A Connection Matrix Structure Theorem

S is an attractor for a flow $\varphi : \mathbb{R} \times X \to X$.

A Morse decomposition of S is given by

$$\mathcal{M}(S) = \left\{ M(p) \mid p \in \left\{ 0^{\pm} < 1^{\pm} < 2 \right\} \right\}$$

$$CH_k(M(p^*)) \cong \left\{ egin{array}{ll} \mathbb{Z} & \mbox{if } k=p, \\ 0 & \mbox{otherwise.} \end{array} \right.$$

$$\Delta = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Technical Lemma

- (ii) There exists a time reparameterized flow $\tilde{\varphi}: \mathbb{R} \times X \to X$ of φ .
- (ii) There exists sets $N_{p^{\pm}}$, $L_{p^{\pm}}^{+}$, $L_{p^{\pm}}^{-}$, p=0,1,2 (let $2=2^{+}$):
- \bullet N_{p^\pm} are isolating blocks for $M(p^\pm)$ with entrance set $L_{p^\pm}^-$ and exit set $L_{n^\pm}^+$
- \bullet $\widetilde{\varphi}(\mathbb{R},x) \cap N_{p^{\pm}} = \widetilde{\varphi}(I_{p^{\pm}}(x),x)$, where $I_{p^{\pm}}$ is a closed interval.

Remark: Since $I_{p^{\pm}}$ is a closed interval we write $I_{p^{\pm}}=[a_{p^{\pm}}(x),b_{p^{\pm}}(x)]$ where if $I_{p^{\pm}}=\emptyset$, then $a_{p^{\pm}}(x),b_{p^{\pm}}(x)$ are not defined, and it is possible that $a_{p^{\pm}}(x)=-\infty$ or $b_{p^{\pm}}(x)=\infty$

Technical Lemma

(iii) Let
$$\Theta_{p^\pm}:=\left\{x\in S\mid I_{p^\pm}(x)\neq\emptyset\right\}$$
. Then,
$$a_{p^\pm}(x),b_{p^\pm}:\Theta_{p^\pm}\to[-\infty,\infty]$$

are continuous

(iv) There exists a Lyapunov function $\widetilde{V}:S \to [0,2]$ such that

- if $x \in M(p^{\pm}) \cup (L_{p^{\pm}}^+ \cap L_{p^{\pm}}^-)$ then $\widetilde{V}(x) = p$.
- if $\widetilde{\varphi}([0,t],x) \cap \bigcup_{p=0}^2 N_{p^{\pm}} = \emptyset$, then $\widetilde{V}(\widetilde{\varphi}(t,x)) = \widetilde{V}(x) t$.

Constructing a map
$$\tilde{f}: S \to \partial([0,2] \times [-1,1]^2)$$

Define

$$\lambda_{p^\pm}(x) := \begin{cases} \infty & \text{if } b_{p^\pm}(x) = \infty \text{ or } a_{p^\pm}(x) = -\infty, \\ 0 & \text{if } I_{p^\pm}(x) = \emptyset \\ b_{p^\pm}(x) - a_{p^\pm}(x) & \text{otherwise} \end{cases}$$

Define

$$\tau_p(x) = \frac{2}{\pi} \tan^{-1} \left(\lambda_{p^+}(x) - \lambda_{p^-}(x) \right)$$

Lemma: $\tau_p: \Theta_p \to [-1,1]$ is continuous.

Define $V: S \to [0,2]$ obtained by modifying \widetilde{V} .

Define
$$\widetilde{f}(x) = (V(x), \tau_0(x), \tau_1(x))$$