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Applications Kuramoto-Sivashinsky

The Kuramoto-Sivashinski equation

ut = −νuxxxx − uxx + 2uux

on [0,∞) × (−π, π) with periodic boundary conditions: u(t,−π) =

u(t, π).

• Jolly, Kevrekidis and Titi, ’90: bifurcation diagram for ν ∈ (0.057,∞)

for a 12 mode Galerkin approximation;

• here: rigorous proof of existence and localization of several of these

equilibria.
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Prototype Result

Theorem 1 (Mischaikow,Zgliczyński,01) Let u(x) =∑28
k=1 ak sin(kx), with the ak as below. Then, for ν = 0.1 there exists

an equilibrium u∗(x) for the KS-equation such that

‖u∗ − u‖L2 < 2.8 · 10−13, ‖u∗ − u‖C0 < 2.1 · 10−13.
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Line of reasoning

• Consider the evolution equation

u̇ = F (u)

on some Hilbert space H.

• Decompose

H = Xm ⊕ Ym,

with dim Xm < ∞.

• Let Pm : H → Xm and Qm : H → Ym be the associated orthogonal

projections.
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• With p = Pmu and q = Qmu we rewrite the system as

ṗ = PmF (p, q)

q̇ = QmF (p, q).

• Consider a restricted domain W ⊕ V ⊂ Xm ⊕ Ym.

• Draw conclusions about the dynamics of the differential inclusion

ṗ ∈ PmF (p, V )

by using Conley index arguments.

• Lift the information to the original system (by e.g. using compact-

ness/continuity arguments).
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Restricted domain

• Consider a complete orthogonal basis (ϕk)k∈N of H.

• Let Xm = span{ϕ0, . . . , ϕm−1} and Ak : H → span{ϕk}.

• Let W ⊂ Xm be compact, a−k , a+
k ∈ R, k = 0, 1, . . . and

V =
∞∏

k=m

[a−k , a+
k ].

• The bounds W and {a±k } are self-consistent, if

(i) a−k < 0 < a+
k for k > M ;

(ii) u =
∑

k akϕk ∈ H if ak ∈ [a−k , a+
k ] for all k.

(iii) F is continuous on W ⊕ V .
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Equivalent countable system

If W and {a±k } are self-consistent bounds, W ⊕ V is compact and a

function u : [0, T ] → W ⊕ V ,

u(t) =
∞∑

k=0

uk(t)ϕk,

solves u̇ = F (u), iff it solves

u̇k = AkF (u)

on [0, T ] for all k.
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Countable system for Kuramoto-Sivashinsky

• We consider

H = {u ∈ L2(−π, π) | u(t,−π) = u(t, π), u(t,−x) = −u(t, x)}.

• Fourier expansion of u ∈ H:

u(t, x) =
∑
k∈Z

bk(t) exp(ikx),

which yields

ḃk = (k2 − νk4)bk + ik
∑
m∈Z

bmbk−m, k ∈ Z.

• Since u ∈ H is real-valued, bk = b−k.
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• Since u ∈ H is odd, bk = iak.

• Thus ak = −a−k, a0 = 0 and we arrive at

ȧk = k2(1− νk2)ak − k

k−1∑
n=1

anak−n + 2k
∞∑

n=1

anan+k,

k = 1, 2, . . ..
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Isolating blocks

• ϕ : R× Rm → Rm continuous flow, generated by ż = f(z).

• If N ⊂ Rm is a compact set such that

Inv(N, ϕ) ⊂ int N,

then N is an isolating neighborhood.

• If in addition for any z ∈ ∂N there exists tz > 0 such that

ϕ((0, tz), z) ∩N = ∅ or ϕ((−tz, 0), z) ∩N = ∅,

then N is an isolating block.
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Local sections

• Isolating blocks can be constructed via local sections:

• Ξ ⊂ Rm is a local section for ϕ, if

ϕ : (−ε, ε)× Ξ → ϕ((−ε, ε), Ξ)

is a homeomorphism and ϕ((−ε, ε), Ξ) is open.

