independent of the representation considered.
Hence for u′i ∈B′, where 1 6 i 6 n, and u′1 is primitive, we get gcd(u′i) = vd′i ∈ Z[v]
for some d′i ∈ N0. Moreover, if 1 6 j < i 6 n and s ∈ S are as above, we get
d′j 6 d′i 6 d′j + 2 and d′i 6 2l(wi). Actually, the d′i seem to be closely related to
the di from above, inasmuch experimentally we have made the following

Observation 3. We have d′i = di, for all 1 6 i 6 n.

The matrix B′. Again by the fact that the recursion used in the standard basis algo-
rithm only depends on T, and using vm · (u′1)∗ = u′1, where m = mu′1

∈ N0 is as in
Proposition 8.2, we get

vm ·D · (B′)∗ =U ·B′,

for the same matrices U and D. In particular, it follows that det(B′) is palindromic.
(In general neither det(B′) and det(B), nor exp(B′) and exp(B) are associated in A,
so that 〈B〉A and 〈B′〉A are inequivalent A-sublattices of An, which typically are not
included in each other.) Again, experimentally we have made the following

Observation 4. Any irreducible divisor of exp(B′) in Z[v] is monic and palindromic.

In particular, similarly, if û′ trk ∈ Z[v]1×n denotes the k-th column of B′, for 1 6
k 6 n, then gcd(û′k) ∈ Z[v] is palindromic.
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The product B−1 ·B′. In combination the above yields

vm · (B−1 ·B′)∗ = vm · (B∗)−1 · (B′)∗ = (D−1 ·U ·B)−1 · (D−1 ·U ·B′) = B−1 ·B′.

Hence the non-zero entries of B−1 ·B′ are palindromic.
Letting 0 6= b ∈ Z and B̂ ∈ Z[v]n×n primitive such that B−1 = 1

b·exp(B) · B̂, we get

b · exp(B) ·B−1 ·B′ = B̂ ·B′ = c ·P,

where P ∈ Z[v]n×n is a primitive Gram matrix, and 0 6= c ∈ Z[v]. In particular, since
by Observation 2 the exponent exp(B) is palindromic, we conclude that the non-zero
entries of B̂ ·B′ are palindromic as well.

Moreover, letting m̃ = mexp(B) ∈ N0 such that vm̃ · exp(B)∗ = exp(B), we get

vm+m̃ · (b · exp(B) ·B−1 ·B′)∗ = b · exp(B) ·B−1 ·B′ ∈ Z[v]n×n.

Hence from vmP ·P∗ = P, where mP ∈ N0 is as in Proposition 8.2, we get

mP 6 m+ m̃ = mu′1
+mexp(B),

providing an upper bound on the degrees of the non-zero entries of P.

8.4. The final product. We are now prepared to do the last computational steps. To
do so, we could quite straightforwardly compute first the inverse B−1, that is essen-
tially B̂, and then the product B̂ ·B′. But it will substantially add to the efficiency if
we keep the degrees of the non-zero entries of the matrices involved as small as pos-
sible. Now we have already observed above that the rows of B and B′ are far from
being primitive, and it turns out in practice that this also holds for their columns. We
take advantage of this as follows:

Keeping the notation of Section 8.3, let R := diag[vd1 , . . . ,vdn ] ∈ Z[v]n×n. Then
the rows of R−1 ·B ∈ Z[v]n×n are primitive. As for its columns, letting ũtr

k ∈ Z[v]1×n

denote the k-th column of R−1 ·B, for 1 6 k 6 n, let

C := diag[gcd(ũ1), . . . ,gcd(ũn)] ∈ Z[v]n×n.

Since by Observation 2 the polynomial gcd(ûk) is palindromic, using the particular
form of R, we conclude that the gcd(ũk) are palindromic as well. We let 0 6= ĉ∈Z[v]
and Ĉ ∈ Z[v]n×n be primitive such that C−1 = 1

ĉ ·Ĉ. The latter are of course straight-
forwardly computed, where both ĉ and the diagonal entries of Ĉ are palindromic.

