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Abstract

This is a sequel to [9], where we have determined the 11-modular projec-
tive indecomposable summands of the permutation character of J4 on the
cosets of an 11′-subgroup of maximal order, amongst them the projective
cover of the trivial module, up to a certain parameter. Here, we fix this
parameter, by applying a new condensation method for induced modules
which uses enumeration techniques for long orbits.
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1 Introduction

(1.1) The present article is a sequel to [9], which is devoted to answering (to the
negative) the question (posed in [8]) whether the projective cover of the trivial
module in characteristic 11 for the largest sporadic simple Janko group G :=
J4 is a permutation module. Actually, this question boils down to determine
whether or not the projective permutation character 1GH , where H < G is a
maximal (11′-)subgroup of shape H ∼= 210 : L5(2), is projective indecomposable.

According to the ModularAtlasHomepage, virtually nothing is known about the
decomposition numbers of G is characteristic 11. Thus the strategy in [9] was
to find the decomposition of 1GH into projective indecomposable characters. It
turned out that there are four distinct indecomposable summands, which are
reproduced in Table 1 (on page 8). This can be seen as the first step towards the
ambitious goal of determining the 11-modular decomposition matrix of G, which
is particularly compelling as G has trivial-intersection Sylow 11-subgroups.

Alone, in [9], we have not been able to fix the parameter a ∈ {0, 1} appearing in
Table 1. But this should be done before proceeding to find more decomposition
numbers of G. Hence the purpose of the present article is to close this gap, by
showing that we actually have a = 0, obeying to the conventional choices for
decomposition maps made in the ModularAtlas.

To this end, we invoke a maximal subgroup U < G of shape U ∼= U3(11) : 2,
whose 11-modular decomposition matrix is well-known. In order to relate the
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decomposition matrices of U and G, it turns out that subtle details of the
embedding of U into G play a crucial role here. These can be captured by a
consideration of the automorphism group of the ordinary character table of G.

Having this in place, letting O be a G-set affording the permutation character
1GH , and letting F be a field of characteristic 11, we examine how the restriction of
the permutation module F[O] to U decomposes into projective indecomposable
modules. To do so, we are finally led to consider the action of EndF[G](F[O]) on
HomF[U ](F[O]|U , V ) ∼= HomF[G](F[O], V G), for certain simple F[U ]-modules V .

The latter step essentially amounts to computing the ‘condensed module’ af-
forded by the module V G induced from the subgroup U , with respect to the
‘condensation subgroup’ H. (As a general reference for ‘condensation’, see for
example [10].) A technique to compute condensed modules of induced modules,
for subgroups U of smallish index in G, has been developed in [13]. The present
approach, combining these ideas with the orbit enumeration techniques avail-
able in the GAP package ORB, now allows both subgroups U and H to have
large index in G. We expect this to be of independent interest.

(1.2) The present article is organized as follows: In the rest of Section 1 we
indicate the computational tools we are using, and we sketch the ideas behind
the orbit enumeration techniques available in ORB. In Section 2 we present the
piece of theory underlying the new condensation technique advertised above.
In Section 3 we collect some character theoretic facts on G and various of its
subgroups, and we consider table automorphisms, to clarify where and where
not choices can be made. In Section 4 we enumerate O by U -orbits, by applying
ORB. In Section 5, using an idea inspired by [6], we examine certain condensed
induced modules, in order to finally determine the missing parameter.

(1.3) Computational tools. To facilitate group theoretic and character the-
oretic computations we use the computer algebra system GAP [3], and its com-
prehensive database CTblLib [1] of ordinary and Brauer character tables. In
particular, [1] encompasses the data given in the Atlas [2] and the ModularAtlas
[4], as well as the additional data collected on the ModularAtlasHomepage [17].
Data concerning explicit permutation representations, ordinary and modular
matrix representations, and the embedding of (maximal) subgroups of sporadic
simple groups is available in the AtlasOfGroupRepresentations [18], and through
the GAP package AtlasRep [19]. To compute with matrix representations over
finite fields we use the MeatAxe [14, 15] and its extensions described in [6, 7].

(1.4) Enumerating long orbits. As our computational workhorse to facil-
itate computations with (large) permutation representations we use the GAP
package ORB [11], whose orbit enumeration techniques are comprehensively de-
scribed in [10, 12]. For convenience, we give a brief sketch of the approach:

Let G be a (large) finite group, and let O be a (large) transitive G-set, which
we assume to be implicitly given, for example as a G-orbit of a vector v1 in
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an F [G]-module V over a finite field F . Letting H ≤ G be a (still large)
subgroup, we are interested in finding the H-orbits Oj ⊆ O, their length nj ,
representatives vj ∈ Oj , elements gj ∈ G such that v1 · gj = vj , and the point
stabilizers Hj = StabH(vj). To achieve this, we assume to be able to compute
efficiently within H (but not within G), for example by having a (smallish)
faithful permutation representation of H at hand.

To find the H-orbits Oj , we choose a (smallish) helper subgroup K ≤ H, and
enumerate the various Oj by the K-orbits they contain. To do so, we choose
a (not too small) helper K-set Q together with a homomorphism πK : O → Q
of K-sets, which again we assume to be implicitly given, for example by an
F [K]-quotient module of V . We assume that K has sufficiently long orbits in
Q, and that we are able to classify them, by giving representatives, their point
stabilizers in K, as well as complete Schreier trees. Thus for the K-action on
Q we are facing a similar problem as for the H-action on O, apart from the
requirement on Schreier trees; so we can just recurse.

