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Abstract

In this note we compute the Φe-modular decomposition matrices
for the generic Iwahori-Hecke algebras of type I2(m) for m ∈ N, m > 2,
H3, and H4, for all e ∈ N leading to non-trivial decomposition maps.
The results are obtained by a combined use of different ideas from com-
putational representation theory and by application of the computer
algebra systems GAP, CHEVIE, VectorEnumerator, and MeatAxe.

1 Introduction

Generic Iwahori-Hecke algebras of the classical series A, B, D, and of the
exceptional types G2, F4, E6, E7, E8, which together are called the crys-
tallographic types, have gained considerable interest in the representation
theory of finite groups of Lie type. Especially their behaviour under cer-
tain decomposition maps has become the focus of intensive study. The
underlying decomposition theory extends naturally to the closely related
non-crystallographic types I2(m), H3, H4, and although there is no inter-
pretation in the framework of the representation theory of groups of Lie
type, it seems worth while to have complete results for all types, which also
gives us the possibility to check them for similarities and differences between
the crystallographic and non-crystallographic cases.
Another motivation to study the non-crystallographic types is to extend
results on the automorphisms of generic Iwahori-Hecke algebras of crystal-
lographic type obtained by F. Bleher, M. Geck, W. Kimmerle [2].

In this note we determine the Φe-modular decomposition matrices for the
generic Iwahori-Hecke algebras of type I2(m) for m ∈ N, m > 2, H3, and
H4, for all e ∈ N which lead to non-trivial decomposition maps. The general
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setup is described in Section 2, the decomposition matrices are determined
and depicted in Sections 3, 4, 5, respectively.
Especially, we observe the following facts: All decomposition matrices are
of lower unitriangular shape with respect to a suitable ordering of the irre-
ducible representations. All characters are of height 0. Blocks of defect 1
are Brauer tree algebras, where the Brauer tree is a straight line without
exceptional vertex. For the blocks of defect 2 all decomposition numbers are
0 or 1.
If e equals the Coxeter number of the corresponding Coxeter group, then
there is exactly one block of positive defect, it is of defect 1, and the ver-
tices of the Brauer tree are the successive exterior powers of the reflection
representation. This extends [2], Theorem 6.6, to the non-crystallographic
types.

The results are obtained by a combined use of different ideas from com-
putational representation theory, which have been applied successfully in
the business of determining decomposition numbers, especially for Iwahori-
Hecke algebras of exceptional type, see [18]. We make use of the com-
puter algebra systems GAP [21], CHEVIE [9, 10], VectorEnumerator [16], and
MeatAxe [20], whose basic features we assume the reader to be acquainted
with.

Notation. For n ∈ N let ζn ∈ C denote the standard n-th primitive root
of unity ζn := exp(2πi

n ). For d ∈ N let Φd denote the d-th cyclotomic poly-
nomial. For the generic algebras of type H3, H4 we use the ordering and
labelling of the irreducible characters χi as given in CHEVIE. Usually, χi
is identified by its degree and the smallest symmetric power of the reflec-
tion representation χi occurs in. These numbers determine χi uniquely,
with the only exception of the irreducible characters χ29, χ30 of the al-
gebra of type H4, which have labels (30, 10), (30, 10)′. Let us agree that
χ29(Ts1Ts2Ts3Ts4) = ζ5 + ζ4

5 holds. To make this note more self-contained,
we will incorporate these labels into the decomposition matrices given be-
low. The Schur elements, which in the sequel will be denoted by cχi , are also
available in CHEVIE. Their factorization into a power product of irreducible
polynomials over Q(ζ5) is found using GAP.

Acknowledgements. The author gratefully acknowledges many helpful
discussions with M. Geck and G. Malle. He thanks the Deutsche Forschungs-
gemeinschaft for financial support in the framework of the joint research
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project ‘Algorithmic Algebra and Number Theory’, which this note is a
contribution to.

2 Decomposition theory

(2.1) Iwahori-Hecke algebras. We now introduce the algebras we are
going to study and state a few basic facts. As general references see [3],
Chapter 4, and [5], Chapters 67, 68. Note that we will only deal with the
equal parameter case, which is no restriction for the algebras of type H3,
H4 anyway.

(2.1.1) Definition. Let W be a finite Coxeter group of type Γ with set of
standard generators S. Let R be a commutative ring and fix a unit q ∈ R.
The Iwahori-Hecke algebra HR(Γ, q) of type Γ over R with parameter q is
defined as a finitely presented associative R-algebra with identity T1 as

HR(Γ, q) := 〈Ts; s ∈ S || T 2
s = q · T1 + (q − 1) · Ts,
TsTs′Ts · · ·︸ ︷︷ ︸

mss′

= Ts′TsTs′ · · ·︸ ︷︷ ︸
mss′

, s, s′ ∈ S, s 6= s′〉 ,

where mss′ denotes the order of ss′ ∈W . The algebra H
Z[u,u−1](Γ, u), where

u is an indeterminate over Z, is called the generic algebra of type Γ.

(2.1.2) H = HR(q) = HR(Γ, q) is R-free with a basis {Tw;w ∈ W}
parametrized by the elements of the Coxeter group W . Letting Tw 7→
(−1)l(w) · ind(Tw) ·T−1

w−1 for all w ∈W defines an involutary R-algebra auto-
morphism of H, as follows directly from the definition. This automorphism
and also its action on the representations of H is called Curtis-Alvis duality.
Also we immediately have the existence of two linear representations of H,
the sign representation sgn : Ts 7→ −1 for all s ∈ S, and the index repre-
sentation defined by ind : Ts 7→ q for all s ∈ S. In fact, H is a symmetric
R-algebra with respect to the bilinear form (Tw, Tw′) = δw−1,w′ · ind(Tw).
It has been shown by C. Curtis, N. Iwahori, R. Kilmoyer [4], Section 9, that
a reflection representation of W has a natural lift, again called a reflection
representation, to the generic algebra H = HR(u), where Z[u, u−1] ⊆ R is a
suitable extension ring. Furthermore, the non-vanishing exterior powers of
the module underlying a reflection representation of H become irreducible,
pairwise non-isomorphic H-modules.
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(2.1.3) Now we consider the generic algebra H(u). Let v be an indetermi-
nate such that v2 = u. If H is of type I2(m), let ζ := ζ2m; if H is of type H3

or H4, let ζ := ζ5. It has been shown by R. Kilmoyer, L. Solomon [15] for
type I2(m), by G. Lusztig [17] for type H3, and by D. Alvis, G. Lusztig [1]
for type H4 that K := Q(ζ, v) is a splitting field for HK(u). They even have
shown that all the irreducible representations of these algebras can be real-
ized over R := Z[ζ, v, v−1]. Note that since H is defined over Z[v, v−1], the
Galois group Gal(Q(ζ)/Q) induces an automorphism of the module category
of H.

