Klausur Mathematische Grundlagen WS 09/10

Prof. Dr. Gerhard Hiß

Denken Sie daran, alle Ihre Behauptungen ausreichend zu begründen und Rechenwege nachvollziehbar zu dokumentieren.

Aufgabe 1. (4 Punkte)

Es seien A und B mathematische Aussagen. Zeigen Sie:

$$[(A \wedge B) \Leftrightarrow \neg B] \quad \Rightarrow \quad \neg (A \wedge B).$$

Aufgabe 2. (4 Punkte)

Es seien $M := \{1, 3, -1, 3, 1, -3, -1, 1, 3, -1\}$ und $N := \{n \in \mathbb{Z} \mid n(n-1) < 10\}$. Bestimmen Sie

$$|M|, |N|, M \cup N, M \cap N, M \setminus N, N \setminus M, (M \setminus N) \times (N \setminus M), Pot(M \setminus N).$$

Aufgabe 3. (4 Punkte)

Es sei M eine nicht-leere Menge. Für jede Teilmenge $T \subseteq M$ definieren wir die *charakteristische Funktion*

$$\chi_T: M \to \{0,1\}, \quad x \mapsto \left\{ \begin{array}{ll} 1 & \text{für } x \in T, \\ 0 & \text{für } x \notin T. \end{array} \right.$$

Zeigen Sie die Bijektivität der Abbildung

$$\chi : \text{Pot}(M) \rightarrow \{f : M \rightarrow \{0,1\}\}, \quad T \mapsto \chi_T.$$

Aufgabe 4. (4 Punkte)

Zeigen Sie, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} (k+2)(k-1) = \frac{1}{3}n(n-1)(n+4).$$

Aufgabe 5. (4 Punkte)

Prüfen Sie, ob $\overline{119}$ in $\mathbb{Z}/299\mathbb{Z}$ invertierbar ist, und geben Sie gegebenenfalls das Inverse an (mit einem Vertreter aus $\{0\} \cup 298$).

Aufgabe 6. (4 Punkte)

Bestimmen Sie die Lösungsmenge des folgenden linearen Gleichungssystems über dem Körper $\mathbb{Z}/2\mathbb{Z} = \{0,1\}.$

$$\begin{array}{rcl}
 x_2 + x_3 & = & 1 \\
 x_1 + x_2 + x_4 & = & 0 \\
 x_1 + x_3 + x_4 & = & 1 \\
 x_1 + x_3 & = & 0
 \end{array}$$

Aufgabe 7. (4 Punkte)

Es sei K ein Körper. Für $(a,b) \in K \times K$ definieren wir

$$f_{a,b}: K \to K, \quad x \mapsto ax + b.$$

Weiter sei $M := \{f_{a,b} \mid (a,b) \in K \times K\}$ die Menge aller solcher Abbildungen. Zeigen Sie, dass durch die Komposition von Abbildungen \circ eine Verknüpfung auf der Menge M gegeben ist, und prüfen Sie, ob M ein Monoid ist. Prüfen Sie außerdem, ob \circ eine kommutative Verknüpfung auf M ist.

Aufgabe 8. (4 Punkte)

Für $(a,b),(c,d) \in \mathbb{R} \times \mathbb{R}$ definieren wir

$$(a,b) \leq (c,d) : \iff a \leq c \land b \geq d.$$

Zeigen Sie, dass $(\mathbb{R} \times \mathbb{R}, \preceq)$ eine geordnete Menge ist. Prüfen Sie außerdem, ob \preceq eine Totalordnung auf $\mathbb{R} \times \mathbb{R}$ ist.

Aufgabe 9. (4 Punkte)

Zeigen Sie, dass

$$R := \{ (z, w) \in \mathbb{C} \times \mathbb{C} \mid z - w \in \mathbb{R} \}$$

eine Äquivalenzrelation auf $\mathbb C$ ist, beschreiben Sie die Äquivalenzklassen und bestimmen Sie ein Vertretersystem.

Aufgabe 10. (4 Punkte)

Bestimmen Sie Real- und Imaginärteil sowie das multiplikative Inverse von

$$\frac{3\sqrt{3}+i\cdot2\sqrt{2}}{\sqrt{6}-i}.$$