Aufgabe 1

- (a) Ja. (Das charakteristische Polynom von A hat als reelles Polynom ungeraden Grades auch eine reelle Nullstelle.)
- (b) Ja. $(Av = \lambda v, Bv = \mu v \Rightarrow (AB)v = \lambda \mu v.)$
- (c) Ja. $(Av = \lambda v, Bv = \mu v \Rightarrow (A + B)v = (\lambda + \mu)v.)$

Aufgabe 2

- (a) Nein.
- (b) Nein. ($\varphi(0)$ muß Null sein.)
- (c) Ja.

Aufgabe 3

- (a) $\chi_A = ... = x^4 + x^3 3x^2 x + 2 = (x 1)(x^3 + 2x^2 x 2) = (x 1)^2(x + 1)(x + 2).$
- (b) Eigenwerte sind: 1, -1, -2 mit den Vielfachheiten 2, 1, 1.

(c) Basis von
$$V(1,A):\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\\0\end{pmatrix}$$
, Basis von $V(-1,A):\begin{pmatrix}1\\3\\-1\\1\end{pmatrix}$, Basis von $V(-2,A):\begin{pmatrix}1\\1\\0\\1\end{pmatrix}$.

Aufgabe 4

Gegeben ist $A := \begin{pmatrix} -3 & 0 & 0 \\ 2a & b & a \\ 10 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{3\times 3}$. Mit Sarrus berechnet man (im Kopf) $\chi_A = (x+3)(x-b)(x-2)$.

Wenn $b \neq 2, -3$ ist, dann besitzt A drei paarweise verschiedene Eigenwerte und ist daher diagonalisierbar. In den beiden Fällen b = 2 und b = -3 bleibt noch, die geometrische Vielfachheit von b zu bestimmen, und zu prüfen, wann (d.h. für welche a) diese mit der algebraischen Vielfacheit von b (also 2) übereinstimmt. Die Matrix ist genau dann diagonalisierbar, wenn A - bE den Rang 1 besitzt (denn genau dann ist die geometrische Vielfachheit von b gleich 2).

1.Fall: b=2: Die Matrix $A-2E=\begin{pmatrix} -5 & 0 & 0\\ 2a & b-2 & a\\ 10 & 0 & 0 \end{pmatrix}=\begin{pmatrix} -5 & 0 & 0\\ 2a & 0 & a\\ 10 & 0 & 0 \end{pmatrix}$ hat, wie man sofort an den Spalten erkennt, genau dann den Rang 1, wenn a=0 ist (sonst Rang 2).

2.Fall: b=-3: Die Matrix $A+3E=\begin{pmatrix}0&0&0\\2a&b+3&a\\10&0&5\end{pmatrix}=\begin{pmatrix}0&0&0\\2a&0&a\\10&0&5\end{pmatrix}$ hat (da die unteren beiden Zeilen linear abhängig sind) stets den Rang 1.

Also ist A genau dann diagonalisierbar, wenn $b \neq 2 \lor a = 0$. Die Diagonaleinträge der Diagonalform von A lauten in diesem Fall -3, b, 2.

Aufgabe 5

Gegeben sind
$$U = \langle v_1, v_2 \rangle$$
 mit $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ sowie $v = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$.

- (a) Die Orthogonalprojektion π_U auf U hat offensichtlich das Bild Im $\pi_U = U$. Wegen (v_1, v_2) linear unabhängig ist dim U = 2, also Rg $\pi_U = 2$. Folglich Def $\pi_U = 3 2 = 1$.
- (b) Nach Gram-Schmidt bilden

$$w_1 := v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 und $w_2 := v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} - 3/3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

eine Orthogonalbasis von U.

(c) Mit der Orthognalbasis aus b) läßt sich die Formel

$$\pi_U(v) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 \tag{1}$$

aufstellen. Also $\pi_U(v) := 6/3w_1 - 2/2w_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

(d) Jede Basis (v_1, v_2, v_3) mit $v_1, v_2 \in U$ und $\pi_U(v_3) = 0$ führt zu der gewünschten Abbildungsmatrix. Wir wählen also zunächst v_1, v_2 wie oben angegeben (als Basis von U), und suchen dann ein $v_3 \notin U$ mit $\pi_U(v_3) = 0$. Dazu können wir ein beliebiges $v \in V$ mit $v \notin U$ nehmen, die Zerlegung $v = \pi_U(v) + v_{\perp}$ bilden, und $v_3 := v_{\perp}$ setzen. Mit dem v aus c) ergibt sich z.B.