Then we get B̃ ∈ Z[v]n×n such that B = R · B̃ ·C, where now all the rows and
all the columns of B̃ are primitive. We use the algorithm in Section 5.2 to compute
0 6= b̂ ∈ Z[v] and B̂ ∈ Z[v]n×n primitive such that B̃−1 = 1

b̂
· B̂, Since by Observation

2 the exponent exp(B) is palindromic, using the particular form of R and C, we
conclude that b̂ is palindromic as well. Thus altogether we have

B−1 =
1

b̂ · ĉ
·Ĉ · B̂ ·R−1.
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Similarly, let R′ := diag[vd′1 , . . . ,vd′n ] ∈ Z[v]n×n and

C′ := diag[gcd(ũ′1), . . . ,gcd(ũ′n)] ∈ Z[v]n×n,

where ũ′ trk ∈ Z[v]1×n denotes the k-th column of (R′)−1 ·B′, for 1 6 k 6 n. As above,
using Observation 4 implying the palindromicity of gcd(û′k), we conclude that the
diagonal entries of C′ are palindromic as well, and thus those of (C′)−1 are too.
Then we get B̃′ ∈ Z[v]n×n such that B′ = R′ · B̃′ ·C′, where now all the rows and all
the columns of B̃ are primitive.

In combination this yields

Q := b̂ · ĉ ·B−1 ·B′ = Ĉ · B̂ ·R−1 ·R′ · B̃′ ·C′.

By the above considerations we conclude that the non-zero entries of Q are palin-
dromic, which entails that those of B̂ ·R−1 ·R′ · B̃′ are as well. Now by Observation
3 we have R′ = R, hence this simplifies to

Q = Ĉ · (B̂ · B̃′) ·C′ ∈ Z[v]n×n,

where the non-zero entries of B̂ · B̃′ ∈ Z[v]n×n are palindromic.

In practice. To find Q, finally, we apply the matrix multiplication algorithm in Sec-
tion 5.5 to compute the product B̂ · B̃′. As was already mentioned, in order to apply
it efficiently we need good break conditions to discard erroneous guesses quickly:
Apart from requiring that rational number recovery, see Section 3.4, returns only in-
tegral coefficients but not rational ones, it turns out that checking for palindromicity
is highly effective in this respect.

Having found a good candidate for B̂ · B̃′ ∈Z[v]n×n, multiplying with the diagonal
matrices Ĉ ∈ Z[v]n×n and C′ ∈ Z[v]n×n is straightforward. Note that, since the result
is expected to be a symmetric matrix, it is sufficient to compute only the lower
triangular half of the product. Thus we get a candidate for a primitive Gram matrix
P from Q = gcd(Q) ·P ∈ Z[v]n×n. (In many cases Q already is primitive, but this
does not happen always, in which cases gcd(Q) typically has a smallish degree.)

As independent verification we of course just explicitly check whether the can-
didate P fulfills the condition

Xλ (vTs) ·P = P ·Xλ (vTs)
tr ∈ Z[v]n×n for all s ∈ S.

9 Timings

We conclude by providing running times and workspace requirements for our com-
putations in types E7 and E8, and by presenting an explicit example for type E6.

9.1. Timings. In Table 4, we give the running time (on a single processor running
at a clock speed of 3.5GHz) and GAP workspace requirements needed to compute
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primitive Gram matrices for types E7 and E8, and the irreducible W -graph repre-
sentations of HK given in [15], [16]. The figures for E7 should be compared with
those given in Section 2.9 for the approach used there. Recalling that in [11, Remark
4.10] degree 2500 was the limit of feasibility, in Table 5 we present the resources
now needed for the individual representations of degree at least 2500, where for
comparison we repeat the first three columns of the relevant part of Table 2.

