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MARKUS KIRSCHMER AND GABRIELE NEBE

Abstract. In a previous paper the authors developed an algorithm to classify certain quater-

nary quadratic lattices over totally real fields. The present paper applies this algorithm to the
classification of binary Hermitian lattices over totally imaginary fields. We use it in particular

to classify the 48-dimensional extremal even unimodular lattices over the integers that admit

a semilarge automorphism.

1. Introduction

Our main motivation for the research leading to the present paper is the classification of
extremal even unimodular lattices using automorphisms. For a short overview of this long term
project of the second author we refer to Section 2. The overall strategy is as follows: Let L be
a lattice and g ∈ Aut(L) some automorphism of L of finite order o. The minimal polynomial µg
divides the separable polynomial Xo − 1 ∈ Q[X] and hence splits into a product µg = p1 · . . . · ps
of pairwise distinct monic irreducible polynomials pi. This gives rise to a g-invariant sublattice

M1 ⊥ . . . ⊥Ms ≤ L

of finite index in L, such that g acts on Mi with minimal polynomial pi. The idea to classify
all lattices L with a given automorphism g is to first classify the smaller lattices Mi and then
construct L as a suitable g-invariant overlattice of M1 ⊥ . . . ⊥ Ms. Each lattice Mi can be
seen as a lattice over the ring of integers Z[g|Mi

] ∼= Z[X]/(pi) in some cyclotomic number field
Ei = Q[X]/(pi) of dimension mi = dimZ(Mi)/ deg(pi). The automorphism g is called large, if

there is one i such that deg(pi) >
dim(L)

2 . Then mi = 1 and the lattice Mi is an ideal lattice
in the sense of [1]. The classification of all extremal even unimodular lattices of dimension 48
and 72 admitting a large automorphism has been obtained in [23] and [25] using algorithms for
number fields. The present paper classifies all extremal even unimodular lattices of dimension 48
that admit a semilarge automorphism (see Definition 9.1), where g as above is called semilarge,

if there is one i such that deg(pi) >
dim(L)

4 and mi = 2. In this case the lattice Mi is a binary
Hermitian lattice over Ei. It turns out that we may use the algorithms for quaternion algebras
developed in [16] to classify binary Hermitian lattices over CM-fields.

So let E be a totally complex quadratic extension of a totally real number field K and denote
by ZE and ZK the ring of integers in E and K respectively. Then there is α ∈ E such that

E = K[α] and − α2 =: δ ∈ K is totally positive.

Let (W,h) be a positive definite m-dimensional Hermitian space over E. Restriction of scalars
turns (W,h) into a 2m-dimensional positive definite quadratic space (W|K ,qh) over K where
qh(x) = h(x, x) ∈ K for all x ∈ W . Our interest lies in the case m = 2, as we aim to classify
binary Hermitian lattices. Then (W|K ,qh) is a quaternary quadratic space over K of square
determinant.

In [15] we developed an algorithm to enumerate the isometry classes in the genus of maximal
ZK-lattices in a positive definite quaternary quadratic space (V,q) over K of square discriminant.
The underlying idea is that (V,q) is isometric to (Q,n), where Q is a well determined definite
quaternion algebra with centre K and n : Q → K is the norm form of Q. In our special case,
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where (V, q) = (W|K ,qh) is the restriction of scalars of a Hermitian space as above, the quaternion
algebra

Q =

(
−δ,−det(h)

K

)
= K[i, j : i2 = −δ, j2 = −det(h), ij = −ji]

is uniquely determined by E and the determinant of the Hermitian form h.
For any fractional ideal a in K the a-maximal ZK-lattices in (Q,n) correspond to normal ideals

of norm a and the notion of (proper) isometry corresponds to a certain notion of equivalence of
these ideals, for more details see Theorem 6.2 and [15]. The a-maximal ZE-lattices in (W,h) are
those a-maximal ZK-lattices that are stable under multiplication by ZE (see Proposition 4.1).
The central part of this paper is Section 7, where we apply the algorithm from [15] to enumerate
the isometry classes of positive definite a-maximal Hermitian ZE-lattices in (W,h). In particular
Theorem 7.5 shows how to obtain a system of representatives. We apply this algorithm to the
special situation where E is a cyclotomic number field. Our more general computations result
in a nice formula in the particular case where E = Q[ζp] for a prime p ≡ 3 (mod 4) and the
narrow class number of K is 1. Under these assumptions the class number of the Hermitian
unimodular binary ZE-lattices is the product of the type number of Q and the class number of E
(see Proposition 8.1). The quite involved computations that yield a classification of all extremal
even unimodular lattices of dimension 48 admitting a semilarge automorphism are described in
Section 9 (see Theorem 9.5 for the statement of the result). The last section applies our methods
to the question of existence of extremal even 3-modular lattices in dimension 36. Building upon
the results of the thesis [14] we show that there is no such lattice admitting an automorphism of
prime order > 7.

Acknowledgements. The research is supported by the DFG within the framework of the
SFB TRR 195.

2. Extremal modular Z-lattices

Our main motivation to consider Hermitian lattices stems from a long term project of the
second author to classify automorphisms of extremal unimodular and modular lattices. Let
(V,q) be a positive definite rational quadratic space, so V is a vector space over Q and q : V → Q
is a positive definite quadratic form with associated bilinear form bq : V × V → Q,bq(x, y) :=
q(x+ y)− q(x)− q(y). The dimension of V is denoted by m. Then a Z-lattice L in (V,q) is the
integral span L = ⊕mi=1Zbi of a basis (b1, . . . , bm) of V .

The dual lattice is
L# := {v ∈ V | bq(v, `) ∈ Z for all ` ∈ L}.

We call L unimodular if L = L# and even if q(L) ⊆ Z. For an even lattice L the quadratic form
q defines a Q/Z-valued quadratic form qL on the discriminant group L#/L as

qL : L#/L→ Q/Z,qL(x+ L) := q(x) + Z.
The density of the sphere packing associated to L can be read of from the two most important
invariants of the lattice, its minimum

min(L) := 2 min{q(`) | 0 6= ` ∈ L} = min{bq(`, `) | 0 6= ` ∈ L}
and its determinant

det(L) = vol((V ⊗ R)/L)2 = det(bq(bi, bj)1≤i,j≤m)

for any lattice basis (b1, . . . , bm) of L. The value of the Hermite function γ(L) := min(L)
det(L)1/m

yields the density of the associated sphere packing as Vm

2m

√
γ(L) where Vm is the volume of the

m-dimensional unit sphere. So the densest lattices in a given dimension are those that maximise
the Hermite function. The densest lattices are known in dimensions up to 8 and in dimension 24
[3]. In particular in dimension 8 and 24 the densest lattices are even unimodular lattices. Even
unimodular lattices are not only of interest as they often yield dense lattices, but also because
of their relations to various other mathematical theories. The most important for us here is the
relation to modular forms: The theta series of an even unimodular lattice is a modular form
for the full modular group (see for instance [7] for an easily accessible reference). The theory of
modular forms allows to bound the density of an even unimodular lattice:
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Theorem 2.1. [34] Let L be an even unimodular lattice. Then m := dim(L) is a multiple of 8
and min(L) ≤ 2 + 2bm24c. If min(L) = 2 + 2bm24c then L is called extremal.

Of particular interest are the extremal even unimodular lattices of dimension a multiple of 24.
There are 6 such extremal lattices known: The Leech lattice of dimension 24, which is the densest
lattice of dimension 24 [3], four lattices of dimension 48, P48p, P48q [5], P48n [21], and P48m [24],
and one extremal even unimodular lattice of dimension 72 [22]. These lattices are the densest
known lattices in their dimension. Table 1 lists these lattices L and gives the group theoretic
structure of their automorphism group

Aut(L) = Aut(L,q) := {g ∈ GL(V ) | g(L) = L and q(g(`)) = q(`) for all ` ∈ L}
and the order |Aut(L,q)| together with references for a construction of L and Aut(L,q).

Table 1. The known extremal even unimodular lattices in the jump dimensions

L Aut(L) |Aut(L)| ref.
Λ24 2.Co1 8315553613086720000

= 22239547211 13 23 [18, 4]
P48p (SL2(23)× S3) :2 145728 = 263211 23 [5, 23]
P48q SL2(47) 103776 = 253 23 47 [5, 23]
P48n (SL2(13)YSL2(5)).22 524160 = 27325 7 13 [21, 23]
P48m (C5 × C5 × C3) : (D8YC4) 1200 = 243 52 [24]
Γ72 (SL2(25)× PSL2(7)) :2 5241600 = 2832527 13 [22, 23]

Note that the a factor of 2 is missing in the order of the automorphism group of P48p given in
[23] and [24], whereas the structure of the group is printed correctly.

In dimension 24 all even unimodular lattices are classified in [27] and the Leech lattice is the
unique extremal lattice. The classification of all even unimodular lattice in dimension 48 is not
possible (there are more than 3 · 10121 isometry classes of such lattices). Therefore the second
author started a long term project to classify extremal lattices (L,q) with a given automorphism
g ∈ Aut(L,q) (see [23, 24]). If the characteristic polynomial of g has an irreducible factor
f(X) ∈ Q[X] of degree > m

2 , then one can use ideals in the cyclotomic number field Q[X]/(f(X))
(more precisely unary Hermitian lattices) to construct the extremal lattices L with g ∈ Aut(L,q).

