Global Numerics II: Isolating Neighborhoods and Statistics

Combinatorial Objects

- $X \subset \mathbb{R}^d$ cubical, $F : X \rightrightarrows \mathbb{R}^d$, \mathcal{B} partition of X into elementary cubes (cubical grid).
- For $\mathcal{S} \subset \mathcal{B}$, $|\mathcal{S}|$ is the union of the elements in \mathcal{S} .
- Smallest representable neighborhood of ${\mathcal S}$

 $o(\mathcal{S}) = \{ B \in \mathcal{B} \mid B \cap |\mathcal{S}| \neq \emptyset \}$

• Combinatorial multivalued map $\mathcal{F}: \mathcal{B} \rightrightarrows \mathcal{B}$

 $\mathcal{F}(B) = \{ B' \in \mathcal{B} \mid F(B) \cap B' \neq \emptyset \} ;$

```
(storage: sparse matrix, graph).
```

Global Numerics II: Isolating Neighborhoods and Statistics

- Full combinatorial trajectory of \mathcal{F} through $B \in \mathcal{B}$: $\gamma_B : \mathbb{Z} \to \mathcal{B}$, $\gamma_B(0) = B$ and $\gamma_B(n+1) \in \mathcal{F}(\gamma_B(n))$ for all $n \in \mathbb{Z}$.
- $\mathcal{S} \subset \mathcal{B}$ is a combinatorial invariant set if for every $B \in \mathcal{S}$ there exists a full solution $\gamma_B : \mathbb{Z} \to \mathcal{S}$.
- The maximal combinatorial invariant set in $\mathcal{I} \subset \mathcal{B}$ is

Inv $(\mathcal{I}, \mathcal{F}) := \{ B \in \mathcal{I} \mid \text{there exists a full trajectory } \gamma_B : \mathbb{Z} \to \mathcal{I} \}.$

• A combinatorial isolating neighborhood for \mathcal{F} is a set $\mathcal{I} \subset \mathcal{B}$ such that

$$o(\operatorname{Inv}(\mathcal{I},\mathcal{F})) \subset \mathcal{I}.$$

• **Proposition 1** If \mathcal{I} is an isolating neighborhood for \mathcal{F} , then $|\mathcal{I}|$ is an isolating neighborhood for F.

Index pairs

A continuous selector of \mathcal{F} is a continuous map $f: X \to \mathbb{R}^d$ such that $f(B) \subset \operatorname{int} |\mathcal{F}(B)|$

for all $B \in \mathcal{B}$.

Theorem 1 (Szymczak, 97) Let S be an isolated invariant set for \mathcal{F} and let

$$\mathcal{N}_1 = \mathcal{S} \cup \mathcal{F}(\mathcal{S}), \quad \mathcal{N}_0 = \mathcal{N}_1 \backslash \mathcal{S}.$$

Then $\mathcal{N} = (|\mathcal{N}_1|, |\mathcal{N}_0|)$ is an index pair for every continuous selector of \mathcal{F} .

Computing Isolating Neighborhoods

• Consider the transition matrix

$$P = (p_{ij}), \quad p_{ij} = \begin{cases} 1, & \text{if } B_i \in \mathcal{F}(B_j), \\ 0, & \text{else.} \end{cases}$$

k-periodic points of $\mathcal{F} \leftrightarrow$ nonzero diagonal entries of P^k ;

• Consider the graph $G = (\mathcal{B}, V)$,

$$V = \{ (B, B') : B' \in \mathcal{F}(B) \}.$$

- recurrent sets of $\mathcal{F} \leftrightarrow$ strongly connected components of G;
- connecting orbits of $\mathcal{F} \leftrightarrow$ shortest paths (Dijkstra's algorithm);