For any K-orbit inQ, we choose a representative, called its ‘distinguished point’.
Then, for any K-orbit O′ ⊆ O, the πK-preimages of the distinguished point
of πK(O′) ⊆ Q are likewise called the distinguished points of O′. Hence to
enumerate an H-orbit Oj by enumerating the K-orbits it contains, we only
have to store the associated distinguished points, and a Schreier tree telling us
how to reach them from the orbit representative vj .

For any Oj we are content with finding only as many K-orbits contained in it
which are needed to cover (more than) half of it; this is equivalent to know-
ing nj and |Hj |. Then we have a randomized membership test for Oj , and a
deterministic test to decide whether the Oj found are actually pairwise disjoint.

2 Condensing induced modules

(2.1) Endomorphisms of permutation modules. We recall some facts
about the structure of endomorphism algebras of permutation modules, thereby
fixing the notation used in the sequel; as a general reference, see [5, Ch.II.12].

LetG be a finite group, letH ≤ G be a subgroup, letO be a transitiveG-set with
associated point stabilizer H, that is there is v1 ∈ O such that StabG(v1) = H,
and let n := |O| = [G : H].

If R is a principal ideal domain, let R[O] be the associated permutation R[G]-
lattice. For subgroups L ≤ M ≤ G let FixR[O](M) := {v ∈ R[O]; vg =
v for all g ∈M} ≤ R[O] be the R-sublattice of M -fixed points, and let

TrML : FixR[O](L)→ FixR[O](M) : x 7→ x ·
∑

g∈L\M

xg

be the associated trace operator, where g runs through a set of representatives
of the cosets of L in M . For L = {1} we just write TrM := TrM{1}.
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Let ER := EndR[G](R[O]) be the R-algebra of R[G]-endomorphisms of R[O].
Then ER is R-free of rank r = |H\G/H|, that is the number of double cosets of
H in G. In other words, we have r = 〈1GH , 1GH〉G, where 1GH is the permutation
character afforded by O, and 〈·, ·〉G denotes the usual scalar product on the
complex class functions on G. More precisely:

Let {v1, . . . , vr} be a set of representatives of the H-orbits Oi := (vi)
H ⊆

O, where v1 is as specified above, let gi ∈ G such that v1gi = vi, let Hi :=
StabH(vi) = Hgi∩H, and let ni := |Oi| = [H : Hi]. Then ER has a distinguished
R-basis {A1, . . . , Ar}, being called its Schur basis, where Ai is given by

Ai : v1 7→ O+
i :=

∑
v∈Oi

v = vi · TrHHi ,

and extension to all of O by G-transitivity.

(2.2) Restriction to subgroups. Keeping the above notation, let U ≤ G be
a subgroup. Then we may consider O as an intransitive U -set:

Let {ω1, . . . , ωs} be a set of representatives of the U -orbits Ωj := (ωj)
U ⊆ O,

where ω1 := v1 and s = |H\G/U |, let γj ∈ G such that v1γj = ωj , and let
Uj := StabU (ωj) = Hγj ∩ U ; then we have |Ωj | = [U : Uj ].

We get a direct sum decomposition R[O]|U =
⊕s

j=1R[Ωj ] into transitive per-
mutation R[U ]-lattices, and a corresponding decomposition

ER := EndR[U ](R[O]|U ) =

s⊕
j=1

s⊕
k=1

HomR[U ](R[Ωj ], R[Ωk]).

We abbreviate Ejk,R := HomR[U ](R[Ωj ], R[Ωk]). Then Ejk,R has a distinguished
R-basis {Ajk,1, . . . ,Ajk,t}, again called its Schur basis, given as follows:

Let {ujk,1, . . . , ujk,t} ⊆ U be a set of representatives of the double cosets
Uk\U/Uj , where t := |Uk\U/Uj |, and let ωjkl := ωk ·ujkl ∈ Ωk, for l ∈ {1, . . . , t}.
Then the Uj-orbits in Ωk are given as Ωjkl := (ωjkl)

Uj , where

StabU (ωjkl) = Hγkujkl ∩ U = Hγkujkl ∩ Uujkl = (Hγk ∩ U)ujkl = U
ujkl
k ,

implying that |Ωjkl| = |Uj |
|U
ujkl
k ∩Uj |

. Then Ajkl ∈ Ejk,R is given by

Ajkl : ωj 7→ Ω+
jkl = ωjkl · Tr

Uj

U
ujkl
k ∩Uj

= ωk · ujkl · Tr
Uj

U
ujkl
k ∩Uj

,

and extension to all of Ωj by Uj-transitivity. The action of ujkl ·Tr
Uj

U
ujkl
k ∩Uj

only

depends on the parameters j, k, l, but not on the particular choice of the ujkl.

(2.3) Embedding endomorphisms. Next, we describe the embedding of ER
into ER, in terms of their Schur bases:
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For i ∈ {1, . . . , r} and j ∈ {1, . . . , s} we have

ωj ·Ai = v1γj ·Ai = v1 ·Ai · γj = vi · TrHHi · γj = O+
i · γj .

Hence, for k ∈ {1, . . . , s} and l ∈ {1, . . . , t}, where t = |Uk\U/Uj |, let the
U-orbit counting numbers be defined as

cjkl(i) := |Oiγj ∩ Ωjkl| and cjk(i) := |Oiγj ∩ Ωk| =
t∑
l=1

cjkl(i).