The general method is described in [23]: Let L be an even unimodular lattice in (V,q) and
let g ∈ Aut(L) be of prime order p. Then V = V1 ⊕ Vz is an orthogonal sum of two g-invariant
subspaces, namely

V1 = ker(g − 1) = {v ∈ V | g(v) = v}
the eigenspace of g to the eigenvalue 1 and its orthogonal complement Vz. If Φp := (Xp −
1)/(X − 1) is the p-th cyclotomic polynomial, then g acts on Vz with characteristic polynomial

χg = Φ
dim(Vz)/(p−1)
p . Put z := dim(Vz)/(p− 1) and f := dim(V1).

Definition 2.2. In the above situation the lattices Z(g) := L ∩ Vz and F (g) := L ∩ V1 are called
the g-cyclotomic lattice and the g-fixed lattice of L respectively.

Proposition 2.3. (see [24, Section 2]) Let Z = Z(g) and F = F (g) be as in Definition 2.2.
Then |Z#/Z| = |F#/F | = ps with

s ≤ min(z, f) and s ≡ z (mod 2)

The tuple p− (z, f)− s is called the type of g.

To classify the lattices L with a given automorphism g we first find all candidates for lattices
Z and F and then compute L as an even unimodular lattice with

Z ⊥ F ⊆ L = L# ⊆ Z# ⊥ F#.

Definition 2.4. Let Z and F be even lattices in rational quadratic spaces (V1,q1) and (V2,q2)
with automorphisms γ ∈ Aut(Z) and γ′ ∈ Aut(F ). Then a group isomorphism

ϕ : Z#/Z → F#/F

is called a (γ, γ′)-anti-isometry if the following conditions hold:
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(a) qZ(z + Z) + qF (ϕ(z + Z)) = 0 ∈ Q/Z for all z ∈ Z#.
(b) If ϕ(z +Z) = f + F then ϕ(γ(z) +Z) = γ′(f) + F for all z ∈ Z#, i.e. ϕ is a Z[γ]-Z[γ′]-

module isomorphism.

Then the gluing procedure (see for instance [24]) is described in the following remark.

Remark 2.5. (a) In the situation of Definition 2.4 the lattice

L := Lϕ := {(z, f) ∈ Z# ⊥ F# | ϕ(z + Z) = f + F}
is an even unimodular lattice in (V1,q1) ⊥ (V2,q2) with V1 ∩ L = Z and V2 ∩ L = F and
(γ, γ′) ∈ Aut(L).
(b) Let L = L# be an even unimodular lattice in (V,q), g ∈ Aut(L) such that V = V1 ⊥ V2 is the
orthogonal sum of two g-invariant subspaces. Put Z := L ∩ V1, F := L ∩ V2, γ := g|Z , γ′ := g|F .

Then there is a (γ, γ′)-anti-isometry ϕ : Z#/Z → F#/F such that L = Lϕ.

Let g, L, F, Z be as in Proposition 2.3. Then g acts trivially on F , hence on F#/F and on the
isomorphic module Z#/Z so we obtain the following corollary.

Corollary 2.6. Let g, L, F, Z be as in Proposition 2.3. Then (1− g)(Z#) ⊆ Z.

The notion of extremality has been generalized by H.G. Quebbemann [29] to modular lattices:
Unimodular lattices L satisfy L = L#. Quebbemann calls an even lattice L modular of level p (for
short p-modular) if there is an isomorphism f : L# → L of Z-modules such that q(f(`)) = pq(`)
for all ` ∈ L#. Such a map f is called a similarity of norm p and it satisfies det(f) = pn/2 =
|L#/L|. The following theorem transfers the result of Theorem 2.1 to p-modular lattices, putting
p = 1 one obtains the bound in Theorem 2.1.

Theorem 2.7. [29] Let p be a prime such that p+ 1 divides 24 and let L be an even p-modular
lattice of dimension m. Then m is even if p ≡ 3 (mod 4) and m is a multiple of 4 if p = 2 or
p ≡ 1 (mod 4). Moreover

min(L) ≤ 2 + 2bm(p+1)
48 c.

Even p-modular lattices achieving equality are called extremal.

For the current status of the classification of extremal modular lattices we refer to [14].

3. Hermitian forms

Let K be an algebraic number field, i.e. a finite extension field of Q and denote by ZK its
ring of integers. A fractional ideal I in K is a non-zero finitely generated ZK-submodule of K.
The set of all fractional ideals forms a group J(K) under ideal multiplication. It contains the
subgroup

P (K) := {αZK | 0 6= α ∈ K}
of principal ideals and a famous theorem by Minkowski (see [19, Chapter V]) shows that the ideal
class group

CL(K) := J(K)/P (K)

is a finite abelian group. Its cardinality is called the class number

hK := |CL(K)|
of K.

If d := [K : Q] = dimQ(K) denotes the degree of K over Q then there are d distinct embeddings

σ1, . . . , σd : K ↪→ C.
The number field K is called totally real, if σi(K) ⊆ R for all 1 ≤ i ≤ d and totally complex if
σi(K) 6⊆ R for all 1 ≤ i ≤ d.

In this paper K will always denote a totally real number field. An element a ∈ K is called
totally positive, if σi(a) > 0 for all i. The group P (K) of principal ideals contains a subgroup

P+(K) := {αZK | α ∈ K totally positive}
of finite index (dividing 2d). Hence the narrow class group

CL+(K) := J(K)/P+(K)
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is also finite. Its cardinality

h+K := |CL+(K)|
is called the narrow class number of the totally real field K.

Let V be a finite dimensional vector space over K. A map q : V → K is called a quadratic
form, if

• q(av) = a2q(v) for all a ∈ K, v ∈ V and
• bq : V × V → K, bq(v, w) := q(v + w)− q(v)− q(w) is a K-bilinear form on V .

The form bq is called the associated symmetric bilinear form of the quadratic form q. The
quadratic form is called non-degenerate, if bq is non-degenerate, i.e. bq(x, v) = 0 for all v ∈ V
implies that x = 0. The quadratic form q is called positive definite if q(v) is totally positive for
all nonzero v ∈ V . In particular positive definite quadratic forms are non-degenerate.

Any non-degenerate quadratic form q defines an involution σq on EndK(V ), the adjoint invo-
lution, where for ϕ ∈ EndK(V ) the endomorphism σq(ϕ) is defined by

bq(w, σq(ϕ)(v)) = bq(ϕ(w), v) for all v, w ∈ V.

Clearly det(σq(ϕ)) = det(ϕ) for all ϕ ∈ EndK(V ).
The orthogonal group of a non-degenerate quadratic space

O(V,q) := {g ∈ EndK(V ) | q(g(v)) = q(v) for all v ∈ V }

is the set of all g ∈ EndK(V ) satisfying σq(g)g = idV . In particular det(g) ∈ {−1, 1} for all
g ∈ O(V,q) and the special orthogonal group

SO(V,q) := {g ∈ O(V,q) | det(g) = 1}

is a normal subgroup of O(V,q) of index 2. Two quadratic spaces (V,q) and (W,q′) are isometric
if there is an isomorphism ϕ : V →W of K-vector spaces such that

q′(ϕ(v)) = q(v) for all v ∈ V.

To define Hermitian forms we let E/K be a CM extension of number fields, so K is a totally
real number field and E is a totally complex quadratic extension of K. Let Gal(E/K) =: 〈σ〉.

Remark 3.1. With the notation above E = K[α] for some α ∈ E with σ(α) = −α and δ := −α2 ∈
K is totally positive.

A Hermitian space (V,h) over E consists of a vector space V over E together with a Hermitian
form h : V × V → E such that

h(v, w) = σ(h(w, v)) and
h(λv + µw, u) = λh(v, u) + µh(w, u) for all v, w, u ∈ V, λ, µ ∈ E.

Two Hermitian spaces (V,h) and (W,h′) are isometric, if there is an isomorphism of E-vector
spaces ϕ : V →W such that

h′(ϕ(v), ϕ(v′)) = h(v, v′) for all v, v′ ∈ V.

If (V,h) is an m-dimensional Hermitian space, then V is a 2m-dimensional vector space over
K, which we denote by VK , and qh : VK → K, v 7→ h(v, v) is a quadratic form. For the associated
bilinear form bqh

we compute for v, w ∈ V

bqh
(v, w) = h(v + w, v + w)− h(v, v)− h(w,w) = h(v, w) + h(w, v) = h(v, w) + σ(h(v, w))

so

(1) bqh
= TrE/K ◦ h

where TrE/K : E → K,λ 7→ λ+σ(λ) is the trace of the Galois extension E/K. The Hermitian form
h is called positive definite if qh is positive definite and non-degenerate, if bqh

is non-degenerate.
Starting with a non-degenerate Hermitian space (V,h) we hence obtain a quadratic K-vector

space (VK ,qh) together with an embedding ν : E → EndK(V ). As

bqh
(ν(λ)w, v) = h(λw, v) + h(w, λv) = h(w, σ(λ)v) + h(σ(λ)w, v) = bqh

(w, ν(σ(λ))v)
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for all λ ∈ E, v, w ∈ V we see that the restriction of the involution σqh
to E coincides with the

Galois automorphism σ, more precisely

σqh
(ν(λ)) = ν(σ(λ)) for all λ ∈ E.