(2.1.4) We will be interested in decomposition maps, as described in (2.2),
coming from prime ideals p �R, such that R/p is of characteristic 0. These
are of the form p = 〈Φ〉, where Φ ∈ Z[ζ, v] is an irreducible polynomial of
positive degree. Note that Gal(Q(ζ)/Q) acts on R and on its set of prime
ideals; by the last remark in (2.1.3), without loss of generality we can restrict
ourselves to consider only one prime ideal p �R out of each Galois orbit.
The other prime ideals are either those of the form ℘R, where ℘ � Z[ζ] is
a prime ideal; in this case we let ℘ ∩ Z = 〈l〉� Z, where l ∈ Z is a rational
prime. Or they are of the form P = 〈℘, Φ̃〉, where ℘ � Z is a prime ideal
and Φ̃ ∈ Z[ζ, v] such that its natural image ¯̃Φ ∈ (Z[ζ]/℘)[v] is irreducible of
positive degree. Note that we have p = 〈Φ〉 ⊆ P if and only if ¯̃Φ divides the
natural image Φ̄ ∈ (Z[ζ]/℘)[v].
By the remarks in (2.2.2) the decomposition map coming from a prime ideal
P, which is of height 2, factors through the decomposition maps coming
from the height 1 prime ideals contained in P. This is one reason to be
primarily interested in the height 1 prime ideals. Another reason to stick
to prime ideals p is that this type of prime ideals has been in the center of
research for the crystallographic cases.

(2.2) Decomposition maps. We now briefly recall the basic concepts
of the decomposition theory of symmetric algebras. As a general reference
see [12].

(2.2.1) Let R be an integral domain of characteristic 0, K := Quot(R),
and p � R a prime ideal with a perfect quotient field k := Quot(R/p). Let
¯: R → k denote the natural epimorphism. Let HR be an R-free R-algebra
of finite R-rank, HK := HR ⊗R K and Hk := HR ⊗R k.
We now assume that each irreducible HK-module VK can be realized as a
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full R-free HR-submodule VR ⊆ VK . Then the Hk-module Vk := VR ⊗R k
is called a p-modular reduction of VK . It can be shown that this defines
a p-modular decomposition map dp : G0(HK) → G0(Hk) between the
Grothendieck groups of the module categories of HK and Hk.
The elements of the Grothendieck groups are called generalized characters,
the basis elements corresponding to the irreducible modules are called irre-
ducible characters. Since G0(HK) can be naturally identified with the group
of trace functions on the representations of HK , whose elements usually are
also called characters, we will not distinguish between these two notions.
We will be interested in the case where K and k are splitting fields for HK

and Hk, respectively. The decomposition matrices we are going to write
down are understood to hold in this situation. For the generic algebras of
non-crystallographic type we let R, K be as given in (2.1.3). The computa-
tions made in the sequel will show that k := Quot(R/p), where p � R is as
given in (2.1.4), in fact always is a splitting field for Hk.

(2.2.2) In the general situation described in (2.2.1), let P �R be a prime
ideal containing p. Let us assume that there is a valuation ring R′ ⊆
Quot(R/p) with maximal ideal P′ lying over (R/p,P/p), such that R′/P′ ∼=
(R/p)/(P/p) ∼= R/P. In this situation dP factors through dp, see [7], Sec-
tion 4.2, or [12], Proposition 2.12. Hence this gives us a tool to study dp by
studying the auxiliary map dP.
This applies to our situation (2.1.3), (2.1.4), where p := 〈Φ〉�R := Z[ζ, v, v−1]
and P := 〈℘, Φ̃〉. Especially, R/P is a finite field of characteristic l, hence
dP-modular reduced representations are computationally much more tractable
then dp-modular reduced ones.

(2.2.3) Symmetric algebras. From now on we assume thatHR is a sym-
metric R-algebra such that K is a splitting field for HK , let {Ti}, {T ∗i } be a
pair of R-bases which are dual to each other with respect to the symmetrising
form. If χ is an irreducible character of HK , then the Schur element cχ ∈ R
is defined as cχ := χ(1)−1 ·

∑
i χ(Ti)χ(T ∗i ). If cχ 6= 0, then χ corresponds

to a projective irreducible representation and the corresponding centrally
primitive idempotent εχ ∈ HK is given as εχ := c−1

χ ·
∑

i χ(Ti)T ∗i . By Tits’
Deformation Theorem, dp induces a bijection between the irreducible char-
acters of HK and Hk if and only if cχ ∈ R \ p for all irreducible characters
χ of HK .
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(2.2.4) Blocks and defect. From now on we assume that p is a principal
ideal. Hence Rp ⊆ K is a discrete valuation ring such that k ∼= Rp/pRp. Let
νp denote the corresponding valuation.
The minimal summands in a ring direct decomposition of Hk are called its
blocks, and we have a corresponding partition of the irreducible represen-
tations of HK and Hk. The value νp(cχ) ∈ N0, where χ is an irreducible
representation of HK , is called the defect of χ. The maximum over the
νp(cχ) for all χ belonging to one block is called the defect of the block. By
the remarks in (2.2.3), the decomposition matrix of a block of defect 0 is
a 1-by-1 unit matrix. Hence in the sequel we will consider only blocks of
positive defect.

(2.2.5) Central elements. Let z ∈ HR be a central element. By Schur’s
Lemma z acts as a scalar xχ ∈ R on each irreducible representation χ of
HK . If χ, χ′ belong to the same block, then we have x̄χ = x̄χ′ .
If H is a generic Iwahori-Hecke algebra of type H3 or H4, then the basis
element Tw0 ∈ H corresponding to the longest element w0 ∈ W is a central
element. The scalars xχ can be read off from the character table of H, which
can be accessed in CHEVIE.

(2.2.6) Blocks of defect 1. Blocks of defect 1 have been dealt with by
M. Geck [7], Theorem 9.6, for generic Iwahori-Hecke algebras of crystallo-
graphic type. A careful analysis of the line of reasoning in [7], Section 9,
which is a paraphrase of parts of [13], Chapter 11, shows that almost every-
thing works without change for the non-crystallographic cases.
Especially, as we assume that all irreducible representations are realizable
over K, we do not have to deal with ramification, hence there is no excep-
tional vertex. As the ordinary irreducible characters of the Coxeter groups
under consideration still are real-valued, we can use contragredient modules
as is done in the proof of [7], Proposition 9.5. But as we do not know a priori
that dp is surjective, we can only conclude that the decomposition matrix is
described by a Brauer graph which is a connected regular graph of valence
2, hence it is a straight line or a circle.
Assume the latter case occurs. As we have νp(ci+cj) ≥ 2 by [7], Proposition
9.3, where ci, cj denote the Schur elements for two adjacent characters in the
Brauer graph, the circle must be of even length. But the projectively inde-
composable characters, see (2.3), corresponding to a circular Brauer graph
of even length are Z-linearly dependent, contradicting the remarks in (2.3.2).
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Hence the Brauer graph is a straight line without exceptional vertex.

(2.3) Projective characters. One of our main tools to compute decom-
position numbers are projective characters.

(2.3.1) There is a natural bijection between the irreducible Hk-modules
and the projectively indecomposable Hk-modules. Then Brauer reciprocity
gives us a homomorphism

ep : G0(Hk) −→ G0(HK) : ϕ 7−→
∑
χ

dχϕ · dimk(EndHk(ϕ)) · χ,

where χ runs over the irreducible representations of HK and dχϕ denotes
the corresponding decomposition number.
The subgroup ep(G0(Hk)) ≤ G0(HK) is called the group of generalized
projective characters. Let G+

0 (Hk) be the submonoid of G0(Hk) gener-
ated by the irreducible Hk-modules. Then the elements of the submonoid
ep(G+

0 (Hk)) of G0(HK) are called projective characters.