Finally, in Table 6 we give some details about the various steps in the computation
for the unique representation of largest degree, which is labeled by 7168w. In the
two last columns we indicate the actual size of the object under consideration in
the GAP workspace, and the disc space needed to store it (as an uncompressed text
file), respectively; the difference is accounted for by the space consumption of the
data structure we are using within GAP, where matrices with polynomial entries
are kept as lists of lists of (short) lists of (small long) integers. In particular, in the
workspace needed to compute the product, next to the matrices B̂ and B̃′ and (the
lower triangular half of) the product B̂ · B̃′, we also keep various specializations of
the right hand factor B̃′, which have a cumulative size of 7.1GB. Hence to compute
a primitive Gram matrix for the representation labeled by 7168w we need a running
time of 1183min∼ 20h and a workspace of size 31.5GB.

Table 4 Time and space consumption

degree no. repr. time workspace

E7 all 60 4min 0.2GB

E8 6 1000 50 30min 0.7GB
1000—2000 20 137min 2.2GB
2000—2500 10 329min 4.3GB
2500—3000 5 350min 5.9GB
3000—4000 7 874min 11.6GB
4000—5000 13 3175min 16.3GB
5000—7000 6 2784min 23.2GB

> 7000 1 1183min 31.5GB

9.2. An explicit example. We conclude by revisiting the (tiny) example already
presented in [11, Example 4.9] (which of course in practice runs in a fraction of a
second): Let W be of type E6 with Dynkin diagramts1 ts3 ts4

t
s2

ts5 ts6

We consider the irreducible W -graph representation of HK , see [23], labeled by
the representation 10s of Q[W ], which is the unique one of degree 10, see Table 1.
The W -graph in question is depicted in [11, Example 4.9], hence we do not repeat it
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Table 5 Time and space consumption for degree > 2500

E8 mP abs.val. time workspace

2688y 24 169180 39min 3.9GB
2800z 20 38038 61min 3.7GB
2800′z 30 882222 116min 5.9GB
2835x 24 1344484 52min 3.1GB
2835′x 32 5391418 82min 5.3GB

3150y 26 6166994 72min 5.8GB
3200x 24 266284 79min 4.9GB
3200′x 30 587345 104min 6.1GB
3240z 16 25586 60min 4.0GB
3240′z 48 33653538 326min 11.6GB
3360z 20 29722 74min 5.1GB
3360′z 32 775084 159min 8.1GB

4096x 22 531634 156min 8.0GB
4096′x 44 234956568 392min 16.0GB
4096z 22 531634 143min 8.1GB
4096′z 44 234956568 428min 16.1GB
4200y 28 58249760 171min 10.1GB
4200x 24 5413484 171min 9.8GB
4200′x 36 129331224 277min 13.3GB
4200z 26 728053 183min 10.4GB
4200′z 28 1298612 199min 10.3GB
4480y 32 85556320920 239min 13.9GB
4536y 28 3887856 180min 11.7GB
4536z 24 2728756 217min 11.4GB
4536′z 38 50779421 419min 16.3GB

5600w 26 372230 331min 16.6GB
5600z 26 3115126 335min 15.4GB
5600′z 30 3848044 473min 17.5GB
5670y 30 10762741 351min 21.7GB
6075x 26 894864 542min 19.5GB
6075′x 34 10488013 752min 23.2GB

7168w 32 1190470476 1183min 31.5GB

here. But to illustrate the shape, and in particular the sparseness of the representing
matrices for the generators vTs1 , . . . ,vTs6 we present a few of them:
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Table 6 Time and space consumption for 7168w

7168w time workspace space disc

T 9min 0.6GB
u′1 5min 1.3GB
B̂ 925min 7.6GB 1.7GB 0.3GB
B̃′ 29min 17.5GB 12.6GB 4.7GB

B̂ · B̃′ 207min 31.5GB 5.8GB 2.4GB
P 8min 7.9GB 5.8GB 2.5GB

vT1 7→



v2 . . v . . . . v .
. v2 . v . . . . . v
. . −1 . . . . . . .
. . . −1 . . . . . .
. . . . −1 . . . . .
. . v . . v2 . . . .
. . . . . . v2 . v v
. . . . v . . v2 . .
. . . . . . . . −1 .
. . . . . . . . . −1


vT6 7→



v2 . . . . . . v v .
. v2 . . . . . v . v
. . v2 . . . . . v v
. . . v2 v . . . . .
. . . . −1 . . . . .
. . . . . v2 v . . .
. . . . . . −1 . . .
. . . . . . . −1 . .
. . . . . . . . −1 .
. . . . . . . . . −1