On the other hand, starting with a non-degenerate quadratic space (V,q) over K then any
embedding ϕ : E ↪→ EndK(V ) defines an E-linear structure on V . If the restriction of the adjoint
involution σq to ϕ(E) is σ then

(2) hϕ := h : V × V → E,h(x, y) :=
1

2
bq(x, y) +

1

2δ
αbq(ϕ(α)x, y)

is a Hermitian form on V with q = qh. Here δ and α are as in Remark 3.1.

Definition 3.2. Let (V,q) be a non-degenerate quadratic space over K. A K-algebra homomor-
phism ϕ : E → EndK(V ) is called a Hermitian embedding if

ϕ(σ(λ)) = σq(ϕ(λ)) for all λ ∈ E.

Clearly the unitary group

U(V,h) = {g ∈ EndE(V ) | h(g(v), g(w)) = h(v, w) for all v, w ∈ V }
of a non-degenerate Hermitian space embeds into the orthogonal group O(VK ,qh). Even more is
true: If g ∈ U(V,h) then h(g(v), g(w)) = h(v, w) for all v, w ∈ V . In particular the norm of the
determinant of g ∈ EndE(V ), which is the determinant of g ∈ EndK(VK), is equal to 1 (see [31,
Theorem 10.1.5]) and hence

U(V,h) ↪→ SO(V,qh).

On the other hand, given a quadratic space (V,q) over K and a Hermitian embedding ϕ : E →
EndK(V ), then the unitary group is

U(V,hϕ) = {g ∈ O(V,q) | gϕ(e) = ϕ(e)g for all e ∈ E}.

Theorem 3.3. Let (V,q) be a quadratic space over K. Then O(V,q) acts transitively on the set
of all Hermitian embeddings ϕ : E → EndK(V ).

Proof. By [31, Theorem (10.1.1)] two Hermitian spaces (V,h) and (V ′,h′) are isometric, if and
only if the quadratic spaces (VK ,qh) and (V ′K ,qh′) are isometric. As any Hermitian embedding
ϕ : E → EndK(V ) defines a Hermitian space (V,hϕ) with qhϕ = q the statement follows. �

4. Hermitian lattices

Let (V,h) be a Hermitian space over E, where E and K are as in the previous section. By ZE
and ZK we denote their respective rings of integers. The different of E/K is

DE/K := {x ∈ E | TrE/K(xZE) ⊆ ZK}−1 ⊆ ZE ,

which is always an ideal in ZE . The extension E/K is unramified if and only if DE/K = ZE .
Let R be one of ZE or ZK . An R-lattice L in V is a finitely generated R-submodule of V that

contains a K-basis of V , i.e. KL = V . For a fractional ideal a in K an R-lattice L is said to be
a-integral, if

qh(L) = {qh(`) | ` ∈ L} ⊆ a.

An a-integral lattice L is called a-maximal if L is not contained in any other a-integral lattice.
We call a lattice L maximal if it is a-maximal for some ideal a. Denote by Ga(V,h) the set of all
a-maximal ZE-lattices in (V,h). For a quadratic space (V,q) over K let Ga(V,q) the set of all
a-maximal ZK-lattices in (V,q) in (V,q).

Proposition 4.1. Any a-maximal ZE-lattice in (V,h) is an a-maximal ZK-lattice in (V,qh). So
Ga(V,h) ⊆ Ga(VK ,qh).

Proof. Let L be an a-maximal ZE-lattice. Then L is an a-integral ZK-lattice. Assume that L is
not a-maximal as ZK-lattice. Then there is some x ∈ V \ L such that L + ZKx is a-integral. It
suffices to show the ZE-lattice L+ ZEx is a-integral. To see this let λ ∈ ZE and ` ∈ L. Then

(3) h(`+ λx, `+ λx) = h(`, `) + λσ(λ)h(x, x) + λh(x, `) + σ(λ)h(`, x).
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Putting `′ = σ(λ)` ∈ L, the sum of the last two summands in (3) is

λh(x, `) + σ(λ)h(`, x) = h(x, `′) + σ(h(x, `′)) = TrE/K(h(x, `′)) = bqh
(x, `′)

= qh(`′ + x)− qh(`′)− qh(x).
(4)

The right hand side of Equation (4) lies in a because L+ZKx is a-integral. For the same reason
h(`, `) = qh(`) and h(x, x) = qh(x) also lie in a. As λσ(λ) ∈ ZK and one sees that the right
hand side of Equation (3) lies in a so L+ ZEx is an a-integral ZE-lattice. �

For a ZK-lattice L ≤ (V,q) we define the dual lattice

L∗ := (L,q)∗ := {v ∈ V | bq(v, `) ∈ ZK for all ` ∈ L}.

Lemma 4.2. Let L ≤ (V,q) be such that q(L) ⊆ ZK and L∗ = L. Then L ∈ GZK
(V,q).

Proof. Clearly (L,q) is ZK-integral, so it is enough to show its maximality. Assume that there
exists some x ∈ V , such that L+ ZKx is ZK-integral. Then for all ` ∈ L

q(x+ `) = q(x) + q(`) + bq(x, `) ∈ ZK

hence also bq(x, L) ⊆ ZK and therefore x ∈ L∗ = L. �

Similarly, given a ZE-lattice L in (V,h) then the Hermitian dual lattice is

L∗ := (L,h)∗ := {v ∈ V | h(v, `) ∈ ZE for all ` ∈ L}.

Then by Equation (1) (L,h)∗ = DE/K(L,qh)∗. The lattice L is called Hermitian unimodular
if L = (L,h)∗. Note that Hermitian unimodular lattices are ZK-integral, but in general not
maximal.

Lemma 4.3. If E/K is unramified at all finite places then any Hermitian unimodular lattice in
(V,h) is ZK-maximal.

Proof. Assume that there exists some x ∈ V , such that L + ZEx is ZK-integral. Then for all
` ∈ L and all α ∈ ZE

qh(αx+ `) = qh(αx) + qh(`) + TrE/Kh(αx, `) ∈ ZK

hence h(x, L) ⊆ DE/K . As E/K is unramified we have DE/K = ZE so x ∈ L∗ = L. �

Two ZK-lattices (L,q) and (L′,q′) are called isometric, if there is an isomorphism ϕ : L→ L′

of ZK-modules such that q′(ϕ(`)) = q(`) for all ` ∈ L. The isometry group Aut(L,q) is the group
of all self isometries ϕ : (L,q)→ (L,q). It contains the group of proper automorphisms

Aut+(L,q) := Aut(L,q) ∩ SO(KL,q) = {g ∈ Aut(L,q) | det(g) = 1}

as a normal subgroup of index at most 2.
Similarly we define isometries of Hermitian ZE-lattice (L,h) and (L′,h′) as the ZE-module

isomorphisms ϕ : L → L′ that are compatible with the Hermitian forms i.e. h′(ϕ(`1), ϕ(`2)) =
h(`1, `2) for all `1, `2 ∈ L and the Hermitian isometry group is denoted by AutZE

(L,h).

Remark 4.4. Let L ≤ (V,h) be a ZE-lattice. Then (L,qh) is a ZK-lattice in (VK ,qh) and the
natural embedding defines a Hermitian embedding ν : ZE → EndZK

(L).

The ZK-isometry group AutZK
(L,q) of a ZK-lattice in a quadratic space (V,q) over K acts

on the set of all Hermitian embeddings ϕ : ZE → EndZK
(L) by conjugation.

Proposition 4.5. Given a ZK-lattice (L,q) ≤ (V,q) then the set of all isometry classes of
Hermitian ZE-lattices (L,h) such that qh = q is in bijection with the set of AutZK

(L,q)-orbits
on the set of all Hermitian embeddings ϕ : ZE → EndZK

(L).

Proof. By the remark above the set of all Hermitian ZE-structures on (L,q) is in bijection to the
set of all Hermitian embeddings ϕ : ZE → EndZK

(L). Let ϕ and ψ be two such embeddings. We
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need to show that (L,hϕ) ∼= (L,hψ) if and only if there is an automorphism g ∈ AutZK
(L,q)

such that ϕ(e)g = gψ(e) for all e ∈ ZE . By the definition of hϕ in Equation (2) any such g yields

hϕ(g(x), g(y)) = 1
2bq(g(x), g(y)) + 1

2δαbq(ϕ(α)g(x), g(y))

= 1
2bq(g(x), g(y)) + 1

2δαbq(g(ψ(α)x), g(y))

= 1
2bq(x, y) + 1

2δαbq(ψ(α)x, y)α

= hψ(x, y)

for all x, y ∈ L. On the other hand, any isometry between (L,hϕ) and (L,hψ) is an automorphism
of L, preserving the quadratic form q(x) = hϕ(x, x) = hψ(x, x) so it defines an element of
AutZK

(L,q). �

For a ZK-lattice (L,q) in the quadratic space (V,q) let

[(L,q)] := {(g(L),q) | g ∈ O(V,q)} and [(L,q)]+ := {(g(L),q) | g ∈ SO(V,q)}

denote its isometry class respectively proper isometry class in (V,q).
The following theorem summarizes the results of this section and will yield a 2-step method to

determine all isometry classes of a-maximal Hermitian ZE-lattices in a Hermitian space (V,h).
We first determine a set

{(L1,qh), . . . , (Ls,qh)}

of representatives of isometry classes in the set Ga(VK ,qh). For each 1 ≤ i ≤ s we compute a set

{ϕij | 1 ≤ j ≤ ki}

of representatives of AutZK
(Li,qh)-orbits on the set of Hermitian embeddings ZE → EndZK

(Li).
By Theorem 3.3 there are gij ∈ O(VK ,qh) such that the natural embedding ν from Remark 4.4
is of the form

ν = gij ◦ ϕij ◦ g−1ij .