$$v_3 := v - \pi_U(v) = \begin{pmatrix} 2\\4\\0 \end{pmatrix} - \begin{pmatrix} 3\\2\\1 \end{pmatrix} = \begin{pmatrix} -1\\2\\-1 \end{pmatrix}.$$

(e) Die j-te Spalte von $M_{\pi_U}^{\mathcal{E}}$ enthält $\pi_U(e_j)$. Eingesetzt in die Formel (1) erhalten wir

$$\pi_U(e_1) = 1/3w_1 - 1/2w_2 = \begin{pmatrix} 5/6 \\ 1/3 \\ -1/6 \end{pmatrix},$$

$$\pi_U(e_2) = 1/3w_1 + 0/2w_2 = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix},$$

$$\pi_U(e_3) = 1/3w_1 + 1/2w_2 = \begin{pmatrix} -1/6 \\ 1/3 \\ 5/6 \end{pmatrix}.$$

Als Abbildungsmatrix also

$$M_{\pi_U}^{\mathcal{E}} = 1/6 \left(\begin{array}{ccc} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{array} \right).$$

(f) Es gibt unendlich viele. Neben U selbst ist jede Ebene, die senkrecht auf U steht, π_U -invariant.

Aufgabe 6

Sei $K = \mathbb{F}_5$. Gegeben ist

$$\varphi: K^{2\times 2} \to K^{2\times 3}, \quad X \mapsto X \cdot A, \quad \text{wobei } A = \left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 2 & 0 \end{array} \right).$$

(a) Eine Basis von $K^{2\times 2}$ ist z.B. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$). Die Bilder dieser vier Basisvektoren lauten:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 4 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 4 & 2 & 0 \end{array}\right).$$

Diese sind offensichtlich linear unabhängig, bilden also eine Basis von $\operatorname{Im} \varphi$. Insbesondere ist $\operatorname{Rg} \varphi = 4$. Folglich ist $\operatorname{Def} \varphi = \dim K^{2 \times 2} - \operatorname{Rg} \varphi = 4 - 4 = 0$, also $\operatorname{Ker} \varphi = \{0\}$.

- (b) Zu bestimmen ist eine Rechtsinverse von A. Eine Lösung der Gleichung $A \cdot B = E_2$ ist z.B. $B = \begin{pmatrix} 3 & 2 \\ -1 & -1 \\ 0 & 0 \end{pmatrix}$ (mittels Gauß-Verfahren).
- (c) Als j-te Spalte von B kann eine beliebige Lösung von $Ax = e_j$, $x \in K^3$, gewählt werden. Wegen $\operatorname{Rg} A = 2$ gibt es also $|K|^{3-2} = 5^1 = 5$ Lösungen für jede Spalte, und damit 25 Matrizen B.
- (d) Nein. Weil φ nicht surjektiv ist, kann es keine solche lineare Abbildung ψ' geben mit $\varphi \circ \psi' = \mathrm{id}$.

Aufgabe 7

Sei $A = S^t S$ für ein $S \in GL_n(\mathbb{R})$.

- (i) Es gilt $A^t = (S^t S)^t = S^t (S^t)^t = S^t S = A$, d.h. A symmetrisch.
- (ii) Für jedes $0 \neq x \in \mathbb{R}^n$ ist auch $Sx \neq 0$ (sonst wäre S nicht invertierbar). Folglich:

$$x^{t}Ax = x^{t}(S^{t}S)x = (x^{t}S^{t})(Sx) = (Sx)^{t}(Sx) = ||Sx|| > 0.$$

Bonus-Aufgabe

Es reicht zu zeigen, daß V eine Basis der Form $(v, \varphi(v))$ besitzt, denn wegen $\varphi(\varphi(v)) = \varphi^2(v) = 0$ hat φ bzgl. jeder Basis dieser Form die Abbildungsmatrix

$$M_{\varphi} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Zunächst ist nach Voraussetzung Ker $\varphi \neq V$ (sonst wäre $\varphi = 0$). Es gibt also einen Vektor $v \in V$ mit $v \notin \text{Ker } \varphi$, d.h. $\varphi(v) \neq 0$. Wegen $\varphi^2(v) = 0$ ist allerdings $\varphi(v) \in \text{Ker } \varphi$. Folglich auch $\langle \varphi(v) \rangle \subseteq \text{Ker } \varphi$, denn Ker φ ist ein Unterraum. Insgesamt haben wir $v \notin \langle \varphi(v) \rangle$ gezeigt, was bedeutet, daß $(v, \varphi(v))$ linear unabhängig ist. Da dim V = 2 vorausgesetzt war, handelt es sich hierbei sogar um eine Basis von V. Damit ist alles gezeigt.