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A free chain complexC = {(C}, 0,) | k € Z} consists of free abelian
groups C}, called chains and group homomorphisms 9, : C}. —
C._1, called boundary operators, satisfying

8k08k+1 — O
for all kK € Z

The cycles of C are
Zp = Kker0p, ={z€ C} | Oz = 0}
The boundaries of C are
B :=im 0, = {b € Cy | there exists ¢ € Ci41 such that Oxc = b}
The homology groups of C are
Hy, := Zy/ By,



Computing Homology

function homologyGroupO0fChainComplex( array| O :] of matrix D)
array[ —1 : ] of matrix v, w;
for k := 0 to lastindex(D) do
(W[k],V[k — 1]) := kernelImage(D[k]);
endfor;
V[lastIndex(D)] := O;
array[ O :] of list H;
for k := O to lastIndex(D) do
H[k] := quotientGroup(W[k], V[k]);
endfor;
return H;



function kernelImage(matrix D)

m := numberOfRows(D);

n .= numberOfColumns(D);

DT := transpose(D);

(B,P,P,k) := rowEchelon(DT);

BT := transpose(B);

PT := transpose(P);

return (PT[1 :n,k+ 1 :n],BT[1 :m, 1 :k]);

*

* %

P is invertible Q =

* X% X

k

B = PD?T implies im BT = im D

BT(PTY=1 = D implies {PTej j=k+ 1n} — ker D.
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Cubical Sets

An elementary interval I is an interval in R of the form
I=1[l,l4+1] or I=][Ll]=1][l]] whereleclZ
An elementary cube @ is a finite product of elementary intervals
Qzllxlzx---xIdCRd
The dimension, dim(Q) is the number of nondegenerate compo-
nents of Q.

Let I denote the set of all elementary cubes.

A set X C R? is cubical if it can be written as a finite union of
elementary cubes. If X is cubical, let

K(X) '= {QeK|QCX}
Kp(X) = {Q e K(X) |dmQ =k}
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Cubical Approximations
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Cubical Chain Complex

Let X be a cubical set. The set of elementary k-chains of X is

Ke(X) :={Q | Q € Kp(X)}
The cubical k-chains of X, denoted by Ci(X), is the free abelian
group generated by K. (X).

A k-chain has the form

m
c= ) a;Q; o; € L
i=1
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Cubical Chain Complex

Let X be a cubical set. The set of elementary k-chains of X is

Ke(X) :={Q | Q € Kp(X)]
The cubical k-chains of X, denoted by C.(X), is the free abelian
group generated by K (X).

A k-chain has the form
m A~
Cc = Z a;Q); o € 2
i=1

The support of c is
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Products of Cubical Chains

Let X be a cubical set. Let ¢ =Y, ;Q; and ¢ = Y, 3;Q; be
k-chains. The scalar product is

m

<C7 C/> = Z O‘iﬁ’i

i=1
and the cubical product is

cod =3 Y a;8iQ; x Q;

i=1j=1
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Cubical Boundary Operator
Goal: Define 8k : Ck(X) — Ck_|_1(X) such that 8k O 8k—|—1 = 0.
Notation: Write 8 : Cp,(X) — Cp11(X) where 92 = 0.

Remark: Only need to define 8 on K (X).
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Cubical Boundary Operator
Let Q be an elementary interval, i.e. Q = [lI] or Q = [I,1 + 1]

Define
8@:{0/\ = !fQ:[l]
U+1] =[] ifQ=1[14+1]
Let Q € K(X),then Q=11 xIrx---xI;= 11 x P =1xP. Hence,
Q=1IoP
Define

0Q =0lo P+ (—1)9MIT6oP

Lemma: 82 =0
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Cubical Homology

Let X be a cubical set. The associated cubical chain complex is

C(X) :={(Cx(X),0) | k€ Z}

The associated cubical homology groups are

Hyp(X) 1= Zp(X)/Bp(X) = ker 9y /im 41
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Elementary Collapse

Let X be a cubical set and let Q,P € K(X). If Q C P, then @
is a face of P. If Q = P, then @@ is a proper face of P. A face
that is a proper face of exactly one elementary cube in X is a
free face.

