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Abstract

In this note we compute the ®.-modular decomposition matrices
for the generic Iwahori-Hecke algebras of type I5(m) form € N, m > 2,
Hj, and Hy, for all e € N leading to non-trivial decomposition maps.
The results are obtained by a combined use of different ideas from com-
putational representation theory and by application of the computer
algebra systems GAP, CHEVIE, VectorEnumerator, and MeatAxe.

1 Introduction

Generic Iwahori-Hecke algebras of the classical series A, B, D, and of the
exceptional types Go, Fy, Eg, E7, Eg, which together are called the crys-
tallographic types, have gained considerable interest in the representation
theory of finite groups of Lie type. Especially their behaviour under cer-
tain decomposition maps has become the focus of intensive study. The
underlying decomposition theory extends naturally to the closely related
non-crystallographic types Ia(m), Hs, Hy, and although there is no inter-
pretation in the framework of the representation theory of groups of Lie
type, it seems worth while to have complete results for all types, which also
gives us the possibility to check them for similarities and differences between
the crystallographic and non-crystallographic cases.

Another motivation to study the non-crystallographic types is to extend
results on the automorphisms of generic Iwahori-Hecke algebras of crystal-
lographic type obtained by F. Bleher, M. Geck, W. Kimmerle [2].

In this note we determine the ®.-modular decomposition matrices for the
generic Iwahori-Hecke algebras of type I(m) for m € N, m > 2, Hj, and
Hy, for all e € N which lead to non-trivial decomposition maps. The general
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setup is described in Section 2, the decomposition matrices are determined
and depicted in Sections 3, 4, 5, respectively.

Especially, we observe the following facts: All decomposition matrices are
of lower unitriangular shape with respect to a suitable ordering of the irre-
ducible representations. All characters are of height 0. Blocks of defect 1
are Brauer tree algebras, where the Brauer tree is a straight line without
exceptional vertex. For the blocks of defect 2 all decomposition numbers are
0orl.

If e equals the Coxeter number of the corresponding Coxeter group, then
there is exactly one block of positive defect, it is of defect 1, and the ver-
tices of the Brauer tree are the successive exterior powers of the reflection
representation. This extends [2], Theorem 6.6, to the non-crystallographic

types.

The results are obtained by a combined use of different ideas from com-
putational representation theory, which have been applied successfully in
the business of determining decomposition numbers, especially for Iwahori-
Hecke algebras of exceptional type, see [18]. We make use of the com-
puter algebra systems GAP [21], CHEVIE [9, 10], VectorEnumerator [16], and
MeatAxe [20], whose basic features we assume the reader to be acquainted
with.

Notation. For n € N let (,, € C denote the standard n-th primitive root
of unity ¢, := exp(%). For d € N let ®; denote the d-th cyclotomic poly-
nomial. For the generic algebras of type Hs, Hy we use the ordering and
labelling of the irreducible characters x; as given in CHEVIE. Usually, x;
is identified by its degree and the smallest symmetric power of the reflec-
tion representation y; occurs in. These numbers determine y; uniquely,
with the only exception of the irreducible characters yog9, x30 of the al-
gebra of type Hy4, which have labels (30,10), (30,10). Let us agree that
x29(Ts, Ts, Ts,Ts,) = 5 + ¢35 holds. To make this note more self-contained,
we will incorporate these labels into the decomposition matrices given be-
low. The Schur elements, which in the sequel will be denoted by c,,, are also
available in CHEVIE. Their factorization into a power product of irreducible
polynomials over Q((5) is found using GAP.

Acknowledgements. The author gratefully acknowledges many helpful
discussions with M. Geck and G. Malle. He thanks the Deutsche Forschungs-
gemeinschaft for financial support in the framework of the joint research
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project ‘Algorithmic Algebra and Number Theory’, which this note is a
contribution to.

2 Decomposition theory

(2.1) Iwahori-Hecke algebras. We now introduce the algebras we are
going to study and state a few basic facts. As general references see [3],
Chapter 4, and [5], Chapters 67, 68. Note that we will only deal with the
equal parameter case, which is no restriction for the algebras of type Hj,
H, anyway.

(2.1.1) Definition. Let W be a finite Coxeter group of type I" with set of
standard generators S. Let R be a commutative ring and fix a unit ¢ € R.
The Iwahori-Hecke algebra Hr(I',q) of type I' over R with parameter ¢ is
defined as a finitely presented associative R-algebra with identity 77 as

Hp(T,q) :=(Ts;se€ S || T} =q-Ti+(¢—1)- Ty
TTsTs - =TgTTy -+, s,8 €S,s#5)

~~

mggr mggr

)

where mgy denotes the order of ss’ € W. The algebra Hyjpy 1) (T, u), where
u is an indeterminate over Z, is called the generic algebra of type I'.

(2.1.2) H = Hg(q) = Hg(T',q) is R-free with a basis {T,,;w € W}
parametrized by the elements of the Coxeter group W. Letting T, —
(—1)!@) . ind(Ty,) - T ;}1 for all w € W defines an involutary R-algebra auto-
morphism of H, as follows directly from the definition. This automorphism
and also its action on the representations of H is called Curtis-Alvis duality.
Also we immediately have the existence of two linear representations of H,
the sign representation sgn : Ts — —1 for all s € S, and the index repre-
sentation defined by ind : Ty — ¢ for all s € S. In fact, H is a symmetric
R-algebra with respect to the bilinear form (To, Tyy) = 841 4 - ind(Tw).
It has been shown by C. Curtis, N. Iwahori, R. Kilmoyer [4], Section 9, that
a reflection representation of W has a natural lift, again called a reflection
representation, to the generic algebra H = Hg(u), where Z[u,u"!] C R is a
suitable extension ring. Furthermore, the non-vanishing exterior powers of
the module underlying a reflection representation of H become irreducible,
pairwise non-isomorphic H-modules.
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(2.1.3) Now we consider the generic algebra H(u). Let v be an indetermi-
nate such that v? = u. If H is of type Iz(m), let ¢ := (o if H is of type Hj
or Hy, let ( := (5. It has been shown by R. Kilmoyer, L. Solomon [15] for
type I2(m), by G. Lusztig [17] for type Hs, and by D. Alvis, G. Lusztig [1]
for type Hy that K := Q((,v) is a splitting field for Hx (u). They even have
shown that all the irreducible representations of these algebras can be real-
ized over R := Z[(,v,v~!]. Note that since H is defined over Z[v,v~!], the
Galois group Gal(Q(¢)/Q) induces an automorphism of the module category
of H.