• Example: hypersurface Ξ which is transversal to the flow, i.e. for

each z ∈ Ξ,

n(z) · f(z) 6= 0,

where n(z) is a normal vector at z ∈ Ξ.
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Isolating blocks for linear systems

Consider  ż1

ż2

 =

 λ1 0

0 λ2

 z1

z2


with λ1, λ2 6= 0. Then

[a−1 , a+
1 ]× [a−2 , a+

2 ]

with a−i < 0 < a+
i is an isolating block.
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Robust isolating blocks

Consider the nonlinear, perturbed system ż1

ż2

 =

 λ1 0

0 λ2

 z1

z2

+

 f1(z)

f2(z)

+

 ε1(z)

ε2(z)

 (1)

where |fi|(z) = O(‖z‖2) and maxz∈N |εi(z)| ≤ ci.

If

λia
±
i + fi(z) + εi(z) (2)

has the same sign as λia
±
i on the sets {z ∈ N, zi = a±i }, then N is an

isolating block for (1).

(2)  system of inequalities
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Conley index

• Let N be an isolating block for ϕ. Let L be the closed subset of

∂N such that for all z ∈ L

ϕ((0, ε), z) ∩N = ∅

for a sufficiently small ε > 0. The Conley index of Inv(N, ϕ) is

CH∗(Inv(N,ϕ)) = H∗(N,L).

• McCord, 88: If the Conley index has the form

CHj(Inv(N,ϕ)) ∼=

 Z if j = q

0 otherwise,

for some q, then N contains a fixed point.
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Lifting to higher order modes

• Idea: construct isolating block N for the m-mode system

ṗ = PmF (p, q) (3)

such that it is robust for all q ∈ V .

• Definition: The compact sets N ⊂ W and the bounds {a±k } are

topologically self-consistent, if W and {a±k } are self-consistent

(i) for u ∈ W ⊕ V and k > m

AkF (u) < 0 if Aku = a+
k ,

AkF (u) > 0 if Aku = a−k ,

(ii) and N is an isolating block for (3) for all q ∈ V .
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Lifting to higher order modes

Let N ⊂ W and {a±k } be topologically self-consistent. Consider

N̂ = N ×
r∏

k=m+1

[a−k , a+
k ].

Then N̂ is an isolating block for the system

ȧk = AkF

(
r∑

i=1

aiϕi

)
, k = 1, . . . , r,

and

CH∗(Inv(N̂)) ∼= CH∗(Inv(N)).
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Lifting to higher order modes

Theorem 2 (Mischaikow,Zgliczyński,01) Let N ⊂ W and {a±k }
be topologically self-consistent. Suppose that

CHj(Inv(N)) ∼=

 Z if j = q

0 otherwise,

for some q, then there exists a fixed point

u∗ ∈ N × V

for the partial differential equation u̇ = F (u).
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Estimates

(i) 1 ≤ k ≤ m: actual variables,

W =
m∏

k=1

[a−k , a+
k ];

(ii) m < k ≤ M : explicit bounds (intervals)

(iii) M < k: asymptotic bounds,

[a−k , a+
k ] =

C

ks
[−1, 1]

for some C > 0 and some integer s > 1.
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Prototype estimates

• For 1 ≤ k ≤ m,

∞∑
n=m−k+1

anan+k ⊂
M−k∑

n=m−k+1

anan+k + C

∞∑
n=M−k+1

|an|
(k + n)s

[−1, 1]

+
C2

(k + M + 1)s(s− 1)M s−1
[−1, 1]

• For k > M

∞∑
n=1

anan+k ⊂
C

ks−1(M + 1)

(
C

(M + 1)s−1(s− 1)
+

M∑
n=1

|an]

)
[−1, 1]
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Example

For ν = 0.75 and m = 2 we obtain the Galerkin system

ȧ1 =
1

4
a1 + 2a1a2

ȧ2 = −8a2 − 2a2
1.