Turning the guess into a true isolating nbhd

Input: guess $\tilde{\mathcal{I}}$ for an isolating neighborhood.

```
\begin{split} \mathcal{I} &= \texttt{make\_isolated}(\tilde{\mathcal{I}}) \\ \mathcal{I} &:= \operatorname{Inv}(\tilde{\mathcal{I}}, \mathcal{F}) \\ \texttt{while } o(\mathcal{I}) \not\subset \tilde{\mathcal{I}} \\ \tilde{\mathcal{I}} &:= \tilde{\mathcal{I}} \cup o(\mathcal{I}) \\ \mathcal{I} &:= \operatorname{Inv}(\tilde{\mathcal{I}}, \mathcal{F}) \\ \texttt{if } |\mathcal{I}| \subset \texttt{int } |o(\mathcal{I})| \texttt{ return } \mathcal{I} \\ \texttt{else return } \emptyset \end{split}
```

Output: combinatorial isolating neighborhood \mathcal{I} for \mathcal{F} or \emptyset (=failure).

Illustration: isolating neighborhood for a connecting orbit

Constructing Minimal Index Pairs

Input: combinatorial isolating neighborhood \mathcal{I} .

```
\begin{split} [\mathcal{N}_1, \mathcal{N}_0] &= \texttt{build\_ip}(\mathcal{I}) \\ \mathcal{N}_0 &:= \emptyset \\ \mathcal{E} &:= (\mathcal{F}(\mathcal{I}) \cap o(\mathcal{I})) \setminus \mathcal{I} \\ \texttt{while } \mathcal{E} \neq \emptyset \\ \mathcal{N}_0 &:= \mathcal{N}_0 \cup \mathcal{E} \\ \mathcal{E} &:= (\mathcal{F}(\mathcal{N}_0) \cap o(\mathcal{I})) \setminus \mathcal{N}_0 \\ \mathcal{N}_1 &:= \mathcal{I} \cup \mathcal{N}_0 \\ \texttt{return } [\mathcal{N}_1, \mathcal{N}_0] \end{split}
```

Output: combinatorial index pair $(\mathcal{N}_1, \mathcal{N}_0)$.

Measures

 \mathcal{A} : set of measurable sets (i.e. Borel- σ -Algebra on X) Measure: function $\mu : \mathcal{A} \to [0, \infty)$, such that

(1)
$$\mu(\emptyset) = 0,$$

(2) $\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \sum_{i\in\mathbb{N}}\mu(A_i) \text{ if } A_i\cap A_j = \emptyset \text{ for } i\neq j.$

Probability measure: $\mu(X) = 1$.

 \mathcal{M} : space of probability measures on X.

m: Lebesgue-measure ("volume" measure in \mathbb{R}^n).

Measures (2)

Example: Dirac-measure

$$\delta_x(A) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A \end{cases}$$

Integration with respect to δ_x :

$$\int g \ d\delta_x = g(x).$$

Lebesgue-measure m: unique "volume" measure, i.e. if Q is a box (rectangle) then m(Q) is the volume of Q.

Invariant measures

Invariant measure: probability measure μ , such that

$$\mu(A) = \mu(f^{-1}(A))$$

for all measurable A.

Example: $f : [0, 1] \to [0, 1], f(x) = 2x \mod 1, \mu = m.$

Ergodic measure: invariant measure μ , such that

A f-invariant $\Rightarrow \mu(A) \in \{0, 1\}.$

Example: Dirac-measure δ_p supported on a fixed point p = f(p).

The Birkhoff Ergodic Theorem

Theorem 2 (Birkhoff) Let μ be an ergodic measure. Then for μ almost all $x \in X$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \phi(f^k(x)) = \int \phi \, d\mu$$

for all $\phi \in L^1(\mu)$.

Example: Choose $\phi = \chi_A$ for some set A, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \phi(f^k(x)) = \text{``relative no of points of } \{f^k(x)\}_{k \in \mathbb{N}} \text{ in } A \text{``}$$
$$= \int \chi_A \, d\mu = \mu(A).$$

Example: a stable fixed point

p: (globally) asymptotically stable fixed point, i.e.

$$f^k(x) \to p \text{ as } k \to \infty \text{ for all } x \in X.$$

 δ_p : ergodic measure.