(2.1.4) We will be interested in decomposition maps, as described in (2.2),
coming from prime ideals p < R, such that R/p is of characteristic 0. These
are of the form p = (®), where ® € Z[(,v] is an irreducible polynomial of
positive degree. Note that Gal(Q(¢)/Q) acts on R and on its set of prime
ideals; by the last remark in (2.1.3), without loss of generality we can restrict
ourselves to consider only one prime ideal p <1 R out of each Galois orbit.

The other prime ideals are either those of the form pR, where p < Z[(] is
a prime ideal; in this case we let p NZ = () < Z, where | € Z is a rational

prime. Or they are of the form P = (p, ®), where p < Z is a prime ideal

and ® € Z[¢,v] such that its natural image ® € (Z[¢]/p)[v] is irreducible of

positive degree. Note that we have p = (®) C P if and only if ® divides the
natural image ® € (Z[¢]/p)[v]-

By the remarks in (2.2.2) the decomposition map coming from a prime ideal
B, which is of height 2, factors through the decomposition maps coming
from the height 1 prime ideals contained in . This is one reason to be
primarily interested in the height 1 prime ideals. Another reason to stick
to prime ideals p is that this type of prime ideals has been in the center of
research for the crystallographic cases.

(2.2) Decomposition maps. We now briefly recall the basic concepts
of the decomposition theory of symmetric algebras. As a general reference
see [12].

(2.2.1) Let R be an integral domain of characteristic 0, K := Quot(R),
and p < R a prime ideal with a perfect quotient field k := Quot(R/p). Let
~: R — k denote the natural epimorphism. Let Hr be an R-free R-algebra
of finite R-rank, Hyi := Hgr ®r K and Hy, := Hr Qpr k.

We now assume that each irreducible Hg-module Vi can be realized as a
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full R-free Hgr-submodule Vg C Vi. Then the Hip-module V, := Vg Qg k
is called a p-modular reduction of Vi . It can be shown that this defines
a p-modular decomposition map dp, : Go(Hg) — Go(Hjy) between the
Grothendieck groups of the module categories of Hx and Hy.

The elements of the Grothendieck groups are called generalized characters,
the basis elements corresponding to the irreducible modules are called irre-
ducible characters. Since Go(H ) can be naturally identified with the group
of trace functions on the representations of Hp, whose elements usually are
also called characters, we will not distinguish between these two notions.
We will be interested in the case where K and k are splitting fields for Hg
and Hj, respectively. The decomposition matrices we are going to write
down are understood to hold in this situation. For the generic algebras of
non-crystallographic type we let R, K be as given in (2.1.3). The computa-
tions made in the sequel will show that k := Quot(R/p), where p < R is as
given in (2.1.4), in fact always is a splitting field for Hy.

(2.2.2) In the general situation described in (2.2.1), let 8 < R be a prime
ideal containing p. Let us assume that there is a valuation ring R’ C
Quot(R/p) with maximal ideal P’ lying over (R/p,B/p), such that R’ /P’ =
(R/p)/(B/p) = R/P. In this situation dgyp factors through dy, see [7], Sec-
tion 4.2, or [12], Proposition 2.12. Hence this gives us a tool to study d, by
studying the auxiliary map dsg.

This applies to our situation (2.1.3), (2.1.4), where p := (®)<IR := Z[(,v,v"}]
and P := (p, ). Especially, R/P is a finite field of characteristic [, hence
dsyp-modular reduced representations are computationally much more tractable
then dy-modular reduced ones.

(2.2.3) Symmetric algebras. From now on we assume that Hp is a sym-
metric R-algebra such that K is a splitting field for Hg, let {T;}, {7} be a
pair of R-bases which are dual to each other with respect to the symmetrising
form. If x is an irreducible character of Hy, then the Schur element ¢, € R
is defined as ¢, = x(1)71 - 32, x(T)x(T7). If ¢, # 0, then x corresponds
to a projective irreducible representation and the corresponding centrally
primitive idempotent €, € Hx is given as €, := c;l > x(T)Ty. By Tits’
Deformation Theorem, d, induces a bijection between the irreducible char-
acters of Hix and Hy, if and only if ¢, € R\ p for all irreducible characters
x of Hy.
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(2.2.4) Blocks and defect. From now on we assume that p is a principal
ideal. Hence Ry, C K is a discrete valuation ring such that k = Ry, /pRy. Let
vp denote the corresponding valuation.

The minimal summands in a ring direct decomposition of Hy are called its
blocks, and we have a corresponding partition of the irreducible represen-
tations of Hx and Hj. The value vp(cy) € Ny, where x is an irreducible
representation of Hy, is called the defect of x. The maximum over the
vp(cy) for all x belonging to one block is called the defect of the block. By
the remarks in (2.2.3), the decomposition matrix of a block of defect 0 is
a 1-by-1 unit matrix. Hence in the sequel we will consider only blocks of
positive defect.

(2.2.5) Central elements. Let z € Hg be a central element. By Schur’s
Lemma z acts as a scalar x, € R on each irreducible representation x of
Hpg. If x, X' belong to the same block, then we have Z, = Z/.

If H is a generic Iwahori-Hecke algebra of type Hs or Hy, then the basis
element T3,, € H corresponding to the longest element wy € W is a central
element. The scalars x, can be read off from the character table of H, which
can be accessed in CHEVIE.

(2.2.6) Blocks of defect 1. Blocks of defect 1 have been dealt with by
M. Geck [7], Theorem 9.6, for generic Iwahori-Hecke algebras of crystallo-
graphic type. A careful analysis of the line of reasoning in [7], Section 9,
which is a paraphrase of parts of [13], Chapter 11, shows that almost every-
thing works without change for the non-crystallographic cases.