Fixed points are ā± = (± 1√
2
,−1

8
).

The full equations reads

ȧ1 =
1
4
a1 + 2

∞∑
n=1

anan+1

ȧ2 = −8a2 − 2a2
1 + 4

∞∑
n=1

anan+2.
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We choose

W = ā+ + [−0.1, 0.1]× [−0.1, 0.1]

and suitable bounds a±k , in particular

[a−k , a+
k ] =

10285.3

k10
[−1, 1]

for k > 10.

By estimating the contributions of the neglected modes we obtain the

inclusion

ȧ1 ∈ 1

4
a1 + 2a1a2 + ε1

ȧ2 ∈ −8a2 − 2a2
1 + ε2.
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with

ε1 = [−1 · 10−2, 8 · 10−10]

ε2 = [−2 · 10−8, 7 · 10−2].
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Applications Kot-Schaffer

infinite dimensional mapyGalerkin + truncation estimate

finite dimensional multivalued mapyspatial discretization (GAIO)

combinatorial multivalued map (directed graph)ygraph algorithms

combinatorial index pairycomputational homology (CHomP)

Conley index for finite dimensional continuous selectorylifting

Conley index for original map
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The map

The Kot-Schaffer growth-dispersal model for plants:

Φ : L2 → L2, Φ(a)(y) =
1

2π

∫ π

−π

b(x, y) µ a(x)

(
1− a(x)

c(x)

)
dx,

a, b, c ∈ L2([−π, π]), µ > 0, b(x, y) = b(x− y).
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Equivalent countable system

Using a basis of Fourier-modes ϕk = exp(ik·) for L2 one obtains the

countable system of maps:

fk(a) = µbk

[
ak −

∑
j+l+n=k

cjalan

]
, k ∈ Z,

ak, bk, ck Fourier coefficients of a, b, c−1.

Regularity of the solution

|〈Φ(a), ϕk〉| ≤ Cg,a|bk|
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Line of reasoning

• Let Pm : L2 → Xm = span{ϕ0, . . . , ϕm−1} be the projection onto

the first m modes and consider the finite dimensional map

f (m) : Xm → Xm, f (m) = Pm ◦ f ;

• What is the relation between the dynamics of f and of f (m)?

• Write f(a) = f(Pma) + (f(a)− f(Pma)) and suppose that we can

bound f(a)− f(Pma) on a compact subset

Z = W × V, W ⊂ Xm,

of L2:

|f(a)− f(Pma)| < ε(m) for all a ∈ Z.
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• Now consider a multivalued map F (m) : W ⇒ Xm with the prop-

erty that for all a ∈ Z

Pmf(a) ∈ F (m)(Pma).

• Compute objects of interest for F (m) via a rigorous set-oriented

approach in combination with the Conley-index theory:

– cover the maximal invariant set of F (m) in W ;

– compute approximate locations of objects of interest (periodic

points, connecting orbits, chain recurrent sets);

– construct a corresponding index pair;

– compute its Conley index;

• Lift the information on F (m), resp. f (m), to the full system Φ.
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Finite dimensional multivalued map

F
(m)
k (a0, . . . , am−1) = µbk

ak −
∑

j+l+n=k
0≤j,l,n≤m−1

cjalan

+ ε
(m)
k [−1, 1] ,

k = 0, 1, . . . ,m− 1.

The error ε
(m)
k has been computed in such a way that∣∣∣fk(a)− f

(m)
k (a0, . . . , am−1)

∣∣∣ ∈ ε
(m)
k [−1, 1]

for all a in some compact set Z = W × V ⊂ L2.
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Computing F

• Write

f(x + h) = f(x) + Df(x)h + fnl(x, h).