Recall that Uj = Hγj ∩ U , so that Oiγj is Uj-stable, thus so is Oiγj ∩ Ωjkl,
implying that Ωjkl is either disjoint from Oiγj , or contained in it, so that either
cjkl(i) = 0 or cjkl(i) = |Ωjkl|. Thus we have

Ai =

s∑
j=1

s∑
k=1

|Uk\U/Uj |∑
l=1

cjkl(i)

|Ωjkl|
· Ajkl ∈ ER,

where the coefficients are in {0, 1}, saying that Ai splits into a sum of certain
pairwise distinct Schur basis elements of ER. This is illustrated by the following
generic examples:

i) Let U = G; thus ER = ER. We have s = 1 and Ω1 = O, so that Ω1,1,l = Ol for
l ∈ {1, . . . , r}, where |U1\U/U1| = |H\G/H| = r. This yields c1,1,l(i) = δi,l · |Ol|
for i ∈ {1, . . . , r}, and the above triple sum boils down to the tautology Ai = Ai.

ii) Let U = {1}; thus ER = EndR(R[O]) ∼= Rn×n. We have s = n, and
Ωk = {v1γk} is a singleton set, and |Uk\U/Uj | = 1 for j, k ∈ {1, . . . , n}. This
yields cj,k,1(i) = 1 if v1γk ∈ Oiγj , and cj,k,1(i) = 0 otherwise, for i ∈ {1, . . . , r}.
Hence, identifying Aj,k,1 with Ejk ∈ Rn×n, having entry 1 at position [j, k], and
zero entries otherwise, we recover the natural representation of ER on R[O].

iii) Let U = H. We have s = r, and Ωj = Oj for j ∈ {1, . . . , r}. Thus we get
the (H-)orbit counting numbers cjk(i) = |Oigj ∩ Ok|. These are related to the
regular representation of ER with respect to the Schur basis as follows:

For i, j ∈ {1, . . . , r} we write AjAi =
∑r
k=1 pjk(i) ·Ak, the associated structure

constants pjk(i) ∈ N0 being called intersection numbers. Then we have

v1 ·AjAi = v1gj · TrHHj ·Ai = v1 ·Ai · gj · TrHHj = O+
i · gj · TrHHj .

From v1 ·Ak = O+
k , and |Oigjh∩Ok| = |Oigj ∩Ok| = cjk(i), for h ∈ H, we get

pjk(i) =
∑

h∈Hj\H

|Oigjh ∩ Ok|
|Ok|

=
nj
nk
· cjk(i).

(2.4) Condensing E. a) Let V be an R[U ]-lattice. Then ER acts naturally
(from the left) on H(V ) := HomR[U ](R[O]|U , V ), by

α : H(V )→ H(V ) : ϕ 7→ α · ϕ, for α ∈ ER.
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Note that we have H(V ) ∼= HomR[G](R[O], V G) = HomR[G](R
G
H , V

G), where
RH denotes the trivial R[H]-module, and superscripts denote induction.

The direct sum decomposition R[O]|U =
⊕s

j=1R[Ωj ] entails a decomposition

H(V ) =

s⊕
j=1

HomR[U ](R[Ωj ], V ) ∼=
s⊕
j=1

FixV (Uj);

we write ϕ =
∑s
j=1 ϕj . The latter isomorphism ofR-lattices is given component-

wise by HomR[U ](R[Ωj ], V )→ FixV (Uj) : ϕj 7→ ωjϕj .

For the Schur basis element Ajkl ∈ Ejk,R, letting ϕi ∈ HomR[U ](R[Ωi], V ), we
have Ajkl · ϕi = 0 whenever i 6= k. If i = k, then we get

ωj · Ajklϕk = ωkujkl · Tr
Uj

U
ujkl
k ∩Uj

· ϕk = ωkϕk · ujkl · Tr
Uj

U
ujkl
k ∩Uj

∈ FixV (Uj),

where indeed ωkϕk ∈ FixV (Uk), hence ωkϕk · ujkl ∈ FixV (U
ujkl
k ). Thus, in

terms of fixed spaces, Ajkl annihilates FixV (Ui) for i 6= k, and for i = k we get

Ajkl : FixV (Uk)→ FixV (Uj) : v 7→ v · ujkl · Tr
Uj

U
ujkl
k ∩Uj

.

b) In view of the application envisaged here, let R[O] be a projective R[G]-
module, which is equivalent to |H| being a unit in R. Then let

eH :=
1

|H|
· TrH ∈ R[H]

be the associated ‘fixed-point’ idempotent, that is the primitive idempotent of
R[H] associated with the trivial representation of H; recall that eH projects
any R[H]-lattice onto its R-sublattice of H-fixed points. Moreover, we have
R[O] ∼= RGH

∼= eHR[G], so that as R-lattices we get

H(V ) = HomR[U ](R[O]|U , V ) ∼= HomR[G](eHR[G], V G) ∼= V G · eH .

This shows that H(V ) can be seen as the ‘condensed module’ of the induced
module V G, with respect to the ‘condensation subgroup’ H. A technique to
compute condensed modules of shape V G ·eH for subgroups U of smallish index
in G has been invented in [13]; the present approach now allows for both sub-
groups U and H to have large index. In the spirit of ‘condensation techniques’,

recalling that |Ωjkl| = |Uj |
|U
ujkl
k ∩Uj |

, on FixV (U
ujkl
k ) we get

Tr
Uj

U
ujkl
k ∩Uj

= e
U
ujkl
k ∩Uj

· Tr
Uj

U
ujkl
k ∩Uj

=
|Ωjkl|
|Uj |

· TrUj = |Ωjkl| · eUj .

