G. Nebe, M. Künzer 20.03.2007

Diskrete Strukturen, SS 06

Lösung zur Vordiplomsnachklausur

Aufgabe 1

- (1) Wir haben $5 \cdot 4 \cdot 3 = 60$ Möglichkeiten.
- (2) Es wird

$$((1,2,3,4) \circ (2,3,5))^4 = ((1,2,4)(3,5))^4$$

= $(1,2,4)^4 \circ (3,5)^4$
= $(1,2,4)$.

und dieses Element hat Ordnung 3.

(3) Die Anzahl der fixpunktfreien Permutationen auf der Menge $\{1, 2, \dots, 6\}$ ergibt sich zu

$$6! \cdot \sum_{i=0}^{6} \frac{(-1)^i}{i!} = 6! \cdot \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!}\right) = 265.$$

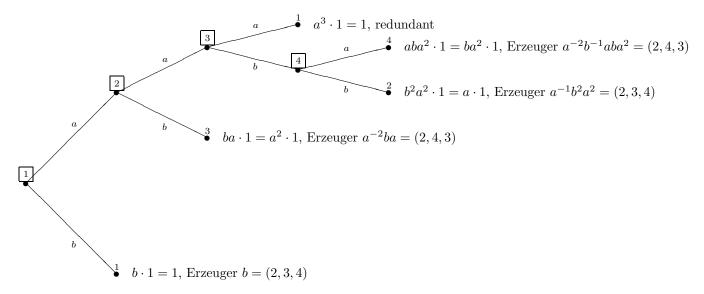
(4) Jedes irreduzible Polynom in $\mathbf{F}_2[X]$ ist normiert. Die Anzahl der irreduziblen Polynome von Grad 12 in $\mathbf{F}_2[X]$ ergibt sich zu

$$\begin{array}{rcl} \frac{1}{12} \sum_{d|12} 2^d \mu(12/d) & = & \frac{1}{12} \left(2^2 \mu(12/2) + 2^4 \mu(12/4) + 2^6 \mu(12/6) + 2^{12} \mu(12/12) \right) \\ & = & \frac{1}{12} \left(4 - 16 - 64 + 4096 \right) \\ & = & 335 \; . \end{array}$$

Hierbei beachten wir, daß der μ -Wert von Zahlen, in welchen eine Primzahl mehr als einfach als Faktor auftritt, wie etwa 4 oder 12, verschwindet.

Aufgabe 2

Wir erstellen einen Baum zur Berechnung von $G \cdot 1$ und von $Stab_G(1)$.



Somit ist $G \cdot 1 = \{1, 2, 3, 4\}$, und $|G \cdot 2| = 4$ (Antwort zu (1)). Ferner ist $\operatorname{Stab}_G(1) = \langle b = (2, 3, 4) \rangle$. Direkt erkennen wir, daß $\operatorname{Stab}_G(1) \cdot 2 = \{2, 3, 4\}$ und $|\operatorname{Stab}_G(1) \cdot 2| = 3$ (Antwort zu (2)). Insgesamt wird $|G| = \frac{|G|}{|\operatorname{Stab}_G(1)|} \cdot |\operatorname{Stab}_G(1)| = |G \cdot 1| \cdot |\operatorname{Stab}_G(1)| = 4 \cdot 3 = 12$ (Antwort zu (3)).

Aufgabe 3

(1) Es ist $\mathbf{F}_{7f}^* \simeq C_{7^f-1}$. Es enthält C_{7^f-1} genau dann eine primitive 20-te Einheitswurzel, wenn 20 ein Teiler von 7^f-1 ist, d.h. wenn $7^f\equiv_{20}1$. Wir müssen also die Ordnung von 7 als Element von $(\mathbf{Z}/20\mathbf{Z})^*$ ermitteln. Wir rechnen

Als Lösung ergibt sich somit f = 4.

(2) Das Element i+1 hat Ordnung 8. Da $\mathbf{F}_9 = \langle i+1 \rangle \simeq C_8$, ergibt sich

$$\{x \in \mathbf{F}_0^* : \langle x \rangle = \mathbf{F}_0^* \} = \{\iota + 1, (\iota + 1)^3, (\iota + 1)^5, (\iota + 1)^7 \} = \{\iota + 1, -\iota + 1, -\iota - 1, \iota - 1 \},$$

wobei letztere Gleichheit unter Beachtung von $(\iota + 1)^2 = -\iota$ am einfachsten zu bestimmen ist.

Aufgabe 4

Die Inzidenzmatrix unseres Graphen ist $\begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix}$. Der Eintrag an Position (2,2) von A^4 gibt die Anzahl der Kantenzüge von 2 nach 2 der Länge 4. Da $A^4 = (A^2)^2 = \begin{pmatrix} 10 & 3 \\ 3 & 9 \end{pmatrix}^2 = \begin{pmatrix} * & * \\ * & 90 \end{pmatrix}$, gibt es 90 solcher Kantenzüge.

