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Abstract. Given a finite group G and a faithful irreducible FG-module V where F
has prime order, does G have a regular orbit on V ? This problem is equivalent to
determining which primitive permutation groups of affine type have a base of size 2. Let
G be a covering group of an almost simple group whose socle T is sporadic, and let V be
a faithful irreducible FG-module where F has prime order dividing |G|. We classify the
pairs (G,V ) for which G has no regular orbit on V , and determine the minimal base size
of G in its action on V . To obtain this classification, for each non-trivial g ∈ G/Z(G),
we compute the minimal number of T -conjugates of g generating 〈T, g〉.

1. Introduction

A base B for a group X acting faithfully on a finite set Ω is a subset of Ω with the
property that only the identity of X fixes every element of B. The base size of X, denoted
by b(X), is the minimal cardinality of a base for X. Recently, much work has been done
to classify the finite primitive permutation groups of almost simple, diagonal and twisted
wreath type with base size 2 (see [6–8, 11, 12]). For groups of affine type, this problem is
equivalent to the regular orbit problem for fields with prime order.

Given a finite group G, a field F and a faithful FG-module V , we say that G has a
regular orbit on V if there exists v ∈ V such that only the identity of G fixes v; in other
words, {v} is a base for G. Hall, Liebeck and Seitz [19, Theorem 6] proved that if G is
a finite quasisimple group with no regular orbit on a faithful irreducible FG-module V
where F is a field of characteristic p, then either G is of Lie type in characteristic p, or
G = An where p 6 n and V is the fully deleted permutation module, or (G,V ) is one
of finitely many exceptional pairs. While these exceptional pairs are unknown in general,
they have been determined when F is the field Fp of order p and either p - |G| (see [16, 26]),
or p | |G| and G/Z(G) = An (see [13]). In this paper, we consider the case where G/Z(G)
is a sporadic simple group whose order is divisible by p. We also consider the covering
groups of the automorphism groups of the sporadic groups, and for those groups G with
no regular orbit on V , we determine the base size of G in its action on V .

Theorem 1.1. Let G be a covering group of an almost simple group whose socle is spo-
radic. Let V be a faithful irreducible FpG-module where p is a prime dividing |G|. If G
has no regular orbit on V , then (G, p,dimFp(V ), b(G)) is listed in Table 1.

If there are exactly m faithful irreducible FpG-modules with dimension d on which

G has no regular orbit and m > 1, then we write d(m) in Table 1. Except for the case
(G, p,dimFp(V )) = (M11, 3, 10), this is sufficient to identify the non-regular modules. How-
ever, there are three faithful irreducible F3 M11-modules of dimension 10, only one of which
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has base size 2: the F3 M11-module with the property that an involution of M11, viewed
as an element of GL10(3), has trace −1 ∈ F3.

There are FpG-modules in Table 1 (indicated by ]) that are not absolutely irreducible;
these all split into absolutely irreducible Fp2G-modules. In particular, when G = 3. J3,
there is a unique faithful irreducible but not absolutely irreducible F2G-module with di-
mension 18, corresponding to the two absolutely irreducible F4G-modules with dimension
9 that cannot be realised over F2; this module should not be confused with the four faith-
ful absolutely irreducible F4G-modules with dimension 18 that cannot be realised over F2

(see [24]).

G p dimFp(V ) b(G)

M11 2 10 2

3 5(2), 10 2

M12 2 10 3

3 10(2) 2

M12 :2 2 10 3

2.M12 3 6(2) 3

10(2) 2

2.M12 .2
+ 3 12, 10(4) 2

2.M12 .2
− 3 12 2

M22 2 10(2) 3

M22 :2 2 10(2) 3

3.M22 2 12] 3

M23 2 11(2) 3

M24 2 11(2) 3

J1 2 20 2

J2 2 12] 2

J2 :2 2 12 2

2. J2 3 12], 14 2

5 6 2

2. J2 .2
+ 3 12 2

2. J2 .2
− 3 12, 14(2) 2

3. J3 2 18] 2

G p dimFp(V ) b(G)

HS 2 20 2

HS :2 2 20 2

McL 2 22 2

3 21 2

McL :2 2 22 2

3 21(2) 2

Ru 2 28 2

2.Suz 3 12 3

2.Suz .2+ 3 12(2) 3

2.Suz .2− 3 24] 2

3.Suz 2 24] 2

6.Suz 7 12(2) 2

13 12(2) 2

Co3 2 22 2

3 22 2

Co2 2 22 3

3 23 2

Co1 2 24 3

2.Co1 3 24 2

5 24 2

7 24 2

Table 1. FpG-modules V on which G has no regular orbit

A finite primitive permutation group X is of affine type if its socle V is an Fp-vector
space for some prime p, in which case X = V :X0 and V is a faithful irreducible FpX0-
module, where X0 denotes the stabiliser of the vector 0 in X. Now b(X) = b(X0) + 1, so
classifying the primitive permutation groups of affine type with a base of size 2 amounts to
determining which finite groups G, primes p, and faithful irreducible FpG-modules V are
such that G has a regular orbit on V . Thus, as an immediate consequence of Theorem 1.1,
we obtain the following.

Corollary 1.2. Let X be a primitive permutation group of affine type with socle V ' Fdp
where p is a prime dividing |X0| and X0 is a covering group of an almost simple group
whose socle is sporadic. If b(X) > 2, then (G, p, d) is listed in Table 1 where G = X0, and
b(X) = b(G) + 1. In particular, b(X) 6 4.
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The proof of Theorem 1.1 proceeds as follows. If G has no regular orbit on V , then the
dimension of V is bounded above by some integer u(G, p) (see Lemma 3.3). If u(G, p) is less
than the minimal dimension m(G′, p) of a faithful irreducible representation of the derived
subgroup G′ in characteristic p (given by [23]), then we have a contradiction. Otherwise, in
most cases, the p-modular Brauer character table of G is known, so we can determine the
possible dimensions for V . We then use a variety of computational techniques in GAP [14]
and Magma [4] to determine the base size b(G) of G in its action of V . For those cases
where the p-modular Brauer character table of G is not known—namely when (G, p) is
one of (J4, 2), (Co1, 2), (2.Co1, 3) or (2.Co1, 5)—we use other methods to determine the
possible dimensions for V (see §4).