Especially, as we assume that all irreducible representations are realizable
over K, we do not have to deal with ramification, hence there is no excep-
tional vertex. As the ordinary irreducible characters of the Coxeter groups
under consideration still are real-valued, we can use contragredient modules
as is done in the proof of [7], Proposition 9.5. But as we do not know a priori
that dj, is surjective, we can only conclude that the decomposition matrix is
described by a Brauer graph which is a connected regular graph of valence
2, hence it is a straight line or a circle.

Assume the latter case occurs. As we have vy(¢;+¢;) > 2 by [7], Proposition
9.3, where ¢;, ¢; denote the Schur elements for two adjacent characters in the
Brauer graph, the circle must be of even length. But the projectively inde-
composable characters, see (2.3), corresponding to a circular Brauer graph
of even length are Z-linearly dependent, contradicting the remarks in (2.3.2).
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Hence the Brauer graph is a straight line without exceptional vertex.

(2.3) Projective characters. One of our main tools to compute decom-
position numbers are projective characters.

(2.3.1) There is a natural bijection between the irreducible Hy-modules
and the projectively indecomposable Hi-modules. Then Brauer reciprocity
gives us a homomorphism

ep : GO(Hk) — Go(HK) O e Zd%p . dimk(Ende(tp)) X,
X

where x runs over the irreducible representations of Hg and d,, denotes
the corresponding decomposition number.

The subgroup ey(Go(Hy)) < Go(Hg) is called the group of generalized
projective characters. Let G (Hy) be the submonoid of Go(Hy) gener-
ated by the irreducible Hi-modules. Then the elements of the submonoid
ep(Gy (Hy)) of Go(Hp) are called projective characters.

(2.3.2) If ey is an injective map, then ey(Go(Hjy)) has a basis consisting of
the projectively indecomposable characters {ey(¢)}, where ¢ runs through
the irreducible Hi-modules. In this case the problem of finding decom-
position numbers is equivalent to determining projectively indecomposable
characters.

If H is an Iwahori-Hecke algebra then e, is injective. Indeed, it has been
shown in [10], Section 3.2, that the statements concerning conjugacy classes
and class polynomials proved for the crystallographic types in [11] hold with-
out change for the non-crystallographic types. It has then been shown by
M. Geck and R. Rouquier [12], Lemma 3.1 and Theorem 5.2, that this im-
plies the injectivity of ep.

(2.4) Computational methods. We now introduce the main computa-
tional concepts that will be applied in the explicit determination of decom-
position numbers.

(2.4.1) First of all we need a method to generate projective characters.
Let H be a finite dimensional algebra over a field and H' < H be a unitary
subalgebra such that H is a free right H'-module and a free left H’-module.
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In this case it follows from [6], Lemma I.4.6, Theorem 1.4.8, that the re-
striction of a projective H-module is a projective H'-module, the induction
of a projective H'-module is a projective H-module, and each projective
H-module is a direct summand of an induced projective H'-module.

If H is an Iwahori-Hecke algebra and H' is a parabolic subalgebra, then the
assumptions made above are fulfilled. By Tits’ Deformation Theorem, the
induction map Go(Hy) — Go(Hg) equals the one for the corresponding
Coxeter groups Go(W') — Go(W). Hence induction can be carried out on
the level of ordinary characters of the groups W', W.

(2.4.2) Given a set of projective characters, we then have to find a basis
for the subgroup of Go(Hx) it generates, which again consists of projective
characters. This can be done algorithmically by the FBA algorithm due to
R. Parker, see [14], Section 5. We use a sligthly modified version, which is
described in [18], Section 4.5.

(2.4.3) We next need a criterion which allows us to prove that a given
projective character is projectively indecomposable or to find candidates for
the projectively indecomposable summands it contains.

For a character J € Go(Hk) let ¥ = Uy - x, ¥y € Z, be its decomposition
into the basis of Go(H) consisting of the irreducible characters. If ¥ is a
generalized projective character, then it has been conjectured by the author
and subsequently been proved by M. Geck and R. Rouquier [12], Proposition
4.4, that vy(35 Fye ') > 0 holds.

If ¢ is a projective character, then a summand ¥ contained in v necessar-
ily fulfills 0 < 9, < ¢, for all irreducible characters x and the valuative
condition given above. Hence we find a set of candidates for projectively
indecomposable summands by looking through the finite set of all charac-
ters ¢ fulfilling the first condition, and testing its elements for the second
condition.

(2.4.4) Let again H be an Iwahori-Hecke algebra and H' a parabolic sub-
algebra. We finally need a method to explicitly induce an H’-module up
to H. As H is given as a finitely presented algebra and the generators for
H' are explicitly given even as a subset of the generators for H we can use
the VectorEnumerator to perform this task, provided we have found a finite
module presentation for the H'-module we are going to induce up. For more
details on how to find module presentations and on induction of modules
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using the VectorEnumerator, see [19].

We will only use explicit induction for modules over some finite field F’
which are defined over the prime field ' < F’, hence the computations
can entirely be carried out over F, see [19]. Note that it is easy using the
MeatAxe over F' to find the F’-constituents of a module which is defined
over F'.

3 The algebras of type Iz(m), m > 2

(3.1) We are going to consider the generic Iwahori-Hecke algebra of type
Iy(m) with parameter u = v? over the field Q((am,v). Its standard gen-
erators will be denoted by Ts and 7;. The Poincaré polynomial P, (u) :=
Pr(1y(my)(u) € Z[u] for the generic algebra of type Iz(m) with parameter u
is given by P (u) = ®y(u) - [1gm,g51 Palw).

The irreducible representations of the algebras of type Iz(m) have been de-
termined by R. Kilmoyer, L. Solomon [15], where also the corresponding
Schur elements can be found.