Theorem 4.6. The set

{(gij(Li),h) | 1 ≤ i ≤ s, 1 ≤ j ≤ ki}

is a set of representatives of the isometry classes in the set Ga(V,h) of a-maximal Hermitian
ZE-lattices in (V,h).

Example 4.7. To illustrate the theorem in an easy example let (V,q) be the rational quadratic
space of dimension 8 with an orthonormal basis. Up to isometry there exists a unique Z-maximal
lattice (L,q) in (V,q). This lattice is the even unimodular lattice E8 from Section 2. We
consider the field E = Q[

√
−5], so ZE = Z[

√
−5]. To determine all Hermitian embeddings

ϕ : ZE → EndZ(L) up to conjugation by G := Aut(L,q) we first note that it is enough to find
all y = ϕ(

√
−5) ∈ EndZ(L) such that y2 = −5 and q(y`) = 5q(`) for all ` ∈ L. For such y the

sublattice yL maps onto a maximal isotropic subspace of (L/5L,q), where q(`+5L) = q(`)+5Z ∈
Z/5Z = F5. Hence we start to compute representatives of the G-orbits on the set of all 39312 such
maximal isotropic spaces. There are two such orbits of length 15120 and 24192 represented by the
sublattices L1 and L2 say. We then determine for each lattice Li one endomorphism xi ∈ End(V )
that yields an isometry xi : (L,q) → (Li,

1
5q). Any other such isometry is of the form xi ◦ g for

some g ∈ G. By a random search we found gi ∈ G such that yi = xi ◦ gi satisfies y2i = −5. For
i = 1, 2 let

Yi := {yi ◦ g | g ∈ G, (yi ◦ g)2 = −5}.

If yi ◦ g ∈ Yi then g ∈ StabG(Li) because (yi ◦ g)2 = y2i implies that g ◦ yi ◦ g = yi and hence

g(Li) = g(yi(L)) = (g ◦ yi ◦ g)(L) = yi(L) = Li.

This allows to compute the set Yi on which StabG(Li) acts by conjugation with 2 resp. 1 orbits
represented by, say, y1, y′1 ∈ Y1 and y2 ∈ Y2. So we get three orbits of Hermitian embeddings
with |Aut(L,h1)| = 384, |Aut(L,h′1)| = 1920 and |Aut(L,h2)| = 480.
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An important coarser equivalence relation than isometry is provided by genera of lattices:
Given a place p of K, let Kp and Vp := V ⊗K Kp be the completions of K and V at p. If p is
finite, we denote by ZKp

and Lp := L⊗ZK
ZKp

the completions of ZK and L at p.
Two ZE-lattices (L,h) and (L′,h) in (V,h) are in the same genus, if (Lp,h) ∼= (L′p,h) for

every maximal ideal p of ZK . More details can be found for instance in [13].
It is well known that a genus always consists of finitely many isometry classes of Hermitian

lattices, the number of which is called the class number of the genus. In our situation, qh is
positive definite and so AutZE

(L,h) is a finite group. Then the mass of the genus is

mass(L,h) :=

h∑
i=1

|AutZE
(Li,h)|−1

where the Li represent the isometry classes of lattices in the genus of (L,h). There are analytic
formulas to compute the mass of a genus, see for instance [10].

If two (quadratic or Hermitian) lattices lie in the same genus, then, by the Hasse principle,
the underlying (quadratic or Hermitian) spaces are isometric. For a complete discrete valuation
ring, any two maximal lattices in a quadratic or Hermitian space are isometric (see [28, Theorem
91:2] and [33, Proposition 4.13]). Hence the set Ga(V,h) forms a genus of Hermitian lattices.

There is a well known method to enumerate representatives of isometry classes of lattices in
a genus, the Kneser neighbouring method [17]. In Example 4.7 it would be easier to apply this
method directly (see for instance [32]). In Section 7 below and the following examples however,
we are facing situations where this method fails due to the fact that the class number of the genus
is quite large and the usual isometry tests of Hermitian lattices are too expensive.

5. Duality and Transfer

As in the previous section let (V,h) be a totally positive definite Hermitian space over E. Then
V is also a vector space over Q of dimension dimQ(V ) = dimE(V ) · [E : Q] and the composition
of the quadratic form qh with the trace of K over Q defines a positive definite quadratic form

Tr(qh) := TrK/Q ◦ qh : V → Q, v 7→ TrK/Q(qh(v)).

On the other hand starting with a positive definite rational quadratic space (V,q) the adjoint
defines an involution

: EndQ(V )→ EndQ(V ), α 7→ α with bq(α(x), y) = bq(x, α(y)) for all x, y ∈ V.

Remark 5.1. Let (V,q) be a positive definite rational quadratic space of dimension m. Assume
that α ∈ EndQ(V ) has an irreducible minimal polynomial, i.e. E := Q[α] = 〈1, α, α2, . . . αe−1〉Q
is a field of degree e := [E : Q], say. If α 6= α ∈ Q[α] then : E → E is a field automorphism
of order 2 and K := {x ∈ E | x = x} is a subfield of index 2 in E. The embedding of E into
EndQ(V ) turns V into a vector space of dimension m/e over E and there is a unique Hermitian
form h : V → E such that q = TrK/Q(qh). More precisely for x, y ∈ V we determine h(x, y) ∈ E
as the unique element in E with

TrE/Q(αih(x, y)) = bq(αi(x), y) for all 0 ≤ i ≤ e− 1.

Any ZE-lattice L in (V,h) is a Z-lattice in the quadratic space (V,TrK/Q(qh)). This Z-lattice
(L,Tr(qh)) is called the trace lattice of (L,h).

The following relation between the Hermitian dual lattice L∗ and the dual of the trace lattice
is well known.

Lemma 5.2. For a ZE-lattice L in (V,h) we have

DE/Q · (L,TrK/Q(qh))# = (L,h)∗.

Proof. For x ∈ V we compute

x ∈ (L,TrK/Q(qh))# ⇐⇒ TrE/Q(h(x, L)) ⊆ Z

⇐⇒ h(x, L) ⊆ D−1E/Q
⇐⇒ DE/Q · x ⊆ (L,h)∗ . �
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Similarly as for vector spaces in Remark 5.1 certain automorphisms of lattices define a unique
Hermitian structure:

Remark 5.3. Let (L,q) be a positive definite Z-lattice and suppose that g ∈ Aut(L,q) has an
irreducible minimal polynomial. Then E := Q[g] ⊆ EndQ(QL) is a cyclotomic field with maximal
totally real subfield K := Q[α] where α = g + g−1 = g + g and is as in Remark 5.1. With
respect to h from Remark 5.1, the lattice (L,h) hence becomes a Hermitian ZE-lattice such that
(L,TrK/Q(qh)) = (L,q).

Let (L,q) be an even unimodular Z-lattice and g ∈ Aut(L) be an element of odd prime order p.
Let p− (z, f)− s be the type of g and let Z,F be as in Proposition 2.3. Then by Remark 5.3 the
lattice Z is a ZE-lattice in a totally positive definite Hermitian space (V,h), where E = Q[ζp].
By Corollary 2.6 as a ZE-lattice

(1− ζp)Z# ⊆︸︷︷︸
pz−s

Z ⊆︸︷︷︸
ps

Z# ⊆︸︷︷︸
pz−s

(1− ζp)−1Z.

Put T := (1− ζp)(p−3)/2Z. With respect to the Hermitian form h from Remark 5.1 we compute

(1− ζp)T ⊆︸︷︷︸
ps

(T,h)∗ ⊆︸︷︷︸
pz−s

T

in particular M := T ∗ is an integral Hermitian ZE-lattice in (V,h). To determine det(h), we
compute the Jordan decomposition of M as described in [13]. Let π := (1 − ζp)(1 − ζ−1p ) and

p := πZK be the prime ideal of ZK over p where K := Q[ζp + ζ−1p ]. The lattice M has a Jordan
decomposition Mp = M0 ⊥ M1 where M0 = M∗0 is a unimodular lattice of rank s, M1 has rank
z − s and (1− ζp)M∗1 = M1. Hence M1 is isometric to an orthogonal sum of (z − s)/2 copies of

a rescaled hyperbolic plane
(

0 1−ζp
1−ζ−1

p 0

)
and M0 has an orthogonal basis, M0 ∼ 〈1, . . . , 1, u〉 for

some unit u ∈ Z∗Kp
such that u(−π)(z−s)/2 represents the class of det(h) modulo norms. Note

that this provides an alternative proof of the fact that z ≡ s (mod 2) (see [23, Lemma 4.3]).

Lemma 5.4. In the situation above (V,h) contains a Hermitian unimodular lattice and det(h) =
1.