The upper bound u(G, p) is defined in terms of a well-known parameter. Let G be an
almost simple group with socle T , and for each non-trivial g ∈ G, define r(g) to be the
minimal number of T -conjugates of g that generate 〈T, g〉. When T is sporadic, upper
bounds on r(G) := max {r(g) : g ∈ G \ {1}} were determined in [18] (see [18, Table 1] and
the proof of [18, Lemma 7.6]), but these are not always sufficient for our purposes. To
determine the best possible bound on the dimension of V , we compute the exact values of
the r(g) and record these in the following theorem. In particular, this result considerably
improves the upper bounds of [18] on r(G) and may be of independent interest.

Theorem 1.3. Let G be an almost simple group whose socle is sporadic, and let g ∈ G
be non-trivial. Either g2 = 1 and r(g) = 3, or g2 6= 1 and r(g) = 2, or the class name of
g is listed in Table 2.

G r(g) = 3 r(g) = 4 r(g) = 5 r(g) = 6

M22(:2) 2B

J2(:2) 3A 2A

HS(:2) 4A 2C

McL(:2) 3A

Suz(:2) 3A

Co2 2A

Co1 3A

Fi22(:2) 3A, 3B 2D 2A

Fi23 3A, 3B 2A

Fi′24(:2) 3A, 3B 2C

HN(:2) 4D

Ly 3A

B 2A

Table 2. Exceptional values of r(g)

This paper is organised as follows. In §2 we collect some notation, definitions and basic
facts. In §3 we determine bounds both for the dimensions of faithful irreducible represen-
tations admitting no regular orbit and for base sizes. In §4 we address the “dimension
gaps” that occur when m(G′, p) 6 u(G, p) and the p-modular Brauer character table of G
is not known. In §5 we briefly discuss computational aspects, and in §6 and §7 we prove
Theorems 1.3 and 1.1, respectively.

2. Preliminaries

Let G be a finite group. We denote the derived subgroup of G by G′, the centre of G
by Z(G), and the conjugacy class of g ∈ G by gG. A finite group G is almost simple if
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T EG 6 Aut(T ) for some non-abelian simple group T . The subgroup of G generated by
the minimal normal subgroups of G is the socle of G, and G is almost simple precisely
when its socle is a non-abelian simple group. If G = G′ and G/Z(G) is simple, then G is
quasisimple.

A finite group L is a covering group of G (by a group M) if L/M ' G where M 6
Z(L) ∩ L′. Every finite group G has a universal covering group [17, Theorem 4.226],
which is a covering group of G by M(G), the Schur multiplier of G (see [17, §4.15] for a
definition). If L is a covering group of G by a group M , then L is a homomorphic image
of some universal covering group of G and M is a homomorphic image of M(G) (see [17,
Proposition 4.227]). Universal covering groups are determined up to isoclinism in general,
and up to isomorphism when G is simple [10, Chap. 4, §1]. A finite group L is a covering
group of an almost simple group G precisely when L/Z(L) ' G and Z(L) 6 L′.

Let T be one of the 26 sporadic simple groups. A wealth of information about these
groups may be found in [10], with which our notation is (more or less) consistent. It
is well known that M(T ) is cyclic (see, for example, [25, Theorem 5.1.4]), and also that
Aut(T ) = T or T :2. If Aut(T ) = T :2, then M(Aut(T )) 6M(T ). (To see this, observe that
the derived subgroup of a covering group of T :2 is perfect with central quotient T .) Thus
by [10], M(Aut(T )) = Cs where s = (2, |M(T )|), and if s = 2, then Aut(T ) has exactly
two universal covering groups. The ordinary character table of one of these groups is listed
in [10], and we denote this group by 2.T.2+. We denote the other universal covering group
by 2.T.2−; its character table is easily derived from that of 2.T.2+ (see [10, Chap. 6, §6]).
In Table 3, for the convenience of the reader, we list the orders of T , its Schur multiplier
M(T ), and its outer automorphism group Out(T ).

For a prime p, the (p-modular) Brauer character table of G encodes information about
the absolutely irreducible representations of G in characteristic p by lifting the eigenvalues
of the matrices representing G to a field of characteristic 0 (see [24, §4] for a definition).
We often use the known Brauer character tables of the sporadic simple groups. For those
sporadic simple groups T whose order is at most |McL |, the Brauer Atlas [24] contains
the Brauer character tables of all bicyclic extensions of T for primes p dividing |T |; these
tables are known for some larger groups, see [33] for the available data.

Let F be a field. We denote the group algebra of G over F by FG. All FG-modules in
this paper are finite-dimensional, and we denote the dimension or degree of an FG-module
V by dimF (V ). An irreducible FG-module V is absolutely irreducible if the extension of
scalars V ⊗F E is irreducible for every field extension E of F , and this occurs precisely
when EndFG(V ) = F (see [3, Lemma VII.2.2]), where EndFG(V ) denotes the set of FG-
endomorphisms of V . We denote the finite field of order q by Fq.