(2.3.2) If ep is an injective map, then ep(G0(Hk)) has a basis consisting of
the projectively indecomposable characters {ep(ϕ)}, where ϕ runs through
the irreducible Hk-modules. In this case the problem of finding decom-
position numbers is equivalent to determining projectively indecomposable
characters.
If H is an Iwahori-Hecke algebra then ep is injective. Indeed, it has been
shown in [10], Section 3.2, that the statements concerning conjugacy classes
and class polynomials proved for the crystallographic types in [11] hold with-
out change for the non-crystallographic types. It has then been shown by
M. Geck and R. Rouquier [12], Lemma 3.1 and Theorem 5.2, that this im-
plies the injectivity of ep.

(2.4) Computational methods. We now introduce the main computa-
tional concepts that will be applied in the explicit determination of decom-
position numbers.

(2.4.1) First of all we need a method to generate projective characters.
Let H be a finite dimensional algebra over a field and H ′ ≤ H be a unitary
subalgebra such that H is a free right H ′-module and a free left H ′-module.
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In this case it follows from [6], Lemma I.4.6, Theorem I.4.8, that the re-
striction of a projective H-module is a projective H ′-module, the induction
of a projective H ′-module is a projective H-module, and each projective
H-module is a direct summand of an induced projective H ′-module.
If H is an Iwahori-Hecke algebra and H ′ is a parabolic subalgebra, then the
assumptions made above are fulfilled. By Tits’ Deformation Theorem, the
induction map G0(H ′K) → G0(HK) equals the one for the corresponding
Coxeter groups G0(W ′) → G0(W ). Hence induction can be carried out on
the level of ordinary characters of the groups W ′, W .

(2.4.2) Given a set of projective characters, we then have to find a basis
for the subgroup of G0(HK) it generates, which again consists of projective
characters. This can be done algorithmically by the FBA algorithm due to
R. Parker, see [14], Section 5. We use a sligthly modified version, which is
described in [18], Section 4.5.

(2.4.3) We next need a criterion which allows us to prove that a given
projective character is projectively indecomposable or to find candidates for
the projectively indecomposable summands it contains.
For a character ϑ ∈ G0(HK) let ϑ =

∑
χ ϑχ ·χ, ϑχ ∈ Z, be its decomposition

into the basis of G0(HK) consisting of the irreducible characters. If ϑ is a
generalized projective character, then it has been conjectured by the author
and subsequently been proved by M. Geck and R. Rouquier [12], Proposition
4.4, that νp(

∑
χ ϑχc

−1
χ ) ≥ 0 holds.

If ψ is a projective character, then a summand ϑ contained in ψ necessar-
ily fulfills 0 ≤ ϑχ ≤ ψχ for all irreducible characters χ and the valuative
condition given above. Hence we find a set of candidates for projectively
indecomposable summands by looking through the finite set of all charac-
ters ϑ fulfilling the first condition, and testing its elements for the second
condition.

(2.4.4) Let again H be an Iwahori-Hecke algebra and H ′ a parabolic sub-
algebra. We finally need a method to explicitly induce an H ′-module up
to H. As H is given as a finitely presented algebra and the generators for
H ′ are explicitly given even as a subset of the generators for H we can use
the VectorEnumerator to perform this task, provided we have found a finite
module presentation for the H ′-module we are going to induce up. For more
details on how to find module presentations and on induction of modules
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using the VectorEnumerator, see [19].
We will only use explicit induction for modules over some finite field F ′

which are defined over the prime field F ≤ F ′, hence the computations
can entirely be carried out over F , see [19]. Note that it is easy using the
MeatAxe over F to find the F ′-constituents of a module which is defined
over F .

3 The algebras of type I2(m), m > 2

(3.1) We are going to consider the generic Iwahori-Hecke algebra of type
I2(m) with parameter u = v2 over the field Q(ζ2m, v). Its standard gen-
erators will be denoted by Ts and Tt. The Poincaré polynomial Pm(u) :=
PH(I2(m))(u) ∈ Z[u] for the generic algebra of type I2(m) with parameter u
is given by Pm(u) = Φ2(u) ·

∏
d|m,d>1 Φd(u).

The irreducible representations of the algebras of type I2(m) have been de-
termined by R. Kilmoyer, L. Solomon [15], where also the corresponding
Schur elements can be found.
If m = 2k + 1 is odd, then H(I2(m)) has exactly two linear representa-
tions, the index and the sign representation. The Schur elements are given
as cind = Pm(u) and csgn = u−mPm(u). Furthermore, there are exactly
m−1

2 pairwise non-isomorphic 2-dimensional irreducible representations Xj ,
where j ∈ N, 1 ≤ j ≤ m−1

2 . They are given by

Xj : Ts 7→
[
−1 v(ζj2m + ζ−j2m)
0 v2

]
, Tt 7→

[
v2 0

v(ζj2m + ζ−j2m) −1

]
.

The Schur element for Xj is given as

cXj = m · u−1 · (u− ζjm)(u− ζ−jm )

(1− ζjm)(1− ζ−jm )
.

If m = 2k is even, then H(I2(m)) has exactly four linear representations,
the index and the sign representation, and the two ‘mixed’ types λ and
λ∗. And there are exactly m

2 − 1 pairwise non-isomorphic 2-dimensional
irreducible representations Xj . They are given by the same formulas as
above, except that now 1 ≤ j ≤ m

2 − 1. For the Schur elements the formulas
given above also hold. For the additional linear representations we find
cλ = cλ∗ = m

2 · u
−1 · Φ2(u)2.

As can be seen from the Schur elements given above, to get a non-trivial
decomposition map we have only to consider the cases Φ = Φe where e
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divides m. We then have a standard choice for R by imposing the condition
v − ζ2e ∈ p �R.

(3.2) Φe-modular decomposition numbers for e > 2. For e > 2 we
see from the Schur elements that in both cases m even or odd, the only
non-projective irreducible representations are ind, sgn, and Xm/e. Hence
they form one block, which is of defect 1. Xm/e is left fixed by Curtis-
Alvis duality whereas ind and sgn are exchanged. Since the Φe-modular
reductions of ind and sgn are non-isomorphic, the decomposition matrix of
this block is as follows.

ind 1 .
Xm/e 1 1
sgn . 1

Note that for e = m, which is the Coxeter number of the corresponding
Coxeter group, Xm/e = X1 is one of the reflection representations and sgn
is obtained as the exterior square of X1.

(3.3) Φe-modular decomposition numbers for e = 2. For e = 2,
we find that exactly the linear representations are the non-projective ones.
Furthermore, all their Φ2-modular reductions are equal, hence for m odd
they form a block of defect 1, for m even of defect 2, having the following
decomposition matrix.

ind 1
sgn 1

ind 1
sgn 1
λ 1
λ∗ 1

We add as a remark that this result can be obtained without use of the
Schur elements by considering the eigenspaces of the action of Ts and Tt
and the trace of the action of TsTt on the module Xj .