Thus, in terms of fixed-point idempotents, the action of Ajkl can be written as

Ajkl : FixV (Uk)→ FixV (Uj) : v 7→ |Ωjkl| · v · eUkujkleUj .

Note that the latter ‘condensation formula’ actually holds more generally if
R[O]|U is a projective R[U ]-module, that is all R[Ωj ] are projective R[U ]-
modules, which is equivalent to

∏s
j=1 |Uj | being a unit in R.
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(2.5) Condensing E. Finally, combining the above observations, still assum-
ing that R[O] is a projective R[G]-module, we derive a ‘condensation formula’
for the action of the Schur basis elements of ER on H(V ) ∼=

⊕s
j=1 FixV (Uj):

Fixing R-bases for the fixed spaces FixV (Uj), the action of ER is given by
block matrices, where the blocks in position [j, k] have size rkR(FixV (Uj)) ×
rkR(FixV (Uk)), for j, k ∈ {1, . . . , s}. Then the matrix representing the Schur
basis element Ajkl ∈ ER, where l ∈ {1, . . . , t} and t := |Uk\U/Uj |, has its only
non-zero block in position [j, k], where the latter block represents the R-linear
map FixV (Uk)→ FixV (Uj) induced by the action of |Ωjkl| · eUkujkleUj .
Let Ai ∈ ER be a Schur basis element, where i ∈ {1, . . . , r}. Then Ai is
represented by a block matrix as above, whose block in position [j, k] represents
the R-linear map FixV (Uk)→ FixV (Uj) induced by the action of

|Uk\U/Uj |∑
l=1

cjkl(i) · eUkujkleUj =

|Uk\U/Uj |∑
l=1

|Oiγj ∩ Ωjkl| · eUkujkleUj .

Since the elements ujkl ∈ U may be chosen arbitrarily as representatives of the
double cosets Uk\U/Uj , for any v ∈ Ωk we let uk(v) ∈ U be any element such
that ωk · uk(v) = v. Then the block in position [j, k] represents the map∑

v∈Oi∩(Ωkγ
−1
j )

eUk · uk(vγj) · eUj .

3 Characters of J4 and its subgroups

(3.1) From now on let G := J4 and p := 11. Let Irr(G) be the set of irreducible
(ordinary) characters of G. We order the conjugacy classes of G and the Irr(G)
is specified in [2], thus we may identify Irr(G) with the character table of G.

The principal p-block B0 is the only one of positive defect. There are k0 := 49
irreducible characters and l0 := 40 irreducible Brauer characters belonging to
B0. According to [17], this is essentially all what until recently has been known
about the decomposition numbers of B0.

Now, in [9] we have been able to determine four of the projective indecomposable
characters of B0, amongst them the one belonging to the projective cover of the
trivial module. The decomposition of newly found projective indecomposable
characters Ψα, where α ∈ {1, . . . , 4}, into irreducible characters is reproduced
in Table 1, where a ∈ {0, 1}. We also indicate the ordinal numbers of the
irreducible characters occurring, their degree and their character field, where
rn :=

√
n denotes the positive square root of n ∈ N.

Actually, χ19/20, χ23/24, χ36/37, and χ38/39 form four pairs of mutually alge-
braically conjugate characters. Since the quadratic fields Q(r3), Q(r5), and
Q(r33) are disjoint, there are Galois automorphisms of Q(r3, r5, r11) inducing
each of the involutions (χ19 ↔ χ20), (χ23 ↔ χ24), and (χ36 ↔ χ37)(χ38 ↔ χ39).
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Table 1: Projective indecomposable characters of G, taken from [9].

χ χ(1) Q(χ) Ψ1 Ψ2 Ψ3,a Ψ4,a

1 1 1 . . .
8 889111 . 1 . .

11 1776888 . . 1 .
14 4290927 1 . . .
19 35411145 Q(r33) 1 . 1 .
20 35411145 Q(r33) 1 . 1 .
21 95288172 1 . 1 .
22 230279749 1 . . .
23 259775040 Q(r3) . . . 1
24 259775040 Q(r3) . 1 . .
29 460559498 . . . 1
30 493456605 . . . 1
32 786127419 . 1 . .
36 885257856 Q(r5) 1 . . .
37 885257856 Q(r5) . . . 1
38 1016407168 Q(r5) . . a 1− a
39 1016407168 Q(r5) . . 1− a a
51 1842237992 . . . 1

Thus we may choose the rows of the decomposition matrix belonging to χ23/24

and χ36/37 as is shown in Table 1, while the non-p-rational characters χ19/20

have the same restriction to the p-regular conjugacy classes of G anyway. But
then, as we will see below, there is no further choice possible for χ38/39, leaving
two possible cases parameterized by a ∈ {0, 1}.

(3.2) In order to get a comprehensive overview about the possible choices on
the character theoretic side, and what has to be decided explicitly in the end, we
use the following terminology: Let A(G) := Aut(Irr(G)) be the group of table
automorphisms of Irr(G), that is the permutations of the conjugacy classes of G
compatible with power maps and inducing permutations of the rows of Irr(G).

According to [1], the group A(G) has order 432, is generated by

A(G) = 〈(12, 13)(24, 25)(26, 27)(32, 33)(39, 40)(48, 49)(55, 56), (43, 44, 45),
(30, 31)(53, 54), (37, 38), (46, 47)(61, 62), (50, 51, 52), (57, 58, 59)〉.

