Name: _

(1 P.)

(3 P.)

Klausur zu "Lineare Algebra I für Informatiker", SS 09

B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen

Matrikelnummer: __

Gesamtpunktzahl: 48 P.	
Aufgabe 1. (12 Punkte)	
Gegeben ist die reelle Matrix $A = \left(\begin{array}{ccc} a & -a & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{array} \right).$	
a) Für welche $a \in \mathbb{R}$ hat A den Eigenwert a ? b) Für welche Werte a aus Teil a) ist A diagonalisierbar?	
Aufgabe 2. (12 Punkte)	
Es sei V ein \mathbb{Q} -Vektorraum und $\mathcal{B} = \{v_1, v_2, v_3\}$ eine Basis von V . Weiter sei $\varphi: V \to V$ die	lineare
Abbildung mit der Abbildungsmatrix $M_{\varphi}^{\mathcal{B}} = \begin{pmatrix} -4 & -7 & -3 \\ 4 & 10 & 6 \\ -2 & -8 & -6 \end{pmatrix}$.	
a) Zeigen Sie, dass die Vektoren	(7 P.)
$u_1 := v_1 - 2v_2 + 2v_3, u_2 := -2v_1 + 2v_2 - v_3, u_3 := -v_1 + v_2 - v_3$	
eine Basis von V bilden, und berechnen Sie die Abbildungsmatrix von φ bzgl. (u_1,u_2,u_3) . b) Geben Sie Rang und Defekt von φ an, sowie Basen des Kerns und des Bildes.	(5 P.)
Aufgabe 3. (10 Punkte)	
Über einem beliebigen Körper K sei die Matrix $A=\begin{pmatrix}1&0&1&0\\1&a&1&0\\0&1&-1&1\end{pmatrix}$ gegeben.	
a) Berechnen Sie für $a \neq 0$ eine Matrix X , die $A \cdot X = E_3$ erfüllt. Hinweis: Hier ist a als Parameter zu behandeln, der auch in X wieder auftreten darf.	(4 P.)
Wir betrachten nun die lineare Abbildung $\varphi_a: K^4 \to K^3, x \mapsto Ax$.	
b) Für welche $a \in K$ ist φ_a surjektiv?	(2 P.)

Hinweis: Eine Rechtsinverse zu $\varphi \in \text{Hom}(V, W)$ meint eine lineare Abbildung ψ mit $\varphi \circ$

d) Zeigen Sie, dass in einem endlich-dimensionalen K-Vektorraum allgemein gilt:

Zu jedem $\varphi \in \text{End}(V)$ existiert ein $\psi \in \text{End}(V)$ mit $\varphi \circ \psi \circ \varphi = \varphi$.

c) Für welche $a \in K$ besitzt φ_a eine Rechtsinverse?

 $\psi = \mathrm{id}_W$.

Aufgabe 4. (7 Punkte)

Wir betrachten die reelle Matrix $A=\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}$ und den durch A beschriebenen Endomorphismus von \mathbb{R}^3 .

a) Zeigen Sie, dass A uneigentlich orthogonal ist.

(2 P.) (2 P.)

- b) Berechnen Sie den Unterraum aller Fixpunkte von A. Hinweis: Mit Fixpunkt von A ist ein $x \in \mathbb{R}^3$ gemeint, das Ax = x erfüllt. Es ist eine Basis des gesuchten Unterraumes anzugeben.
- c) Begründen Sie, dass A eine Spiegelung beschreibt, und berechnen Sie die Normale zur $\ (3\ P.)$ Spiegelebene.

Hinweis: Die Normale zu einer Ebene im \mathbb{R}^3 ist diejenige Ursprungsgerade, die orthogonal zur Ebene ist.

Aufgabe 5. (7 Punkte)

Es sei V ein euklidischer Vektorraum, d.h. ein endlich-dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt. Weiter sei $\varphi \in \operatorname{End}(V)$ ein orthogonaler Endomorphismus, d.h. für alle $v, w \in V$ gilt $\langle \varphi(v), \varphi(w) \rangle = \langle v, w \rangle$.

a) Zeigen Sie, dass φ ein Isomorphismus von V ist. (3 P.) Hinweis: Es soll dies "direkt", d.h. ohne Verwendung von Abbildungsmatrizen, gezeigt werden.

Es sei nun U ein beliebiger φ -invarianter Unterraum von V, d.h. $\varphi(U) \subseteq U$.

- b) Zeigen Sie, dass U^{\perp} invariant unter φ^{-1} ist. (2 P.)
- c) Zeigen oder widerlegen Sie: U^{\perp} ist invariant unter φ . (2 P.)

Viel Erfolg!