4 The algebra of type H3

(4.1) The Poincaré polynomial PH3(u) ∈ Z[u] for the generic algebra of
type H3 with parameter u is given by PH3 = Φ3

2 · Φ3 · Φ5 · Φ6 · Φ10.
It turns out that all of the cχi divide PH3(u) in Q(ζ, u, u−1). Hence we only
have to consider Φ = Φe, where e ∈ {2, 3, 5, 6, 10}. Let Φ′2e(v) ∈ Q(ζ5)[v] be
the minimum polynomial of ζ2e over Q(ζ5). Again we will use a standard
choice for R, given by Φ′2e(v) ∈ p �R.
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(4.2) Φ10-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ5, χ7. All of them are of
defect 1, hence they form a union of blocks of defect 1. Now we consider
the Φ10-modular reductions of the class functions corresponding to these
characters. GAP shows that they span a space of rank 3. Hence these
characters form exactly one block. Furthermore it turns out that cχ1 + cχ5

is divisible by Φ2
10, but cχ1 + cχ7 is not. This determines the decomposition

matrix.

1 (1, 15) 1 . .
5 (3, 6) 1 1 .
7 (3, 1) . 1 1
2 (1, 0) . . 1

Note that e = 10 equals the Coxeter number of the corresponding Coxeter
group. Furthermore, χ7 is the reflection representation, χ5 is its exterior
square and sgn = χ1 is its exterior cube. Finally, we have ind = χ2.

(4.3) Φ6-modular decomposition numbers. It turns out that the non-
projective irreducible characters are χ1, χ2, χ3, χ4. An argument similar to
the one given in (4.2) shows that the decomposition matrix is as follows.

1 (1, 15) 1 . .
3 (5, 5) 1 1 .
4 (5, 2) . 1 1
2 (1, 0) . . 1

(4.4) Φ5-modular decomposition numbers. It turns out that the non-
projective irreducible characters are χ1, χ2, χ6, χ8, χ9, χ10. All of them are of
defect 1. But in this case, we find the following Φ5-modular reductions x̄χi
of the scalars xχi , see (2.2.5): x̄χ1 = x̄χ8 = x̄χ10 = −1, x̄χ2 = x̄χ6 = x̄χ9 = 1.
This shows that there are exactly two blocks whose decomposition matrices
are as follows.

Λ1 Λ2

1 (1, 15) 1 .
10 (4, 4) 1 1
8 (3, 3) . 1

Λ3 Λ4

2 (1, 0) 1 .
9 (4, 3) 1 1
6 (3, 8) . 1
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(4.5) Φ3-modular decomposition numbers. It turns out that the non-
projective irreducible characters are χ1, χ2, χ3, χ4, χ9, χ10. Similarly to (4.4)
we find the decomposition matrix using the following Φ3-modular reductions:
x̄χ1 = x̄χ3 = x̄χ10 = −1, x̄χ2 = x̄χ4 = x̄χ9 = 1.

Λ1 Λ2

1 (1, 15) 1 .
3 (5, 5) 1 1

10 (4, 4) . 1

Λ3 Λ4

2 (1, 0) 1 .
4 (5, 2) 1 1
9 (4, 3) . 1

(4.6) Φ2-modular decomposition numbers. The projective irreducible
characters are χ9, χ10. All the other irreducible characters are of defect 3.
Now we induce the projectively indecomposable characters, see (3.3), from
the parabolic subalgebra of type I2(5) up to H3 and restrict them to the
defect 3 characters. This gives the following projective characters, where Λ1

corresponds to the projectively indecomposable character of I2(5) belonging
to the block of defect 1.

Λ1 Λ2 Λ3

1 (1, 15) 1 . .
2 (1, 0) 1 . .
3 (5, 5) 1 1 1
4 (5, 2) 1 1 1
5 (3, 6) 1 1 .
6 (3, 8) 1 . 1
7 (3, 1) 1 1 .
8 (3, 3) 1 . 1

We look through the subsums of Λ1, Λ2, Λ3, see (2.4.3), and find that Λ2

and Λ3 are indecomposable, whereas Λ1 has at most one of Λ2 or Λ3 as a
summand. The field automorphism of Q(ζ5) defined by ζ5 7→ ζ2

5 interchanges
χ5 and χ6 leaving χ1 fixed. Since R is fixed under this field automorphism,
it follows that the Φ2-modular reduction χ̄1 of χ1 is a constituent of χ̄5 if
and only if it is one of χ̄6. Hence Λ1 is also indecomposable.

5 The algebra of type H4

(5.1) The Poincaré polynomial PH4(u) ∈ Z[u] for the generic algebra of
type H4 with parameter u is given by

PH4 = Φ4
2 · Φ2

3 · Φ2
4 · Φ2

5 · Φ2
6 · Φ2

10 · Φ12 · Φ15 · Φ20 · Φ30.
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Again all of the cχi divide PH4(u) in Q(ζ, u, u−1). Hence we only have to
consider Φ = Φe, where e ∈ {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}. We will use the
standard choice for R as was described in (4.1).
In the sequel we will look at the induced index representation of H3. Using
CHEVIE we find the character of the induced representation to be given as
χ1 + χ3 + χ5 + χ11 + χ13 + χ18 + χ20 + χ27 + χ31.

(5.2) Φ30-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ3, χ4, χ7, all of which are
of defect 1. The rank argument as was described in (4.2) shows that these
all belong to the same block. Now the defect 1 component of the induced
index representation of H3 is given by χ1 + χ3, see (5.1). Since Φ30 does
not divide PH3 , the induced character is projective. This determines the
decomposition matrix.

1 (1, 0) 1 . . .
3 (4, 1) 1 1 . .
7 (6, 12) . 1 1 .
4 (4, 31) . . 1 1
2 (1, 60) . . . 1

Note that e = 30 equals the Coxeter number of the corresponding Coxeter
group. Furthermore, χ3 is the reflection representation, χ7 is its exterior
square, χ4 is its exterior cube, and sgn = χ2 is its exterior fourth power.
Finally, we have ind = χ1.

(5.3) Φ20-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ11, χ12, χ16. A similar ar-
gument as was used in (5.2), the defect 1 block component of the induced
index representation now being given by χ1 +χ11, shows that the decompo-
sition matrix is as follows.

1 (1, 0) 1 . . .
11 (9, 2) 1 1 . .
16 (16, 11) . 1 1 .
12 (9, 22) . . 1 1
2 (1, 60) . . . 1
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(5.4) Φ15-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ5, χ6, χ18, χ19, χ20, χ21,
χ24, χ29, again all of defect 1. Computing the scalars x̄χi , see (2.2.5), gives
x̄χ1 = x̄χ2 = x̄χ18 = x̄χ19 = x̄χ29 = 1, x̄χ5 = x̄χ6 = x̄χ20 = x̄χ21 = x̄χ24 = −1.
The rank argument, see (4.2), shows that this is the block distribution of
these characters. Now we again use the induced index representation, see
(5.1), which gives us (χ1 + χ18) + (χ5 + χ20) as a projective character.

1 (1, 0) 1 . . .
18 (16, 3) 1 1 . .
29 (30, 10) . 1 1 .
19 (16, 21) . . 1 1
2 (1, 60) . . . 1

5 (4, 7) 1 . . .
20 (16, 6) 1 1 . .
24 (24, 7) . 1 1 .
21 (16, 18) . . 1 1
6 (4, 37) . . . 1

(5.5) Φ12-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ27, χ28, χ34. A similar ar-
gument as was used in (5.2), giving χ1 +χ27 as a projective character, shows
that the decomposition matrix is as follows.

