Algebraische Kombinatorik 2014

Blatt 1

Abgabe am 25.04.2014 zu Beginn der Übung. Es darf zu zweit abgegeben werden.

Aufgabe 1 (2 Punkte)

Es seien N und M zwei disjunkte endliche Mengen und $0 \le k \le |N| + |M|$.

- (a) Bestimmen Sie die Bahnen von $\operatorname{Pot}_k(N \uplus M)$ unter der Operation von $S_N \times S_M$.
- (b) Folgern Sie aus (a), daß $\binom{n+m}{k} = \sum_{i=0}^k \binom{n}{i} \binom{m}{k-i}$.

Aufgabe 2 (5 Punkte)

Sei $n \geq 2$ und $d = n^2 + n + 1$. Sei $J_d \in \mathbb{Z}^{d \times d}$ die Matrix deren Einträge alle 1 sind. Weiter sei $A \in \mathbb{Z}^{d \times d}$ eine Matrix mit Einträgen in $\{0, 1\}$.

- (a) Zeigen Sie: Ist $AA^t = nI_d + J_d$, so gilt auch $A^tA = nI_d + J_d$.
- (b) Folgern Sie aus (a) einen vollständigen Beweis von Bemerkung 1.4.

Hinweis zu (a): Bestimmen Sie det(A) und zeigen Sie $AJ_d = (n+1)J_d = J_dA$.

Aufgabe 3 (2 Punkte)

Sei K ein Körper und $(a_i)_i \in K^{\mathbb{Z}_{\geq 0}}$ eine Folge. Weiter sei $(s_i)_i$ ihre Folge von Partialsummen.

- (a) Sei $f(x) \in K[[x]]$ die erzeugende Funktion von $(a_i)_i$. Zeigen Sie, daß $\frac{f(x)}{1-x}$ die erzeugende Funktion von $(s_i)_i$ ist.
- (b) Bestimmen Sie mit (a) die erzeugende Funktion der Folge der Quadratzahlen

$$0, 1, 4, 9, \dots$$

Aufgabe 4 (4 Punkte)

Bestimmen Sie die erzeugende Funktion aus Beispiel 1.10 für den Fall, daß immer 6 Dreiecke eine Rosette bilden.

Aufgabe 5 (3 Punkte)

Bestimmen Sie die Anzahl der unnummerierten Färbungen des Ikosaeders bei denen 3 Flächen rot, 15 Flächen grün und 2 Flächen blau gefärbt sind.

Aufgabe 6 (4 Punkte)

- (a) Sei $g \in S_n$. Bestimmen Sie die Größe des Zentralisators $C_{S_n}(g)$ in Abhängigkeit des Zykeltyps von g.
- (b) Bestimmen Sie die Anzahl der ganzen Zahlen zwischen 10⁵ und 10⁶, deren Dezimaldarstellungen aus je genau 3 verschiedenen Ziffern ungleich 0 gebildet sind.

http://www.math.rwth-aachen.de/~kirschme/algkomb