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1. (2+2+2+2)
Consider the pendulum equations (all constants have been set to 1 for simplicity)

ẋ1(t) = x2(t)
ẋ2(t) = sin(x1(t)) + u(t).

(1)

Our goal is to compute a control function u(·) that steers the system from x(0) =
x0 to x(τ) = 0, where x0 ∈ R2 and τ > 0 are given. For this, we will use a simple
but effective trick as described below:

(a) Set v := sin(x1) + u. The initial value problem ẋ1 = x2, ẋ2 = v, x(0) = x0

can be solved exactly.

(b) Make the ansatz v(t) := a + bt. Use x(τ)
!
= 0 to express a, b in terms of

x01, x02, τ .

(c) Compute u(·) and show that it really “does it” (use the fact that the solution
of (1) with x(0) = x0 is unique).

(d) Test your results numerically for τ = 1, x0 =

[
0.5
0

]
.

2. (2+2)

(a) Show that the solutions of the quadratic equation λ2 + pλ + q = 0, where
p, q ∈ R, have a negative real part if and only if p > 0 and q > 0.

Remark: The equation λ3 +λ2 +λ+1 = 0 shows that the situation is more
complicated for cubic or higher order equations.

(b) Now consider the linearization of the pendulum equations around the up-
right position x̄ = 0, which is given by

ẋ1(t) = x2(t)
ẋ2(t) = x1(t) + u(t).

We would like to choose u(·) such that the controlled pendulum is asymp-
totically stable at x̄ = 0. (Hint: ẋ = Ax is asymptotically stable at x̄ = 0
if and only if all eigenvalues of A have a negative real part.)

Naive idea: Recall that x1 = θ, x2 = θ̇. Introducing coordinates, let

the position of the point mass be given by

[
sin(θ)
cos(θ)

]
. We consider small

variations of θ around zero. If θ > 0, the pendulum is “to the right” of the
upright position, and we should apply a counter-clockwise torque u < 0.



Conversely, if θ < 0, we should apply a clockwise torque u > 0. This leads
to the ansatz u(t) := aθ(t) = ax1(t), where a < 0.

Show that it is not possible to choose a such that the pendulum becomes
asymptotically stable. Similarly, show that u(t) := bθ̇(t) = bx2(t) will also
not work. Finally, let’s try u(t) := aθ(t) + bθ̇(t) = ax1(t) + bx2(t). Derive
conditions on a, b ∈ R such that the resulting controlled system will be
asymptotically stable.

3. (2+3+3)
The Fibonacci difference equation is given by

y(t + 2) − y(t + 1) − y(t) = 0 for t ∈ N.

Show that its general solution is

y(t) = c1(
1+
√

5
2

)t + c2(
1−
√

5
2

)t for t ∈ N.

(The term “general solution” means: every solution has this form for a suitable
choice of the constants c1, c2 ∈ R. In fact, c1, c2 are uniquely determined by
y(0), y(1). The particular case y(0) = y(1) = 1 yields the classical Fibonacci
sequence.)

(a) First approach: Making the inspired guess y(t) = λt, we obtain the “char-

acteristic equation” λ2 − λ − 1 = 0, which yields λ1,2 = 1±
√

5
2

. Thus

{y ∈ RN | ∃c1, c2 ∈ R : y(t) = c1λ
t
1 + c2λ

t
2 for all t ∈ N} ⊆

{y ∈ RN | y(t + 2) − y(t + 1) − y(t) = 0 for all t ∈ N}.

Now show that both sets are real vector spaces and use a dimensional
argument.

(b) Second approach: Introducing x(t) :=

[
y(t)

y(t + 1)

]
for t ∈ N, the Fibonacci

difference equation can be rewritten as x(t + 1) = Ax(t) for some matrix
A ∈ R2×2. A straightforward induction argument shows that x(t) = Atx0,
where x0 ∈ R2. Compute the eigenvalues of A and conclude that the matrix
A is diagonizable, that is, there exists an invertible matrix T ∈ R2×2 such
that

T−1AT = Λ :=

[
λ1 0
0 λ2

]
.

Thus At = TΛtT−1, where Λt is fairly easy to compute . . .

(c) Use a similar argument as in (b) for finding the general solution of

y(t + 2) + 2y(t + 1) + y(t) = 0.


