Is the projective cover of the trivial module
in characteristic 11 for the sporadic simple
Janko group J; a permutation module?

Jurgen Miiller

Dedicated to the memory of Richard Parker.

Abstract

We determine the ordinary character of the projective cover of the trivial
module in characteristic 11 for the sporadic simple Janko group Ju, and
answer the question posed in the title.

Mathematics Subject Classification: 20C20, 20C34.

Keywords: Sporadic simple Janko group, ordinary characters, Brauer
characters, decomposition numbers, projective modules, permutation mod-
ules, endomorphism algebras, orbit enumeration, MeatAxe.

1 Introduction

(1.1) Let p be a prime, let F be a field of characteristic p, let G be a finite
group, and let Pp, be the projective cover of the trivial F[G]-module Fg.

The present article is motivated by the recent paper [12], which deals with the
question when Fr, is a permutation module. This amounts to asking whether
there is a subgroup H < G such that P, is isomorphic to the induced module
Fg Obviously, this is the case whenever G is a p’-group, so that we may assume
that p | |G|. Moreover, by [12, Cor.2.6], if G has the above property, then so has
any composition factor of G, which shifts focus to non-abelian simple groups.

Now, in [12], the non-abelian simple groups having the above property are clas-
sified, apart from the groups of Lie type in defining characteristic and, amongst
the sporadic simple groups, the largest Janko group Jy in characteristic 11.

The latter escapes all purely character theoretic attacks. Fortunately, I have
been able to provide computational help to answer the above question: It turns
out that Pr, is not a permutation module, where F is a field of characteristic
11. This is already reported in [12, Thm.4.1], albeit without proof. It is the
purpose of the present article to provide the details of the computations I made.

Actually, these computations even reveal the projective indecomposable (or-
dinary) character Ug ;, afforded by Fr, , and a few more projective indecom-
posable characters belonging to the principal 11-block of J;. About the latter
virtually nothing is known so far, so that the results presented here might be
the first steps towards finding its decomposition matrix.



(1.2) We describe the general approach, see also [12, Ch.2]: Note first that,
given G, the above property only depends on p, but not on the particular choice
of IF, so that later on we will let FF be the prime field IF),.

Now, if G' has the above property, since Py, is indecomposable, it necessarily
is a transitive permutation module. Thus it has shape IF%, for some H < G,
where since Py, is projective H necessarily is a p’-subgroup. Moreover, since
for any p’-subgroup U < G the module F§ has Py, as a direct summand, we
conclude that H has maximal order amongst all p’-subgroups of G.

If the p-modular decomposition matrix of G is known, then by the theory of
trivial-source modules, see [8, Ch.I1.12], we may just check whether the permu-
tation character 1% associated with the action of G on the cosets of H coincides
with the projective indecomposable character ¥p,. But, as mentioned above,
for the case of interest to us we are not at all in this comfortable position.

Hence we have to proceed otherwise: We pick any p’-subgroup H < G of maxi-
mal order, and check whether F$ is an indecomposable F[G]-module, where the
latter property is equivalent to the endomorphism algebra Endgg (F$) being
a local F-algebra. Thus, to pursue this, we have to analyze the structure of
the endomorphism algebra of a permutation module, which for the group in
question due to sheer size is not too easy to handle.

(1.3) The present article is organized as follows: In Section 2 we describe
the background concerning endomorphism algebras and the orbit enumeration
techniques used; in Section 3 we provide some character theoretic data on the
principal 11-block of G := Jy, and specify the subgroup H to consider; in Section
4 we consider the G-action on the set O of cosets of H, and apply ORB to find
the H-orbits in O; in Section 5 we consider the endomorphism algebra E of
the permutation module afforded by O, and determine the character table of E;
and finally in Section 6 we compute the decomposition matrix of F, and answer
the question we started with.

(1.4) Acknowledgments. It is a great honor to have this opportunity to thank
Richard Parker for a wealth of mathematical ideas he was always keen to share
with everybody. In particular, the present article owes much to his work, as a
glance into the list of references reveals. Notably, proving the sheer existence of
Jy was Richard Parker’s original motivation to invent the MeatAxe.

Moreover, I would also like to thank Thomas Breuer for inspiring discussions
(not only) about the topic of this article, and the referee for their careful reading.

2 Prerequisites

(2.1) Endomorphism algebras. We recall the necessary facts about the
structure of endomorphism algebras of permutation modules, thereby fixing the
notation used later; as a general reference see [8, Ch.I1.12], while the background
of the particular approach we follow is described in detail in [16]:



a) Let G be a finite group, let H < G be a subgroup, let O be the set of (right)
cosets of H in G, and let n := |O|. Moreover, if R is an integral domain, let Rg
be the permutation R[G]-module associated with O, and let Er := Endgq (R%)
be its endomorphism R-algebra. Then Ep is R-free of rank r := (1%,1%)q,
where 1§ is the induced character from the trivial character 1z of H, and
(-,)a denotes the usual scalar product on the characters of G.