If m = 2k + 1 is odd, then H(Iz(m)) has exactly two linear representa-
tions, the index and the sign representation. The Schur elements are given
as Cing = Pm(u) and cggp = u~ " Py (u). Furthermore, there are exactly
m—1 pairwise non-isomorphic 2-dimensional irreducible representations X 1

2
where j e N, 1 <5 < mTfl They are given by

1 o+ G 02 0
X TS 2m 2m T . L
J 1 oo v? P (3, +C0) —1

The Schur element for X; is given as

(= G = G’)
(1= Gh)(1 = G

If m = 2k is even, then H(I2(m)) has exactly four linear representations,
the index and the sign representation, and the two ‘mixed’ types A and
A*. And there are exactly 4 — 1 pairwise non-isomorphic 2-dimensional
irreducible representations X;. They are given by the same formulas as
above, except that now 1 < j < & —1. For the Schur elements the formulas
given above also hold. For the additional linear representations we find
C) = C)\+x = % T ‘I)Q(U)2.

As can be seen from the Schur elements given above, to get a non-trivial
decomposition map we have only to consider the cases ® = &, where e

Cx; =m-u
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divides m. We then have a standard choice for R by imposing the condition
v— (2 €EPIR.

(3.2) ®.-modular decomposition numbers for e > 2. For e > 2 we
see from the Schur elements that in both cases m even or odd, the only
non-projective irreducible representations are ind, sgn, and X,, .. Hence
they form one block, which is of defect 1. X,/ is left fixed by Curtis-
Alvis duality whereas ind and sgn are exchanged. Since the ®.-modular
reductions of ind and sgn are non-isomorphic, the decomposition matrix of
this block is as follows.

ind || 1
X 1

m/e
sgn

1
1

Note that for e = m, which is the Coxeter number of the corresponding
Coxeter group, X,/ = X1 is one of the reflection representations and sgn
is obtained as the exterior square of X;.

(3.3) ®.-modular decomposition numbers for e = 2. For e = 2,
we find that exactly the linear representations are the non-projective ones.
Furthermore, all their ®5-modular reductions are equal, hence for m odd
they form a block of defect 1, for m even of defect 2, having the following
decomposition matrix.

nd || 1

ind || 1 sgn || 1
sgn || 1 A1
AF 1

We add as a remark that this result can be obtained without use of the
Schur elements by considering the eigenspaces of the action of T and T
and the trace of the action of TiT; on the module X;.

4 The algebra of type Hj

(4.1) The Poincaré polynomial Py, (u) € Z[u] for the generic algebra of
type Hs with parameter u is given by Ppg, = <1>§ - Qg - Oy - Dy - Py

It turns out that all of the ¢y, divide Pp,(u) in Q(¢,u,u™1). Hence we only
have to consider ® = ®., where e € {2,3,5,6,10}. Let ®,_(v) € Q({5)[v] be
the minimum polynomial of (3. over Q((5). Again we will use a standard
choice for R, given by @4 (v) € p < R.
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(4.2) ®jp-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, x2, X5, x7. All of them are of
defect 1, hence they form a union of blocks of defect 1. Now we consider
the ®i9-modular reductions of the class functions corresponding to these
characters. GAP shows that they span a space of rank 3. Hence these
characters form exactly one block. Furthermore it turns out that ¢, + ¢,
is divisible by ®%, but ¢y, + ¢y, is not. This determines the decomposition
matrix.

1
11
1

N Ot =

1
1

Note that e = 10 equals the Coxeter number of the corresponding Coxeter
group. Furthermore, x7 is the reflection representation, x5 is its exterior
square and sgn = x1 is its exterior cube. Finally, we have ind = xo.

(4.3) Pg-modular decomposition numbers. It turns out that the non-
projective irreducible characters are x1, X2, X3, x4- An argument similar to
the one given in (4.2) shows that the decomposition matrix is as follows.

1 .
11
1

DN s W

1
1

(4.4) ®5-modular decomposition numbers. It turns out that the non-
projective irreducible characters are x1, X2, X6, X8, X9, X10- All of them are of
defect 1. But in this case, we find the following ®5-modular reductions z,,
of the scalars xy,, see (2.2.5): Ty, = Tyg = Tyyg = —1, Tyy = Tyg = Ty = 1.
This shows that there are exactly two blocks whose decomposition matrices
are as follows.

A, A, A, A,
1 @m | 1 . 21 (o) || 1 .
10| 4,4 1 1 9[@3)] 1 1
8| (3,3) 6 (3,8) 1
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(4.5) ®3-modular decomposition numbers. It turns out that the non-
projective irreducible characters are x1, x2, X3, X4, X9, X10- Similarly to (4.4)
we find the decomposition matrix using the following ®3-modular reductions:

Tyy = Tyg = Tyyp = —1, Tyy = Ty, = Ty = 1.
Al A2 A3 A4
11](1,15) 1 . 2| (1,0) 1 .
3 (5,5) 1 1 41 (5,2) 1 1
10| (4,4) . 1 91(4,3) . 1

(4.6) ®3-modular decomposition numbers. The projective irreducible
characters are o, x10. All the other irreducible characters are of defect 3.
Now we induce the projectively indecomposable characters, see (3.3), from
the parabolic subalgebra of type I3(5) up to Hs and restrict them to the
defect 3 characters. This gives the following projective characters, where A
corresponds to the projectively indecomposable character of I5(5) belonging
to the block of defect 1.

A, A, A,

Ut Ot = >
- e —_
N Ot O Ot

W = o >

AN N N N S N~
W W w w
O T
VA g Vg S O g ) (i
—_
—_

0 3 O T W N~

1

We look through the subsums of Aj, Ay, Ag, see (2.4.3), and find that A,
and Az are indecomposable, whereas A; has at most one of Ay or A3 as a
summand. The field automorphism of Q((s) defined by (5 — (? interchanges
x5 and yg leaving y; fixed. Since R is fixed under this field automorphism,
it follows that the ®o-modular reduction x; of x; is a constituent of ys5 if
and only if it is one of yg. Hence A; is also indecomposable.