Its action on Irr(G) is given as

A(G) → 〈(2, 3)(4, 5)(6, 7)(9, 10)(12, 13)(15, 16)(17, 18), (19, 20)(33, 34),
(23, 24), (36, 37)(38, 39), (46, 47, 48), (53, 54, 55), (56, 57, 58)〉.

In particular, the latter contains the action of the Galois automorphisms men-
tioned above, where on the irreducible characters considered here we indeed see
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the involution (19, 20). (On all of Irr(B0) we see (19, 20)(33, 34) instead, which
has to be taken into account as soon as as projective characters also having
constituents χ33/34 are considered.)

(3.3) In the sequel, for various subgroups M < G, we will compute the set of
‘possible class fusions’ from the conjugacy classes of M to those of G, that is
the maps compatible with power maps and restrictions of irreducible characters.
This set is acted on naturally byA(M)×A(G) via [α, β] : f 7→ α−1·f ·β. Possible
class fusions are considered equivalent if they belong to the same (A(M)×A(G))-
orbit. Hence ‘choosing’ a class fusion amounts to picking an orbit representative,
f say, and keeping it fixed. But this restricts the table automorphisms remaining
admissible in subsequent ‘choices up to equivalence’ to StabA(M)×A(G)(f) ≤
A(M)×A(G), and its projections Af (M) ≤ A(M) and Af (G) ≤ A(G) to the
first and second direct factors, respectively.

Now we bring Brauer characters into play: Let IBrp(G) be the (as yet unknown)
p-modular Brauer character table of G, whose columns are identified with the
p-regular conjugacy classes of G. This amounts to saying that the class fusion
from p-regular to all conjugacy classes of G has been chosen, so that we have
to go down to the admissible subgroup Ap(G) ≤ A(G) inducing permutations
of the rows of IBrp(G).

Similarly, let IPrp(G) be the (as yet unknown) table of p-modular projective
indecomposable characters of G. Since IPrp(G) is the dual basis of IBrp(G),
extended by zeroes on the p-singular conjugacy classes of G, with respect to the
usual scalar product on the complex class functions on G, the group Ap(G)
coincides with the subgroup of A(G) inducing permutations of the rows of
IPrp(G). If only an Ap(G)-stable subset Ψ ⊆ IPrp(G) is known, then the
subgroup AΨ(G) ≤ A(G) inducing permutations of Ψ contains Ap(G), thus can
serve as an upper approximation of the latter.

(3.4) Now, let H < G be a (maximal) subgroup of shape 210 : L5(2). Then H
is an 11′-subgroup of order |H| = 10 239 344 640. It turns out that A(H) has
order 24, and that there are six possible class fusions from H to G, consisting of
a single (A(H)×A(G))-orbit. As a representative f we choose the class fusion
stored in [1]. We get Af (G) = A(G), saying that upon choosing the class fusion
from H to G all table automorphisms of G remain admissible.

Moreover, let 1GH be the permutation character afforded by a transitive G-set
with associated point stabilizerH. Then 1GH isA(G)-invariant, and it is a projec-
tive character of G, which by [9] splits into four projective indecomposable char-
acters as 1GH = Ψ1 + Ψ2 + Ψ3,a + Ψ4,a. Hence the set Ψ := {Ψ1,Ψ2,Ψ3,a,Ψ4,a}
is Ap(G)-stable. From the description of the action of A(G) on Irr(G) we in-
fer that AΨ(G) fixes Ψ element-wise, and thus so does Ap(G). Hence we get
AΨ(G) = StabA(G)(χ23, χ36), for both a ∈ {0, 1}, that is

AΨ(G) = 〈(12, 13)(24, 25)(26, 27)(32, 33)(39, 40)(48, 49)(55, 56),
(43, 44, 45), (46, 47)(61, 62), (50, 51, 52), (57, 58, 59)〉.



10

Thus we have [A(G) : AΨ(G)] = 4, reflecting the couple of choices made between
two alternatives each, and AΨ(G) acts on Irr(G) as

AΨ(G) → 〈(2, 3)(4, 5)(6, 7)(9, 10)(12, 13)(15, 16)(17, 18),
(19, 20)(33, 34), (46, 47, 48), (53, 54, 55), (56, 57, 58)〉.

We conclude that AΨ(G) acts on the constituents of the permutation character
1GH as a subgroup of 〈(19, 20)〉, and so does Ap(G). In particular, the cases
a ∈ {0, 1} are genuinely different, so that we have to decide which one holds.

(3.5) In order to do so, let U < G be a (maximal) subgroup of shape U3(11) : 2,
having order |U | = 141 831 360, and let U ′ ∼= U3(11) be its derived subgroup of
index 2. Moreover, let S < U ′ be a Sylow 11-subgroup, hence S is extra-special
of shape 111+2

+ , and is a Sylow 11-subgroup of G as well.

Let IBrp(U) be as specified in [4]. In particular, let S8 be the (absolutely
irreducible) adjoint module of U ′ of degree 8, and let S±8 be its extensions to
U , where the Brauer character of S±8 on the conjugacy class of involutions not
contained in U ′ has value ±2. Then S+

8 and S−8 have Brauer characters ϕ3 and
ϕ4, respectively. Moreover, let Φ±8 be the projective indecomposable characters
of U associated with S±8 .