1 (1, 0) 1 . . .
27 (25, 4) 1 1 . .
34 (48, 9) . 1 1 .
28 (25, 16) . . 1 1
2 (1, 60) . . . 1

(5.6) Φ10-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ5, χ6, χ13, χ14, χ26, χ30,
χ31, χ32, χ33, which are of defect 2, and χ3, χ4, χ11, χ12, χ15, which are of
defect 1. Now we use the formula, see (2.2.3), giving the centrally primitive
idempotents eχi ∈ HK in terms of a pair of mutually dual bases. We find
that even

∑
i∈{3,4,11,12,15} eχi ∈ HR holds. Hence both the defect 1 and the

defect 2 characters form a union of blocks.

(5.6.1) The defect 1 block. The rank argument, see (4.2), shows that
the defect 1 characters form one block. We now induce the projective char-
acter χ2 + χ7, see (4.2), from H3 up to H4. Its component in the defect 1
block equals 2 · (χ3 + χ11). This determines the decomposition matrix.
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3 (4, 1) 1 . . .
11 (9, 2) 1 1 . .
15 (10, 12) . 1 1 .
12 (9, 22) . . 1 1
4 (4, 31) . . . 1

(5.6.2) The defect 2 block. Now we concentrate on the defect 2 char-
acters. We first induce up all the Φ10-modular projectively indecomposable
characters of H3, see (4.2), and restrict them to their defect 2 block com-
ponents. This gives us a set of projective characters belonging to the defect
2 blocks. Applying the idea described in (2.4.2) we get a basis consisting
of the characters coming from Λ3,Λ1, χ8, χ6, χ4, χ3, χ9. It is shown below in
this order. Using the idea described in (2.4.3) we find that Λ1

7 is projectively
indecomposable. Furthermore, we find that all possible summands of the
Λ1
i are again in the subgroup generated by Λ1 := {Λ1

i }i=1,...,7. Finally, we
observe that the matrix in shown below is of lower unitriangular shape.

Λ1
1 Λ1

2 Λ1
3 Λ1

4 Λ1
5 Λ1

6 Λ1
7

1 (1, 0) 1 . . . . . .
2 (1, 60) . 1 . . . . .
5 (4, 7) 1 . 1 . . . .
6 (4, 37) . 1 . 1 . . .

13 (9, 6) 1 . 1 . 1 . .
14 (9, 26) . 1 . 1 . 1 .
26 (24, 6) 1 1 . . 1 1 1
30 (30, 10)′ 1 1 1 1 1 1 1
31 (36, 5) 3 . 2 . 2 1 1
32 (36, 15) . 3 . 2 1 2 1
33 (40, 8) 1 1 1 1 2 2 1

In application of (2.2.2) we let l := 11, which is fully decomposed in Z[ζ],
let ℘�Z[ζ] be a prime ideal over l, Φ̃ := v2− ζ10 ∈ R, and P := 〈℘, Φ̃〉�R.
Hence we have R/P ∼= GF (112). Now we use the VectorEnumerator to
compute the dP-modular reduction of the induced index representation of
H3 explicitly, see (2.4.4). Applying the MeatAxe to the induced module,
which is of dimension 120, shows that it has the following constituents over
GF (112): 1a2, 4a2, 4b2, 5a, 9a2, 22a, 25a, 32a. The defect 2 block component
of the corresponding character is given as χ1 + χ5 + χ13 + χ31, see (5.1).



16 Jürgen Müller

There is exactly one linear constituent, and it occurs with multiplicity 2.
A search as is described in (2.4.3) shows that there is exactly one possible
summand of Λ1

1 which has an entry 1 in the row corresponding to χ1, and the
sum of the entries at χ5, χ13, χ31 is less or equal to 1. Hence the projectively
indecomposable character corresponding to the Φ10-modular reduction of χ1

is uniquely determined. It is shown below as Λ2
1. Curtis-Alvis duality then

gives the projectively indecomposable character Λ2
2.

Now that the constituent 1a is accounted for as the dP-modular reduction of
χ1, it follows that the Φ10-modular reduction of χ5 occurs with multiplicity
at most 2 in the induced module. The same line of reasoning as above now
gives the projectively indecomposable characters Λ2

3 and Λ2
4.

Now combining this with the result in (5.6.1), all the constituents 1a, 4a, 4b,
5a are accounted for as dP-modular reductions of irreducible Φ10-modular
characters. The consideration of χ13 and the same type of argument shows
that Λ2

5 and Λ2
6 are projectively indecomposable.

Λ2
1 Λ2

2 Λ2
3 Λ2

4 Λ2
5 Λ2

6 Λ2
7

1 (1, 0) 1 . . . . . .
2 (1, 60) . 1 . . . . .
5 (4, 7) . . 1 . . . .
6 (4, 37) . . . 1 . . .

13 (9, 6) . . . . 1 . .
14 (9, 26) . . . . . 1 .
26 (24, 6) 1 1 . . . . 1
30 (30, 10)′ . . 1 1 . . 1
31 (36, 5) 1 . 1 . 1 . 1
32 (36, 15) . 1 . 1 . 1 1
33 (40, 8) . . . . 1 1 1

(5.7) Φ6-modular decomposition numbers. It turns out that the non-
projective irreducible characters are χ1, χ2, χ3, χ4, χ5, χ6, χ22, χ25, χ26,
χ27, χ28, which are all of defect 2. First we induce up all the projectively
indecomposable characters of H3, see (4.3), and we get a basis consisting of
characters coming from Λ3,Λ1, χ7, χ5, χ8, χ6, χ9. It is shown below. We find
that Λ1

3, Λ1
4, Λ1

5, Λ1
6, Λ1

7 are projectively indecomposable. Unfortunately, Λ1
1

and Λ1
2 may even have summands which are not in the subgroup generated

by Λ1.
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Λ1
1 Λ1

2 Λ1
3 Λ1

4 Λ1
5 Λ1

6 Λ1
7

1 (1, 0) 1 . . . . . .
2 (1, 60) . 1 . . . . .
3 (4, 1) 1 . 1 . . . .
4 (4, 31) . 1 . 1 . . .
5 (4, 7) 1 . . . 1 . .
6 (4, 37) . 1 . . . 1 .

22 (18, 10) 1 1 . . . . 1
25 (24, 12) 1 1 . . 1 1 1
26 (24, 6) 1 1 1 1 . . 1
27 (25, 4) 3 . 1 . 1 . 1
28 (25, 16) . 3 . 1 . 1 1

We again compute the constituents of the induced index representation, as
was described in (5.6.2), now for the case l := 7, which is fully ramified in
Z[ζ]. We let ℘ := 〈7〉 � Z[ζ], Φ̃ := v − ω12 ∈ R, where ω12 ∈ Z[ζ] is a
preimage of a primitive 12-th root of unity in Z[ζ]/℘ ∼= GF (74). Hence we
have R/P ∼= GF (74). We find: 1a2, 8a2, 16a, 18a, 32a, 36a. The defect 2
block component of the character of the induced index representation of H3

now equals χ1 + χ3 + χ5 + χ27, see (5.1). The same line of reasoning as in
(5.6.2) shows that Λ2

1 shown below is projectively indecomposable. Curtis-
Alvis duality gives Λ2

2. Finally we have Λ1
1 −Λ2

1 = Λ1
3 + Λ1

5. This completes
the decomposition matrix.

Λ2
1 Λ2

2 Λ2
3 Λ2

4 Λ2
5 Λ2

6 Λ2
7

1 (1, 0) 1 . . . . . .
2 (1, 60) . 1 . . . . .
3 (4, 1) . . 1 . . . .
4 (4, 31) . . . 1 . . .
5 (4, 7) . . . . 1 . .
6 (4, 37) . . . . . 1 .