Let {v1,...,v,} be a set of representatives of the H-orbits O, := (v;)# C O,
where v; denotes the coset H itself, and let g; € G such that vig; = v;.
Moreover, let H; := Stabg(v;), and let n; := |O;|. The paired orbit O;- of O;
is defined to be the H-orbit containing Ulgjl.

Let Oj = Zveoj v € R$ be the associated orbit sum. Then Eg has a distin-
guished R-basis {A1,..., A}, being called its Schur basis, where A; is defined
by vy — (’);', and subsequent extension by G-transitivity to all of O; in particu-
lar A; is the identity map. Thus, abbreviating E = Ez, we have Er = F ®yz R.

Writing A;A; = 22:1 PijeAr € E, the associated (non-negative) structure con-
stants, also being called intersection numbers, are given as p;;x = Z—;-cjk(gi) e,
using the orbit counting numbers c;;(g;) := |Ojg9; N Ok| € No. Thus the (right)
regular representation of E, with respect to its Schur basis, is given by the in-
tersection matrices Pj := [p;jilie € Z7*". In particular, the first row of P; is

given by pi1jr = d;, that is, consists of the j-th unit vector.

b) Let K be a field. Then, for any Ex-module V', the trace map ¢y : Ex —
K: A — Try(A) is called the character afforded by V. Letting Irr(Ex) :=
{¢1,-..,¢s} be the set of characters afforded by the irreducible Ex-modules,
we obtain the character table ® := [p;(A;j)];; € K**".

Since C% is a semi-simple C[G]-module, E¢ is a (split) semi-simple C-algebra,
and we have a natural bijection between the irreducible representations of E¢
and the distinct constituents of C%, being called Fitting correspondence; in
terms of irreducible characters the Fitting correspondent of ¢ € Irr(Eg) is de-
noted by x,. Moreover, E¢ is commutative if and only if C% is multiplicity-free.

We have (A1) = my, = (1§, X,)q, the multiplicity of x, as a constituent of
1%. The Fitting correspondent o1 € Irr(Eg) of 1 is given by ¢1(4;) = ny; it
is the only irreducible character of E¢ whose values on the Schur basis consist
of non-negative integers only. We have the following orthogonality relations
between characters @, ¢’ € Irr(FE¢), where ~ denotes complex conjugation, and
where we have p(A4;) = p(A;-):

I -1 —— m

2N oA (AN =, Xe
n ;n] P(4;) - ¢'(4;) 22 (1)
c) The endomorphism algebra E admits a decomposition theory, similar to
the one for group algebras: Let R be a discrete valuation ring in an algebraic
number field K, such that the maximal ideal p<tR contains p, and let F := R /p.

In practice, in order to keep data consistent, we make the same conventional



choices for R and p as in [7]. Moreover, we assume that K and F are large
enough so that both Fx and Ep are split.

Then any finitely generated Fx-module can be realized by an Exr-lattice V, and
p-modular reduction, mapping V to Vg :=V @z F, yields a Z-linear decompo-
sition map D,: G(Ex) — G(Er) between the associated Grothendieck groups.
Its matrix with respect to the Z-bases consisting of the respective irreducible
representations is called the associated decomposition matriz.

Since K is a splitting field for Ex, we have Irr(Ec) = Irr(Ex), which is K-
linearly independent, so that we may identify G(Fx) with ZIrr(E¢). Since F is
a splitting field for Ep, similarly Irr(Ef) is F-linearly independent. Since Irr(Ex)
has values in R, for any element of Fr, we conclude that p-modular reduction
induces a Z-linear map D, : ZIrr(Ec) — Flrr(Er).

d) Let S be a simple Ep-module, with associated projective indecomposable
module Pg = egFEy, for some suitable idempotent eg € FEr. Moreover, for
¢ € Irr(Ex) let V,, be an Er-lattice such that (V,,)x := V,, @& K has character
@, and let e, € Ex be an idempotent such that e, Ex = (V,)k.

Any idempotent e € Ep can be lifted to Er, that is, there is an idempotent
¢ € Er such that e® 1y = ¢ € Ep. In particular, there is a projective inde-

composable Ex-lattice ]35 = egEbr lifting Ps. Thus for the multiplicity of S
as a constituent of Vg we have Brauer reciprocity [Vi: S| = [(Ps)k: Vk], and
for the Cartan numbers of Er we have [Pg: S'] = [Pg/: S]. In particular, since

Er = @g(Ps)®4me(9) as Fp-modules, this entails

dimg(Ps) = Y dimg(S’) - [Ps: '] =Y dimg(5’) - [Ps:: S] = [Eg: S].
S S

This relates to Fitting correspondence as follows: For an irreducible character x
of G occurring as a constituent of 1%, let V, be an R[G]-lattice such that (V, )k
has character x. Then we have (K% )e, = (Vy, )k as K[G]-modules, and thus

[(K$)Es: (Vi k] = [EsBx: (Vo)x] = [(Ps)x: (Vp)x] = [(Vip)r: S).