Proof. A unimodular lattice M̃ in (V,h) can be constructed as the lattice that coincides with M
at all finite places 6= p and is a unimodular overlattice of M0 ⊥ M1 in (Vp,h). To compute the
determinant we note that E/K is ramified only at the place p and at the infinite places of K.
Moreover h is totally positive definite. Hence det(h) is a norm at all infinite places of K. Since

M̃ is Hermitian unimodular at all finite places, the determinant det(h) is a norm at all places
different from p. By the Hasse Norm Theorem, det(h) must be a norm of some element of E. �

6. Quaternion algebras and quaternary quadratic lattices

In this section we state the results of [15] and the necessary background that is needed in the
next section to develop an algorithm for the classification of binary Hermitian lattices. A detailed
discussion of the arithmetic of quaternion algebras can be found in [8], [36] and [30]. Let K be a
totally real number field as before. For totally positive a, b ∈ K the quaternion algebra

Q =

(
−a,−b
K

)
has a basis (1, i, j, ij) with ij = −ji and i2 = −a, j2 = −b. It carries a canonical involution,

: Q→ Q defined by t+ xi+ yj + zij = t− xi− yj − zij. The reduced norm

n : Q→ K,n(α) = αα

of Q is a quaternary positive definite quadratic form over K such that n(αβ) = n(α)n(β) for all
α, β ∈ Q. In particular α−1 = α/n(α) for α ∈ Q \ {0} =: Q∗ shows that Q is a division algebra.

For α, β ∈ Q∗ the map

τα,β : Q→ Q, x 7→ αxβ−1
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is an isometry, if and only if n(α) = n(β). It is well known, see e.g. [6, Appendix IV, Proposition 3]
or [20, Proposition 4.3] that the group of proper isometries of the quadratic space (Q,n) is

SO(Q,n) = {τα,β | α, β ∈ Q∗, n(α) = n(β)}
The canonical involution of Q is an improper isometry of (Q,n), so the full orthogonal group

O(Q,n) is generated by the normal subgroup SO(Q,n) and the canonical involution .
An order in Q is a ZK-lattice that is a subring of Q. An orderM is called maximal if it is not

contained in any other order. The unit group Q∗ of Q acts on the set of all maximal orders in Q
by conjugation with finitely many orbits. We fix a system of representatives

M1, . . . ,Mt

of the conjugacy classes of maximal orders in Q. The number t is called the type number of Q.
The stabilizer of a maximal order M in Q under this action is

N(M) := {α ∈ Q∗ | αMα−1 =M}
the normaliser of M in Q∗.

For a ZK-lattice J in Q we define the left and right orders of J as

O`(J) := {α ∈ Q | αJ ⊆ J} and Or(J) := {α ∈ Q | Jα ⊆ J}.
A right ideal J of the maximal order M is a ZK-lattice J in Q such that Or(J) = M. Then
also the left order O`(J) is a maximal order, hence there is some i := i(J) ∈ {1, . . . , t} such that
O`(J) is conjugate to Mi.

Proposition 6.1. (see [15, Proposition 3.7])

Aut+(J, n) = {τα,β | (α, β) ∈ N(O`(J))×N(Or(J)), n(α) = n(β)} .

The norm n(J) of a ZK-lattice J is the fractional ideal of ZK generated by the norms of the
elements in J ,

n(J) :=
∑
γ∈J

ZKn(γ).

Two right ideals I, J ofM are called left-equivalent, if there is some α ∈ Q∗ such that I = αJ .
We denote by [J ] = {αJ | α ∈ Q∗} the left equivalence class of the right ideal J . Clearly
n(αJ) = n(α)n(J) and hence the map [n] from the set of left-equivalence classes of right ideals of
M into the narrow class group CL+(K), defined by [n]([J ]) = n(J)P+(K) is well defined. Also
the left orders of two left-equivalent right ideals of M are conjugate.

Any right ideal J defines a certain subgroup U(J) of finite (2-power) index in the group Z∗K,>0

of totally positive units of ZK (see [15, Proposition 3.7]) more precisely

U(J) := {n(α)n(β−1) | α ∈ N(O`(J)), β ∈ N(Or(J)), n(α)n(β−1) ∈ Z∗K}.
We note that (Z∗K)2 ⊆ U(J) ⊆ Z∗K,>0 and that U(J) only depends on the conjugacy classes of
the left and right orders of J .

Let a ∈ J(K) be some fractional ZK-ideal. A system of representatives of proper isometry
classes of lattices in Ga(Q,n) can be obtained by [15, Algorithm 7.1] as follows.

Let M be some maximal order in Q and let (I1, . . . , Ih) be a system of representatives of
left-equivalence classes of right ideals of M. For 1 ≤ i ≤ t set

Si := {IjMi | 1 ≤ j ≤ h and [n][IjMi] = aP+(K)}.
If g ∈ N(Mi) and I ∈ Si then there exists a unique lattice J ∈ Si such that J is left-equivalent
to Ig−1. This yields an action of the normaliser N(Mi) on Si. For 1 ≤ i ≤ t compute a system
of orbit representatives Ti of this action. For J ∈

⋃
i Ti fix some totally positive generator aJ

of n(J)−1a. Then by the Theorem of Hasse-Schilling-Maass, there is some xJ ∈ Q∗ such that
n(xJ) = aJ . For all u(Z∗K)2 ∈ Z∗K,>0/(Z∗K)2 compute some αu ∈ Q∗ such that n(αu) = u.

Theorem 6.2. [15, Algorithm 7.1] The set

Ra := {(αuxJJ, n) | J ∈
⋃
i

Ti and uU(J) ∈ Z∗K,>0/U(J)}

is a system of representatives of proper isometry classes of lattices in Ga(Q,n).
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For later use we note that the mass of the quaternion algebra Q is defined as

mass(Q) :=

h∑
i=1

[O`(Ii)
∗ : Z∗K ]−1.

As for the mass of the genus of lattices there are analytic formulas (see for instance [8]) to compute
the mass of Q from local invariants.

7. Binary Hermitian lattices

In this section we use Theorem 6.2 and Proposition 4.5 to classify binary Hermitian ZE-lattices:
Given a 2-dimensional totally positive definite Hermitian space (V,h) over E, the associated
quadratic space (V,qh) is a quaternary totally positive definite quadratic space over K. By [31,
Chapter 10, Remark 1.4] the determinant of (V,qh) is a square in K and the Clifford invariant
is the class of the quaternion algebra

Qh :=

(
−δ,−det(h)

K

)
,

where, as in Section 4, E = K[α] with α2 = −δ ∈ K. In particular E is a maximal subfield of
Qh and Qh is a 2-dimensional vector space over E.

A Theorem of Hasse (see [11]) implies that (V,qh) is isometric to (Qh, n). As the restriction of
the canonical involution of Qh to E is the non-trivial Galois automorphism σ of E/K, the natural
embedding ν : E → Qh ⊆ EndK(Qh) is a Hermitian embedding and the norm form n gives rise to
a Hermitian form hn := hν on the 2-dimensional E-vector space Qh, such that (Qh,hn) ∼= (V,h).

To classify all Hermitian embeddings of E with respect to n we identify EndK(Qh) with
Qoph ⊗Qh where Qoph denotes the opposite algebra of Qh.

Lemma 7.1. Let ϕ : E → EndK(Qh) be a Hermitian embedding with respect to n. Then

ϕ(E) ⊆ Qoph ⊗K or ϕ(E) ⊆ K ⊗Qh.

Proof. Write E = K[α] with σ(α) = −α and α2 ∈ K and let Q0
h := {x ∈ Qh | x+ x = 0} be the

3-dimensional K-subspace of trace 0 elements in Qh. The restriction of the adjoint involution of
n to Qoph ⊗K and to K ⊗Qh is the canonical involution of Qh resp. Qoph

∼= Qh. In particular the
6-dimensional space (Qoph )0 ⊗K ⊕K ⊗Q0

h is contained in the space of skew symmetric elements
(with respect to the adjoint involution of K4×4 induced by the symmetric bilinear form bn). As
this space is of dimension 6, we conclude that ϕ(α), being skew symmetric, is of the form

ϕ(α) = 1⊗ x+ y ⊗ 1

for suitable x ∈ Q0
h, y ∈ (Qoph )0. Now ϕ(α)2 = y2 ⊗ 1 + 1 ⊗ x2 + 2y ⊗ x ∈ K implies that x = 0

or y = 0, so ϕ(α) = 1⊗ x ∈ K ⊗Qh or ϕ(α) = y ⊗ 1 ∈ Qoph ⊗K. �

By Theorem 3.3 the orthogonal group acts transitively on the set of Hermitian embeddings by
conjugation. For the special case of quaternion algebras we can prove this more directly:

Proposition 7.2. Up to the action of O(Qh, n) there is a unique Hermitian embedding ϕ : E →
EndK(Qh).

Proof. Recall that all proper isometries of (Qh, n) are of the form τα,β : x 7→ αxβ−1 with α, β ∈
Q∗h, n(α) = n(β) and that the canonical involution x 7→ x is an improper isometry . Given a
Hermitian embedding ϕ : E → EndK(Qh) with values ϕ(E) ⊆ Qoph ⊗K, the conjugate by yields
a Hermitian embedding with values in K ⊗Qh. By the Theorem of Skolem and Noether any two
embeddings ϕ1, ϕ2 of E into Qh

∼= K ⊗ Qh are conjugate in Q∗h. So there is some a ∈ Q∗h such
that aϕ1a

−1 = ϕ2. The proper isometry τa−1,a hence conjugates ϕ1 into ϕ2. �

The ring of integers ZE also embeds into Qh, so there is some maximal order M in Qh

containing ZE . The lattice (M, n) is hence a Hermitian ZE-lattice L in (Qh,hn), maximal with
respect to the condition that n(`) = hn(`, `) ∈ ZK for all ` ∈ L, so

(M, n) ∈ GZK
(Qh,hn)

(see [15, Proposition 3.2] and Proposition 4.1).
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By Lemma 7.1 the image ϕ(ZE) of a Hermitian embedding into EndZK
(L) is either contained

in the left or in the right order of L. After conjugation with the improper isometry given by the
canonical involution of Qh we may assume without loss of generality that ϕ(ZE) is contained in
the right order, so L is a right ideal of some maximal order M that contains ϕ(ZE).