As it turns out, there are 22 possible choices of a distinguished subset J ⊆ S. We

choose J := {s1,s2,s3,s5,s6}, in accordance with [12, Table C.4]. Then associated
primitive seed vectors u1 and u′1 are as given below, in the first row of the matrices
B and B̃′, respectively. Running the standard basis algorithm on the specialization
of the above W -graph representation with respect to v 7→ 1 yields the following
Schreier tree T, which we depict as an oriented graph, whose vertices 1, . . . ,10 cor-
respond to the vectors in the (ordered) standard bases, and where an arrow from
vertex j to vertex i with label sk says that [ j,sk] is the i-th entry of T:

1t -
s4

2t -
s2

5
t?s5

4t
6s3

8t-
s5

3t -
s3

7
t?s5

6t -
s5

9t -
s4

10t

We find the standard basis B with associated matrix B as shown below. (It is
not always the case that the entries of B are only monomials.) Hence we have R =
diag[vd1 , . . . ,vd10 ], where [d1, . . . ,d10] = [0,1,2,2,2,3,3,3,4,5] = [l(w1), . . . , l(w10)],
and C is the identity matrix. Thus we get the matrix B̃, and from that b̂ = 1 and the
matrix B̂ as also shown below. Note that the entries of B̂ are not necessarily palin-
dromic or skew-palindromic, and that the maximum degree of the non-zero entries
of B, B̃ and B̂ equals 8, 3 and 5, respectively:
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B =



. . . . . . . . . 1

. . . . v . . . . v2

. . . . v3 . . . v2 .

. . . . v3 . . v2 . .

. . . v2 v3 . . . . .

. . . . v5 . v3 v4 v4 v4

. . v3 v4 v5 . . . v4 v4

. v3 . v4 v5 . . v4 . v4

. v5 v5 v6 v7 v4 v5 v6 v6 v6

v5 v7 v7 v6 . v6 v7 v6 v6 v8


B̃ =



. . . . . . . . . 1

. . . . 1 . . . . v

. . . . v . . . 1 .

. . . . v . . 1 . .

. . . 1 v . . . . .

. . . . v2 . 1 v v v

. . 1 v v2 . . . v v

. 1 . v v2 . . v . v

. v v v2 v3 1 v v2 v2 v2

1 v2 v2 v . v v2 v v v3



B̂ =



2v5−3v3 −2v4 +3v2 v3− v v3− v v3− v . . . −v 1
−v3− v v2 . −v −v . . 1 . .
−v3− v v2 −v . −v . 1 . . .

v2 −v . . 1 . . . . .
−v 1 . . . . . . . .

v4 +2v2 −v3 v2 v2 v2 −v −v −v 1 .
−v3− v v2 −v −v . 1 . . . .

v2 −v . 1 . . . . . .
v2 −v 1 . . . . . . .
1 . . . . . . . . .


Similarly, we find the standard basis B′ with associated matrix B′. As it turns

out we indeed have R′ = R, and C′ is the identity matrix. This yields the matrix
B̃′ as shown below. Note that the entries of B̃′ are not necessarily palindromic or
skew-palindromic, and that the maximum degree of the non-zero entries of B̃′ is 9:

B̃′ =



2v3 v5 +2v3 + v v5 +2v3 + v −v4− v2 v5 +2v3 + v
−2v2 v6− v2 v6− v2 v3 + v −v4−2v2−1
−v5 + v −2v5 −v5 + v v6 + v4 −v7−2v5− v3