Let V be an irreducible FpG-module where p is prime, and let k := EndFpG(V ). Now k
is a finite division ring and therefore a field, so V is an absolutely irreducible kG-module
where scalar multiplication is evaluation. Let χ be the Frobenius character of V as a
kG-module, and let H be the Galois group of the field extension k/Fp. By [3, Theorem
VII.1.16], k = Fp({χ(g) : g ∈ G}) and V ⊗Fp k =

⊕
γ∈H Vγ , where the Vγ are pairwise non-

isomorphic absolutely irreducible kG-modules with character γχ : G → k : g 7→ γ(χ(g))
which cannot be realised over any proper subfield of k. Now dimk(V ) is given by the p-
modular Brauer character table of G, and we can use this table to determine {χ(g) : g ∈ G}
(see [24, §§2-5]) and therefore the FpG-module V .

Let N be a subgroup of G with index 2. Let V be an irreducible FG-module, and let
W be an irreducible FN -submodule of V |N , the restriction of V to N . It is well known
from Clifford theory that either V |N = W , or V |N = W ⊕Wg for all g ∈ G \ N . We
frequently use the following observations without reference. If V |N = W ⊕Wg and W is
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T |M(T )| |Out(T )| |T |
M11 1 1 24.32.5.11

M12 2 2 26.32.5.11

M22 12 2 27.32.5.7.11

M23 1 1 27.32.5.7.11.23

M24 1 1 210.33.5.7.11.23

J1 1 1 23.3.5.7.11.19

J2 2 2 27.33.52.7

J3 3 2 27.35.5.17.19

J4 1 1 221.33.5.7.113.23.29.31.37.43

HS 2 2 29.32.53.7.11

McL 3 2 27.36.53.7.11

He 1 2 210.33.52.73.17

Ru 2 1 214.33.53.7.13.29

Suz 6 2 213.37.52.7.11.13

O’N 3 2 29.34.5.73.11.19.31

Co3 1 1 210.37.53.7.11.23

Co2 1 1 218.36.53.7.11.23

Co1 2 1 221.39.54.72.11.13.23

Fi22 6 2 217.39.52.7.11.13

Fi23 1 1 218.313.52.7.11.13.17.23

Fi′24 3 2 221.316.52.73.11.13.17.23.29

HN 1 2 214.36.56.7.11.19

Ly 1 1 28.37.56.7.11.31.37.67

Th 1 1 215.310.53.72.13.19.31

B 2 1 241.313.56.72.11.13.17.19.23.31.47

M 1 1 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71
Table 3. The sporadic simple groups T

a faithful FN -module, then the base sizes of N on W and Wg are equal, and this base
size is at least b(G) (since N 6= 1). If instead V |N = W and V is a faithful FG-module,
then b(N) 6 b(G).

3. Some useful bounds

If G acts faithfully on a finite set Ω, then |G| 6 |Ω|b(G) since, for every base B of G, each
g ∈ G is uniquely determined by {αg : α ∈ B}. Thus we have the following elementary
but useful result.

Lemma 3.1. Let G be a finite group and F a finite field. If V is a faithful FG-module,
then |G| 6 (|V | − 1)b(G).

For a group G, field F and FG-module V , define CV (g) := {v ∈ V : vg = v} for all
g ∈ G. The following generalises [13, Lemma 3.3].

Lemma 3.2. Let G be a finite group and F a finite field. Let V be a faithful FG-module.
Let X be a set of representatives for the conjugacy classes of elements of prime order in G.
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If n is a positive integer for which

(3.1) |V |n >
∑
g∈X
|gG||CV (g)|n,

then b(G) 6 n.

Proof. Let Y be the set of elements of prime order inG, and letW be a faithful FG-module.
If G has no regular orbit on W , then W =

⋃
g∈Y CW (g), so |W | 6

∑
g∈X |gG||CW (g)|.

The base size of G on V is at most n if and only if G has a regular orbit on the faithful
FG-module V n. Since CV n(g) = CV (g)n, the result follows. �

Let G be a finite group such that G/Z(G) is almost simple with socle T , and let
g ∈ G \ Z(G). Now 〈T,Z(G)g〉 is generated by the T -conjugates of Z(G)g, so we may
define r(g) to be the minimal number of T -conjugates of Z(G)g generating 〈T,Z(G)g〉.
This extends the definition given in §1. The following generalises [13, Lemma 3.5].

Lemma 3.3. Let G be a finite group with G/Z(G) almost simple and V a faithful ir-
reducible FqG-module where q is a prime power. Let X be a set of representatives for
the conjugacy classes of non-central elements of prime order in G, and let u(G, q) be the
largest integer such that

1 6
∑
g∈X
|gG|(1/q)u(G,q)/r(g).

If G has no regular orbit on V , then dimFq(V ) 6 u(G, q).

Proof. Let d := dimFq(V ). Note that CV (g) = {0} for g ∈ Z(G) \ {1}. If G has no regular
orbit on V , then by Lemma 3.2 and [13, Lemma 3.4],

qd 6
∑
g∈X
|gG||CV (g)| 6

∑
g∈X
|gG|qd−d/r(g),

so d 6 u(G, q). �

4. Dimension gaps

In this section we consider those cases where the upper bound u(G, p) for the dimen-
sion of a faithful irreducible FpG-module on which G has no regular orbit (as given by
Lemma 3.3) is at least the minimal dimension of a faithful irreducible representation of
G′ in characteristic p (as given by [23]), but the p-modular Brauer character table of G
is not yet known. These “dimension gaps” occur when (G, p) is one of (J4, 2), (Co1, 2),
(2.Co1, 3) or (2.Co1, 5). For each, we first compute u(G, p) using the ordinary character
table of G and Theorem 1.3, and then determine the representations whose dimensions
are at most u(G, p). Note that these results (for the dimension bound of 250) are stated
in [21], but explicit proofs, which often depend on computations with the MOC system
[20], are omitted.

Lemma 4.1. There is a unique faithful irreducible 2-modular representation of Co1 of
degree at most u(Co1, 2) = 117. This representation has degree 24.