It turns out that the group A(U) has order 96, but the admissible subgroup
Ap(U) ≤ A(U) has order 2, whose non-trivial element is the transposition in-
terchanging the conjugacy classes of elements of order 44 not belonging to U ′.
It turns out that there are 24 possible class fusions from U to G, which fall into
two (Ap(U) × A(G))-orbits of length 12; the latter are even A(U)-invariant.
Orbit representatives are given (in terms of conjugacy class numbers) as

[1, 2, 4, 5, 6, 8, 8, 10, 14, 17, 17, 19, 20, 20, 21, 22, 22,
30, 31, 34, 50, 51, 52, 50, 51, 52, 53, 54, 53, 54, 60,

3, 5, 11, 15, 18, 18, 21, 30 + y, 31− y, 35, 37, 38, 60, 60],

where y ∈ {0, 1}, the case y = 0 being the one stored in [1]. The conjugacy
classes of U whose fusion to G depends on y are those containing elements of
order 20 not belonging to U ′.

The picture changes when we restrict to AΨ(G): Both of the above orbits split
into four (Ap(U) × AΨ(G))-orbits of length three. Thus now there are eight
orbits, representatives of which are given by the maps

[1, 2, 4, 5, 6, 8, 8, 10, 14, 17, 17, 19, 20, 20, 21, 22, 22,
30 + x, 31− x, 34, 50, 51, 52, 50, 51, 52, 53 + x, 54− x, 53 + x, 54− x, 60,

3, 5, 11, 15, 18, 18, 21, 30 + y, 31− y, 35, 37 + z, 38− z, 60, 60],

where x, y, z ∈ {0, 1}; the case x = y = z = 0 being the one stored in [1]. The
conjugacy classes of U whose fusion to G depends on the parameters x or y
consist of elements of order 20 and 40, where the conjugacy classes {53, 54} of
G square to the conjugacy classes {30, 31}; the conjugacy classes of U whose
fusion to G depends on the parameter z consist of elements of order 24.
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(3.6) We can do slightly better, as far as the fusion from conjugacy classes of
U consisting of elements of order 20 to G is concerned:

To this end, let N := NG(S) < G, which is a (maximal) subgroup of shape
S : T ∼= 111+2

+ : (5 × 2.S4), having order |N | = 319 440, where T ∼= 5 × 2.S4 is
unique up to N -conjugacy. Hence we may assume that T ∩U ∼= 5×QD16, thus

NU (S) = N ∩ U = S : (T ∩ U) ∼= 111+2
+ : (5×QD16).

We compare the embeddings T ∩U < U and T ∩U < T : It turns out that there
are eight possible class fusions from T ∩ U to T , and two possible class fusions
from T to G. Then composition yields two possible class fusions from T ∩U to
G which factor through T . Similarly, there are four possible class fusions from
T ∩U to U . Then composing either of the 24 possible class fusions from U to G
with the latter, and checking whether a possible class fusion factoring through
T is obtained, leaves 12 possible class fusions from U to G.

It turns out that these fall into four (Ap(U) × AΨ(G))-orbits, which are given
by the parameters x = y, leaving the following four maps from the above list:

[1, 2, 4, 5, 6, 8, 8, 10, 14, 17, 17, 19, 20, 20, 21, 22, 22,
30 + y, 31− y, 34, 50, 51, 52, 50, 51, 52, 53 + y, 54− y, 53 + y, 54− y, 60,

3, 5, 11, 15, 18, 18, 21, 30 + y, 31− y, 35, 37 + z, 38− z, 60, 60].

(3.7) Having this in place, restricting Ψα to U , for α ∈ {1, . . . , 4} and both
cases a ∈ {0, 1}, and using the various class fusions for y, z ∈ {0, 1}, we
may write Ψα|U uniquely as an integral linear combination of projective in-
decomposable characters of U . By construction, the multiplicities occurring are
(Ap(U) × AΨ(G))-invariant. It turns out that in all cases these multiplicities
are non-negative, so that this does not yield further immediate restrictions.

But, amongst others, the multiplicity [Ψα|U : Φ±8 ] of Φ±8 in a direct sum decom-
position of Ψα|U subtly depends on the parameters a, y, z. We get the following
pattern, where we also indicate [1GH |U : Φ±8 ]:

Φ+
8 Φ−8

Ψ1|U 77− y 71 + y
Ψ2|U 67 + z 52− z
Ψ3,a|U 80 56 + (−1)y+a

Ψ4,a|U 299 + y − z 260− y + z − (−1)y+a

1GH |U 523 439

In order to determine the multiplicities [Ψα|U : Φ±8 ] explicitly, let F = F11, and
let Pα be the projective indecomposable F[G]-module affording Ψα, where since
[1GH : Ψα] = 1 implies that Ψα is indeed realizable over F. We have

[Ψα|U : Φ±8 ] = dimF(HomF[U ](Pα|U , S±8 )).
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Using the notation introduced in Section 2, in particular letting O be a G-set
affording the permutation character 1GH , we have F[O] ∼=

⊕4
i=1 Pα as F[G]-

modules, where Pα ∼= F[O] ·eα for a set {e1, . . . , e4} ⊆ EF of pairwise orthogonal
primitive idempotents. The natural action of EF ⊆ EF on

H(S±8 ) := HomF[U ](F[O]|U , S±8 ) ∼=
s⊕
j=1

FixS±
8

(Uj)

yields HomF[U ](Pα|U , S±8 ) ∼= eα·H(S±8 ). Thus we have to determine the action of

EF on H(S±8 ), and the F-dimension dα := dimF(eα · H(S±8 )), for α ∈ {1, . . . , 4}.
At this stage, we switch to explicit computations:

4 Enumerating O again

(4.1) We pick the 112-dimensional absolutely irreducible representation of G
over F2 from [19], and let V ∼= F112

2 be the underlying module. The representa-
tion is given in terms of (two) standard generators, in the sense of [16]. Words
in the generators providing (non-standard) generators of maximal subgroups
210 : L5(2) ∼= H < G and U3(11) : 2 ∼= U < G are available in [19] as well.

