Prof. Dr. Eva Zerz WS 2010/11

Mathematische Grundlagen

Klausur am 4. März 2011

Denken Sie daran, alle Ihre Behauptungen ausreichend zu begründen und Rechenwege nachvollziehbar zu dokumentieren.

Aufgabe 1. (3 Punkte)

Es seien A und B mathematische Aussagen. Zeigen Sie:

$$((A \Rightarrow \neg B) \Rightarrow \neg A) \iff (A \Rightarrow B).$$

Aufgabe 2. (4 Punkte)

Es seien $M := \{1, 3, 5, 3, -3, 5, -1, -3, 5, -1\}$ und $N := \{p \in \mathbb{N} \mid p \text{ Primzahl}, p \le 10\}$. Bestimmen Sie

$$|M|$$
, $|N|$, $(M \setminus N) \times (N \setminus M)$, $Pot(M \cap N)$, $|Pot(M \cup N)|$.

Aufgabe 3. (4 Punkte)

Zeigen Sie für alle $n \in \mathbb{N}$:

$$\sum_{k=1}^{2n-1} (-1)^{k-1} k^2 = n(2n-1).$$

Aufgabe 4. (4 Punkte)

Prüfen Sie, ob 33 in \mathbb{Z}_{274} invertierbar ist, und geben Sie gegebenenfalls das Inverse an.

Aufgabe 5. (2+2+2 Punkte)

Es seien $a, n \in \mathbb{N}$ und

$$\varphi: \mathbb{Z}_n \longrightarrow \mathbb{Z}_{an}, \quad x \mapsto a \cdot x, \qquad \qquad \psi: \mathbb{Z}_{an} \longrightarrow \mathbb{Z}_n, \quad x \mapsto x \bmod n.$$

Untersuchen Sie die Abbildung φ auf Injektivität, Surjektivität und Bijektivität. Zeigen Sie außerdem:

- a) Die Abbildung φ ist ein Gruppenhomomorphismus bezüglich der Addition, aber für a>1 kein Ringhomomorphismus.
- b) Es ist $\psi \circ \varphi = \mathrm{id}_{\mathbb{Z}_n}$ genau dann, wenn $n \mid (a-1)$.

Aufgabe 6. (2+2 Punkte)

Es seien A, B, M und N Mengen, mit $A \neq \emptyset \neq B$ und $M \subseteq A$, $N \subseteq B$. Weiter sei $f : A \to B$ eine Abbildung. Zeigen Sie:

- a) $f^{-1}(CN) = C(f^{-1}(N))$.
- b) Falls f surjektiv ist, so gilt $C(f(M)) \subseteq f(CM)$.

(Die Komplemente sind bezüglich A bzw. B gebildet.)

Aufgabe 7. (4 Punkte)

Auf der Menge $M := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ Funktion} \}$ sei die Relation \leq definiert durch

$$f \leq g : \iff f(x) \leq g(x) \text{ für alle } x \in \mathbb{R}.$$

Zeigen Sie, dass \leq eine Ordnung ist. Ist \leq eine Totalordnung?

Aufgabe 8. (4 Punkte)

Die Relation \sim auf $\mathbb C$ sei definiert durch

$$z \sim w : \iff \operatorname{Re}(z) - \operatorname{Re}(w) = \operatorname{Im}(z) - \operatorname{Im}(w).$$

Zeigen Sie, dass \sim eine Äquivalenzrelation ist. Bestimmen Sie ein Vertretersystem von $\mathbb C$ bezüglich \sim .

Aufgabe 9. (4 Punkte)

Bestimmen Sie das Inverse der folgenden Matrix über den komplexen Zahlen.

$$A := \begin{bmatrix} i & 0 & 1 \\ 1 & -1 & 1 - i \\ -1 & 0 & 1 + i \end{bmatrix} \in \mathbb{C}^{3 \times 3}$$

Aufgabe 10. (3 Punkte)

Es sei R ein kommutativer Ring und $n \in \mathbb{N}$. Zeigen Sie, dass die Menge

$$M := \{A \in \mathbb{R}^{n \times n} \mid A \text{ invertierbar mit } A^{-1} = A^T\}$$

eine Untergruppe der invertierbaren Matrizen in $R^{n \times n}$ bezüglich Matrixmultiplikation ist.