Proof. Recall from the list of maximal subgroups in [10] (as corrected in [24]) that Co1
can be generated by subgroups 36:2.M12 and 3. Suz :2, intersecting in 35:(2 ×M11). The
2-modular irreducibles of 3. Suz :2 of degree at most 117 have degrees 1 and 24. Hence
every irreducible character of Co1 of degree at most 117 has character restriction composed
of 1 and 24. Restricting to 35:(2 ×M11), the 24 remains irreducible. Since the orbits of
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2.M12 on the linear characters of 36 are 1 + 24 + 264 + 440, the only possible character
restriction to 36:2.M12 is 24k + 1j .

The 24 is not in the principal block of either 3.Suz :2, or of 36:2.M12. Hence the principal
and non-principal block components of the restrictions to these subgroups coincide. If
j > 0, then the perfect group 36:2.M12 acts trivially on the non-zero principal block
component, a contradiction. Hence j = 0. Since the irreducible 24 for 3.Suz :2 has no non-
splitting self-extensions, 3. Suz :2 acts completely reducibly, so there is a 24-dimensional
subspace invariant under Co1, implying k = 1. Finally, for every irreducible representation
of degree 24, there is a unique amalgamation inside GL24(2), so there is a unique such
representation of Co1. �

Lemma 4.2.

(1) There is a unique faithful irreducible 3-modular representation of 2.Co1 of degree
at most u(2.Co1, 3) = 74. This representation has degree 24.

(2) There is a unique faithful irreducible 5-modular representation of 2.Co1 of degree
at most u(2.Co1, 5) = 50. This representation has degree 24.

Proof. In each case, we can construct such a representation from two copies of 212: M24,
intersecting in 26+12:3.S6. Since the orbits of M24 on the linear characters of 212 are
1 + 24 + 276 + 1771 + 2024, the only faithful irreducible representation of 212: M24 of
degree less than 276 in odd characteristic is the monomial 24. This remains irreducible on
restriction to 26+12:3.S6.

Moreover, every relevant faithful irreducible representation of 2.Co1 must have charac-
ter restriction 24k to each of these subgroups. Since the irreducible 24 for 212: M24 has no
non-splitting self-extensions, the subgroups in question act completely reducibly, implying
that k = 1. Since every matrix that commutes with the action of 26+12:3.S6 commutes
with the action of both copies of 212: M24, there is a unique amalgamation of groups into
GL24(3), or GL24(5), and so a unique representation of 2.Co1 of dimension 24. �

Our proof for (J4, 2) is motivated by the approach of [23, §4.3.21], which in turn is based
on [2, Chap. 6].

Lemma 4.3. There is a unique faithful irreducible 2-modular representation of J4 of degree
at most u(J4, 2) = 129. This representation has degree 112.

Proof. Let V be a faithful irreducible 2-modular representation of G := J4 of degree
at most 129. Recall that G can be generated by subgroups K := U3(11):2 and L :=
111+2:(5× 2.S4), intersecting in H := 111+2:(5× 8:2). Also, K ′ = U3(11) and L generate
G and intersect in H1 := 111+2:(5 × 8); see [2, p. 63]. In particular, there exists an
involution z ∈ H \H1 where z ∈ L and K = 〈K ′, z〉.

The 2-modular Brauer character table of K shows that V has character restriction
110 + 1k to K. Similarly, V has character restriction 110′ + λ to L, where 110′ is one of
the three irreducible Brauer characters of this degree, and λ has constituents of degree 1
and 2. By considering the unique conjugacy class of elements of order 3 in G, we deduce
that k > 2, the irreducible Brauer character of degree 110 occurring in the restriction to
L is one of the non-rational ones, and λ has a unique constituent of degree 2 apart from
k − 2 linear ones.

By considering the unique conjugacy class of elements of order 5 in G, we deduce that
the constituents of λ are necessarily rational, so are uniquely determined by their degree.
The 2-modular Brauer character table of H shows that the irreducible Brauer characters
of degree 110 of K and L restrict irreducibly to H. A consideration of 2-blocks yields the
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block decomposition of the various restrictions as

V |K ∼ (110 + 1k) and V |L ∼ 110′ ⊕ (2 + 1k−2) and V |H ∼ 110⊕ (1k).

Hence there is a unique L-submodule U110 of V of dimension 110, which cannot be
K-invariant, so the unique 110-local K-submodule of V is reducible. (Here we freely
use terminology from [27].) By computing suitable cohomology groups, we determine
all possible downward K-extensions of 110 with kernel having only trivial constituents.
This shows that the local submodule in question, say U111, is uniserial with descending
composition series 110/1. In particular, this specifies a trivial K-submodule U1 of V .
Moreover, (V/U111)|K ∼ 1k−1; thus K ′, being perfect, acts trivially on this quotient.

Observe that [L:H] = 3, where the action of L on the cosets of H is equivalent to the
natural action of S3 ∼= S4/V4; thus the associated permutation module is semisimple of
shape 2 ⊕ 1. Since U1 cannot be L-invariant, the L-submodule UL1 generated by U1 is
either irreducible of degree 2, or semisimple of shape 2⊕ 1. Hence we get an L-submodule
110′ ⊕ UL1 , which contains U111, and so is K ′-invariant. Hence 110′ ⊕ UL1 = V , implying
that dimF2(V ) ∈ {112, 113}; in other words, k = 2 or k = 3.

Let X 6 V be the image of the action of 1 + z, where we view the latter as an element
of both F2K and F2L. Since 1 + z has an image of dimension 55 on 110, both cases
for V |L yield dimF2(X) = 56, where X intersects non-trivially with the irreducible direct
summand 2.