(2.2) Enumeration of long orbits. To facilitate computations with (large)
permutation representations we use the GAP package ORB [17], where its orbit
enumeration techniques are described comprehensively in [16], and an extended
worked application is presented in [15]. We give a brief sketch of the approach:

Let G be a (large) finite group, and let O be a (large) transitive G-set, which
we assume to be implicitly given, for example as a G-orbit of a vector v; in
an F[G]-module V over a finite field F. Letting H < G be a (still large)
subgroup, we are interested in classifying the H-orbits O; in O, finding their
length n;, representatives v; € O;, elements g; € G such that vi - g; = vy,
and the stabilizers H; = Stabg(v;). To achieve this, we assume to be able
to compute efficiently within H (but not within G), for example by having a
(smallish) faithful permutation representation of H at hand.



To find the H-orbits in O, we choose a (smallish) helper subgroup K < H, and
enumerate the various H-orbits O; C O by the K-orbits they contain. To do
so0, we choose a (not too small) helper K-set Q together with a homomorphism
i O — Q of K-sets, which again we assume to be implicitly given, for example
by an F[K]-quotient module of V.

Moreover, we assume that K has sufficiently long orbits in Q, and that we are
able to classify them, by giving representatives, their stabilizers in K, as well
as complete Schreier trees. (Thus for the K-action on Q we are facing a similar
problem as for the H-action on O, apart from the requirement on Schreier trees.
So we could just recurse. Actually, the full functionality of ORB supports this,
but for the present purposes we will get away with a single helper subgroup.)

For any K-orbit in Q, the chosen representative is called its distinguished point
(although it might be chosen arbitrarily). Then, for any K-orbit O’ C O, the
mr-preimages of the distinguished point of 7x (0’) C Q are likewise called the
distinguished points of O’. Hence, to enumerate an H-orbit O; by enumerating
the K-orbits contained in it, we only have to store the associated distinguished
points, and a Schreier tree telling us how to reach them from v;.

For any H-orbit O; we are content of finding only as many K -orbits contained in
it as are needed to cover more than half of it; this is equivalent to knowing n; and
|H,;|. Then we have a randomized membership test for O;, and a deterministic
test to decide whether the H-orbits found are actually pairwise disjoint.

The number of points of O; covered by the above enumeration process, divided
by the number of distinguished points actually stored is called the saving factor
achieved. The maximum saving factor possible is | K|, which is achieved if and
only if K has only regular orbits in the mg-image of the part of O; covered.

(2.3) Computational tools. To facilitate group theoretic and character the-
oretic computations we use the computer algebra system GAP [4], its compre-
hensive database CTblLib [1] of ordinary and modular character tables, and its
library TomLib [9] of tables of marks. In particular, CTblLib encompasses the
data given in the Atlas [3] and in the ModularAtlas [7], as well as the additional
data collected on the ModularAtlasHomepage [23].

As far as matrix representations over finite fields are concerned, we use the
MeatAxe [21], whose basic ideas go back to [20], where we also use its extensions
to compute submodule lattices [10] and direct sum decompositions [11].

Computations with matrix representations over the integers and over the ratio-
nal numbers are facilitated by the GAP package IntegralMeatAxe [14], which is
developed and used heavily in [5], but owes much to [19]. (The IntegralMeatAxe
package is as yet unpublished, but I am of course happy to provide the code
to everybody interested. Moreover, as an alternative, similar functionality is
available in the computer algebra system MAGMA [2].)

Data concerning explicit permutation representations, ordinary and modular
matrix representations, and the embedding of (maximal) subgroups of sporadic



Table 1: The permutation character 1%.

L [ Q) [ | L [ Q) [ m | L [ Q) [ |
1 1 21 2 32 1
8 1 22 1 36 s 1
11 1 23 | 1y 1 37| s 1
14 1 2U | 1y 1 38 s 1
19 73 | 2 29 1 39| s 1
20 | 133 || 2 30 1 51 1

simple groups is available in the AtlasOfGroupRepresentations [24], and through
the GAP package AtlasRep [25]. For a wealth of group theoretical information
used throughout we refer to the Atlas [3], whose notational conventions we follow;
in particular we let 7, := /n be the positive square root of n € N.

3 The principal 11-block of Jy

(3.1) From now on let G := Jy.