Birkhoff's Ergodic Theorem: statement for x = p only.

<u>Of interest</u>: statement for (*m*-almost) all $x \in X$.

Natural invariant measures (SRB measures)

Definition 1 An ergodic measure μ is called an <u>SRB measure</u> (Sinai-Ruelle-Bowen measure), if there is a set U of positive Lebesgue-measure such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \phi(f^k(x)) = \int \phi \, d\mu$$

for all $x \in U$ and all continuous ϕ .

Interpretation: An SRB-measure describes the asymptotic distribution of the orbits of a "large" set of initial points.

Example: $f : [0, 1] \to [0, 1], f(x) = 2x \mod 1, \mu = m.$

The Perron-Frobenius operator

The Perron-Frobenius operator

$$P: \mathcal{M} \to \mathcal{M}, \quad (P\mu)(A) = \mu(f^{-1}(A)).$$

<u>Observation:</u> μ invariant $\Leftrightarrow \mu = P\mu$. (*)

<u>Goal</u>: Discretize the fixed point problem (*) and compute a (discrete) fixed point as an approximation to an invariant measure.

Discretization

 $\mathcal{B} = \{B_1, \ldots, B_d\}$ a grid, $f(|\mathcal{B}|) \subset |\mathcal{B}|$.

Transition matrix

$$P_d = (p_{ij}) = \frac{m(B_j \cap f^{-1}(B_i))}{m(B_j)}, \quad i, j = 1, \dots, d.$$

 p_{ij} is the probability for a point in B_j to get mapped into B_i (transition probability with respect to m).

 P_d is (column) stochastic: $\sum_{i=1}^d p_{ij} = 1$. Thus its maximal eigenvalue is 1.

A corresponding eigenvector approximates an invariant measure.

Example: The logistic map

Consider

Oliver Junge, Institute for Mathematics, University of Paderborn

Convergence: the expanding case

 $(u_d)_d$ sequence of fixed points of P_d ,

 $h_d \in L^1([0,1],\mathbb{R}), \quad h_d|_{B_i} = u_d(B_i)/m(B_i)$

the corresponding density.

Theorem 3 (Li, 76) Let $f : [0,1] \rightarrow [0,1]$ be a piecewise C^2 -map, such that

 $\inf_{x} |f'(x)| > 2.$

If f has a unique absolutely continuous invariant measure μ with density h, then

$$\|h_d - h\|_1 \to 0 \quad as \ d \to \infty.$$

Weak convergence of measures

Let X be compact and $C^0(X)$ be the vector space of continuous functions $f: X \to \mathbb{R}$ endowed with the norm

$$||f||_0 = \sup_{x \in X} |f(x)|.$$

Definition 2 A sequence $(\mu_n)_{n \in \mathbb{N}}$ of probability measures converges weakly to some measure $\mu \in \mathcal{M}$, if

$$\lim_{n \to \infty} \int g \, d\mu_n = \int g \, d\mu$$

for all $g \in C^0(X)$.

Random perturbations

Replace the deterministic evolution

$$x_{k+1} = f(x_k), \quad k = 0, 1, \dots$$

by the randomly perturbed evolution

$$x_{k+1} = f(x_k) + \xi_k, \quad k = 0, 1, \dots$$

where ξ_k is chosen randomly from some ball $B_{\varepsilon}(0)$ according to (e.g) a uniform distribution.

Stochastic transition functions

Stochastic transition function

$$p: X \times \mathcal{A} \to [0, 1],$$

where for every x the probability measure $p(x, \cdot)$ determines the distribution of the perturbation ξ_k (for all k).