Aufgabe 5

- (1) Der Euklidsche Algorithmus gibt $56 \cdot 1 5 \cdot 11 = 1$. Also ist $z = 56 \cdot 1 = 56$ möglich.
- (2) Der Euklidsche Algorithmus gibt $40 \cdot 3 7 \cdot 17 = 1$. Also ist $z = 40 \cdot 3 = 120$ möglich.
- (3) Der Euklidsche Algorithmus gibt $35 \cdot 3 8 \cdot 13 = 1$. Also ist $z = 35 \cdot 3 = 105$ möglich.
- (4) Beachte $5 \cdot 7 \cdot 8 = 280$. Sei zunächst $2 \cdot 56 + 1 \cdot 120 + 4 \cdot 105 = 652$ gebildet. Es ist $652 \equiv_{280} 92 = z$.

Aufgabe 6

(1) Die Erzeugermatrix hat die Zeilenstufenform $\begin{pmatrix} 1 & \omega & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & \omega^2 \end{pmatrix}$. Dieser entnehmen wir die Prüfmatrix

$$\begin{pmatrix} \omega & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & \omega^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(2) Da in unserer Prüfmatrix aus (1) je zwei verschiedene Zeilen ein linear unabhängiges, aber die letzten drei Zeilen ein linear abhängiges Tupel bilden, ist der Minimalabstand gleich 3.

Aufgabe 7

- (1) Durch Probieren erhalten wir die Nullstelle γ^6 . Da $f(X) \in \mathbf{F}_4[X]$, ist mit γ^6 auch $(\gamma^6)^4 = \gamma^{24} = \gamma^9$ eine Nullstelle von f(X). Da deg f = 2, ist die Menge der Nullstellen von f(X) bereits gegeben durch $\{\gamma^6, \gamma^9\} = \{\gamma^3 + \gamma^2, \gamma^3 + \gamma\}$.
- (2) Unter den Potenzen von γ^3 sind die beiden aufeinanderfolgenden $(\gamma^3)^2$ und $(\gamma^3)^3$ Nullstellen von f(X). Der designierte Minimalabstand von X ergibt sich also zu 2+1=3.
- (3) Eine Polynomdivision liefert das Prüfpolynom $g(X) := (X^5 1)/f(X) = X^3 + \omega X^2 + \omega X + 1$. Eine Prüfmatrix von C ist vermöge g(X) gegeben durch

$$\begin{pmatrix} 1 & 0 \\ \omega & 1 \\ \omega & \omega \\ 1 & \omega \\ 0 & 1 \end{pmatrix}$$

In dieser bilden je zwei Zeilen ein linear unabhängiges Tupel. Da die Matrix nur zwei Spalten hat, ist sogar jedes aus drei ihrer Zeilen bestehende Tupel linear abhängig. Dies gibt d(C) = 3.

(4) Z.B. die Gestalt der Prüfmatrix liefert 5-2=3 als Dimension von C. Für die Hammingschranke bestimmen wir zunächst

$$V_4(5,1) = {5 \choose 0} (4-1)^0 + {5 \choose 1} (4-1)^1 = 16.$$

Somit wird die Hammingschranke zu

$$5 - \log_4 (V_4(5,1)) = 5 - \log_4 16 = 3$$
.

Ein Vergleich zeigt, daß die Dimension unseres Codes C die Hammingschranke genau erreicht.

Dies ist wegen der Antwort zu (5) auch nicht erstaunlich.

(5) Ja, C ist ein Hammingcode. Zu jeder der Geraden

$$\langle (10) \rangle, \langle (11) \rangle, \langle (1\omega) \rangle, \langle (1\omega^2) \rangle, \langle (01) \rangle$$

in $\mathbf{F}_4^{1\times 2}$ gibt es in der in (3) gefundenen Prüfmatrix

$$\begin{pmatrix} 1 & 0 \\ \omega & 1 \\ \omega & \omega \\ 1 & \omega \\ 0 & 1 \end{pmatrix}.$$

von C genau eine Zeile, welche in dieser Geraden liegt. Genauer, es liegen

$$(10) \in \langle (10) \rangle, \ (\omega \, \omega) \in \langle (11) \rangle, \ (1 \, \omega) \in \langle (1 \, \omega) \rangle, \ (\omega \, 1) \in \langle (1 \, \omega^2) \rangle, \ (01) \in \langle (01) \rangle.$$

Aufgabe 8

Die Aussage ist falsch. In der Tat liefert der Euklidsche Algorithmus

$$\operatorname{ggT}\left(f(X), f'(X)\right) \ = \ \operatorname{ggT}\left(X^9 + X^7 + X^4 + X^3 + X^2 + X + 1, \, X^8 + X^6 + X^2 + 1\right) \ = \ X^4 + X^2 + 1 \ \neq \ 1 \ .$$

Somit enthält f(X) einen irreduziblen Faktor mit Multiplizität größer 1.