22 (18, 10) 1 1 . . . . 1
25 (24, 12) . . . . 1 1 1
26 (24, 6) . . 1 1 . . 1
27 (25, 4) 1 . 1 . 1 . 1
28 (25, 16) . 1 . 1 . 1 1
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(5.8) Φ5-modular decomposition numbers. It turns out that the non-
projective irreducible characters are χ1, χ2, χ3, χ4, χ8, χ9, χ11, χ12, χ17,
χ18, χ19, χ20, χ21, χ24, χ26, χ31, χ32, χ34, which are of defect 2, and χ5,
χ6, χ10, χ13, χ14, χ22, which are of defect 1. Considering centrally primitive
idempotents, see (2.2.3), and the scalars x̄χi , see (2.2.5), shows that the sets
of defect 2 characters χ1, χ2, χ8, χ9, χ11, χ12, χ18, χ19, χ26 and χ3, χ4, χ17,
χ20, χ21, χ24, χ31, χ32, χ34 and the sets of defect 1 characters χ5, χ6, χ10

and χ13, χ14, χ22 each form a union of blocks.

(5.8.1) The defect 1 blocks. The decomposition matrices are as follows.

5 (4, 7) 1 .
10 (8, 13) 1 1
6 (4, 37) . 1

13 (9, 6) 1 .
22 (18, 10) 1 1
14 (9, 22) . 1

(5.8.2) The defect 2 blocks. First we induce all of the projectively
indecomposable characters of H3 and restrict them to their components
belonging to the first defect 2 block. We find a basis coming from the
following characters: Λ3,Λ1,Λ2, χ4, χ3. It is shown below. An application
of (2.4.3) shows that Λ1

3, Λ1
4, Λ1

5 are projectively indecomposable characters.
Furthermore, if Λ1

1 were not indecomposable, its decomposition were Λ1
1 =

(Λ1
1−Λ1

4)+Λ1
4. An analogous situation holds for Λ1

2 by Curtis-Alvis duality.

Λ1
1 Λ1

2 Λ1
3 Λ1

4 Λ1
5

1 (1, 0) 1 . . . .
2 (1, 60) . 1 . . .
8 (6, 20) . . 1 . .
9 (8, 12) 1 1 1 . .

11 (9, 2) 1 . . 1 .
12 (9, 22) . 1 . . 1
18 (16, 3) 2 . 1 1 .
19 (16, 21) . 2 1 . 1
26 (24, 6) 1 1 1 1 1

Now we again induce the index representation of H3 using the VectorEnu-
merator, this time letting l := 11, P̃ := v − ζ10, and R/P ∼= GF (11). The
MeatAxe finds the following constituents: 1a2, 4a2, 4b, 6a, 9a2, 9b, 16a2,
16b, 25a. The component of the character of the induced representation be-
longing to the block under consideration is by (5.1) given by χ1 +χ11 +χ18.
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Now the dP-modular reduction has exactly one linear constituent, and it oc-
curs with multiplicity 2. Hence it follows that Λ2

1 := Λ1
1 −Λ1

4 is a projective
character, and the decomposition matrix is as follows.

Λ2
1 Λ2

2 Λ2
3 Λ2

4 Λ2
5

1 (1, 0) 1 . . . .
2 (1, 60) . 1 . . .
8 (6, 20) . . 1 . .
9 (8, 12) 1 1 1 . .

11 (9, 2) . . . 1 .
12 (9, 22) . . . . 1
18 (16, 3) 1 . 1 1 .
19 (16, 21) . 1 1 . 1
26 (24, 6) . . 1 1 1

(5.8.3) Now we turn our attention to the second defect 2 block. Similarly
to the case dealt with in (5.8.2) we find a basis coming from χ7, χ5, χ4,Λ4, χ3,
which is shown below. Furthermore, we find that Λ1

5 is projectively inde-
composable or it decomposes as Λ1

5 = Λ′ + Λ′′, where Λ′, Λ′′ are also given
below.

Λ1
1 Λ1

2 Λ1
3 Λ1

4 Λ1
5 Λ′ Λ′′

3 (4, 1) 1 . . . . . .
4 (4, 31) . 1 . . . . .

17 (16, 13) . . 1 1 1 1 .
20 (16, 6) 1 . 1 . . . .
21 (16, 18) . 1 . 2 1 . 1
24 (24, 7) 1 1 1 1 1 1 .
31 (36, 5) 2 . 2 1 1 1 .
32 (36, 15) . 2 1 3 2 1 1
34 (48, 9) 1 1 2 3 2 1 1

(Λ2)H3 ↑H4 . . 2 1 −2

Now the component of the induced projectively indecomposable character
(Λ2)H3 ↑H4 belonging to the block under consideration decomposes into Λ1

as also shown above. Hence Λ1
5 is decomposable and Λ′, Λ′′ are projectively

indecomposable characters. Clearly, the Curtis-Alvis dual counterpart Λ′′′

of Λ′′ is also projectively indecomposable. We add these characters to the
list Λ1, and an application of (2.4.2) gives us the basis Λ2 shown below,
where Λ2

1 := Λ1
1, Λ2

2 := Λ1
2, Λ2

3 := Λ′, Λ2
4 := Λ′′′, Λ2

5 := Λ′′.
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Λ2
1 Λ2

2 Λ2
3 Λ2

4 Λ2
5

3 (4, 1) 1 . . . .
4 (4, 31) . 1 . . .

17 (16, 13) . . 1 . .
20 (16, 6) 1 . . 1 .
21 (16, 18) . 1 . . 1
24 (24, 7) 1 1 1 . .
31 (36, 5) 2 . 1 1 .
32 (36, 15) . 2 1 . 1
34 (48, 9) 1 1 1 1 1

As was already seen above, Λ2
3, Λ2

4, Λ2
5 are projectively indecomposable char-

acters. Furthermore we find that Λ2
1 is projectively indecomposable or it

decomposes as Λ2
1 = (Λ2

1−Λ2
4) + Λ2

4. An analogous situation holds for Λ2
2 by

Curtis-Alvis duality. We finally use again the dP-modular reduction of the
induced module already considered in (5.8.2). Since the occurrence of the
constituent 1a is already accounted for, it follows that the Φ5-modular re-
duction of χ3 occurs at most with multiplicity 2 in the Φ5-modular reduction
of the induced module. Hence it follows that Λ2

1 and Λ2
2 are decomposable

and the decomposition matrix is as follows.

Λ3
1 Λ3

2 Λ3
3 Λ3

4 Λ3
5

3 (4, 1) 1 . . . .
4 (4, 31) . 1 . . .

17 (16, 13) . . 1 . .
20 (16, 6) . . . 1 .
21 (16, 18) . . . . 1
24 (24, 7) 1 1 1 . .
31 (36, 5) 1 . 1 1 .
32 (36, 15) . 1 1 . 1
34 (48, 9) . . 1 1 1

(5.9) Φ4-modular decomposition numbers. It turns out that the non-
projective irreducible characters are χ1, χ2, χ10, χ11, χ12, χ13, χ14, χ23,
χ24, χ27, χ28. All of them are of defect 2. Now Φ4 does not divide the
Poincaré polynomial PH3 , hence the irreducible characters are projectively
indecomposable. Inducing these up to H4, the induced characters coming
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from χ2, χ1, χ9, χ4, χ5, χ8, χ6 give the basis depicted below, which is by
(2.4.3) shown to consist of projectively indecomposable characters.