• For the box B = B(c, r) ∈ B (c: center, r: radius) compute εnl(c)

such that

max
|h|≤r

∣∣fnl(c, h)
∣∣ ≤ εnl(c)

• For x ∈ B set

F (m)(x) = B(f(c), |Df(c)|r + εnl(c) + ε(m))

• Finally define

F(B(c, r)) = {B′ ∈ B | F (c) ∩B′ 6= ∅}.
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• Note: the set F(B) can be determined by a single depth first

search of the tree:

F = cap(B, C, k)

if B ∩ C 6= ∅
if depth(B) = k

F := F ∪ {B}
else

F := F ∪ cap(B+, C, k) ∪ cap(B−, C, k)

return F

Control of round off via interval arithmetic (BIAS, Profil, b4m, GAIO);
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Lifting to the full system

The compact set Z = W × V ⊂ L2 is of the form

Z =
∞∏

k=0

[a−k , a+
k ].

Theorem 3 Let I(m) be an isolating neighborhood for F (m). If

fk(Z) ⊂ (a−k , a+
k ), k ≥ m,

then

I = I(m) ×
∞∏

k=m

[a−k , a+
k ]

is an isolating neighborhood for Φ. In particular, the Conley index for

a corresponding index pair is the same as for I(m).
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Truncation estimates

Consider a polynomial nonlinearity c(x)a(x)p in Φ. The corresponding

terms in the associated countable system read

ak 7→
∑

n0,...,np−1∈Z

cn0an1 . . . anp−1ak−(n0+···+np−1).

Regularity assumptions. Suppose that for some constants A, B, C >

0, b, s > 1, |ak| ≤ A
s|k|

, |bk| ≤ B
b|k|

, |ck| ≤ C
s|k|

, k ∈ Z, then

|
∑

n1,...,np−1∈Z

cn0an1 . . . anp−1ak−(n1+...+np−1)| ≤
αpApC

s|k|

( b

β

)|k|
where β is such that b/s < β < b and α = α(s, b, β).
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Example computation

We consider the parameters µ = 3.5, bk = 2−k, c0 = 0.8, c1 = −0.2 and

ck = 0 for k > 1.

(i) Running a simulation for m = 50:
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(ii)  exponential estimate for the ak; initial bounds:

k a−k a+
k

0 0.2 1.5

1 0.05 0.5

2 −0.001 0.1

2 < k < M −2−k 2−k

(iii) Covering of the maximal invariant set in the chosen region:
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(iv) Connecting orbit from a fixed point to a period two point:

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
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(v) Isolating neighborhood:

Oliver Junge, Institute for Mathematics, University of Paderborn 37



Applications Kot-Schaffer

(vi) Homology of the corresponding index pair:

H∗(N1, N0) ∼= (0, Z8, 0, 0, . . .)

and the map in homology:

F1 :=



0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0
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Theorem 4 The map Φ possesses an orbit

(aj)j∈Z, aj ∈ L2([−π, π]),

connecting a neighborhood of a fixed point p1 ∈ L2([−π, π]) of Φ to a

neighborhood of a period two point p2 ∈ L2([−π, π]) of Φ, such that for

the coordinates (p1), (p2) and (aj), j ∈ Z,

(p1), (p2), (aj) ∈ |I(12)| ×
49∏

k=12

[a−k , a+
k ]×

∞∏
k=50

1

2k
[−1, 1], j ∈ Z.

Here the a±k are the final bounds.
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2. Example computation
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Theorem. For the parameter values [...] there is an

invariant set, contained in [...], on which Φ is semi-

conjugate to the subshift given by the transition graph.
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Software

• CHomP — Computational Homology Program

http://http://www.math.gatech.edu/~chom/

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, Pawel

Pilarczyk.

• GAIO — Global analysis of invariant objects

http://www.upb.de/math/~agdellnitz/gaio

Michael Dellnitz, O.J.

• Scripts for these computations:

http://www.upb.de/math/~junge/kot_schaffer/code
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