−v5 + v −v5 + v −2v5 v6 + v4 −v7−2v5− v3

−v5 + v −v5 + v −v5 + v −v2−1 −v7−2v5− v3

2v4 2v4 2v4 v7− v5 −v8 + v4

2v4 2v4 v4−1 −v5− v3 −v8 + v4

2v4 v4−1 2v4 −v5− v3 −v8 + v4

v7 + v5− v3 + v −2v3 −2v3 −v6 + v4 −v9 + v7− v5− v3

−v6− v4 + v2−1 −2v6 −2v6 v5− v3 v8− v6 + v4 + v2

−v4− v2 v5 +2v3 + v −v4− v2 −v4− v2 −v6−2v4−2v2−1
−v5 + v3 v6− v2 v3 + v v3 + v −v7− v5

v4− v2 −v5 + v v6 + v4 −v2−1 v6 + v4

v4− v2 −v5 + v −v2−1 v6 + v4 v6 + v4

v4− v2 −2v5 v6 + v4 v6 + v4 v6 + v4

−v3 + v v4−1 −v5− v3 −v5− v3 −v5− v3

−v3 + v 2v4 v7− v5 −v5− v3 −v5− v3

−v3 + v 2v4 −v5− v3 v7− v5 −v5− v3

v2−1 −2v3 −v6 + v4 −v6 + v4 v4 + v2

v7 + v5 −2v6 v5− v3 v5− v3 −v9 + v7


From this we get Q = B̂ · B̃′. As it turns out we already have gcd(Q) = 1, thus

we may let P =−Q be as shown below. Indeed, independent verification shows that
P is a primitive Gram matrix as desired, coinciding with the one already given in
[11, Example 4.9]. Note that indeed P is a completely dense matrix, all of whose
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entries are 6-palindromic, where the maximum degree occurring is 6, and that in
accordance with Table 1 the largest coefficient occurring has absolute value 3, and
that the specialization v 7→ 0 yields the identity matrix:



v6 +3v4 +3v2 +1 2v4 +2v2 2v4 +2v2 −v5−2v3− v 2v4 +2v2

2v4 +2v2 v6 +3v4 +3v2 +1 2v4 +2v2 −v5−2v3− v 2v4 +2v2

2v4 +2v2 2v4 +2v2 v6 +3v4 +3v2 +1 −v5−2v3− v 2v4 +2v2

−v5−2v3− v −v5−2v3− v −v5−2v3− v v6 +2v4 +2v2 +1 −v5−2v3− v
2v4 +2v2 2v4 +2v2 2v4 +2v2 −v5−2v3− v v6 +3v4 +3v2 +1
−v5−2v3− v −v5−2v3− v −v5−2v3− v v4 + v2 −2v3

2v4 +2v2 2v4 +2v2 2v4 +2v2 −2v3 2v4 +2v2

−v5−2v3− v −v5−2v3− v −2v3 v4 + v2 −v5−2v3− v
−v5−2v3− v −2v3 −v5−2v3− v v4 + v2 −v5−2v3− v
−2v3 −v5−2v3− v −v5−2v3− v v4 + v2 −v5−2v3− v

−v5−2v3− v 2v4 +2v2 −v5−2v3− v −v5−2v3− v −2v3

−v5−2v3− v 2v4 +2v2 −v5−2v3− v −2v3 −v5−2v3− v
−v5−2v3− v 2v4 +2v2 −2v3 −v5−2v3− v −v5−2v3− v

v4 + v2 −2v3 v4 + v2 v4 + v2 v4 + v2

−2v3 2v4 +2v2 −v5−2v3− v −v5−2v3− v −v5−2v3− v
v6 +2v4 +2v2 +1 −v5−2v3− v v4 + v2 v4 + v2 v4 + v2

−v5−2v3− v v6 +3v4 +3v2 +1 −v5−2v3− v −v5−2v3− v −v5−2v3− v
v4 + v2 −v5−2v3− v v6 +2v4 +2v2 +1 v4 + v2 v4 + v2

v4 + v2 −v5−2v3− v v4 + v2 v6 +2v4 +2v2 +1 v4 + v2

v4 + v2 −v5−2v3− v v4 + v2 v4 + v2 v6 +2v4 +2v2 +1
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