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1. (242+2+2)
Consider the pendulum equations (all constants have been set to 1 for simplicity)

Bo(t) = sin(z1(t)) + u(t). (1)

Our goal is to compute a control function u(-) that steers the system from z(0) =
zg to x(7) = 0, where zy € R? and 7 > 0 are given. For this, we will use a simple
but effective trick as described below:

(a) Set v :=sin(x1) + u. The initial value problem &1 = xg, @9 = v, 2(0) = xg
can be solved exactly.

(b) Make the ansatz v(t) := a + bt. Use z(7) = 0 to express a,b in terms of
Zo1, L2, T-

(¢) Compute u(-) and show that it really “does it” (use the fact that the solution
of (1) with 2(0) = zo is unique).

(d) Test your results numerically for 7 =1, xy = [ 0(')5 }

2. (242)

(a) Show that the solutions of the quadratic equation A\* + p\ + ¢ = 0, where
p,q € R, have a negative real part if and only if p > 0 and ¢ > 0.

Remark: The equation A3+ A2 + A +1 = 0 shows that the situation is more
complicated for cubic or higher order equations.

(b) Now consider the linearization of the pendulum equations around the up-
right position & = 0, which is given by

We would like to choose u(-) such that the controlled pendulum is asymp-
totically stable at z = 0. (Hint: & = Ax is asymptotically stable at z = 0
if and only if all eigenvalues of A have a negative real part.)

Naive idea: Recall that x1 = 0, zy, = 0. Introducing coordinates, let
sin(6)
cos(#)
variations of # around zero. If § > 0, the pendulum is “to the right” of the
upright position, and we should apply a counter-clockwise torque u < 0.

the position of the point mass be given by . We consider small



Conversely, if # < 0, we should apply a clockwise torque u > 0. This leads
to the ansatz u(t) := af(t) = az;(t), where a < 0.

Show that it is not possible to choose a such that the pendulum becomes
asymptotically stable. Similarly, show that u(t) := bé(t) = bxy(t) will also
not work. Finally, let’s try u(t) := af(t) + b8(t) = axy(t) + bxo(t). Derive
conditions on a,b € R such that the resulting controlled system will be
asymptotically stable.

3. (243+3)
The Fibonacci difference equation is given by

y(t+2)—y(t+1)—y(t)=0 forteN.

Show that its general solution is

y(t) = cr(0) 4 y(15)¢ for t € N,

(The term “general solution” means: every solution has this form for a suitable
choice of the constants ci,co € R. In fact, ¢1,cy are uniquely determined by
y(0),y(1). The particular case y(0) = y(1) = 1 yields the classical Fibonacci
sequence.)

(a) First approach: Making the inspired guess y(t) = A\', we obtain the “char-

acteristic equation” A\ — X\ — 1 = 0, which yields A\; 5 = 1i2‘/5. Thus

{y e RY | ey, co € R:y(t) = AL + e\, for all t € N} C

{y e RY | y(t +2) —y(t +1) —y(t) =0 for all t € N}.

Now show that both sets are real vector spaces and use a dimensional
argument.

(b) Second approach: Introducing z(t) := [ y (?(j_)l) } for t € N, the Fibonacci

difference equation can be rewritten as z(t + 1) = Axz(¢t) for some matrix
A € R**2. A straightforward induction argument shows that z(t) = A'z,
where 2y € R?. Compute the eigenvalues of A and conclude that the matrix
A is diagonizable, that is, there exists an invertible matrix 7' € R?*? such

that
A O ]

“1AT — A —
T AT_A._{0 o

Thus A® = TA*T~!, where Al is fairly easy to compute . ..

(c¢) Use a similar argument as in (b) for finding the general solution of

y(t+2)+2y(t+1)+y(t) = 0.