5 The algebra of type H,

(5.1) The Poincaré polynomial P, (u) € Z[u] for the generic algebra of
type Hy with parameter u is given by

Pr, = @3- 0332 02 D2 03 - By - By - Do - By
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Again all of the c,, divide Py, (u) in Q(¢,u,u~'). Hence we only have to
consider ® = ®,, where e € {2,3,4,5,6,10,12,15,20,30}. We will use the
standard choice for R as was described in (4.1).

In the sequel we will look at the induced index representation of Hs. Using
CHEVIE we find the character of the induced representation to be given as

X1+ X3+ X5+ x11 + Xx13 + X18 + X20 + X7 + X31-

(5.2) ®3p-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, x2, X3, X4, X7, all of which are
of defect 1. The rank argument as was described in (4.2) shows that these
all belong to the same block. Now the defect 1 component of the induced
index representation of Hj is given by x1 + x3, see (5.1). Since @3¢ does
not divide Pp,, the induced character is projective. This determines the
decomposition matrix.

1 .
11
1

N =g W =
—~
Hl-b\.@/\/-\

1 .
11
1

Note that e = 30 equals the Coxeter number of the corresponding Coxeter
group. Furthermore, xs is the reflection representation, x7 is its exterior
square, Y4 is its exterior cube, and sgn = y» is its exterior fourth power.
Finally, we have ind = x;.

(5.3) ®yp-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, X2, X11, X12, X16- A similar ar-
gument as was used in (5.2), the defect 1 block component of the induced
index representation now being given by x1 + x11, shows that the decompo-
sition matrix is as follows.

1] (Lot .
11 9,21 1 .
16 | (16,11) 11
12| (9,22) 11
2| (1,60) o1
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(5.4) ®15-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, x2, X5, X6, X18, X195 X20, X21,
X24, X29, again all of defect 1. Computing the scalars Z,,, see (2.2.5), gives
Txy = Ty = Tygs = Txag = Tygg = 1, Tyg = Ty = Txgp = Ty = Txpy = — 1
The rank argument, see (4.2), shows that this is the block distribution of
these characters. Now we again use the induced index representation, see
(5.1), which gives us (x1 + x18) + (X5 + X20) as a projective character.

1] (1ot 51 4,71
18| (16,3) |1 1 20| (16,6) |1 1
29 | (30, 10) 11 24 | (24,7) 11
19 | (16,21) 11 21 | (16, 18) 11
2| (1,60) 1 6| (4,37) 1

(5.5) ®;9-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, X2, X27, X28, X34. A similar ar-
gument as was used in (5.2), giving x1 + x27 as a projective character, shows
that the decomposition matrix is as follows.

1 @of1t .
271 (25,4) 1 1 .
34| (48,9) 11
28 | (25, 16) 11
2| (1,60) 1

(5.6) ®jp-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, x2, X5, X6, X13> X14> X26, X30,
X31, X32, X33, which are of defect 2, and xs, x4, X11, X12, X15, Which are of
defect 1. Now we use the formula, see (2.2.3), giving the centrally primitive
idempotents e,, € H in terms of a pair of mutually dual bases. We find
that even Zi€{374711,12715} ey; € Hp holds. Hence both the defect 1 and the
defect 2 characters form a union of blocks.

(5.6.1) The defect 1 block. The rank argument, see (4.2), shows that
the defect 1 characters form one block. We now induce the projective char-
acter x2 + X7, see (4.2), from Hs up to Hy. Its component in the defect 1
block equals 2 - (x3 + x11). This determines the decomposition matrix.
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3] 411 .
1) 9211 .

15 | (10,12) 11 .
12| (9,22) 11
41 (4,31) 1

(5.6.2) The defect 2 block. Now we concentrate on the defect 2 char-
acters. We first induce up all the ®;9-modular projectively indecomposable
characters of Hs, see (4.2), and restrict them to their defect 2 block com-
ponents. This gives us a set of projective characters belonging to the defect
2 blocks. Applying the idea described in (2.4.2) we get a basis consisting
of the characters coming from As, A1, xs, X6, X4, X3, X9- 1t is shown below in
this order. Using the idea described in (2.4.3) we find that Al is projectively
indecomposable. Furthermore, we find that all possible summands of the
A} are again in the subgroup generated by A! := {Al},—; 7. Finally, we
observe that the matrix in shown below is of lower unitriangular shape.

ALCAL AL AL AL AL AL
1 (@woy| 1.
2| (1,60) 1
50 @n) 1 . 1
6| (4,37) 1.1
13 (9,6)| 1 1.1
14| (9,26) . 1 1.1
26| (24,6) || 1 .1 11
30((30,10/ | 1 1 1 1 1 1 1
31 (36,5)|| 3 . 2 2 1 1
320 (36,15)|| . 3 . 1 2 1
33 (40,8) (| 11 1 1 2 2 1

In application of (2.2.2) we let [ := 11, which is fully decomposed in Z[(],
let <1 Z[¢] be a prime ideal over [, ® := v — ;g € R, and P := (p, ®) < R.
Hence we have R/ = GF(11%). Now we use the VectorEnumerator to
compute the dg-modular reduction of the induced index representation of
Hj explicitly, see (2.4.4). Applying the MeatAxe to the induced module,
which is of dimension 120, shows that it has the following constituents over
GF(11%): 1a?,4a?,4b%, 5a,9a?,22a, 25a, 32a. The defect 2 block component
of the corresponding character is given as x1 + x5 + x13 + X31, see (5.1).
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There is exactly one linear constituent, and it occurs with multiplicity 2.
A search as is described in (2.4.3) shows that there is exactly one possible
summand of A} which has an entry 1 in the row corresponding to x1, and the
sum of the entries at x5, x13, x31 is less or equal to 1. Hence the projectively
indecomposable character corresponding to the ®1g-modular reduction of x1
is uniquely determined. It is shown below as A?. Curtis-Alvis duality then
gives the projectively indecomposable character A%.

Now that the constituent la is accounted for as the dg-modular reduction of
X1, it follows that the ®p-modular reduction of x5 occurs with multiplicity
at most 2 in the induced module. The same line of reasoning as above now
gives the projectively indecomposable characters A3 and Aj.