Then G has the principal block By as its only 11-block of positive defect. The
defect groups of By, that is, the Sylow 11-subgroups of G, are extraspecial of
shape 11?27 and have the rare property of being trivial-intersection subgroups.
There are ky := 49 irreducible ordinary characters and [y := 40 irreducible
modular characters belonging to By.

Sadly enough, this is virtually all what is known about the decomposition num-
bers of By, according to the ModularAtlasHomepage, where By is a prominent
gap, in particular in view of the trivial-intersection property of its defect groups.

(3.2) Using the conjugacy classes of maximal subgroups of G, as reproduced
in the Atlas, it turns out that the unique class of subgroups of 11’-subgroups of
maximal order is given by the maximal subgroups of G of shape 210: L5(2). Let
H < G be a representative of this class.

We have |H| = 10.239.344.640 and [G: H| = 8.474.719.242. The decomposition
of the permutation character 1§ into the irreducible ordinary characters x; of
G is given in Table 1, where the x; are ordered as in the Atlas, we indicate gen-
erators of their (quadratic) character fields, and m; := (1%, x;)¢. In particular,
we have r := (1¢,1%) ¢ = 27, and all constituents of 1% belong to B.

All constituents except x19/20 are ll-rational characters, being fixed by the
Frobenius automorphism. Amongst them, X23/24, X36/37 and xsg/39 are pairs of
Galois conjugate characters. The constituents 19,20 are non-11-rational, Galois
conjugate characters, restricting to the same character on 11-regular classes.



(3.3) The projective indecomposable character g, is a summand of 1.
Thus, writing U, = ZieI d;xi, where d; € Ny and 7 is the index set occurring
in the first column of Table 1, we have 0 < d; < m;; in particular dy = m; = 1.

Moreover, we have Up_(g) = 0 whenever g € G is 11-singular. Enforcing these
conditions, it turns out that from the 2% . 3% = 884736 candidates for W,
allowed by the above inequalities, there are just 75 admissible candidates left.

The above conditions say that ¥, is a generalized projective character. Thus,

by [18, Cor.2.17, La.2.21], we conclude that m - U, (g) is an algebraic

integer, for any g € G, in particular entailing that 11% | Wp,(1). Moreover, it
turns out that they already imply di9 = dsp, and neither complex conjugation
nor the Frobenius automorphism yield further conditions. (Note that U, is
not necessarily a rational character, although the trivial character 1¢ is.)

Unfortunately, we have not been able to find further purely character-theoretic
conditions to narrow down the set of admissible candidates for Up,. In particu-
lar, neither restriction to maximal subgroups of G and decomposition into their
projective indecomposable characters (providing lower bounds on the d;), nor
induction of the projective cover of the trivial module of maximal subgroups
(providing upper bounds on the d;) did yield any improvement. At this point
we have decided to revert to explicit computations, in particular applying ORB.

4 The permutation action

(4.1) To do explicit computations, we pick the 112-dimensional (absolutely)
irreducible representation of G over Fy from the AtlasRep database. The latter
is given in terms of (two) standard generators, in the sense of [22]. Words in the

standard generators providing generators of a maximal subgroup 2!0: L5(2) =
H < G are also available in the AtlasRep database.

Let V = Fi'2 be the module underlying the above representation of G. Using
the MeatAxe, it turns out that H possesses a 1-dimensional fixed space in V.
Hence letting v; € V be the unique non-zero H-fixed vector, the G-action on
the orbit O := (v1)¢ C V is equivalent to its action on the cosets of H. Hence
this provides an implicit realization of the latter action.

To store a vector in V, including header information, we need ([42]+4) Byte =
18 Byte. Thus to store O completely we would need at least

(IG: H] - 18) Byte = 152.544.946.356 Byte ~ 150 GB

of memory space, plus some more header information. Although this would
in principle be feasible nowadays, in view of the computations we are going to
make within O, we apply ORB, trying to achieve a saving factor of ~ 150, say.
We set up the required framework:

(4.2) 1) A faithful permutation representation of H is found as follows: Using
the MeatAxe, we determine the submodule lattice of the restriction Vi of V' to



H. Tt turns out that it possesses a unique 16-dimensional Fy[H]-submodule U.
Moreover, there is a faithful H-orbit of vectors in U of length 310. Computing
the H-action on the latter yields an explicit permutation representation of H.

ii) Before actually choosing a helper subgroup, we already look for a helper
H-set, being an epimorphic image of O as H-sets:

Since V is a self-contragredient F2[G]-module, Vi has a unique 16-dimensional
quotient Fo[H]-module W, being the dual of the submodule U considered above,
and thus in particular being a faithful Fo[H]-module as well. Having cardinality
216 = 65536, it is small enough to enumerate all its elements explicitly.