Let Q,P € K(X). Assume @ is a free face in X and Q C P. Let

K'(X)=K(X)\{Q,P} and X':= |J R
ReK/(X)

Theorem: Hi(X) = H.(X')
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A cubical set X is acyclic if

Hp(X) = {

7
O

if k=0
otherwise
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Elementary Collapse

Let A C X. A strong deformation retraction of X onto A is a
continuous map h: X x [0, 1] — X satisfying

h(x,0) =z for all x € X
h(x,1) € A forall xe€ X
h(a,1) =a forall ac A

Topological Remark: Elementary collapse can be viewed as a
discrete example of a strong deformation retraction.

Computational Remark: Elementary collapse suggests a method

for computing homology.
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Maps between Homology Groups

Let C = {C}, 0} and C' = {C},0,} be chain complexes. A se-
quence of homomorphisms ¢ : C. — (J,’~C isa chain map ¢ : C — C’
if, for every k € Z,

Ok = ©r—10k-

Define ¢, : H.(C) — Hi(C") by
prx([2]) == [pr(2)],

where z € Z,
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Inclusion Map
Consider a chain complex C = {C}, 0.} with a subchain complex
C = {C’,@k}. Let ¢, : C}, — C} be the inclusion map given by
!/

LL.C = C

for every ¢’ € C}.. Since
3kLkC/ — 8kc’ — Lk_lakcl,
. IS @ chain map. Therefore,
Lx . H*(C/) — H*(C)

is defined.
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Projection Map

Consider the elementary cube Q = [0,1]¢ and the projection
p.Q — @ given by

p(CB]_, LDy, L3, ... 7xd) L= (07 LDy, L3, . .- 7$d)°
We want to associate with p a chain map 7 : C(Q) — C(Q).
Any face E of () can be written as

E=F{xP where FEq € {[0,1],[0],[1]}
Observe
E' :=p(E) =[0] x P.
Define

(B = {E/ if £ = [0] or By = [1],
0 otherwise.
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7w is a chain map (case 1)

By definition

OF = 0E1{ 0 P + (—=1)9MEVE] 6 §P.

If £1 = [O] or b1 = [1],

rOF = w(aE}oﬁJrEIoaﬁ)
r(E{ ¢ dP)
[/Cﬁ<>(‘9]_'3

and, consequently,

orE = 8([0] o P) = [0] o P = ©dE.
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7w is a chain map (case 2)
If £ = [0, 1], then mE = 0, by definition.

On the other hand,

OF1 o P+ (—1)IMEVE o 9P
w(([1] = [0]) o P — E1 0 OP)
[/()\]0}3—[/0\]0}3—0

0

OnE

Thus 7 : C(Q) — C(Q) is a chain map.

mOF

25



Let ¢©,7 : C — C’" be chain maps. A collection of group homo-
morphisms

Dka—>C;€_|_1

is @ chain homotopy between ¢ and v if, for all k € Z,

Ok+1Dk + D10k = V1, — ¢ps-

Theorem: If ¢ and ¢ are chain homotopic, then ps = x.
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Internal Elementary Reductions

Let C = {C}, 0.} be a chain complex. A pair of generators (a,b)
such thata € C,,,_1, b € Cy, and (0b,a) = 1 is called a reduction
pair.

27



Internal Elementary Reductions

Let C = {C}, 0.} be a chain complex. A pair of generators (a,b)
such that a € C,,,_1, b € Cy, and (0b,a) = £1 is called a reduction

pair.

A reduction pair induces a collection of group homomorphisms

( <C,CL> 1 N
c — <8b,a>8b fk=m-—1
TEC = X (Oc,a) - _
— <(%mb if k=m
\ C otherwise

where c € ().

Theorem: The map m : C — C' := n(C) C C is a chain map.