Example:

$$p(x,A) = p_{\varepsilon}(x,A) = \frac{m(A \cap B_{\varepsilon}(f(x)))}{m(B_{\varepsilon}(0))}.$$

Small random perturbations

Definition 3 A family p_{ε} of stochastic transition functions is a small random perturbation of (the deterministic system) f, if

$$\lim_{\varepsilon \to 0} \sup_{x \in X} \left| \int g(y) \, p_{\varepsilon}(x, dy) - g(f(x)) \right| = 0.$$

Theorem 4 (Kifer, 86) Let p_{ε} be a small random perturbation of f. For every ε let μ_{ε} be the unique invariant measure of p_{ε} , supported on a neighbourhood of some attractive hyperbolic invariant set of f. Let μ be the corresponding SRB-measure of f. Then (under additional assumptions)

$$\mu_{\varepsilon} \to \mu \quad weakly \ as \ \varepsilon \to 0.$$

Convergence: the hyperbolic case

Fix ε , consider p_{ε} , respectively the corresponding Perron-Frobenius operator P^{ε} .

Discretize P^{ε} as usual by computing the associated transition matrix P_d^{ε} .

Let u_d^{ε} be a fixed point of P_d^{ε} .

Theorem 5 (Dellnitz, J., 99) Let μ be the unique SRB-measure supported on a topologically transitive hyperbolic attractor. Then

 $\lim_{\varepsilon \to 0} \lim_{d \to \infty} u_d^{\varepsilon} \to \mu.$

GAIO code

<u>Recall</u>: matrix of transition probabilities

$$P_d = (p_{ij}) = \frac{m(B_j \cap f^{-1}(B_i))}{B_j}, \quad i, j = 1, \dots, d,$$

between the boxes of some collection $\mathcal{B} = \{B_1, \ldots, B_d\}.$

Question: How to compute p_{ij} ?

Monte-Carlo method: choose a finite set $T \subset B_j$ and set

$$p_{ij} \approx \frac{|\{x \in T : f(x) \in B_i\}|}{|T|}$$

Global Numerics II: Isolating Neighborhoods and Statistics

```
>> T = Points('MonteCarlo', 2, 20)
>> P = tree.matrix(T)
>> [1,v]=eigs(P)
>> 1(1,1)
ans =
0.99999244
```

Invariant measure in the Lorenz system

Cyclic behaviour

Transition matrix

$$P = \left[\begin{array}{rrr} 0 & 1 \\ 1 & 0 \end{array} \right]$$

Eigenvalues: 1, -1,Eigenvectors: $(1, 1)^T, (-1, 1)^T.$

Almost Invariant Sets

Transition matrix

$$P = \left[\begin{array}{cc} 0.99 & 0.1 \\ 0.1 & 0.99 \end{array} \right]$$

Eigenvalues: 1, 0.98,Eigenvectors: $(1, 1)^T, (-1, 1)^T.$

Almost Invariant Sets

Definition 4 The set $A \subset X$ is δ -almost invariant with respect to the probability measure ν , if $\nu(A) \neq 0$ and

 $\nu(f^{-1}(A) \cap A) = \delta\nu(A).$

Now let

$$P\nu = \lambda\nu,$$

 $\lambda \neq 1, \nu$ real valued (signed) measure $(\Rightarrow \nu(X) = 0)$.

Relation to Spectrum

Lemma 1 (Dellnitz-J., 99) Let $A \subset X$ be a set with $\nu(A) = \frac{1}{2}|\nu(X)|$ which is δ -almost invariant. If X - A is σ -almost invariant, then

$$\delta + \sigma = \lambda + 1.$$

Idea: use the sign structure of the eigenmeasures at eigenvalues $\neq 1$ in order to identify cyclic and almost invariant sets.

Chua's circuit

$$\dot{x} = \alpha(y - m_0 x - \frac{1}{3}m_1 x^3)$$

$$\dot{y} = x - y + z$$

$$\dot{z} = -\beta y.$$

Chua' circuit: eigenvector at $\lambda = 0.93$

Oliver Junge, Institute for Mathematics, University of Paderborn

Chua's circuit: two almost invariant sets

Application: Molecular Dynamics

- Almost invariant sets in configuration space correspond to certain conformations;
- Transition probability between conformations can be estimated by the size of the corresponding eigenvalues;
- Different approach: use graph partitioning algorithms.