Using the MeatAxe, we compute the natural quotient map Vi — W of Fy[H]-
modules, which gives rise to a homomorphism 7g: O — W of H-sets.

iii) As helper subgroup we now choose K := Ny (31) = 31: 5, the normalizer
in H of a Sylow 31-subgroup, having order |K| = 155. Words in the chosen
generators of H providing generators of K are found with the help of GAP,
employing the permutation representation of H constructed above.

Returning to the matrix representation of K on V', and going over to the quotient
W, it turns out that the K-orbits of vectors in W have lengths [12, 314, 155420],
where the exponents denote multiplicities. Hence the expected value of the
length of the K-orbit of a randomly chosen vector in W is ~ 154, so that we
indeed expect a suitable saving factor as envisaged above.

(4.3) We are now prepared to run ORB, in order to find the decomposition
0= ]_[?11 O; into H-orbits; recall that there are » = 27 orbits indeed:

We let Oy := (v1)¥ = {v1}. Then we randomly choose elements g € G, and
check whether v1g € O belongs to one of the H-orbits already found. If not,
then we have found a new H-orbit, O; say, and let g; := g and v; := v1g. We
also consider vy g;l € O in order to detect non-self-paired H-orbits.

Letting this run for a certain while (actually some 2 hours on a single 3 GHz
CPU), we have been able to find 24 of the 27 orbits, making up all of O up to
27001 vectors. Thus only a fraction of ~ 3.2-107% of O is missing at this stage,
making it highly improbable to conclude simply by random search.

Hence we set out to find the missing (small) three orbits by identifying the as-
sociated (large) point stabilizers: Using the library TomLib we find all subgroup
orders of L5(2), and allowing for factors 2¢, where i € {0,...,10}, we get a
set of numbers encompassing the subgroup orders of H. Checking all 3-tuples
thereof whose indices in H add up to 27001 leaves the following candidates for
the missing three orbit lengths:

31,930, 26040], [465,496,26040], [31, 7440, 19530).

(4.4) We proceed to decide which case occurs: Recalling that H = Oo(H): L,
where L = L5(2), is a split extension, we have an embedding of L into H. Since



Table 2: The H-orbits in O.

L] ] ny | |51 | | ]
1 1 | 10239344640 219 15(2) 1
2 31| 330301440 210.24.L,4(2) 1
3 930 11010048 | 29.26.(L3(2) x 2) 1
4 17360 589824 27.28.32.2 1
5 26040 393216 | 212 (Dg x S3) 1
6 27776 368640 29,56 1
7| 8 416640 24576 25.26. D19 1
8| 7 416640 24576 25.25. D5 1
9 624960 16384 (4 x 2%).24.24 1

10 333120 3072 23.23.23.55 || 155
11 4999680 2048 (Dg x 2%).24 1
12 | 13 6666240 1536 26.3.Dsg 1
13 | 12 6666240 1536 26.3.Dg || 155
14 9999360 1024 | (Dg x Dg).2.23 || 155
15 13332480 768 27.93 || 155
16 53329920 192 22.22. Dy, || 155
17 66060288 155 31.5 || 102
1819 79994880 128 23.24 || 155
19| 18 79994880 128 23.24 || 155
20 159989760 64 23.23 || 155
21 159989760 64 23.23 || 155
22 319979520 32 Dg x 22 || 155
23 341311488 30 Do x 3 || 152
24 1279918080 8 23 || 155
25 1279918080 8 Dg | 152
26 2047868928 5 5 || 150
27 2559836160 4 4| 152

representatives of the conjugacy classes of subgroups of L can be straightfor-
wardly determined, this allows us to find representatives S of the conjugacy
classes of subgroups of H of a fixed index.

In turn, using the MeatAxe, we compute the fixed space of S on V, and check
whether it contains a vector v having an H-orbit of desired length and belonging
to O. The latter property is verified by picking random elements g € G, and
checking whether vg € V' is contained in one of the known H-orbits, O; say. If
so, then we may choose v as a new H-orbit representative, and since we have
enumerated O; already, we are readily able to find h € H such that v;h = vg;

thus we have vy - gjhg™" = v.

i) We first consider subgroups S < H of index 31. For these we have O2(H) < S
and S/Oq(H) =2 2*: L4(2). There are two conjugacy classes. For one of them
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we are successful, excluding the second of the above cases.

ii) Next, we consider subgroups S < H of index 930. Letting S* := SN Oy (H),
we have either S* = Oy(H) and S/S* = 26: L3(2), or |S*| = 2% and S/S* =
26: (L3(2) x 2). For one of the conjugacy classes of subgroups of the second
shape we are successful, which brings us down to the first of the above cases.

iii) Finally, we consider subgroups S < H of index 26040, for which we have
27 | |S*|. For one of the conjugacy classes of subgroups such that |S*| = 27 we
are successful indeed. It turns out that in this case S/S* = 26: (Dg x Ss3).