Now combining this with the result in (5.6.1), all the constituents la, 4a, 4b,
5a are accounted for as dp-modular reductions of irreducible ®1o-modular
characters. The consideration of x13 and the same type of argument shows
that A2 and A2 are projectively indecomposable.

AZ AZ AZ AZ AZ A2 AZ
1 @o | 1.
2| (1,60) 1.
50 (4,7) 1
6| (4,37) 1.
13| (9,6) 1.
14| (9,26) . 1.
26| (24,6) 1 1 1
30 | (30,10)’ 11 1
31| (36,5) 1 1 1 1
32| (36,15) 1 1.1 1
33| (40,8) 1 1 1

(5.7) ®g-modular decomposition numbers. It turns out that the non-
projective irreducible characters are x1, X2, X3, X4, X5, X6, X22, X25; X26;
X27, X28, which are all of defect 2. First we induce up all the projectively
indecomposable characters of Hj, see (4.3), and we get a basis consisting of
characters coming from As, A1, x7, X5, X8, X6, X9. It is shown below. We find
that AL, AL, AL, A}, Al are projectively indecomposable. Unfortunately, A}
and Al may even have summands which are not in the subgroup generated
by Al
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AL AL AL AL AL AL Al
1 @woy| 1 .

2 (1,60) . 1

30 (4,1 1 1

41 (4,31) 1.1

50 40| 1 .. 1.

6| (4,37)] . 1 I
22 (18,10) || 1 1 |
25 (24,12) || 1 1 1 1 1
26| (24,6) 1 1 1 1 1
270 (25,4) 3 . 1 . 1 . 1
28 | (25, 16) 3.1 . 1 1

We again compute the constituents of the induced index representation, as
was described in (5.6.2), now for the case [ := 7, which is fully ramified in
Z[¢]. Welet p := (7) 9 Z[¢], ® := v — wia € R, where wy € Z[(] is a
preimage of a primitive 12-th root of unity in Z[¢]/p = GF(7*). Hence we
have R/P = GF(7). We find: 1a?,8a?, 16a,18a,32a,36a. The defect 2
block component of the character of the induced index representation of Hs
now equals x1 + x3 + x5 + X27, see (5.1). The same line of reasoning as in
(5.6.2) shows that A? shown below is projectively indecomposable. Curtis-
Alvis duality gives A3. Finally we have A} — A2 = AL + A]l. This completes
the decomposition matrix.

Al A3 A5 AT A5 AR A7
1 @woy | 1 .
2| (1,60) 1.
30 (4,1) 1.
41 (4,31) 1.
50 (4,7) 1
6| (4,37)| . . 1.
22 (18,10) || 1 1 A |
25 | (24,12) 1 1 1
26 | (24,6) 11 1
27 | (25,4) || 1 1.1 1
28 | (25,16) 1 1 1 1
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(5.8) ®5-modular decomposition numbers. It turns out that the non-
projective irreducible characters are X1, X2, X35 X4, X8y X9, X11, X125 X17,
X185 X19, X20, X21, X24, X26, X31, X32, X34, which are of defect 2, and xs,
X6, X105 X13, X14, X22, which are of defect 1. Considering centrally primitive
idempotents, see (2.2.3), and the scalars Z,,, see (2.2.5), shows that the sets
of defect 2 characters x1, x2, X8, X9, X11, X12, X18, X19, X26 and X3, X4, X175
X205 X21, X24, X31, X32, X34 and the sets of defect 1 characters x5, X6, X10
and x13, X14, X22 each form a union of blocks.

(5.8.1) The defect 1 blocks. The decomposition matrices are as follows.

51 471 13 (9,6) 1
10| (8,13) |1 1 22 | (18,10) | 1 1
6| (4,37) 1 14| (9,22) 1

(5.8.2) The defect 2 blocks. First we induce all of the projectively
indecomposable characters of Hs and restrict them to their components
belonging to the first defect 2 block. We find a basis coming from the
following characters: As, A1, As, x4, x3. It is shown below. An application
of (2.4.3) shows that Al A}, A} are projectively indecomposable characters.
Furthermore, if A% were not indecomposable, its decomposition were Al =
(A} —A})+AL. An analogous situation holds for A} by Curtis-Alvis duality.

AL AL AL AL AL
1 @woy| 1 .
2| (1,60) 1.
8| (6,20) o1
9 (8,12)| 1 1 1
11| (9,2)| 1 1.
120 9,22) . 1 . . 1
18| (16,3)| 2 . 1 1 .
19| (16,21) | . 1.1
26| (246) 1 1 1 1

Now we again induce the index representation of Hs using the VectorEnu-
merator, this time letting [ := 11, P := v — (10, and R/ = GF(11). The
MeatAxe finds the following constituents: 1a?, 4a?, 4b, 6a, 9a%, 9b, 1642,
160, 25a. The component of the character of the induced representation be-
longing to the block under consideration is by (5.1) given by x1+ Xx11 + X18-
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Now the dg-modular reduction has exactly one linear constituent, and it oc-
curs with multiplicity 2. Hence it follows that A2 := A} — A} is a projective
character, and the decomposition matrix is as follows.

A7 A7 AZ A7 A
1 @woy| 1 .
2| (1,60) 1.
8| (6,20) o1
9 (8,12) 1 1 1
11| (9,2) 1.
12| (9,22) . 1
18| (16,3) | 1 11
19 | (16,21) 11 .1
26 | (24,6) 1 1 1

(5.8.3) Now we turn our attention to the second defect 2 block. Similarly
to the case dealt with in (5.8.2) we find a basis coming from x7, x5, x4, A4, X3,
which is shown below. Furthermore, we find that A% is projectively inde-
composable or it decomposes as A} = A’ + A”, where A/, A” are also given
below.

