Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog Scheme

Roland Schäfer

IGPM — RWTH Aachen

2006-08-15

< Ξ > < Ξ >

Outline

- What is Leapfrog
- 2 Black-Box Approach
- Intermediate Sparsity (IS) Approach, Compressed Jacobian
- 4 2d-Example Shallow Water
 - Simple Update
 - Complex Update

→ Ξ →

Outline

What is Leapfrog

- - Simple Update
 - Complex Update

イロト イポト イヨト イ

What is Leapfrog

Target: Calculate Z(T) from Z(0) (initial value) and W (parameter)

What is Leapfrog

Target: Calculate Z(T) from Z(0) (initial value) and W (parameter) Leapfrog: Z(t + 1) = H(Z(t), Z(t - 1), W)

What is Leapfrog

Target: Calculate Z(T) from Z(0) (initial value) and W (parameter)

Leapfrog: Z(t+1) = H(Z(t), Z(t-1), W)

Leapfrog Scheme (LS) Initialize Z(0) and WCompute Z(1)for t = 1 to T - 1 do Z(t + 1) = H(Z(t), Z(t - 1), W)end do

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline

What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

• Complex Update

Conclusion

イロト イポト イヨト イヨ

Calculate Derivatives

Let X be a subset of s elements from the n + p sized [Z(0), W].

We want:

 $\frac{dZ(T)}{dX}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Calculate Derivatives

Let X be a subset of s elements from the n + p sized [Z(0), W].

We want:

Black-Box Approach (BB) Initialize $[Z(0), \frac{dZ(0)}{dX}]$ and $[W, \frac{dW}{dX}]$ Compute $[Z(1), \frac{dZ(1)}{dX}]$ for t = 1 to T - 1 do $\left[Z(t+1), \frac{dZ(t+1)}{dX}\right] = \hat{H}\left(Z(t), \frac{dZ(t)}{dX}, Z(t-1), \frac{dZ(t-1)}{dX}, W, \frac{dW}{dX}\right)$

 $\frac{dZ(T)}{dX}$

end do

Operations:

• Computation of H takes f_H flops

イロト イヨト イヨト イヨト

Operations:

- Computation of H takes f_H flops
- Computation of Z(T) takes $O(f_H T)$ flops

200

<ロ> (日) (日) (日) (日) (日)

Operations:

- Computation of H takes f_H flops
- Computation of Z(T) takes $O(f_H T)$ flops
- Computation of $[Z(T), \frac{dZ(T)}{dX}]$ takes $O(s \cdot f_H T)$ flops

・ロト ・聞 ト ・臣 ト ・臣 ト 三臣

Operations:

- Computation of H takes f_H flops
- Computation of Z(T) takes $O(f_H T)$ flops
- Computation of $[Z(T), \frac{dZ(T)}{dX}]$ takes $O(s \cdot f_H T)$ flops

Memory:

need to save two timesteps

イロト イポト イヨト イヨト 二日

Operations:

- Computation of H takes f_H flops
- Computation of Z(T) takes $O(f_H T)$ flops
- Computation of $[Z(T), \frac{dZ(T)}{dX}]$ takes $O(s \cdot f_H T)$ flops

Memory:

- need to save two timesteps
- $Z \in \mathbb{R}^n$, $W \in \mathbb{R}^p$

therefore computation of H takes O(2n + p) words of storage

イロト イポト イヨト イヨト 二日

Operations:

- Computation of H takes f_H flops
- Computation of Z(T) takes $O(f_H T)$ flops
- Computation of $[Z(T), \frac{dZ(T)}{dX}]$ takes $O(s \cdot f_H T)$ flops

Memory:

- need to save two timesteps
- $Z \in \mathbb{R}^n$, $W \in \mathbb{R}^p$

therefore computation of H takes O(2n + p) words of storage

• BB takes $O(s \cdot (2n + p))$ words of storage

イロト (過) (ヨ) (ヨ) (ヨ) () ()