1 (1, 0) 1 . . . . . .
2 (1, 60) . 1 . . . . .

10 (8, 13) . . 1 . . . .
11 (9, 2) 1 . . 1 . . .
12 (9, 22) . 1 . . 1 . .
13 (9, 6) 1 . . . . 1 .
14 (9, 26) . 1 . . . . 1
23 (24, 11) . . 1 . . 1 1
24 (24, 7) . . 1 1 1 . .
27 (25, 4) 1 . 1 1 . 1 .
28 (25, 16) . 1 1 . 1 . 1

(5.10) Φ3-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ3, χ4, χ5, χ6, χ9, χ10,
χ15, χ16, χ17, χ18, χ19, χ20, χ21, χ27, χ28, χ33. All of them are of defect 2.
Using the scalar technique, see (2.2.5), we find that these characters can be
divided into the subsets χ1, χ2, χ9, χ15, χ18, χ19, χ27, χ28, χ33, and χ3, χ4,
χ5, χ6, χ10, χ16, χ17, χ20, χ21, each of which forms a union of blocks.

(5.10.1) The first block. We induce up the projectively indecompos-
able characters of H3 and find a basis consisting of the characters coming
from χ7, χ5, χ8, χ6,Λ2, which is shown below. Again these are projectively
indecomposable.

3 (4, 1) 1 . . . .
4 (4, 31) . 1 . . .
5 (4, 7) . . 1 . .
6 (4, 37) . . . 1 .

10 (8, 13) . . . . 1
16 (16, 11) 1 1 . . 1
17 (16, 13) . . 1 1 1
20 (16, 6) 1 . 1 . 1
21 (16, 18) . 1 . 1 1

(5.10.2) The second block. The same technique gives us the basis
shown below, which consists of the characters coming from Λ3,Λ1,Λ2, χ7, χ5.
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Λ1
1 Λ1

2 Λ1
3 Λ1

4 Λ1
5

1 (1, 0) 1 . . . .
2 (1, 60) . 1 . . .
9 (8, 12) . . 1 . .

15 (10, 12) 1 1 1 . .
18 (16, 3) 2 . . 1 .
19 (16, 21) . 2 2 . 1
27 (25, 4) 3 . 1 1 .
28 (25, 16) . 3 3 . 1
33 (40, 8) 2 2 3 1 1

Λ4 ↑H4 . . 1 2 −2

By (2.4.3) we find that Λ1
5, Λ1

4 are projectively indecomposable. Further-
more, the component of the induced character Λ4 ↑H4 belonging to the block
under consideration decomposes into Λ1 as is also shown above. Hence, us-
ing (2.4.3), Λ2

3 := Λ1
3 − 2 · Λ1

5 is a projectively indecomposable character.
Finally, the only possible decompositions of Λ1

1 into projectively indecom-
posable ones are Λ1

1 = (Λ1
1 − c · Λ1

4) + c · Λ1
4 where c ∈ {0, 1, 2}.

Now we again induce the index representation of H3 using the VectorEnu-
merator, with l := 7 and P̃ := v − ω6, where ω6 ∈ Z[ζ] is a preimage of a
primitive 6-th root of unity in Z[ζ]/℘ ∼= GF (74). The MeatAxe finds the
following constituents: 1a2, 8a2, 8b, 8c, 16a2, 18a, 36a. The character of the
component of the induced module belonging to the present block is by (5.1)
given as χ1 +χ18 +χ27. As its dP-modular reduction has exactly one linear
constituent, which occurs with multiplicity 2, it follows that Λ2

1 = Λ1
1−2 ·Λ1

4

and, by Curtis-Alvis duality, Λ2
2 = Λ1

2−2 ·Λ1
5 are projective characters. The

decomposition matrix is shown below.

Λ2
1 Λ2

2 Λ2
3 Λ2

4 Λ2
5

1 (1, 0) 1 . . . .
2 (1, 60) . 1 . . .
9 (8, 12) . . 1 . .

15 (10, 12) 1 1 1 . .
18 (16, 3) . . . 1 .
19 (16, 21) . . . . 1
27 (25, 4) 1 . 1 1 .
28 (25, 16) . 1 1 . 1
33 (40, 8) . . 1 1 1
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(5.11) Φ2-modular decomposition numbers. It turns out that the
non-projective irreducible characters are χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8, χ11,
χ12, χ13, χ14, χ15, χ22, χ27, χ28, χ29, χ30, χ31, χ32, which are of defect 4,
and χ18, χ19, χ20, χ21, which are of defect 1. The consideration of centrally
primitive idempotents, see (2.2.3), shows that the characters of defect 4 form
a union of blocks.

(5.11.1) The defect 1 blocks. The same argument shows that the sets
χ18, χ21, and χ19, χ20 form blocks, whose decomposition matrices are as
follows.

18 (16, 3) 1
21 (16, 18) 1

19 (16, 21) 1
20 (16, 6) 1

(5.11.2) The defect 4 block. Inducing up the projectively indecom-
posable characters of H3 gives a basis consisting of the characters coming
from Λ1,Λ2,Λ3, χ9, which is shown below. By (2.4.3) we find that Λ1

4 is
projectively indecomposable.

Λ1
1 Λ1

2 Λ1
3 Λ1

4

1 (1, 0) 1 . . .
2 (1, 60) 1 . . .
3 (4, 1) 2 1 . .
4 (4, 31) 2 1 . .
5 (4, 7) 2 . 1 .
6 (4, 37) 2 . 1 .
7 (6, 12) 2 2 . .
8 (6, 20) 2 . 2 .

11 (9, 2) 3 2 1 .
12 (9, 22) 3 2 1 .
13 (9, 6) 3 1 2 .
14 (9, 26) 3 1 2 .
15 (10, 12) 2 2 2 .
22 (18, 10) 2 2 2 1
27 (25, 4) 5 3 3 1
28 (25, 16) 5 3 3 1
29 (30, 10) 6 4 4 1
30 (30, 10)′ 6 4 4 1
31 (36, 5) 8 5 5 1
32 (36, 15) 8 5 5 1
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(5.11.3) In the case of the decomposition map dΦ2 , we can improve the
algorithm described in (2.4.3) by taking into account that the Φ2-modular
decomposition numbers of characters which are conjugate to each other by
Curtis-Alvis duality are equal. The orbits of length two are χ1 ↔ χ2,
χ3 ↔ χ4, χ5 ↔ χ6, χ11 ↔ χ12, χ13 ↔ χ14, χ27 ↔ χ28, χ31 ↔ χ32.
Furthermore, the field automorphism of Q(ζ5) defined by ζ5 7→ ζ2

5 has the fol-
lowing orbits of length two on the irreducible characters of defect 4: χ3 ↔ χ5,
χ4 ↔ χ6, χ7 ↔ χ8, χ11 ↔ χ13, χ12 ↔ χ14, χ29 ↔ χ30. The search for
the projectively indecomposable character corresponding to the Φ2-modular
reduction χ̄1 can even be further improved by using the fact that its decom-
position into irrreducible characters gives multiplicities which are constant
on the above orbits.