Next, again using a cohomological approach, we determine all indecomposable K-
modules (up to isomorphism) having the constituent 110 once, and the trivial constituent
1 with multiplicity at most 3, where we restrict to those modules having 110 neither in
their head nor in their socle. This yields two isomorphism types V112 and V112′ of modules,
both uniserial with descending composition series 1/110/1, a module V113 of dimension
113 with head of shape 1⊕ 1 and socle of shape 1, and the dual V ∗113 of V113. In all cases
the unique 110-local submodule is isomorphic to U111.

Suppose that k = 3. If V |K = V113, for which 1 + z has image of dimension 56, then
X 6 U111. This implies that 110′ ⊕ 2 contains U111. Since the latter coincides with the
radical of V113, we conclude that 110′ ⊕ 2 is K ′-invariant, a contradiction. Similarly, if
V |K = V ∗113, then, since V |L is self-dual, we obtain a contradiction by dualising the picture.
Finally, let V |K have a direct summand isomorphic to V112 or V112′ . Now 1 + z has an
image of dimension 55 on V112′ , say, and 1 + z has an image of dimension 56 on V112.
Hence V |K = V112 ⊕ 1, where again X 6 U111, yielding a contradiction as above. This
excludes the case k = 3.

Hence k = 2, so dimF2(V ) = 112. By the above, V |K = V112. The arguments of [2, pp.
63ff.] now imply that V is uniquely determined up to isomorphism. �

5. Comments on computations

We usually used the Atlas database [32] to access explicit matrix and permutation
representations on standard generators, and straight line programs on these for conjugacy
class representatives. In GAP we accessed this data through the AtlasRep package [31].
The ordinary and Brauer character tables from [10, 24, 33] are available through the
Character Table Library [5] of GAP.

We used the Orb package [29] available through GAP. It has highly optimised techniques
to enumerate orbits of vectors or subspaces in a G-module V . It can be used directly to
enumerate a G-orbit point-by-point. But a critical feature is that it can also enumerate a
G-orbit in larger pieces consisting of suborbits with respect to a helper subgroup U 6 G.
During the enumeration process, to recognise quickly whether a U -suborbit has been
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encountered before, helper U -sets, homomorphic images of the given ones, are used; for
example, if the G-orbit consists of vectors in a G-module V , then the helper U -set may
consist of the vectors in an epimorphic image of the U -module V |U . To fully utilise the
helper U -sets, these must be enumerated in turn, which is done using the same process,
giving rise to a divide-and-conquer strategy. A detailed account of this approach is given
in [28], whose terminology we freely borrow here.

Magma has an implementation of an algorithm of Cannon and Holt [9] which constructs
faithful irreducible representations defined over a given finite field of a finite permutation
group; we used this to construct representations, either all or those of specified degree,
of certain small degree permutation groups. Occasionally, we used our implementation in
Magma of the algorithm of [15] to conjugate a given representation to one defined over a
subfield.

Applications of Lemma 3.2 require knowledge of conjugacy classes of G. To compute
these, we sometimes used the infrastructure of [1] available in Magma; classes in J4 were
written down directly using the results of [22] as summarised at [32].

6. Proof of Theorem 1.3

Let G be an almost simple group whose socle T is sporadic. First suppose that T 6= M;
we address this case in Lemma 6.2.

(i) Using explicit words given on standard generators from the Atlas database, or
the general purpose algorithm available in GAP, we determine representatives of
conjugacy classes of G.

(ii) For each class representative g, we perform a random search through gG for a subset
S generating G or T . If G has a “small degree” permutation representation, then
we check generation by S directly. For J4, HN, Ly, Th and B, we use instead a
faithful matrix representation and a different generation check: we select a set of
primes whose product divides the order of T , but of none of its maximal subgroups,
and now search randomly in 〈S〉 for elements having these orders. Hence, for each
class representative g, we obtain an upper bound u(g) to r(g).

(iii) Clearly r(g) > 3 if g is an involution, and r(g) > 2 otherwise. If u(g) equals
this lower bound, then r(g) = u(g). This leaves unresolved the cases listed in
Table 2. (Since in all cases u(g) = r(g), the random search achieved the best
possible outcome.)

(iv) Since no non-trivial element of Aut(G) stabilises a generating `(g)-tuple of distinct
elements of gG, we deduce that

`(g)−1∏
i=0

(|gG| − i) > |Aut(G)|.

This provides a new lower bound `(g) for r(g), and resolves the following cases
where `(g) = u(g):

(J2, 3A), (McL, 3A), (Co1, 3A), (Fi22, 3A), (Fi23, 3A),

(Fi′24, 3A), (Fi′24, 3B), (Fi′24 :2, 2C), (HN :2, 4D), (Ly, 3A), (B, 2A).

(v) In most cases, a search through a set of representatives g1, . . . , gu(g)−1 of the G-

orbits on the set of (u(g) − 1)-tuples of gG is feasible. These are found readily
as follows. Fixing g1 := g, we let g2 run through a set of representatives of the
CG(g1)-orbits in gG, for fixed g2 we let g3 run through a set of representatives of
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the CG(g1, g2)-orbits in gG, and so on. We check directly the order of the subgroup
generated by each tuple. This resolves the cases

(M22 :2, 2B), (J2, 2A), (HS, 4A), (HS :2, 2C), (Suz, 3A),

(Co2, 2A), (Fi22, 2A), (Fi22 :2, 2D), (Fi23, 2A).

We now resolve the remaining cases.

Lemma 6.1.

(1) Let G = Fi22. If g ∈ G is in class 3B, then r(g) = 3.
(2) Let G = Fi23. If g ∈ G is in class 3B, then r(g) = 3.