Remark 7.3. To compute all Hermitian embeddings ϕ : ZE ↪→M for a given maximal order M
we choose some α ∈ ZE with σ(α) = −α and α2 = −δ ∈ ZK .

We first find all elements x ∈ M with x2 = −δ and x = −x. These elements lie in the
sublattice M0 of trace 0 elements in M. The map

Tr ◦ n : M0 → Z, y 7→ TrK/Q(n(y))

defines a positive definite quadratic form on the Z-lattice M0. Clearly Tr ◦ n(x) = TrK/Q(δ) =:
a ∈ Z>0. Using the shortest vector algorithm [9] we enumerate the vectors v of norm a in the
Z-lattice (M0,Tr(n)) and then check whether v2 = −δ. For these v the map α 7→ v then defines
an embedding ϕ of E into Qh. It yields an embedding of ZE into M if and only if ϕ(ZE) ⊆M.

Let M1, . . . ,Mt be, as before, a system of representatives of the conjugacy classes of maxi-
mal orders in Qh. After rearranging the maximal orders, we assume that there is a Hermitian
embedding ϕ : ZE →Mi for i = 1, . . . , t0 and no such embedding for i > t0.

For 1 ≤ i ≤ t and 1 ≤ j ≤ t0 let J be a right ideal of Mj such that the left order O`(J) is
conjugate to Mi. Then the set of all β ∈ N(Mj) such that there is some α ∈ N(O`(J)) with

τα,β ∈ Aut+(J) (see Proposition 6.1) is

Nij := {β ∈ N(Mj) | ∃α ∈ N(Mi), n(α) = n(β)}.

Note that

M(1)
j := {β ∈M∗ | n(β) = 1}

is always a subgroup of Nij .

Let ϕ : ZE → Mj be a Hermitian embedding. Then for τα,β ∈ Aut+(J) and x ∈ ZE we
compute for all γ ∈ J :

τα,β ◦ ϕ(x) ◦ τ−1α,β(γ) = τα,β(α−1γβϕ(x)) = γ(βϕ(x)β−1)

so τα,β · ϕ = β · ϕ, hence we get

Remark 7.4. The set of Aut+(J)-orbits on the set of all Hermitian embeddings ϕ : ZE →Mj is
in bijection to the set of all Nij-orbits on the set of all Hermitian embeddings ϕ : ZE →Mj . Let
Φij be a system of representatives of these orbits.

Combining Theorem 6.2 with Proposition 4.5 we finally obtain the following Theorem.

Theorem 7.5. Keep the notation of Theorem 6.2. The set

{(αuxJJ,hϕ) : (J, ϕ) ∈
t0⋃
j=1

(Tj ,ΦiJ ,j), uU(J) ∈ Z∗K,>0/U(J)}

is a system of representatives of isometry classes of lattices in Ga(Qh,hn).

The most important case in this paper is that E is a cyclotomic number field, so E = Q[ζo]
and K = Q[ζo + ζ−1o ] with o 6≡ 2 (mod 4). Then α := ζo − ζ−1o satisfies α2 = −δ with

δ = 2− ζ2o − ζ−2o = 4− (ζo + ζ−1o )2 ∈ K.

Suppose that o is not a prime power. Then E/K is unramified and we often can apply the

following remark to obtain the quaternion algebra Qh =
(
−δ,− det(h)

K

)
.

Remark 7.6. Assume that E/K is unramified and that there is a ZE-lattice L in (V,h) such that
the ZK-dual (L,qh)∗ = aL for some fractional ZK-ideal a. Then det(h) = aσ(a) for some a ∈ E.

and Qh =
(
−δ,−1
K

)
.
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Proof. As E/K is unramified every fractional ZK-ideal is a norm, in particular there is some
fractional ZE-ideal A such that a = Aσ(A). Replacing L by A−1L we obtain a unimodular
ZK-lattice in (V,qh) and hence may assume that a = ZK . For all prime ideals P of ZE the
ZEP

-lattice (LP,h) has an orthonormal basis (see for example [13, Proposition 4.1]). So locally
everywhere det(h) is a norm. As det(h) is totally positive the Hasse norm principle ([26, Korollar

VI.4.5]) shows that there exists an element a ∈ E such that det(h) = aσ(a). Hence Qh =
(
−δ,−1
K

)
by the usual rules for Hilbert symbols (see for instance [28, 63:10]). �

Example 7.7. For illustration we apply our methods to the situation of [15, Example 7.3] for

K = Q[
√

15] and Q =
(−1,−1

K

)
. We take E := K[

√
−ε] where ε := 4 +

√
15 is the fundamental

unit of ZK . Then E embeds into the quaternion algebra Q giving rise to a Hermitian structure
(Q,hn).
[15, Example 7.3] shows that the type number of Q is 8 and lists 8 maximal orders Mi (1 ≤
i ≤ 8) to which we refer in the following. To find representatives of the isometry classes of
Hermitian lattices in G

(
√
15
−1

)
(Q,hn) we consider the 14 proper isometry classes of ZK-lattices

in G
(
√
15
−1

)
(Q,n) represented by (MiMj , αijn) with

(i, j) ∈ {1, 7} × {5, 8} ∪ {2, 3, 6} × {4} ∪ {4} × {2, 3, 6} ∪ {5, 8} × {1, 7}.
Only those MiMj are relevant, for which there is a Hermitian embedding ϕj : ZE ↪→ Mj . We
compute that such an embedding exists if and only if j ∈ {2, 4, 5, 7}. Moreover in all cases the
group Nij acts transitively on these embeddings. So there are 8 isometry classes of Hermitian
lattices in G

(
√
15
−1

)
(Q,h). represented by

(MiMj , αijhϕj
) where (i, j) ∈ {(4, 2), (2, 4), (3, 4), (6, 4), (1, 5), (7, 5), (5, 7), (8, 7)}.

8. Binary unimodular lattices over certain cyclotomic fields

In this section we restrict to the case where E = Q[ζp] for some prime p ≡ 3 (mod 4) and
K is its maximal totally real subfield Q[ζp + ζ−1p ]. To classify the genus of binary unimodular

Hermitian ZE-lattices let Q :=
(−1,−p

K

)
be the quaternion algebra over K ramified at the p−1

2
infinite places of K and the finite place over p. Then E embeds into Q and hence there is some
maximal order M that contains ZE = Z[ζp]. In fact, such a maximal order can be constructed
as the enveloping order of the quaternion group Q4p of order 4p as

M = 〈1, ζp, σ, σζp〉ZK

where σ2 = −1 and σζpσ
−1 = ζ−1p (see for example [20, Theorem 6.1]). The Hermitian lattice

(M,hn) is isometric to the standard Hermitian ZE-lattice of dimension 2, and hence the Z-trace
lattice of the ZK-lattice (M, 1pn) is isometric to the dual lattice of the root lattice Ap−1 ⊥ Ap−1.

8.1. Class number of Hermitian lattices. In general there are no analytic formulas for the
class number of a given genus. However, for binary Hermitian unimodular Z[ζp]-lattices (p a prime
≡ 3 (mod 4)) this number can be obtained from the type number t of the associated quaternion
algebra Q, provided that h+K = 1 (which is the case for p < 163 assuming GRH (see [37, p. 421]).
An analytic formula for t can be found in [36, Corollaire V.2.6].

Proposition 8.1. Let p ≡ 3 (mod 4) be a prime, K = Q[ζp+ζ−1p ], E = Q[ζp], and Q :=
(−1,−p

K

)
be as above. Assume that h+K = 1. Then hE is odd and the class number of the genus of Hermitian
unimodular binary ZE-lattices is hEt where t is the type number of Q.

Proof. We first note that the condition on the narrow class number h+K = 1 implies that Z∗K,>0 =

(Z∗K)2 and hence the group U(J) from Theorem 6.2 equals Z∗K,>0.
Let M1, . . . ,Mt represent the conjugacy classes of maximal orders in Q. We may assume

M1 = M with M(1) ∼= Q4p. As the norm 1 units M(1) generate the order M as a ZK-lattice,
the orderM is the unique maximal order in Q with norm 1 group of order 4p. LetM2, . . . ,Ma be

the other maximal orders Mi into which ZE embeds. Then by [35] M(1)
i
∼= C2p for i = 2, . . . , a.

Choose an Hermitian embedding ϕi : ZE →Mi and denote by zi := ϕi(ζp) ∈ Mi. For all these
i = 1, . . . , a the normaliser is

N(Mi) = 〈M(1)
i , 1− zi,K∗〉.
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It acts on the set of ZK-linear embeddings ϕ : ZE → Mi with the same orbits as M(1)
i . In

particular there is one such orbit for i = 1 and two orbits for i = 2, . . . , a represented by ϕi and
ζp 7→ ϕi(ζ

−1
p ), and the total number of embeddings is 1 + 2(a − 1) = 2a − 1. By [36, Corollaire

III.5.12] this number is exactly the class number of E, so hE = 2a− 1 is odd.
By Theorem 6.2 we need to compute for all 1 ≤ i ≤ a a set of representatives Ti or the

N(Mi)-orbits on the left-equivalence classes in Si. These orbits are of the form

[I] ·N(Mi) = {[I], [I(1− zi)]}.