Furthermore, m. : Cf. — ,’C induces an isomorphism on homology.
28



Chain Complex Reduction Algorithm

Remark: There is a complication associated with internal ele-
mentary reductions.

Let (C,0) be a free abelian chain complex with basis W} of (..
Let (a,b) € W,,_1 x Wy, be a reduction pair.

Under the internal elementary reduction m. : Cp — C,;. The
boundary operator remains the same, but the new basis, W/n =
{v ,b/,,..,b&m}, is related to Wi, = {b1,b2,...,bg ,b} by

<abi7 a>

(0b, a) b

by = b; —
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We can define a new chain complex C whose basis is a subbasis
of C, but for which the boundary operator is modified. Define

’{bl,bg,...,bdm} if k= m,
Wi = s {al,az,...,adm_l} if k=m—1,
. Wi otherwise.

Define n =C — C’ by

(Oc,a) : _
nk(c) ::{C ((% >b Ifk—m,
C otherwise.
Then

0= 77_1(977
Theorem: H«(C) = H.(C") £ H.(C)
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Relative Homology

Let C = {C},0,} be a chain complex. A chain complex D =
{Dk,c‘?,’ﬂ} is a chain subcomplex if

e D;. is a subgroup of (. for all k € Z

° 0; = 9 |p,

The relative chain complex is (C,D) := {C} /Dy, O}

The relative cycles and boundaries are
Zk(C,D) ker 8k . Ck/Dk — Ck—l/Dk—l
Bi(C,D) = imOk41: Cry1/Dgy1 — Cr/Dyg
and the relative homology groups are

Hk(C,D) = Zk(C,D)/Bk(C,D)
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Exact Sequences

A sequence (finite or infinite) of groups and homomorphisms

T Nye T Ny NN

is exact at G if

im 3 = ker .

It is an exact sequence if it is exact at every group.

A short exact sequence is an exact sequence of the form

O—>G3£>G2£>G1—>O.
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Connecting Homomorphism

Let A = {4,041}, B = {By, 0P}, and C = {C},d} be chain
complexes. Let o : A — B and ¢ : B — C be chain maps. The
sequence

0-A-28BYc—0

IS @ short exact sequence of chain complexes if for every k

0— A, 25 B, Mo 0

IS a short exact sequence.
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T heorem: Let

0-A2BYCc—0

be a short exact sequence of chain complexes. Then for each k
there exists a homomorphism

Ox * Hp11(C) — Hy(A)
such that

* * Ox
= Hyp1(A) =5 Hyq1(B) LN Hypy1(C) — Hp(A) — ...

IS a long exact sequence.

The map 0« is called connecting homomorphism.
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Exact Sequence of a Triple

Theorem: Let Ng C N1 C No be cubical sets. Then there exists
a long exact sequence

— Hk+1(N1,No) “ Hyyq1(Np, Np) 25 Hk—l—l(N27Nl) ~ H(N1,Ng) —

35



Let I be an elementary interval. The associated elementary cell
IS

BRE if I =[1,1].
We extend this definition to a general elementary cube @ =
It xIpx...x1;C Rd by defining the associated elementary cell
as

o {(l,l+1) if I=1[1,14+ 1],

©)

(@) (@) O
Q=11 XIoX...X]Ig4
Let A C R? be a bounded set. Then the open hull of A is

oh (4) 1= Q| QeK,QnA#0},
and the closed hull of A is

ch(A) = {Q|Q € K,QNnA # 0},
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Cubical Approximation of Functions

Let f: X — Y be a continuous map between cubical sets.

4

Goal: Approximate f by an acyclic-valued mutivalued cubical
map F : X =Y such that f(z) € F(x).
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Cubical Maps

Let X and Y be cubical sets. A multivalued map F : X =Y from
X to Y is a function from X to subsets of Y, that is, for every
re X, F(z) CY.

Let X and Y be cubical sets. A multivalued map F : X =Y is
cubical if
e For every x € X, F(x) is a cubical set.