Proof. In each case we know from (ii) that r(g) 6 3. Hence we must show that there is no
h ∈ gG such that {g, h} generates G. It suffices to let h run through a set of representatives
of the CG(g)-orbits on gG. Moreover, if {g, h} generates G, then CG(g)∩CG(h) = Z(G) =
{1}, so h belongs to a regular CG(g)-orbit. Thus it suffices to find representatives of the
regular CG(g)-orbits on gG. The latter are found, or their non-existence proved, by an
application of Orb with helper subgroups. If there are relevant CG(g)-orbits, then we
determine the order of the subgroups thus generated, and verify that none is G.

We summarise the details of our Orb computations.

(1) G = Fi22 has a faithful permutation representations on 3510 points. The action of
G on its conjugacy class gG, which has size 25 625 600, is equivalent to its action on
the cosets of CG(g) ∼= 31+6.23+4.32, where NG(〈g〉) ∼= 31+6.23+4.32.2 is a maximal
subgroup of G. There is a vector v in the absolutely irreducible F3G-module V
of dimension 924 which is fixed precisely by CG(g), so vG is equivalent to gG

as a G-set. Using the permutation character of the action of G on the cosets
of CG(g), we find that CG(g) has 64 orbits in vG. We use the chain of helper
subgroups {1} = U0 < U1 = U2 < U3 = G specified in Table 4, where we also list
the dimension di of the various helper quotients of V . In particular, we choose
U1 = U2 = CG(g), but use distinct helper quotients. To find all regular CG(g)-
orbits in the G-orbit vG, we must enumerate at least 1−|CG(g)|/|vG| ∼ 90% of it.
Enumerating a total of 23 471 749 vectors in vG, that is ∼ 91% of vG, we find 37
orbits, precisely 5 of which are regular CG(g)-orbits. Translating back to gG, we
find that none gives rise to a two-element generating set of G, generating instead
either G2(3) or A9.

i Ui |Ui| [Ui:Ui−1] di
3 Fi22 64 561 751 654 400 25 625 600 924

2 31+6.23+4.32 2 519 424 1 17

1 31+6.23+4.32 2 519 424 2 519 424 5
Table 4. Helper subgroups for Fi22

(2) G = Fi23 has a faithful permutation representations on 31671 points. The action of
G on its conjugacy class gG, which has size 2 504 902 400, is equivalent to its action
on the cosets of CG(g) ∼= 31+8.21+6.31+2.2A4, where NG(〈g〉) ∼= 31+8.21+6.31+2.2S4
is a maximal subgroup of G. There is a vector v in the absolutely irreducible
F3G-module V of dimension 528 which is fixed precisely by NG(〈g〉), so vG has
length 1 252 451 200, and is equivalent to the action of G on the cosets of NG(〈g〉).
Since a regular CG(g)-orbit in gG implies a CG(g)-orbit in vG of length divisible
by |CG(g)|/2, we must find representatives of the latter. Using the permutation
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character of the action of G on the cosets of NG(〈g〉), we find that CG(g) has 37
orbits in vG. We use the chain of helper subgroups {1} = U0 < U1 < U2 < U3 <
U4 < U5 = G specified in Table 5, where we also list the dimension di of the
various helper quotients of V . In particular, we choose U4 = CG(g), and use the
same helper quotient for all the helper subgroups. To find all relevant CG(g)-orbits
in the G-orbit vG, we must enumerate at least 1− |CG(g)|/(2 · |vG|) ∼ 35% of it.
Enumerating a total of 1 157 675 328 vectors in vG, that is ∼ 90% of vG, we find
13 orbits, none of which has length divisible by |CG(g)|/2. �

i Ui |Ui| [Ui:Ui−1] di
5 Fi23 4 089 470 473 293 004 800 2 504 902 400 528

4 31+8.21+6.31+2.2A4 1 632 586 752 24 13

3 31+8.21+6.31+2 68 024 448 27 13

2 31+8.21+6 2 519 424 128 13

1 31+8 19 683 19 683 13
Table 5. Helper subgroups for Fi23

Lemma 6.2. If g ∈ M is in class 2A or 2B then r(g) = 3; all other non-trivial elements
satisfy r(g) = 2.

Proof. From the (almost complete) classification of the maximal subgroups of M (see [30,
Table 5.6]), we deduce that, for both p = 59 and 71, there is a unique conjugacy class
of maximal subgroups of order divisible by p, the groups in question being isomorphic
to L2(p). A consideration of class multiplication coefficients, computed from the ordi-
nary character table of M, shows that these are non-zero for all conjugacy class triples
(X,X, 71A) and (X,X, 59A), where X runs through all conjugacy classes except 1A, 2A,
and 2B. Hence r(g) = 2 for all conjugacy classes containing elements g of order at least 3
and not fusing into both L2(59) and L2(71).

This leaves the non-involutory conjugacy classes 3B, 5B, and 6E. Since the squares of
the elements of 6E belong to 3B, it suffices to deal with the first two. For each conjugacy
class, X say, we compute the number of pairs of elements of X whose product belongs to
71A, and compare this with the number of such pairs contained in some maximal subgroup
isomorphic to L2(71). In each case there are (many) more pairs in M than are accounted
for by these maximal subgroups. This implies that r(g) = 2 for elements g belonging to
either 3B or 5B.

It remains to consider the involutory conjugacy classes 2A and 2B. The class multiplica-
tion coefficients associated with the conjugacy class triples (2B, 2B,41A) and (2B, 41A,71A)
are both non-zero. Similarly, the class multiplication coefficients associated with the con-
jugacy class triples (2A, 2A, 5A) and (2A, 5A, 71A) are both non-zero; moreover conjugacy
class 5A does not fuse into L2(71). This implies that r(g) = 3 for elements g belonging to
either 2A or 2B. �

7. Proof of Theorem 1.1

Let T be a sporadic simple group, and let G be a covering group of an almost simple
group with socle T . Let V be a faithful irreducible FpG-module where p is a prime dividing
|G|. Let k := EndFpG(V ). Note that p - |Z(G)| since Z(G) 6 k∗.