We claim that |[I] ·N(Mi)| = H(O`(I)) is the two-sided class number of the left order of I.
To see this we first remark that the fact that hK = 1 implies that the classes of 2-sided ideals of
any maximal order M are represented by M and its maximal ideal P of norm p. So H(M) = 1
if and only if P = βM with β ∈ N(M) of norm p. On the other hand |[I] ·N(Mi)| = 1, if and
only if there is some b ∈ Q∗ such that

bI = I(1− zi).

Of course the left order of I is

O`(I) = O`(I(1− zi)) = O`(bI)

so b normalizes O`(I). Moreover the norm of b is the norm of 1 − zi, so bO`(I) generates the
maximal ideal of O`(I) of norm p and therefore H(O`(I)) = 1.

The fact that |[I] ·N(Mi)| = H(O`(I)) shows that Ti contains exactly one ideal with left order
conjugate to Mj for any 1 ≤ j ≤ t. More precisely Ti can be chosen as

Ti = {MjMi | 1 ≤ j ≤ t}

and has exactly t elements. So by Theorem 7.5 the number of isometry classes of Hermitian
ZE-lattices in the genus of (M,hn) is hEt. �

Remark 8.2. The conclusion that hE is odd can also be derived from a much more general result
due to Hasse as follows. The assumption that h+K = 1 implies that hK = 1 as well as that the
units in Z∗K yield every possible sign combination at the real places of K. Moreover, p is the only
ramified prime in E and it is non-split in K. By [12, Satz 42] these conditions are sufficient for
hE to be odd.

8.2. Examples for small primes p. To give more meaning to our results and also because of the
application to the classification of extremal unimodular lattices, we study the binary Hermitian
lattices over Z[ζp] in the context of even unimodular Z-lattices. So let p be a prime p ≡ 3 (mod 4)
and let Q be the quaternion algebra as in Proposition 8.1.

Remark 8.3. Let L be an even unimodular Z-lattice of dimension 2(p − 1) + 4 that admits an
automorphism g ∈ Aut(L) of type p − (2, 4) − 2. Let Z,F be as in Proposition 2.3. Then there
is a Hermitian unimodular lattice Λ ≤ (Q,hn) such that

(Z#, pq) ∼= (Λ,TrK/Q(n)).

The lattice F is a quaternary quadratic lattice over the rationals with det(F ) = p2. Putting

Q′ =
(
−1,−p

Q

)
to be the quaternion algebra with centre Q ramified only at p and the infinite

place then (F,q) ∈ GZ(Q′, n′). So we can use our method to determine the possible F and Z.
Given such F and Z, there are exactly 2(p + 1) even unimodular Z-lattices containing F ⊥ Z
of index p2. All these even unimodular lattices have an automorphism g of order p and type
p− (2, 4)− 2.

Due to the growth of the computational complexity we only treat the primes p = 3, 7, 11, 19, 23.
For all these p the narrow class number of K is h+K = 1 and we may apply Proposition 8.1.

For p = 3 and p = 7 the order M is the unique maximal order, so the genus of the Hermitian
unimodular ZE-lattices of dimension 2 only consists of the class of the standard lattice. Also
the set GZ(Q′, n′) from Remark 8.3 consists of a unique isometry class and the even unimodular
Z-lattices obtained in Remark 8.3 are all isometric to the root lattice E8 (for p = 3) respectively
E8 ⊥ E8 (for p = 7).
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For p = 11 we compute that hE = 1, so the order M is the unique maximal order that
contains Z[ζp] (see [36, Corollaire III.5.12]). The type number of Q is the class number ofM and
equal to 2. The other lattice in the genus of (M,hn) has dual trace lattice of minimum 4. Also
GZ(Q′, n′) from Remark 8.3 contains a unique isometry class of lattices of minimum 4. One finds
the Leech lattice, the unique extremal even unimodular lattice of dimension 24, as an overlattice
of minimum 4 of the orthogonal sum of these two lattices.

8.2.1. p = 19. For p = 19 again hE = 1 and hence by [36, Corollaire III.5.12] the order M from
above is the unique maximal order that contains Z[ζp]. With [2] we compute the type number t
of Q as t = 185 so also the class number of the genus of (M,hn) is 185 by Proposition 8.1. As
we are mainly interested in the trace lattices, we group these 185 lattices into orbits under the
Galois group Gal(E/Q) ∼= C18 and obtain in total 23 orbits, two of them have length 1, one has
length 3, and the other 20 orbits have length 9. So we obtain in total 23 isometry classes of dual
trace lattices Z, one of which has minimum 2 and the other 22 lattices have minimum 4.

To classify extremal even unimodular lattices of dimension 40 with an automorphism of order
19 we need to find all unimodular overlattices M of Z ⊥ F where Z is one of these 22 lattices and
F the unique 4-dimensional 19-modular lattice of minimum 4 (cf. Remark 8.3). By Remark 2.5
we hence need to classify the anti-isometries ϕ : (Z#/Z,qZ)→ (F#/F,qF ). The automorphism
group of F has 5 orbits on the set of these isometries, so each of the 22 lattices Z gives rise to 5
lattices M . Among the 110 lattices M , 12 come in isometric pairs, hence we have shown:

Corollary 8.4. There are exactly 104 isometry classes of extremal even unimodular lattices of
dimension 40 that admit an automorphism of order 19.

Proof. It just remains to show that all automorphisms of order 19 of an extremal even unimodular
lattice M of dimension 40 have characteristic polynomial (X19−1)2(X−1)2. The other possibility
would be (X19 − 1)(X − 1)21. Then M contains a sublattice Z ⊥ F of index 19 such that Z has
determinant 19 and is an ideal lattice in Z[ζ19]. As this ring has class number 1 and also h+K = 1
we conclude that Z is the root lattice A18 which has minimum 2. �

8.2.2. p = 23. The case p = 23 is of particular interest in the classification of 48-dimensional
extremal even unimodular lattices. In the moment one knows 4 such extremal lattices, two of
which have an automorphism of order 23 (Table 3). If 23 divides the order of the automorphism
group of such a lattice, then by [23, Theorem 4.4] the elements of order 23 have type 23−(2, 4)−2
and these lattices are constructed as in Remark 8.3. Our computations described below show the
following corollary.

Corollary 8.5. There are exactly two isometry classes of extremal even unimodular lattices of
dimension 48 that admit an automorphism of order 23.

Let K = Q[ζ23 + ζ−123 ] be the maximal totally real subfield of E = Q[ζ23]. The narrow class

number of K is h+K = 1 and the class number of E is hE = 3. For Q =
(−1,−23

K

)
we compute

the type number t = 16393 and the class number h = 32651. So by Proposition 8.1 the genus
of binary Hermitian unimodular ZE-lattices consists of exactly 3 · 16393 isometry classes. Out
of these only 12 have dual trace lattices of minimum ≥ 6, all coming from lattices of the first
maximal order M. These 12 dual trace lattices fall into two isometry classes of Z-lattices,
11 of them are isometric to the orthogonal complement of the fixed lattice of an element of
order 23 in Aut(P48q) ∼= SL2(47) and the other one to the respective sublattice of P48p with
Aut(P48p) ∼= (SL2(23) × S3).2. Computing the overlattices from Remark 8.3 we conclude that
these two extremal even unimodular lattices are the only ones that allow an automorphism of
order 23.

Note that the result of Corollary 8.5 cannot easily be established by enumerating the genus
of binary Hermitian unimodular ZE-lattices using Kneser’s neighbour method directly, simply
because the computation of isometries between such lattices is very time and memory consuming.

9. Semilarge automorphisms of 48-dimensional extremal even unimodular lattices

Let (L,q) be an even unimodular Z-lattice of dimension m as in Section 2. For g ∈ Aut(L) we
say that g is large if its characteristic polynomial χg has an irreducible factor of degree > m

2 . The
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papers [23] and [25] use ideal lattices to classify extremal even unimodular lattices of dimension
48 and 72 that admit a large automorphism.

Definition 9.1. An automorphism g of an m-dimensional lattice is called semilarge, if χg has
an irreducible factor of degree > m

4 that occurs with multiplicity 2.

Table 2 gives the number of conjugacy classes of semilarge elements in the automorphism
group of the four known extremal even unimodular lattices of dimension 48. The summands
are in bijection with the conjugacy classes of subgroups generated by the respective semilarge
automorphism. So the first entry 8 + 4 + 4 contains the information that Aut(P48p) contains
16 conjugacy classes of semilarge elements of order 48, generating subgroups that fall into 3
conjugacy classes.

Table 2. The semilarge automorphisms of the four known extremal lattices P48pqnm.

order 48 60 33 44 23 35 39 52 56 84
P48p 8+4+4 - 5 5 1 - - - - -
P48q 8 - - - 11 - - - - -
P48n - 2 - - - 3 1 1 3+3 3
P48m - - - - - - - - - -

As Aut(L) is a finite group, any element g ∈ Aut(L) is an element of GLm(Q) of finite order,
so χg is a product of cyclotomic polynomials

χg =

s∏
i=1

Φeiai

where the roots in C of the irreducible polynomial Φai ∈ Q[X] are exactly the primitive ai-th
roots of unity. The order of g is the least common multiple of the ai. If L is an extremal lattice
of dimension 48 then [23, Corollary 4.11] shows that the order of g is indeed the maximum of all
the ai.