O
e For every Q € K(X), F|g2 is constant, that is, if z,2’ € Q, then
F(z) = F(2).
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Assume now that for a continuous map f : X — Y, bounds on
f(Q) for Q € Kmax(X) are given in the form of a combinatorial
multivalued map F : Kmax(X) = KL(Y)

| Fl(x) == {IF@Q)] |z € Q € Kmax(X)}

[F1() = U{IF (@) | z € Q € Kmax(X)}
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Let F: X=Y, AC X, and BCY. The image of A is defined by
F(A) = |J F(a).

rxcA
The weak preimage of B under F'is

F*Y(B):={ze X | F(z)NnB # 0},
while the preimage of B is
FY(B):={z e X|F(z) C B}.

A multivalued map F is upper semicontinuous if F~1(U) is open
and it is lower semicontinuous if F*_l(U) is open for any open
set U CY.
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Proposition: The map |F] is lower semicontinuous and the map
[F] is upper semicontinuous.
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Chain Selectors

A cubical multivalued map F : X =Y is called acyclic-valued if
for every z € X the set F'(z) is acyclic.

Let F' : X =Y be a cubical multivalued map. A chain map
v C(X) — C(Y) satisfying the conditions:

L(Q)| c F(Q) for all Q € K(X),
0(Q) € Ko(F(Q)) for any vertex Q € Ko(X),

is called a chain selector of F.

Theorem: Assume F': X =Y is a lower semicontinuous acyclic-
valued cubical map. Then there exists a chain selector ¢ :
C(X) — C(Y).
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Proposition: Assume F' : X =Y is a lower semicontinuous cubical
map and ¢ is a chain selector for F. Then, for any c € C(X),

p(e)] € F(|e]).

Theorem: Let ¢, : C(X) — C(Y) be chain selectors for the
lower semicontinous acyclic-valued cubical map F': X =Y. Then
@ IS chain homotopic to ¥ and hence they induce the same ho-
momorphism in homology.

Definition: Let F : X =Y be a lower semicontinous acyclic-
valued cubical map. Let o,v : C(X) — C(Y) be chain selector
for F. Then Fy: Hx(X) — H«(Y) is defined by
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Cubical Approximation of Maps

Let X and Y be cubical sets and let f: X — Y be a continuous
function. A cubical representation of f is a lower semicontinuous
multivalued cubical map F : X =Y such that

f(x) € F(x) Ve e X.
The minimal representation of f is My : X =Y defined by

My(z) := ch (f(ch (z)))

Definition: Let F' : X =Y be an acyclic-valued cubical repre-
sentation of f: X — Y. Then fi: H«(X) — H«(Y) is defined
by
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Computing Homology Maps
Consider a continuous map f: X — Y.
Let I‘f be the graph of f.
Let 7y :p— X and ny : [ p — Y be projection maps.

Observe that

and hence
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Consider F' = [F| : X =Y an acyclic-valued cubical representa-
tion of f.

Let I » C X XY denote the graph of F'.

We are using an upper semi-continuous multivalued map, hence
the graph is a cubical set.

Let 7y : 'p — X and my : Tp — Y be projection maps (these
map cubes to cubes).

Because F : X =Y is acyclic, mxs : H«(I'yp) — H«(X) is an iso-
morphism.

: _ —1
Theorem: fi«=my,0omy,
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Computing Relative Homology Maps

Consider f:(X,A) — (Y,B) where X, AC R" and Y, B C R™ are
full cubical sets.

A combinatorial multivalued map F : X =) is a representation

of f:(X,A) — (Y,B) if F is a representation of f: X — Y and
F(A) C B.
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Remark: Given a representation F of f:(X,A) — (Y, B) it does
not follow that F'(A) C B, where F = [F].
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A pair (F,G) of multivalued maps is a representation of f: (X, A) —
(Y,B) if F: X — Y is a representation of f: X —Y and G: A — B
is @ represenatation of f|4: A — B, and G C F.
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Computing Homology Maps - Algorithms
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Expand the size of A and remove.

Reduce the size of X.

v
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