The results on the H-orbits in O are collected in Table 2: In the second column
we indicate the non-self-paired orbits. In the fifth column we indicate the shape
of H;, where groups having the same shape are actually isomorphic. (This is
clear for H7/g, Hiz/13 and Hyg/19 coming from paired orbits anyway.) But,
letting H} := H; N Oz(H), it turns out that H; ¢ and HY, ,, are different.

In the last column we also give the saving factors achieved for the various H-
orbits, which amounts to an average saving factor of ~ 152, indicating that our
choice of K and @ = W was not too bad. Still, we observe that the shorter
H-orbits tend to have a saving factor of 1, amounting to no saving at all. This
could be due to our fairly ambitious choice of a helper H-set, rather than just
a helper K-set, so that the quotient map might very well send a full H-orbit to
the zero vector in W; but we have not analyzed this thoroughly.

5 The endomorphism ring

(5.1) We consider the regular representation of the endomorphism algebra E
of Z%, which is Z-free of rank r = 27. Computing the intersection matrices P;
boils down to determining the orbit counting numbers c¢;x(g;) = [O;g; N Ol:

If n; is small enough so that O; can be enumerated explicitly, applying ¢g; € G
and using the randomized orbit membership test in ORB, we determine lower
bounds for the numbers ¢;;(g;). We are done once the figures we have found,
running through all &, sum up to n;. For example, P, is given in Table 3.

The orbits O; being ordered by increasing length, we successively compute
Py, Ps, ..., until the Q-algebra generated by the matrices found so far has Q-
dimension 27, and hence equals Eg. Since E is non-commutative, we need
at least two generators, where it turns out that Ps; belongs to the Q-algebra
generated by P, but that {P, P4} suffice to generate Eg.

The P; are associated with the regular representation of E, with respect to its
Schur basis. Hence the Q-dimension of a candidate subalgebra as above can be
determined by ‘spinning up’ the first unit vector by applying the ‘standard basis
algorithm’; in the sense of [20], using the generators in question. Moreover, since
the first row of P; equals the j-th unit vector, decomposing it into the ‘standard
basis’ found above yields the complete intersection matrix P;. In practice, all
of this is done using the IntegralMeatAxe.
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Table 3: The intersection matrix Ps.

. 1 . B . B .
31 . 1 . . . .
. 30 2 1 . . .
. . 1 4 1 . . .
.28 6 2 . 1 . .
. . . 1 2 . . .
. . . . 1 . 4 3 . . . .
.24 .30 . . . . 1 1 . . . .
.24 . 6 . 2 . 1 . . 1 . .
24 . . 1 1 . .
.12 8 . 5 . . . 3 . . 1 . . . .
.16 . . . 6 . . . . . . . 1 . .
. . . . 1 4 2 . . .
16 . 6 2 . 1 1 .
. 4 8 . 3 . . 1 .
. 1 4 1 .
. . 16 .24 . . 6 . . . 1 1 1 .1 .
.24 . . . 8 . . . . 5 . . 2 o1 .
.24 . . 2 . 1 4 4 L2 .

. .16 . 2 . 4 1 . o1 . 1

.24 4 8 8 3 .1 . . 2

. . . . . . . . 1 4 4 . .

.24 . 16 . . 8 4 15 3 4 5 4

. . . 16 16 . . 15 4 6 5 3

.31 . . . . . 8 8 10 8

. . 16 16 8 6 10 13 ]

(5.2) We proceed to determine the character table of F¢ and the Fitting cor-
respondence: To do so, we decompose the regular representation of Eg, which
is semi-simple, but not split. The ordinary constituents of Qg, as compared
to those of C% given in Table 1, tell us that Egp has 14 irreducible represen-
tations, of degree [19,2% 4] = [19,(1 + 1)3,2, (2 + 2)], where exponents denote
their multiplicity, and brackets denote their splitting over C.

Using the IntegralMeatAxe and GAP, we compute the characteristic polynomials
of P and Py, their factorization over Q, and for the irreducible divisors f and
g occurring, respectively, we determine the Eg-submodules

Eyg = ker(f™(P2)) Nker(¢™ (Fy)) < Eq,

and their Q-dimension dy 4, where my and my, are the associated multiplicities
in the respective characteristic polynomials. The result is given Table 4, where
(to save space) we abbreviate fy := X* —16X> — 75X2 + 1706 X — 2768 € Q[X]
and g4 1= X4 — 12883 + 405424 X2 — 2113152X — 2701694976 € Q[X].