Suppose that G has no regular orbit on V , so b(G) > 1. Let m(G, p) denote the minimal
dimension of a faithful irreducible representation of G in characteristic p. Let u(G, p) be
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as defined in Lemma 3.3. Recall that G′ denotes the derived subgroup of G. Observe that

m(G′, p) 6 m(G, p) 6 dimk(V ) 6 dimFp(V ) 6 u(G, p).

Lemma 7.1. (G, p,dimFp(V )) is listed in Table 6.

Proof. We use the ordinary character table of G and Theorem 1.3 to compute the upper
bound u(G, p). By [23], m(G′, p) is known. If m(G′, p) > u(G, p), then we have a con-
tradiction. If (G, p) is one of (J4, 2), (Co1, 2), (2.Co1, 3) or (2.Co1, 5), then dimFp(V ) is
determined by Lemmas 4.1–4.3. Otherwise, we use the p-modular Brauer character table
of G to determine the possibilities for dimFp(V ). �

We adopt several conventions in Table 6. The dimensions in bold are precisely those
listed in Table 1. We write d(m) when there are exactly m d-dimensional FpG-modules and

m > 1, except for the case (G, p,dimFp(V )) = (M11, 3, 10). Here we write 10 and 10(2);
the one in bold denotes the unique faithful irreducible 10-dimensional F3 M11-module with
the property that an involution, viewed as an element of GL10(3), has trace −1 ∈ F3.

Lemma 7.2. If dimFp(V ) is not bold in Table 6, then b(G) = 1.

Proof.

(i) If (G, p,dimFp(V )) is one of

(M11, 3, 10), (2.M22 .2
+, 7, 10), (2.M22, 7, 10), (HS :2, 3, 22), (HS, 3, 22),

then we use Magma to prove that b(G) = 1.
(ii) If (G, p,dimFp(V )) is (M24, 3, 22) or (3.Fi22, 2, 54), then we use Orb directly to

prove that b(G) = 1.
(iii) If (G, p,dimFp(V )) = (Co2, 5, 23), then we use Orb with helper subgroup 24 ×

21+6.A8 to prove that b(G) = 1.

Otherwise, we use Magma to prove that inequality (3.1) holds with n = 1, in which case
b(G) = 1 by Lemma 3.2. �

Lemma 7.3. If dimFp(V ) is bold in Table 6, then one of the following holds.

(1) (G, p,dimFp(V ), b(G)) is correctly listed in Table 1.
(2) (G, p,dimFp(V )) = (2.Co1, 3, 24) and b(G) ∈ {2, 3}.
(3) (G, p,dimFp(V )) = (2.Co1, 7, 24) and b(G) 6 2.

Proof. Let ` := d(log |G|)/ log(|V | − 1)e, and recall that b(G) > ` by Lemma 3.1. Let n
be the least positive integer such that (3.1) holds, so b(G) 6 n by Lemma 3.2. For each
relevant group we compute n using Magma.

(i) If (G, p,dimFp(V )) is one of

(M11, 3, 5), (M23, 2, 11), (M24, 2, 11), (J2, 2, 12), (J2 :2, 2, 12),

(3. Suz, 2, 24), (Co3, 2, 22), (Co1, 2, 24),

then we use Magma to prove that b(G) = `.
(ii) If (G, p,dimFp(V )) is one of

(M11, 3, 10), (M12, 2, 10), (M12 :2, 2, 10), (2.M12, 3, 6), (2.M12 .2
±, 3, 12),

(M22, 2, 10), (3.M22, 2, 12), (J1, 2, 20), (2. J2, 3, 14), (2. J2 .2
−, 3, 14),

then n > `, and we use Magma to prove that b(G) = n.
(iii) If (G, p,dimFp(V )) = (M22 :2, 2, 10), then ` = 2 and n = 4. We use Magma to

prove that b(G) = 3.



REGULAR ORBITS OF SPORADIC SIMPLE GROUPS 13

G p = 2 p = 3 p = 5 p = 7 p = 11 p = 13 p = 23

M11 10 5(2), 10, 10(2) 10

M12 10, 32 10(2), 15(2) 11(2)

M12 :2 10, 32 20

2.M12 6(2), 10(2) 12

2.M12 .2
+ 10(4), 12 10(4)

2.M12 .2
− 12, 20(2)

M22 10(2), 34 21

M22 :2 10(2), 34 21(2)

2.M22 20 10 10(2)

2.M22 .2
+ 20(2) 10(2) 10(4)

2.M22 .2
− 20(2)

3.M22 12, 30

M23 11(2), 44(2) 22

M24 11(2), 44(2) 22

J1 20 7

J2 12, 28, 36 14

J2 :2 12, 28, 36 14(2)

2. J2 12, 14 6, 14 12

2. J2 .2
+ 12 12 12

2. J2 .2
− 12, 14(2) 12 12

3. J3 18, 36(2)

J4 112

HS 20 22 21

HS :2 20 22(2) 21(2)

McL 22 21 21

McL :2 22 21(2) 21(2)

He 51(2)

Ru 28

2.Ru 28(2)

2.Suz 12

2.Suz .2+ 12(2)

2.Suz .2− 24

3.Suz 24

6.Suz 24 12(2) 12(2)

Co3 22 22 23 23

Co2 22 23 23 23 23

Co1 24

2.Co1 24 24 24 24 24 24

Fi22 78

Fi22 :2 78

3.Fi22 54

Table 6. FpG-modules with dimFp(V ) 6 u(G, p)
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(iv) If (G, p,dimFp(V )) = (2.Co1, 3, 24), then ` = 2 and n = 3, so (2) holds. Similarly,
if (G, p,dimFp(V )) = (2.Co1, 7, 24), then ` = 1 and n = 2, so (3) holds.