It turns out that H possesses a 1-dimensional fixed space in V . Hence letting
v1 ∈ V be the unique non-zero H-fixed vector, we let O := (v1)G ⊆ V , providing
an implicit realization of O. In [9], using ORB, we have already enumerated O
by H-orbits, of which there are r := 〈1GH , 1GH〉G = 27. For the H-orbits Oi ⊆ O
we have in particular determined their lengths ni, which are reproduced in Table
2, as well as elements gi ∈ G yielding orbit representatives vi := v1gi ∈ Oi.
We are now going to enumerate O again, this time by U -orbits. It turns out
that there are s := 〈1GH , 1GU 〉G = 131 such U -orbits; note that s is independent
of the class fusions chosen. To do so, we set up a new framework to apply ORB,
adjusted to our present needs. In particular, comparing with [9], we have to
pick another helper subgroup, since the one chosen there is a subgroup of H,
but is not conjugate to a subgroup of U .

(4.2) By a random search we replace the non-standard generators of U we
have so far by standard ones. A faithful permutation representation of U on
1332 points, in terms of standard generators, is available in [19]. Actually, the
associated point stabilizers are conjugate to 111+2

+ : (5 × QD16) ∼= NU (S) < U ,
which was already encountered in (3.6).

We choose a (single) helper subgroup K < U : Let z ∈ U ′ be an involution,
which is unique up to U ′-conjugacy; specifically, we choose z as the square of
the second standard generator of U , which has order 4. Then we let

K := CU (z) ∼= (SL2(11)× V4) : 2,

being computed in the permutation representation of U ; we have |K| = 10560.
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Table 2: H-orbit lengths in O.

i ni

1 1
2 31
3 930
4 17360
5 26040
6 27776
7 416640
8 416640
9 624960

i ni

10 333120
11 4999680
12 6666240
13 6666240
14 9999360
15 13332480
16 53329920
17 66060288
18 79994880

i ni

19 79994880
20 159989760
21 159989760
22 319979520
23 341311488
24 1279918080
25 1279918080
26 2047868928
27 2559836160

Keeping K fixed, we choose (two) helper K-sets: It turns out that the restriction
of V to K decomposes as V |K ∼= V80 ⊕ V32, subscripts denoting F2-dimension,
where K acts faithfully on both summands. Moreover, V32 has a unique F2[K]-
quotient V20 of F2-dimension 20, on which K acts non-faithfully by its quotient
(L2(11)×V4) : 2. Actually, V20 is uniserial with a unique (absolutely irreducible)
constituent of F2-dimension 10, on which K acts as L2(11) : 2. As helper K-sets
we now choose the natural epimorphisms V |K → V32 → V20 of F[K]-modules.

(4.3) We are now prepared to run ORB, in order to find the decomposition

O =
∐131
j=1 Ωj into U -orbits: We randomly choose elements g ∈ G, and check

whether v1g ∈ O belongs to one of the U -orbits already found. If not, then we
have found a previously unseen U -orbit, Ωj say. In this case, we store γj := g and
the orbit representative ωj := v1γj ∈ Ωj , we enumerate half of Ωj , and using
the faithful permutation representation of U we determine Uj := StabU (ωj).
The lengths of the U -orbits in O are summarized in Table 3. Recalling that
|U | = 141 831 360, we infer that the point stabilizers Uj have order at most 360.

To detect all U -orbits in O we need approximately half an hour on a single
3 GHz CPU. Setting up ORB anew, and using the γj instead of a random
search, the orbit enumeration database is rebuilt in about ten minutes of CPU
time. The statistics provided by ORB shows that the ‘saving factor’, that is the
quotient between the number of points in a U -orbit actually stored in the orbit
enumeration database, and the length of the piece of the U -orbit enumerated,
varies between 8022 (for one of the shorter U -orbits) and 10497 (for one of
the regular U -orbits). Thus we achieve an average saving factor of ∼ 10304 ∼
0, 97 · |K|. The total memory usage of the orbit enumeration database amounts
to manageable ∼ 115 MB, and the infrastructure needs additional ∼ 195 MB.
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Table 3: U -orbit lengths in O.

393976
738705
984940

2× 1181928
1477410

2216115
3× 2954820

3939760
5909640

9× 8864460

4× 11819280
14183136

12× 17728920
3× 23638560
2× 28366272

22× 35457840
2× 47277120

28× 70915680
36× 141831360

5 Condensing the induced module (S±
8 )

G

(5.1) Finding idempotents. We proceed to determine pairwise orthogonal
primitive idempotents {e1, . . . , e4} ⊆ EF, and their action on H(S±8 ). The idea
pursued here is inspired by [6].

In [9] we have computed the 11-modular character table of EF; it is reproduced
in Table 4. Here, notation is chosen such that the irreducible character ϕα of EF
corresponds to the projective indecomposable character Ψα of G. Since all irre-
ducible characters are linear, the character values coincide with the eigenvalues
of the action of the Schur basis elements in the various irreducible representa-
tions. We consider the action of A2, where we observe that the character values
[ϕ1(A2), . . . , ϕ4(A2)] = [9, 5, 10, 1] are pairwise different.