Outline

1 What is Leapfrog

2 Black-Box Approach

Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

Conclusion

→ Ξ → < Ξ</p>

Leapfrog Scheme:

$$Z(t+1) = H(Z(t), Z(t-1), W)$$

999

イロト イヨト イヨト イヨト

Leapfrog Scheme:

$$Z(t+1) = H(Z(t), Z(t-1), W)$$

Differentiate w.r.t. X:

$$\frac{dZ(t+1)}{dX} = \frac{\partial H}{\partial Z(t)} \cdot \frac{dZ(t)}{dX} + \frac{\partial H}{\partial Z(t-1)} \cdot \frac{dZ(t-1)}{dX} + \frac{\partial H}{\partial W} \cdot \frac{dW}{dX}$$

999

イロト イヨト イヨト イヨト

Leapfrog Scheme:

$$Z(t+1) = H(Z(t), Z(t-1), W)$$

Differentiate w.r.t. X:

$$\frac{dZ(t+1)}{dX} = \frac{\partial H}{\partial Z(t)} \cdot \frac{dZ(t)}{dX} + \frac{\partial H}{\partial Z(t-1)} \cdot \frac{dZ(t-1)}{dX} + \frac{\partial H}{\partial W} \cdot \frac{dW}{dX}$$

Fact

$$\frac{\partial H}{\partial \dots}$$
 is sparse for PDE problems

Roland Schäfer (IGPM)

イロト イヨト イヨト イヨト

Leapfrog Scheme:

$$Z(t+1) = H(Z(t), Z(t-1), W)$$

Differentiate w.r.t. X:

$$\frac{dZ(t+1)}{dX} = \frac{\partial H}{\partial Z(t)} \cdot \frac{dZ(t)}{dX} + \frac{\partial H}{\partial Z(t-1)} \cdot \frac{dZ(t-1)}{dX} + \frac{\partial H}{\partial W} \cdot \frac{dW}{dX}$$

Fact

$$\frac{\partial H}{\partial \dots}$$
 is sparse for PDE problems

Exploit this fact with cheap "sparse matrix - matrix" multiplications

Roland Schäfer (IGPM)

イロト イポト イヨト イヨト

Why is the matrix sparse

 ${\it H}$ typically comes from a stencil, which depends only on a few, neighbored cells

イロト イポト イヨト イ

Why is the matrix sparse

 ${\it H}$ typically comes from a stencil, which depends only on a few, neighbored cells

In forthcoming example:

max. 13 non-zero entries of $\left[\frac{\partial H}{\partial Z(t)}, \frac{\partial H}{\partial Z(t-1)}, \frac{\partial H}{\partial W}\right]$

Roland Schäfer (IGPM)

2006-08-15 10 / 23

Intermediate Sparsity Approach (IS)

Assume: "sparse matrix – matrix" multiplications are cheap

Intermediate Sparsity Approach (IS)

Assume: "sparse matrix – matrix" multiplications are cheap

Intermediate Sparsity Approach (IS) Initialize $[Z(0), \frac{dZ(0)}{dX}]$ and $[W, \frac{dW}{dX}]$. Compute $[Z(1), \frac{dZ(1)}{dX}]$. for t = 1 to T - 1 do **Step 1:** Compute Z(t+1) and $\frac{\partial H}{\partial Z(t)}, \frac{\partial H}{\partial Z(t-1)}, \frac{\partial H}{\partial W}$ **Step 2:** Compute* $\frac{dZ(t+1)}{dX}$ via matrix-matrix multiplication end do

* via
$$\frac{dZ(t+1)}{dX} = \frac{\partial H}{\partial Z(t)} \cdot \frac{dZ(t)}{dX} + \frac{\partial H}{\partial Z(t-1)} \cdot \frac{dZ(t-1)}{dX} + \frac{\partial H}{\partial W} \cdot \frac{\partial W}{dX}$$

Reland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 11/22

Assume: "matrix-matrix" multiplications are optimized for sparse matrices: sparse linear algebra (SL)

イロト イポト イヨト イヨト 二日

Assume: "matrix-matrix" multiplications are optimized for sparse matrices: sparse linear algebra (SL)

Operations:

• Stencil size is $O(\kappa)$

< ロト < 同ト < ヨト < ヨ

Assume: "matrix-matrix" multiplications are optimized for sparse matrices: sparse linear algebra (SL)

Operations:

- Stencil size is $O(\kappa)$
- Step 1 needs a total of $O(\kappa f_H T)$ flops (instead of $O(sf_H T)$)

Assume: "matrix-matrix" multiplications are optimized for sparse matrices: sparse linear algebra (SL)

Operations:

- Stencil size is $O(\kappa)$
- Step 1 needs a total of $O(\kappa f_H T)$ flops (instead of $O(sf_H T)$)
- matrix-matrix multiplication needs O(snT)

Assume: "matrix-matrix" multiplications are optimized for sparse matrices: sparse linear algebra (SL)

Operations:

- Stencil size is $O(\kappa)$
- Step 1 needs a total of $O(\kappa f_H T)$ flops (instead of $O(sf_H T)$)
- matrix-matrix multiplication needs O(snT)

Memory:

• Step 1 needs $O(\kappa(2n+p))$ words of storage

イロト (過) (ヨ) (ヨ) (ヨ) () ()

Assume: "matrix-matrix" multiplications are optimized for sparse matrices: sparse linear algebra (SL)

Operations:

- Stencil size is $O(\kappa)$
- Step 1 needs a total of $O(\kappa f_H T)$ flops (instead of $O(sf_H T)$)
- matrix-matrix multiplication needs O(snT)

Memory:

- Step 1 needs $O(\kappa(2n+p))$ words of storage
- Step 2 needs O(sn) words of storage

イロト (過) (ヨ) (ヨ) (ヨ) () ()

Another way: Compressed Jacobians (IS-CJ)

Let S^1 , S^2 be suitable chosen seed matrices with λ_1, λ_2 columns for $\frac{dZ(t)}{dX}$ and $\frac{dZ(t-1)}{dX}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Another way: Compressed Jacobians (IS-CJ)

Let S^1 , S^2 be suitable chosen seed matrices with λ_1, λ_2 columns for $\frac{dZ(t)}{dX}$ and $\frac{dZ(t-1)}{dX}$

Obtain a compressed version of $\frac{\partial H}{\partial \dots}$

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のへで

Another way: Compressed Jacobians (IS-CJ)

Let S^1 , S^2 be suitable chosen seed matrices with λ_1, λ_2 columns for $\frac{dZ(t)}{dX}$ and $\frac{dZ(t-1)}{dX}$

Obtain a compressed version of $\frac{\partial H}{\partial \dots}$

Complexity: $(\lambda = \lambda_1 + \lambda_2 + p)$

- Computation: $O(\lambda f_H T) + O(snT)$
- Memory: $O(\lambda(2n+p)) + O(sn)$

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のへで

	BB	IS–SL	IS–CJ
Computation	$O(sf_HT)$	$O(\kappa f_H T) + O(snT)$	$O(\lambda f_H T) + O(snT)$
Storage	O(s(2n+p))	$O(\kappa(2n+p)) + O(sn)$	$O(\lambda(2n+p)) + O(sn)$

590

・ロト ・四ト ・ヨト ・ヨト

	BB	IS–SL	IS–CJ
Computation	$O(sf_HT)$	$O(\kappa f_H T) + O(snT)$	$O(\lambda f_H T) + O(snT)$
Storage	O(s(2n+p))	$O(\kappa(2n+p)) + O(sn)$	$O(\lambda(2n+p)) + O(sn)$

When is IS faster then BB?

イロト イ団ト イヨト イヨト

	BB	IS–SL	IS–CJ
Computation	$O(sf_HT)$	$O(\kappa f_H T) + O(snT)$	$O(\lambda f_H T) + O(snT)$
Storage	O(s(2n+p))	$O(\kappa(2n+p)) + O(sn)$	$O(\lambda(2n+p)) + O(sn)$

When is IS faster then BB?

Assume: $\kappa, \lambda \ll s$

イロト イヨト イヨト イヨト

	BB	IS–SL	IS–CJ
Computation	$O(sf_HT)$	$O(\kappa f_H T) + O(snT)$	$O(\lambda f_H T) + O(snT)$
Storage	O(s(2n+p))	$O(\kappa(2n+p)) + O(sn)$	$O(\lambda(2n+p)) + O(sn)$

When is IS faster then BB?