Ab AL AL AL AL A A"

3 @1 .
4 (4,31) 1 .
17 (16,13) || . 1 1 1)1
20 (16,6) || 1 . .
21 (16,18) | . 1 . 2 1| . 1
24 4,7 1 1 1 1 1|1
31 (36,5) | 2 2 1 1|1
32 36,15)| . 2 1 3 2|1 1
34 48,9 1 1 2 3 2|1 1

(A2)g, 17 2 1 2

Now the component of the induced projectively indecomposable character
(A2)p, 114 belonging to the block under consideration decomposes into Al
as also shown above. Hence A} is decomposable and A’, A” are projectively
indecomposable characters. Clearly, the Curtis-Alvis dual counterpart A"’
of A” is also projectively indecomposable. We add these characters to the
list A!, and an application of (2.4.2) gives us the basis A? shown below,
where A3 := A1, A3 := A, A3 := A, AT = A" A2 = A"
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A2 A2 A2 A2 A2
3 @D 1 .

4] (4,31) 1.

17 | (16,13) o1

20| (16,6) 1 . . 1 .
21 (16,18) | . 1 . . 1
24 4,7 1 1 1 ..
31| (36,5)| 2 11 .
32((36,15) | . 1 1
34 (48,9 1 1 1 1 1

As was already seen above, A%, Ai, Ag are projectively indecomposable char-
acters. Furthermore we find that A? is projectively indecomposable or it
decomposes as A} = (A2 — A2) + A%. An analogous situation holds for A3 by
Curtis-Alvis duality. We finally use again the dgp-modular reduction of the
induced module already considered in (5.8.2). Since the occurrence of the
constituent la is already accounted for, it follows that the ®5-modular re-
duction of x3 occurs at most with multiplicity 2 in the ®5-modular reduction
of the induced module. Hence it follows that A? and A3 are decomposable
and the decomposition matrix is as follows.

AT A3 A3 AY A3
30 @D 1.
4] (4,31) 1.
17 | (16,13) 1.
20| (16,6)| . . . 1 .
21 (16,18) | . . . . 1
24 (4,7 1 1 1 ..
31 (36,5)|| 1 . 1 1 .
32| (36,15) 11 .1
34| (48,9) 1 1 1

(5.9) ®4-modular decomposition numbers. It turns out that the non-
projective irreducible characters are x1, X2, X10, X11, X125 X13s; X14, X23,
X24, X27, X28. All of them are of defect 2. Now ®4 does not divide the
Poincaré polynomial Py, hence the irreducible characters are projectively
indecomposable. Inducing these up to Hy4, the induced characters coming
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from x2, X1, X9, X4, X5, X8, X6 give the basis depicted below, which is by
(2.4.3) shown to consist of projectively indecomposable characters.

1] Lot .

(1,60) 1.
10| (8,13) o1
1 921 . .1
120 9,22 .1 . .1 .
13 961 . . . .1
14, (9,26 . 1 . . . .1
23 | (24,11) 1 . .11
24 | (24,7) 111
27 (25,4) |1 . 1 1 . 1
28 | (25,16) 11 .1 .1

(5.10) ®3-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, X2, X3, X4, X5, X6 X9, X10,
X15, X165 X175 X18, X195 X205 X21, X27, X28, X33. All of them are of defect 2.
Using the scalar technique, see (2.2.5), we find that these characters can be

divided into the subsets x1, x2, X9, X15, X18, X19, X27, X28; X33, and X3, X4,
X5, X6, X105 X16, X17> X20, X21, €ach of which forms a union of blocks.

(5.10.1) The first block. We induce up the projectively indecompos-
able characters of Hs and find a basis consisting of the characters coming
from x7, x5, X8, X6, Ao, which is shown below. Again these are projectively

indecomposable.

3 (4,1) |1 .

41 (4,31) 1 .

) (4,7) 1 .

6| (4,37) 1 .
10 (8,13) | . . 1
16 | (16,11) || 1 1 1
17| (16,13) 1101
20 (16,6) |1 . 1 1
21 | (16,18) 1 .11

(5.10.2) The second block. The same technique gives us the basis
shown below, which consists of the characters coming from A3, A1, Ao, X7, x5-
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Al A Ay AL A

1 ol 1 .
2| (1,60) 1.
9| (8,12) o1
15((10,12) | 1 1 1
18| (16,3) A
19(@6,20) . 2 2 . 1
27| (25,4)| 3 11
28| (25,16) . 3 3 . 1
33| (40,8 2 2 3 1 1

Ay TH 1 -2

By (2.4.3) we find that A}, A} are projectively indecomposable. Further-
more, the component of the induced character A4 7 belonging to the block
under consideration decomposes into Al as is also shown above. Hence, us-
ing (2.4.3), A3 := A} — 2. A} is a projectively indecomposable character.
Finally, the only possible decompositions of A] into projectively indecom-
posable ones are Al = (A} —c- A}) +c- A} where ¢ € {0,1,2}.

Now we again induce the index representation of Hs using the VectorEnu-
merator, with [ := 7 and P := v — wg, where wg € Z[(] is a preimage of a
primitive 6-th root of unity in Z[¢]/p = GF(7%). The MeatAxe finds the
following constituents: 1a?,8a?,8b, 8¢, 16a°,18a,36a. The character of the
component of the induced module belonging to the present block is by (5.1)
given as x1 + x18 + X27. As its dp-modular reduction has exactly one linear
constituent, which occurs with multiplicity 2, it follows that A7 = A} —2-A}
and, by Curtis-Alvis duality, A3 = A} —2- A} are projective characters. The
decomposition matrix is shown below.

AZ A A7 A2 A2
1| (Lo 1 .

2| (1,60) 1.

9| (8,12) o1

15 (10,12) | 1 1 1

18| (16,3) 1.
19 | (16,21) . 1
27| (25,4) | 1 11

28 | (25,16) 11 .1
33| (40,8) 1 1 1
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(5.11) ®3-modular decomposition numbers. It turns out that the
non-projective irreducible characters are x1, X2, X3, X4, X5, X6> X7, X8, X11,
X12, X13, X145 X15, X22, X27, X28, X29; X30, X31, X32, Which are of defect 4,
and x18, X19, X20, X21, Which are of defect 1. The consideration of centrally
primitive idempotents, see (2.2.3), shows that the characters of defect 4 form
a union of blocks.