(5.11.4) Letting l := 7, Φ̃ := v − ω4 ∈ R, where ω4 ∈ Z[ζ] is a preimage
of a primitive 4-th root of unity in Z[ζ]/℘ ∼= GF (74), we again induce the
index representation of H3. The MeatAxe finds the following constituents:
1a2, 8a4, 10a2, 17a2, 32a. The character of the component of the induced
module belonging to the present block is by (5.1) given as χ1+χ3+χ5+χ11+
χ13 +χ27 +χ31. Since the multiplicity of the linear constituent 1a equals 2,
the projectively indecomposable character corresponding to χ̄1 is an element
of the set of all subsums of Λ1

1 such that the criteria given in (5.11.3) hold,
the multiplicity of χ1 equals 1, and the sum of the multiplicities of χ3, χ5,
χ11, χ13, χ27, and χ31 is less than 2. This set consists of the subsums Λ2

1,
Λ′1 shown below.
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Λ2
1 Λ′1 Λ2

2 Λ2
3 Ψ1 Ψ2 Ψ3 Λ2

4 Λ′4
1 (1, 0) 1 1 . . . . . . .
2 (1, 60) 1 1 . . . . . . .
3 (4, 1) . . 1 . . . . . .
4 (4, 31) . . 1 . . . . . .
5 (4, 7) . . . 1 . . . . .
6 (4, 37) . . . 1 . . . . .
7 (6, 12) 1 . . . 1 2 . 1 1
8 (6, 20) 1 . . . 1 . 2 . .

11 (9, 2) . . . 1 1 2 . 1 .
12 (9, 22) . . . 1 1 2 . 1 .
13 (9, 6) . . 1 . 1 . 2 . 1
14 (9, 26) . . 1 . 1 . 2 . 1
15 (10, 12) . 2 . . 2 2 2 1 1
22 (18, 10) 1 1 . . 1 2 2 . .
27 (25, 4) . . 1 1 1 2 2 . .
28 (25, 16) . . 1 1 1 2 2 . .
29 (30, 10) . 2 . 2 2 4 2 1 .
30 (30, 10)′ . 2 2 . 2 2 4 . 1
31 (36, 5) 1 1 1 1 3 4 4 1 1
32 (36, 15) 1 1 1 1 3 4 4 1 1

Now we induce the reflection representation χ7 ofH3 up toH4, using the Vec-
torEnumerator, with l := 11, Φ̃ := v2 + 1 ∈ R, hence R/P ∼= GF (112). The
MeatAxe finds the following constituents of the induced module M , which
is of dimension 360: 1a3, 4a6, 4b6, 5a5, 5b3, 16a, 17a5, 24a, 24b, 32a, 40a, 48a.
The character of the induced representation is given as χ + χ′, where χ :=
χ3 + χ7 + χ11 + χ27 + χ29 + χ30 + 2 · χ31 and χ′ := χ18 + χ20 + χ16 + χ24 +
χ26 + χ33 + χ34 are the components of the character belonging to the block
under consideration respectively not belonging to it.
The multiplicity of the linear constituent of M shows that Λ2

1 is the pro-
jectively indecomposable characacter corresponding to χ̄1. The list of con-
stituents of M also shows that the Φ2-modular reduction χ̄3 of χ3 is irre-
ducible. By the field automorphism the reduction χ̄5 of χ5 is also irreducible.
Now we compute all subsums of Λ1

2 such that the criteria described in
(5.11.3) hold, the multiplicity of χ3 equals 1, and the sum of the multi-
plicities of χ7, χ11, χ27, χ29, χ30, plus twice the multiplicity of χ31 is less
than 6. It turns out, that this subsum, Λ2

2 above, is uniquely determined,
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which hence is the projectively indecomposable character corresponding to
χ̄3. Applying the field automorphism gives the projectively indecomposable
character Λ2

3 corresponding to χ̄5.
Furthermore, we have the following projective characters

Ψ1 := Λ1
1 − Λ2

1 − 2 · Λ2
2 − 2 · Λ2

3,Ψ2 := Λ1
2 − Λ2

2,Ψ3 := Λ1
3 − Λ2

3.

Now the list of constituents of M shows that the Φ2-modular reduction χ̄7

of χ7 decomposes into irreducibles as χ̄7 = χ̄1 + ϕ. To find the projectively
indecomposable character corresponding to ϕ, we search for subsums of Ψ1

such that again the criteria of (5.11.3) hold, the multiplicity of χ7 equals
1, and the sum of the multiplicities of χ11, χ27, χ29, χ30, plus twice the
multiplicity of χ31 is less than 5. We find two candidates, Λ2

4, Λ′4 above.
But the projectively indecomposable character corresponding to ϕ is also a
subsum of Ψ2, which excludes Λ′4. Finally, the field automorphism gives the
projectively indecomposable character Λ2

5.
Finally, we let Λ2

6 := Λ1
4, which gives us the Z-linear independent set shown

below. We find that all the induced projectively indecomposable characters
of H3 decompose into this set with nonnegative integral coefficients, hence
this is indeed the decomposition matrix.
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Λ2
1 Λ2

2 Λ2
3 Λ2

4 Λ2
5 Λ2

6

1 (1, 0) 1 . . . . .
2 (1, 60) 1 . . . . .
3 (4, 1) . 1 . . . .
4 (4, 31) . 1 . . . .
5 (4, 7) . . 1 . . .
6 (4, 37) . . 1 . . .
7 (6, 12) 1 . . 1 . .
8 (6, 20) 1 . . . 1 .

11 (9, 2) . . 1 1 . .
12 (9, 22) . . 1 1 . .
13 (9, 6) . 1 . . 1 .
14 (9, 26) . 1 . . 1 .
15 (10, 12) . . . 1 1 .
22 (18, 10) 1 . . . . 1
27 (25, 4) . 1 1 . . 1
28 (25, 16) . 1 1 . . 1
29 (30, 10) . . 2 1 . 1
30 (30, 10)′ . 2 . . 1 1
31 (36, 5) 1 1 1 1 1 1
32 (36, 15) 1 1 1 1 1 1
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[13] D. Goldschmidt: Lectures on character theory, Publish or Perish,
1980.

[14] G. Hiss, C. Jansen, K. Lux, R. Parker: Computational modular
character theory, in preparation.

[15] R. Kilmoyer, L. Solomon: On the theorem of Feit-Higman, J. Com-
binatorial Theory A 15, 1973, 310-322.

[16] S. Linton: Vector enumeration programs, manual, 1994.

[17] G. Lusztig: On a theorem of Benson and Curtis, J. Algebra 71, 1981,
490-498.

[18] J. Müller: Zerlegungszahlen für generische Iwahori-Hecke-Algebren
von exzeptionellem Typ, Dissertation, RWTH Aachen, 1995.



Iwahori-Hecke algebras of non-crystallographic type 29

[19] J. Müller: A note on applications of the VectorEnumerator, in prepa-
ration.

[20] M. Ringe: The C-MeatAxe, manual, Lehrstuhl D für Mathematik,
RWTH Aachen, 1994.

[21] M. Schönert et. al: GAP—groups, algorithms and programming,
manual, Lehrstuhl D für Mathematik, RWTH Aachen, 1994.