Assume: $\kappa, \lambda \ll s$

IS is faster then BB if $O(\kappa f_H T) \gg O(snT)$

イロト イポト イヨト イヨト

Outline

- What is Leapfrog
- 2 Black-Box Approach
- Intermediate Sparsity (IS) Approach, Compressed Jacobian
- 4 2d-Example Shallow Water
 - Simple Update
 - Complex Update

Example Shallow Water in 2d

Shallow Water used to simulate water flow, where vertical dimension is much smaller than horizontal (shallow).

E.g. rivers, lakes, costal flow

Variables: water height, x-momentum, y-momentum (2d)

Example Shallow Water in 2d

Shallow Water used to simulate water flow, where vertical dimension is much smaller than horizontal (shallow).

E.g. rivers, lakes, costal flow

Variables: water height, x-momentum, y-momentum (2d)

We calculate s = n + p derivatives

Grid size	n	р	s = n + p
11 × 11	$3 \cdot 11 \cdot 11 = 363$	4	367
16 × 16	$3 \cdot 16 \cdot 16 = 768$	4	772
21×21	$3 \cdot 21 \cdot 21 = 1323$	4	1327

11 × 11 3.72 3.85 4	.70
16 × 16 13.61 13.84 18	.82
21 × 21 37.82 38.16 53	.31

Memory requirements in megabytes

...& Runtime

Grid size (platform)	SL	CJ	MM	IS–SL	IS–CJ	BB
11 × 11 (IBM)	4.90	1.93	8.03	12.93	9.96	4.24
16 × 16 (IBM)	17.77	8.70	38.66	56.43	47.36	36.68
21 × 21 (IBM)	42.98	21.51	119.32	162.30	140.83	71.98
11 × 11 (Sun)	12.26	6.55	19.24	31.50	25.79	26.63

Runtime in seconds

- SL: calculate sparse Jacobians
- CJ: calculate compressed Jacobians
- MM: matrix-matrix multiplications
- SL+MM = IS-SL, CJ+MM = IS-CJ

	BB	IS–SL	IS–CJ
Computation	$O(sf_HT)$	$O(\kappa f_H T) + O(snT)$	$O(\lambda f_H T) + O(snT)$
Storage	O(s(2n+p))	$O(\kappa(2n+p)) + O(sn)$	$O(\lambda(2n+p)) + O(sn)$

When is IS faster then BB?

Assume: $\kappa, \lambda \ll s$

IS is faster then BB if $O(\kappa f_H T) \gg O(snT)$

イロト イポト イヨト イヨト

Expensive Update

Lets evaluate H not only one time, but up to 16 times to emulate a function H, which is more expensive to calculate

イロト イポト イヨト イヨ

Expensive Update

Lets evaluate H not only one time, but up to 16 times to emulate a function H, which is more expensive to calculate (IS-SL)

Roland Schäfer (IGPM)

2006-08-15 20 / 23

MM Multiplication Percentage

Roland Schäfer (IGPM)

2006-08-15 21 / 23

Outline

What is Leapfrog

- 2 Black-Box Approach
- Intermediate Sparsity (IS) Approach, Compressed Jacobian
- 4 2d-Example Shallow Water
 - Simple Update
 - Complex Update

5 Conclusion

• Exploiting Sparsity works, if $O(\kappa f_H T) \gg O(snT)$

- Exploiting Sparsity works, if $O(\kappa f_H T) \gg O(snT)$
- this means: evaluation of H must be expensive

・ロト ・ 同ト ・ ヨト ・ ヨ

- Exploiting Sparsity works, if $O(\kappa f_H T) \gg O(snT)$
- this means: evaluation of H must be expensive
- for example: High-Order code

- Exploiting Sparsity works, if $O(\kappa f_H T) \gg O(snT)$
- this means: evaluation of H must be expensive
- for example: High-Order code
- substantial speedup

- Exploiting Sparsity works, if $O(\kappa f_H T) \gg O(snT)$
- this means: evaluation of H must be expensive
- for example: High-Order code
- substantial speedup

Lit.: C. Bischof, M. Bücker, P. Wu:

Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog Scheme,

Comp. Opt. Appl. 24, 117-133, 2003