(5.11.1) The defect 1 blocks. The same argument shows that the sets
X18, X21, and x19, x20 form blocks, whose decomposition matrices are as
follows.

18] (16,3) |1 19 (16,21) [ 1
21 | (16,18) || 1 20| (16,6) || 1

(5.11.2) The defect 4 block. Inducing up the projectively indecom-
posable characters of H3 gives a basis consisting of the characters coming
from Aj,As, Az, Yo, which is shown below. By (2.4.3) we find that A} is
projectively indecomposable.
Al A A3 A
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(5.11.3) In the case of the decomposition map dg,, we can improve the
algorithm described in (2.4.3) by taking into account that the ®9-modular
decomposition numbers of characters which are conjugate to each other by
Curtis-Alvis duality are equal. The orbits of length two are y; < xo,
X3 <7 X4, X5 < X6, X11 <7 X12, X13 <7 X14, X27 <7 X28, X31 <7 X32-
Furthermore, the field automorphism of Q((5) defined by (5 +— g‘g has the fol-
lowing orbits of length two on the irreducible characters of defect 4: y3 < x5,
X4 < X6, X7 <> X8 X11 <> X13, X12 <> X14, X29 <> X30. The search for
the projectively indecomposable character corresponding to the ®o-modular
reduction 1 can even be further improved by using the fact that its decom-
position into irrreducible characters gives multiplicities which are constant
on the above orbits.

(5.11.4) Letting [ := 7, ® := v — wy € R, where wy € Z[(] is a preimage
of a primitive 4-th root of unity in Z[(]/p = GF(7*), we again induce the
index representation of Hs. The MeatAxe finds the following constituents:
1a?,8a%,10a2,17a%,32a. The character of the component of the induced
module belonging to the present block is by (5.1) given as x1+x3+Xx5+Xx11+
X13 + X27 + X31. Since the multiplicity of the linear constituent la equals 2,
the projectively indecomposable character corresponding to ¥ is an element
of the set of all subsums of A} such that the criteria given in (5.11.3) hold,
the multiplicity of x1 equals 1, and the sum of the multiplicities of x3, x5,
X11, X13, X27, and x31 is less than 2. This set consists of the subsums A%,
A’ shown below.
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A2 ALTA3 AR Uy Wy g | AT A
1 Loy 1 1
2| (1,60)| 1 1| .
31 (4,1 1
41 (4,31 I
5 (4,7) 1
6| (4,37)| . 1| . :
7 (6,12) | 1 1 2 .1 1
8| (6,20)| 1 .2
11 (9,2) 1) 1 2 1
12| (9,22) o112 1.
13| (9,6) 1 1 2 1
14| (9,26) 1 .20 .1
15| (10,12) 2 2 2|1 1
22| (18,10) || 1 1 1 2 2
27 | (25,4) 1 11 2 2
28 | (25,16) A0 S O R
29 | (30,10) 2 21 2 4 2|1 .
30 | (30,10) || . 2 22 4] 01
31 (36,5 | 1 1| 1 1| 3 4 4| 1 1
321 (36,15) | 1 1| 1 1| 3 4 4| 1 1

Now we induce the reflection representation y7 of H3 up to Hy4, using the Vec-
torEnumerator, with [ := 11, & := v 4+ 1 € R, hence R/ = GF(112). The
MeatAxe finds the following constituents of the induced module M, which
is of dimension 360: 1a3,4a®, 4b%,5a%, 503, 16a, 17a”, 24a, 24b, 32a, 40a, 48a.
The character of the induced representation is given as x + x’, where x :=
X3+ X7+ X11 + x27 + X20 + X30 + 2 - x31 and x' := x18 + X20 + X16 + X214 +
X26 + X33 + X34 are the components of the character belonging to the block
under consideration respectively not belonging to it.

The multiplicity of the linear constituent of M shows that A? is the pro-
jectively indecomposable characacter corresponding to x1. The list of con-
stituents of M also shows that the ®o-modular reduction y3 of x3 is irre-
ducible. By the field automorphism the reduction x5 of x5 is also irreducible.
Now we compute all subsums of A} such that the criteria described in
(5.11.3) hold, the multiplicity of x3 equals 1, and the sum of the multi-
plicities of x7, x11, X27, X29, X30, plus twice the multiplicity of 31 is less
than 6. It turns out, that this subsum, A% above, is uniquely determined,
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which hence is the projectively indecomposable character corresponding to
X3. Applying the field automorphism gives the projectively indecomposable
character A3 corresponding to .

Furthermore, we have the following projective characters

Wyi= AL - A -2 A3 -2 A5, Wp = AL — A3, W= A — A

Now the list of constituents of M shows that the ®s-modular reduction 7
of x7 decomposes into irreducibles as x7 = x1 + ¢. To find the projectively
indecomposable character corresponding to ¢, we search for subsums of ¥y
such that again the criteria of (5.11.3) hold, the multiplicity of x7 equals
1, and the sum of the multiplicities of x11, X27, X29, X30, plus twice the
multiplicity of y3; is less than 5. We find two candidates, A7, A/ above.
But the projectively indecomposable character corresponding to ¢ is also a
subsum of Wy, which excludes A/. Finally, the field automorphism gives the
projectively indecomposable character AZ.

Finally, we let A2 := A}, which gives us the Z-linear independent set shown
below. We find that all the induced projectively indecomposable characters
of Hs decompose into this set with nonnegative integral coefficients, hence
this is indeed the decomposition matrix.
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AT A5 A5 Af A5 AR
1| (Lo 1
2| (1,60) 1 .
30 (4,1 1
41 (4,31) 1.
50 (4,7) 1
6| (4,37) 1.
7| (6,12)| 1 o1
8| (6,200 1 . . . 1
1, 92| . . 1 1
12 9,22 . . 1 1
13| (9,6) /|
14| (9,26) /|
15| (10,12) | . 1 1 .
22| (18,10) || 1 . 1
27 | (25,4) 11 1
28 | (25,16) 1 1 1
29 | (30,10) 1.1
30 | (30,10) . 11
31 36,5 11 1 1 1 1
320 (36,15)| 1 1 1 1 1 1
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