Since we obtain 14 pairwise distinct submodules, we conclude that these coincide
with the homogeneous components of Eg.

i) The cases such that dy, = 1 correspond to the rational constituents of 1%
with multiplicity 1, where the very first case corresponds to the trivial character
lg. The action of the P; on the various Ey, directly yields the associated
characters of E¢. The orthogonality relations yield the degree of their Fitting
correspondents, determining the Fitting correspondence in these cases.

ii) We consider the cases such that ds , = 2, and compute the splitting fields of
the irreducible divisors of degree 2 occurring. From this we conclude that these
cases correspond to the non-rational constituents of 1§ with multiplicity 1:
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Table 4: Simultaneous generalized eigenspaces of P, and Pj.

| /| char.pol.(Py) my | g | char.pol.(Py) my [ dsg [ spl | xi | m; |

X —31 1 [ X —17360 1 1 X1 1
X —16 1 | X —1640 1 1 X8 1
X -9 1 | X+20 1 1 X22 1
X -5 1 | X +120 1 1 X32 1
X -1 3 | X —284 1 1 X29 1

X —196 1 1 X30 1

X -20 1 1 X51 1
X +2 1| X —112 1 1 X14 1
X +12 1 | X —1192 1 1 X11 1
X?-6X —39 1 [ X?2+100X —1388 1 2 | rs || xesma | 1
X% 45 1 | X2+130X +3820 1 2 | 75 || x3syse | 1
X? +12X +31 1 | X2 +110X — 620 1 2 | rs5 || xs6s37 | 1
X2 +3X — 64 2 [ X7 424X — 11520 2 4 X21 2
Ja 2 |94 2 8 | 733 || X19/20 | 2

In the first case we get simultaneous splitting field Q(r3), over which Ey ¢ splits
into two 1-dimensional submodules. Thus this case corresponds to x23/24, and
as above we determine the associated characters of Ec.

Similarly, the second and third cases yield simultaneous splitting field Q(rs),
over which both submodules split. Thus these cases correspond to x36/37:38/395
and as above we determine the associated characters of E¢c. The orthogonality
relations yield the degree of the associated Fitting correspondents, showing that
these cases correspond to x3g/39 and X3¢,/37, respectively.

iii) Hence we conclude that the cases dy, > 2 correspond to the remaining
constituents of lfl, that is, X19/20;21, €ach of which occurs with multiplicity 2.

Since x21 is rational, while x19,/2¢ is not, we infer that the case dy , = 4 corre-
sponds to X21; thus the trace map afforded by the action of the P; on Ey g is
twice the associated character of E¢.

Hence the case df, = 8 corresponds to x19/20. Over Q(r33), both f4 and g4
split into two irreducible factors of degree 2, and E¢ , splits into a direct sum
of two 4-dimensional submodules. The trace maps afforded by the action of the
P; on the latter are twice the associated characters of Fc.

(5.3) Collecting the traces of the intersection matrices Py, ..., Py; on the var-
ious generalized eigenspaces yields the character table ® = [p,...,¢018] €
C'8%27 of F¢, see Table 5. We also indicate the pairing of H-orbits, Galois
conjugate characters, the Fitting correspondence, and the degree of the Fitting
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The character table of E¢.
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correspondents. The rows are ordered such that the Fitting correspondents ap-
pear as in Table 1, except that we only know that 5,17 correspond to xas/39-

Indeed, the character fields of the ¢; coincide with the character fields of their
respective Fitting correspondents. Since the quadratic fields Q(rs), Q(r5) and
Q(r33) are disjoint, it follows that there are Galois automorphisms inducing the
involutions (x19 +— X20) and (x23 <— X24) and (x36 <— Xx37)(X38 +— X39)-
A consideration of the ordinary character table of G shows that actually there is
no table automorphism interchanging xse/37 and fixing x3g/39. This says that
by considering ordinary character theory alone the Fitting correspondence is
only determined up to the ambiguity above.

We define ©14/15/16,17 by letting 014(P2) = —6 + 75 and @15(P2) = —6 — 15,
and p16(P2) = 3r5 and ¢17(P2) = —3r5, being the roots of X2 + 12X + 31 and
X2 — 45, respectively, see Table 4. Then, choosing Xe1a = X36 and Xy, 1= X37,
it remains to decide by further inspection whether x,,, = X38 OF X4, = X39-

6 Decomposition numbers

(6.1) Let now F := Fy;. Having the regular representation of Er at hand, we
apply the MeatAxe to compute the simple Fp-modules S and their multiplicities
[Er: S] in the regular Fp-module. We get

(1a)', (10)% (1¢)% (1d)*,
saying that all constituents are 1-dimensional, and where exponents denote their

multiplicity. In particular, F already is a splitting field for Fp.