Let µ :=
∏4
α=1(X − ϕα(A2))hα ∈ F[X] be the minimum polynomial of the

action of A2 in the (faithful) regular representation of EF. The multiplicities
hα ∈ N are not needed explicitly in the sequel, but they are actually easily
determined: The intersection matrices of EZ have been determined in [9], so
that the minimum polynomial of their 11-modular reduction is straightforwardly
computed, yielding [h1, . . . , h4] = [5, 3, 5, 4].

Let µα := (X−ϕα(A2))hα , and let µ′α := µ
µα

be the associated co-factor. Then,

µα and µ′α being coprime, there are fα, f
′
α ∈ F[X] such that fαµα+ f ′αµ

′
α = 1 ∈

F[X]. Hence we have EF ∼=
⊕4

α=1 ker(µα(A2)) as F[A2]-modules. Moreover,

eα := f ′α(A2)µ′α(A2) = 1− fα(A2)µα(A2) ∈ F[A2]

annihilates ker(µ′α(A2)) =
⊕

β 6=α ker(µβ(A2)), while it acts as the identity on
ker(µα(A2)). Thus {e1, . . . , e4} ⊆ EF is a set of pairwise orthogonal, hence
primitive idempotents. Moreover, eα acts on any EF-module as a projection
onto the generalized eigenspace of A2 with respect to the eigenvalue ϕα(A2). In
particular, it does so on the simple EF-modules, so that eα is associated with
the irreducible character ϕα indeed.

(5.2) Thus we are left with determining the action of A2 on H(S±8 ), which is
given in terms of fixed spaces by the ‘condensation formula’ in (2.5). In order
to apply it, we first observe that the point stabilizers Uj are small enough such
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Table 4: The character table of EF.

ϕα 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 9 6 2 3 1 4 4 6 10 4 9 9 8
2 1 5 5 1 8 8 5 5 10 8 1 2 2 5
3 1 10 3 4 10 4 7 7 5 7 5 3 3 6
4 1 1 3 9 0 8 0 0 5 8 2 4 4 4

ϕα 15 16 17 18 19 20 21 22 23 24 25 26 27
1 7 6 8 9 9 7 7 3 1 1 1 6 2
2 3 5 5 5 5 6 3 10 1 0 1 3 8
3 5 1 1 7 7 10 9 0 4 3 6 10 5
4 5 9 0 3 3 2 10 8 10 10 1 0 0

that the action of the fixed-point idempotent eUj on S±8 is straightforwardly
computed by running through all the elements of Uj explicitly.

Starting with v2 ∈ O2, the H-orbit O2, having length n2 = 31, is easily enumer-
ated explicitly. Then, running through the points v ∈ O2, we apply the elements
γj ∈ G in turn, for j ∈ {1, . . . , s}, and check using ORB to which U -orbit the
point w := vγj ∈ O belongs. If w ∈ Ωk, say, then we use the functionality ORB
readily offers to find an element uk(w) ∈ U such that ωk · uk(w) = w.

Having this in place, we apply the ‘condensation formula’ to compute the ac-
tion of A2 on H(S±8 ) ∼=

⊕s
j=1 FixS±

8
(Uj). This straightforwardly yields the

F-dimension d±α of the generalized eigenspace of the action of A2 with respect
to the eigenvalue ϕα(A2), and for comparison the multiplicity h±α of the irre-
ducible factor X − ϕα(A2) in the minimum polynomial of this action:

hα d+
α h+

α d−α h−α
ϕ1(A2) 5 76 4 72 2
ϕ2(A2) 3 67 3 52 2
ϕ3(A2) 5 80 4 55 2
ϕ4(A2) 4 300 4 260 4

H(S±8 ) 523 439

(5.3) We just remark that the same approach works for all the shorter H-orbits
in O, in particular including O4 of length n4 = 17360.

Now, in [9] we have shown that EQ = Q[A2, A4], by writing all the Schur basis
elements of EQ explicitly as words in the generating set {A2, A4}. Letting
Z(11) ⊆ Q be the ring of 11-adic integers in Q, it turns out that the latter words
actually belong to Z(11)[A2, A4]. This implies that the Schur basis elements of
EF are given by the very words, now considered via 11-modular reduction as
belonging to F[A2, A4]. Thus we have EF = F[A2, A4].
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As already follows from comparing h±α with hα, the algebra EF acts non-
faithfully on H(S±8 ), where it turns out that on H(S+

8 ) and H(S−8 ) it acts
by an algebra of F-dimension 24 and 15, respectively, while dimF(EF) = 27.

(5.4) Conclusion. We have found the multiplicities [Ψα|U : Φ±] = d±α as given
in (5.2). Comparing with the possible parameter choices left in (3.7), we get

y = 1 and z = 0 and a = 0.

Thus the projective indecomposable summands Ψα of the permutation charac-
ter 1GH are, up to admissible table automorphisms, as shown in Table 1, upon
specifying a := 0. Moreover, the class fusion from U to G is given, again up
to admissible table automorphisms, as follows, where it turns out that it differs
from the one stored in [1] precisely in the (eight) positions printed in bold face:

[1, 2, 4, 5, 6, 8, 8, 10, 14, 17, 17, 19, 20, 20, 21, 22, 22,
31,30, 34, 50, 51, 52, 50, 51, 52,54,53,54,53, 60,

3, 5, 11, 15, 18, 18, 21,31,30, 35, 37, 38, 60, 60].
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