(v) If (G, p,dimFp(V )) is one of

(McL, 3, 21), (McL :2, 3, 21), (6.Suz, 13, 12),

then ` = 1 and n = 2. We use Orb and helper subgroups M11,M11.2, and
6.3(2+4).[48] respectively to prove that b(G) = 2.

In all other cases, n = ` so b(G) = `. �

Lemma 7.4. If (G, p,dimFp(V )) = (2.Co1, 3, 24), then b(G) = 2.

Proof. By Lemma 7.3, b(G) > 2. Let M ∼= 212: M24 be a maximal subgroup of G and
let H ∼= M24 be a fixed complement of O2(M) ∼= 212. As an F2H-module, O2(M) is
isomorphic to the binary Golay code, and so is uniserial with descending composition series
11/1. Thus all subgroups of M properly containing H necessarily contain Z(M) = Z(G).

Moreover, by [10], every maximal subgroup M̃ of G containing H is G-conjugate to M ,

so we may assume that M̃ = M .
We show that there exist v, w ∈ V such that CG(v) = H and CH(w) = {1}. The

restriction of V to H is isomorphic to the natural permutation F3H-module, which is
uniserial with descending composition series 1/22/1. Hence there exists 0 6= v ∈ V fixed
by H. Every subgroup of G properly containing H necessarily contains Z(G), so it does not
fix v. This shows that CG(v) = H. Lemma 7.2 shows that the irreducible H-subquotient
of dimension 22 of V has a regular vector. Hence b(G) = 2. �

Lemma 7.5. If (G, p,dimFp(V )) = (2.Co1, 7, 24), then b(G) = 2.

Proof. By Lemma 7.3, b(G) 6 2. To show that G does not have a regular orbit on V , we
use Orb with the chain of helper subgroups {1} = U0 < U1 < U2 < U3 < U4 = G specified
in Table 7; these are chosen so that Z(G) < U1. The helper quotients of V , associated
with the various helper subgroups, have dimension di.

i Ui |Ui| [Ui:Ui−1] di
4 2.Co1 8 315 553 613 086 720 000 46 621 575 24

3 (2× 21+8
+ ).O+

8 (2) 178 362 777 600 270 16

2 (22.27).26.A8 660 602 880 560 8

1 [217]:32 1 179 648 1 179 648 8
Table 7. Helper subgroups for G

Since the Cauchy-Frobenius Lemma shows that there are 1097 G-orbits on V , it is
infeasible to enumerate sufficiently many (randomly chosen) orbits to rule out the existence
of a regular orbit. Instead, we consider the projective space P(V ), the set of 1-spaces in
V , which we view as a G/Z(G)-set. Observe that |P(V )| = (724 − 1)/6 ∼ 3.2 · 1019; to
exclude a regular G/Z(G)-orbit on P(V ) we must enumerate 1− |G|/(2 · |P(V )|) ∼ 87% of
it. With a random search we find representatives of 75 G-orbits covering ∼ 90% of P(V )
without detecting a regular G/Z(G)-orbit.

But there might exist v ∈ V having stabiliser CG(v) = {1} such that the 1-space
〈v〉 ∈ P(V ) has non-trivial stabiliser CG(〈v〉) ∼= F∗7. Hence we must also exclude G-
orbits of length |G|/6. To do this by an exhaustive enumeration of P(V ), we must cover
1− |G|/(6 · |P(V )|) ∼ 96% of the space. The Cauchy-Frobenius Lemma shows that there
are 382 G-orbits on P(V ), some of which may escape a random search.
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Hence we proceed differently. If v is as above, then CG(〈v〉) = 〈tz〉, where t ∈ G has
order 3, and 1 6= z ∈ Z(G). Now v is an eigenvector for t with respect to an eigenvalue ω,
where ω ∈ F∗7 is a primitive third root of unity. By [10], there are precisely four conjugacy
classes of elements of order 3 in G; see Table 8, where the associated centralisers and the
dimension dω(t) of the eigenspace Eω(t) of t with respect to the eigenvalue ω are given.

t dω(t) CG(t) |CG(t)|
3A 12 6.Suz 2 690 072 985 600

3B 6 2.(32.U4(3).2) 117 573 120

3C 9 2.(31+4:2.S4(3)) 25 194 240

3D 8 2.A9 × 3 1 088 640
Table 8. 3-centralisers in G

Since the conjugacy classes under consideration are rational, the normaliser NG(〈t〉)
interchanges the eigenspaces Eω(t) and Eω2(t), so it suffices to consider either of the
primitive third roots of unity in F∗7. Now CG(t) acts on Eω(t), and hence CG(t)/〈tz〉
acts on P(Eω(t)). Since CCG(t)(〈v〉) = CG(〈v〉) = 〈tz〉, we conclude that 〈v〉 belongs to a
regular CG(t)/〈tz〉-orbit on P(Eω(t)).

For conjugacy classes 3A and 3B, we check that |P(Eω(t))| = (7dω(t)−1)/6 < |CG(t)|/6,
hence there cannot be a regular CG(t)/〈tz〉-orbit. To deal with classes 3C and 3D, we
pick a representative t, compute the action of CG(t) on Eω(t), and enumerate P(Eω(t))
completely by a standard orbit computation. For conjugacy class 3C, none of the 21
CG(t)/〈tz〉-orbits in P(Eω(t)) is regular; for conjugacy class 3D precisely one of the 26
relevant orbits is regular. We pick 〈v〉 from this unique regular CG(t)/〈tz〉-orbit on
P(Eω(t)), and use Orb to enumerate 51% of the G-orbit of 〈v〉 in P(V ). This shows
that CG(〈v〉) ∼= Z(G)×A4. Hence b(G) = 2. �
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