Let P;, where ¢ € {a,b,c,d}, be the projective indecomposable Ep-module as-
sociated with the simple module S; := (1), that is, such that P,;/rad(F;) = S;.
Since H is an 11’-group, we have 11 ¢{ Hj; n;, implying that Ef is a symmetric
algebra, thus having a symmetric Cartan matrix and dimp(P;) = [Er: S;].

Using the MeatAxe again to compute the indecomposable direct summands of
the regular module, we find the following Cartan matrix of Ey, giving the mul-
tiplicities [P;: S;], both rows and columns being parameterized by {a,b, ¢, d}:

7T 3
3 5
3
This shows that Ep has three blocks, given by {S,, Sy} U {S.} U {Sy}.

Let e; € Er be a primitive idempotent associated with S;, where we may assume
that the e; are pairwise orthogonal. Then we have P; = e¢; Fr as Ep-modules,
and Er = (e, Er @ ey Er) ® e.Er ® eqFEp, brackets indicating blocks.

Hence, applying the primitive idempotents e; € Er to the permutation module
F% we get the direct sum decomposition F§ = FSe, @ F§e, @ FGe, @ Feq
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Table 6: The character table of Ej.

(pj)r||1 2 3 4 5 6 7 8 9 10 11 12 13 14
141 96 2 3 1 4 4 6 10 4 9 9 8
31 10 3 4 10 4 77 5 7 5 3 3 6
91 1.3 9 0 8 00 5 8 2 4 4 4
241 5 51 8 8 5 5 10 8 1 2 2 5

(pj)r || 15 16 17 18 19 20 21 22 23 24 25 26 27
1y 7 6 8 9 9 T3 1 1 1 6 2
35 1.1 7 7 10 9 0 4 6 10 5
945 9 0 3 3 2 10 8 10 10 1 0 O
243 5 5 o5 5 6 3 100 1 0 1 3 8

into indecomposable, pairwise non-isomorphic F[G]-modules. In particular, this
says that Py, is not a permutation module.

(6.2) Although this already answers the question from the beginning, we can
do better, and try and determine the projective indecomposable characters of
G being contained in 1%’}, in particular encompassing ¥g,. To this end, we
determine the 11-modular decomposition matrix of E:

Using GAP, we compute the 11-modular reduction ®p := [(¢1)F,- .., (p18)F] €
[F18%27 of the character table of Ec. It turns out that {(v1)r, (¢3)F, (¥9)r, (©2)F}
are pairwise distinct and F-linearly independent, all having degree 1, see Table
6. (Hence {1, 3, 9, 2} is a ‘Basic Set’ in the sense of [6, Def.3.1.1].)

Then the relations between the rows of ®p, together with the fact the character
degrees involved are at most 2, yield the complete 11-modular decomposition
matrix of E. In particular, this shows that the blocks of characters consist of

{01,903, 01, 05, 06, 7, P8, P14, P17}, {109, P11, P12, P15, P16, P18} 1025 P105 P13}

The blocks of the 11-modular decomposition matrix of E are given in Table 7,
where we also repeat the Fitting correspondence from Table 5 and the multi-
plicities m; from Table 1.

Comparing the dimension of the projective indecomposable Ep-modules and
the multiplicity of the simple Fr-modules as constituents of the regular module
yields the following correspondence:

Sa — (p1)F, Sp — (p3)F, Sc— (po)r, Sa+— (2)F.

(6.3) Thus, by Fitting correspondence, we have determined four columns of
the 11-modular decomposition matrix of G, up to the ambiguity for the Fitting
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Table 7: The 11-modular decomposition matrix of E.

Lo [ xi [ma [] (po)e |
’ Py H Xi \ m; H (e1)r  (@3)F \ 9 23 1 1
1 1 1 1 . 11 29 1 1
3 11 1 . 1 12 30 1 1
4 14 1 1 . 15 37 1 1
5 19| 2 1 1 16 || 39/38 | 1 1
6 20 2 1 1 18 51 1 1

7 21 2 1 1

8 22| 1 1 Loi [l i [mi || (o) |
14 36| 1 1 . 2 ST 1 1
17 | 38/39 | 1 1 10 2| 1 1
13 32 1 1

correspondents of 14,17, having fixed those of 5 /6, p9/10 and ¢14,15; see Table
8, where a € {0,1}. (Actually, it is possible to decide which of the two cases left
actually occurs, again by a computational attack similar to the one described
here; details about this will appear elsewhere [13].)

In view of the remarks in (3.3), we observe that the projective indecomposable
character Wy, associated with the trivial character, which corresponds to the
projective indecomposable Ep-module P,, is a non-rational character indeed.

Finally, the results of this article constitute the first steps towards the ambi-
tious goal of finding the complete 11-modular decomposition matrix of G = Jjy.
Richard Parker would have been keen to pursue this!
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