Table 3 is taken from [24]. It lists the possible types of prime order automorphisms σ 6= −1 of
extremal even unimodular lattices of dimension 48 together with their fixed lattice F (σ) and the
cyclotomic lattice Z(σ) as defined in Definition 2.2.

Table 3. The possible types of automorphisms σ 6= −1 of prime order.

type F (σ) Z(σ) example complete
47-(1,2)-1 unique unique P48q [23, Thm 5.6]
23-(2,4)-2 unique 2 P48q, P48p Cor. 8.5
13-(4,0)-0 {0} at least 1 P48n

11-(4,8)-4 unique at least 1 P48p

7-(8,0)-0 {0} at least 1 P48n

7-(7,6)-5
√

7A#
6 not known not known

5-(12,0)-0 {0} at least 2 P48n, P48m

5-(10,8)-8
√

5E8 at least 1 P48m

5-(8,16)-8 [2.Alt10]16 Λ32 P48m [24]
3-(24,0)-0 {0} at least 3 P48p, P48n, P48m

3-(20,8)-8
√

3E8 not known not known

3-(16,16)-16
√

3(E8 ⊥ E8) at least 4 P48p, P48q, P48n

3-(16,16)-16
√

3D+
16 at least 4 not known

3-(15,18)-15 unique two not known
3-(14,20)-14 ? unique not known
3-(13,22)-13 ? unique not known

2-(24,24)-24
√

2Λ24

√
2Λ24 P48n

2-(24,24)-24
√

2O24

√
2O24 P48n, P48p, P48m
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For the rest of this section we assume that g is a semilarge automorphism of an extremal even
unimodular lattice L of dimension m = 48 and denote by o := ord(g) the order of g. Replacing
g by −g if necessary we may assume that o 6≡ 2 (mod 4).

Lemma 9.2. Φ2
o divides χg.

Proof. As g is semilarge, χg = Φ2
af for some a dividing ord(g) such that

deg(Φa) = ϕ(a) > m/4 = 12.

In particular deg(f) < 48 − 2 · 12 = 24. If a is a proper divisor of o, then ϕ(o) ≥ 2ϕ(a). The
facts that Φo divides χg by [23, Corollary 4.11] and that deg(Φo) ≥ 2 deg(Φa) > 24 > deg(f)
contradict each other. �

Lemma 9.3. If o is even then go/2 = −1.

Proof. By Lemma 9.2 χg = Φ2
of with deg(f) < 24. Then the fixed space of go/2 has dimension

≤ deg(f) < 24 and Table 3 implies that go/2 = −1. �

Going through all possible o ∈ N with o 6≡ 2 (mod 4) and ϕ(o) ∈ [13, . . . , 24] we arrive at the
following possibilities for o:

ϕ(o) o
16 17, 32, 40, 48, 60
18 19, 27
20 25, 33, 44
22 23
24 35, 39, 45, 52, 56, 72, 84

We always put

E := Q[ζo],ZE = Z[ζo],K := Q[ζo + ζ−1o ],ZK = Z[ζo + ζ−1o ] and δ := 4− (ζo + ζ−1o )2.

Let (W,h) be the 2-dimensional Hermitian E-space on which g acts as primitive o-th root ζo of
unity,

Qh :=

(
−δ,−det(h)

K

)
, and Z := L ∩W.

The overall strategy to find all extremal unimodular lattices L can be divided into four steps:

(i) Identify the orthogonal lattice F of Z in L as the fixed lattice (or the orthogonal sum of
two fixed lattices) of an element h of order p using Table 3.

(ii) Construct the possible lattices F and classify the conjugacy classes of automorphism of
order o/p that may occur as the action of g on F .

(iii) Construct the possible lattices Z as ideals in the quaternion algebra Qh using Theorem 7.5
(possibly as sublattices of maximal lattices).

(iv) Construct the g-invariant extremal unimodular overlattices L of Z⊕F using Remark 2.5
and some additional structure that make the computations feasible.

Step (i) is an easy combinatorial consideration and step (ii) a fast computation in Magma using
the automorphism group and conjugacy classes algorithms. Step (iii) and (iv) are computationally
much more involved. Step (iii) is done using the main result Theorem 7.5 of this paper building
upon sophisticated algorithms for quaternion algebras from [16]. Step (iv) is more or less linear
algebra. To make the computations feasible, one needs to consider the action of the centraliser
of g in Aut(Z)×Aut(F ) in a clever way.

We treat the possibilities for o according to their Euler Phi values and structure the description
of the computations according to the four steps described above.

9.1. ϕ(o) = 16. By Table 3 the prime o = 17 is not possible and [23, Corollary 4.12] shows
that any automorphism g of order 32 has χg = Φ3

32, in particular such an automorphism is not
semilarge (see also Lemma 9.3).
o = 40. By Lemma 9.3 χg = Φ2

40Φ4
8. Let h := g8. Then h is an element of order 5 with a fixed

space of dimension 16 = deg(Φ4
8). By [24, Theorem 3.2] any extremal lattice L with such an

automorphism h is isometric to P48m. But the automorphism group of P48m does not contain an
element of order 40, so this case is impossible.
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o = 48. By Lemma 9.3 χg = Φ2
48Φ2

16.
(i) Let h := g16. Then h is an element of order 3 with fixed space of dimension 16, so by Table 3
the type of h is 3− (16, 16)− 16 and there are two possibilities for the fixed lattice F = F (h) of
h in L:

F1
∼=
√

3D+
16 or F2

∼=
√

3(E8 ⊥ E8).

(ii) For both lattices there is a unique conjugacy class of automorphisms with characteristic
polynomial Φ2

16, represented by, say,

γ1 ∈ Aut(
√

3D+
16) respectively γ2 ∈ Aut(

√
3(E8 ⊥ E8)).

(iii) In both cases the lattice Z = Z(h) = {` ∈ L | (`, F (h)) = {0}} is a 32-dimensional Z-lattice of
determinant 316. By Lemma 5.4 (1−h)Z# = Z and the Q[ζ3]-Hermitian space (WQ[ζ3],TrE/Q[ζ3]◦
h) contains a Hermitian unimodular lattice (M,TrE/Q[ζ3] ◦h). As in Lemma 5.2 we compute the
dual of the ZE-lattice M as (M,h)∗ = DE/Q[ζ3]M. As E/K is unramified we are in the position

to apply Remark 7.6 to obtain det(h) = 1 and Qh =
(
−δ,−1
K

)
. Moreover (Z#, 18h) is a Hermitian

unimodular ZE-lattice and Z is a (1/8)ZK-maximal lattice in Qh. The mass of Qh is 365
16 , the

class number and the type number of Qh are both 39, and there is a unique maximal order M
containing an element γ of order 48. The narrow class number of K is 2 but all totally positive
units in ZK are norms of units in ZE . We find that 22 of the 39 right ideal classes of M have
trivial norm in the narrow class group of K, so there are 22 possibilities for such ZE-lattices Z.
Only 12 of them, Z1, . . . , Z12 give rise to Z-lattices with minimum ≥ 6.

(iv) The even unimodular lattice L is of the form

L = {x+ y | x ∈ Z#
j , y ∈ F

#
i , ϕ(x+ Zj) = y + Fi}

for some 1 ≤ j ≤ 12, i = 1, 2 and some (γ, γi)-anti-isometry ϕ (see Definition 2.4). To construct

these ϕ we first note that γ acts on Z#
j /Zj with minimal polynomial Φ16 and that Φ16 ≡ p1p2

(mod 3) for two distinct irreducible polynomials p1, p2 ∈ F3[X] of degree 4. We obtain the
decomposition

Z#
j /Zj = p1(γ)(Z#

j /Zj)⊕ p2(γ)(Z#
j /Zj)

∼= S2 ⊕ S∗2

∼= F#
i /Fi = p1(γi)(F

#
i /Fi)⊕ p2(γ)(F#

i /Fi)

where S is the simple F3[X]/(p2(X))-module with dual module S∗ ∼= F3[X]/(p1(X)). Fix a

basis (b1, b2) of p1(γ)(Z#
j /Zj) and compute the dual basis (b∗1, b

∗
2) of p2(γ)(Z#

j /Zj). Then ϕ is

uniquely determined by vk := ϕ(bk) ∈ p1(γi)(F
#
i /Fi) for k = 1, 2, because then ϕ(b∗k) = −v∗k

where (v∗1 , v
∗
2) ∈ (p2(γi)(F

#
i /Fi))

2 is the dual basis of (v1, v2). The centralizer of g = (γ, γi)

CAut(Zj)(γ)× CAut(Fi)(γi)

in the automorphism group of Zj ⊥ Fi still acts on these anti-isometries ϕ. We only use the action
of the second component to restrict the possibilities for v1 to a system of orbit representatives of

CAut(Fi)(γi) on the non-zero vectors in p1(γi)(F
#
i /Fi).

For i = 1 (so Fi ∼=
√

3D+
16) none of the glued lattices is extremal.

For i = 2 (so Fi ∼=
√

3(E8 ⊥ E8)) we find 160 not necessarily inequivalent extremal even
unimodular lattices. We are now facing the problem to check isometry of these lattices. To this
aim we first partition the 160 lattices according to the isometry class of the sublattice Z into two
sets of cardinality 16 and 144.

Let L be one of the first 16 extremal lattices. Then (Z ⊥ F )#/L ∼= S2⊕S∗2 as an F3〈g〉-module
and we consider the Z〈g〉-lattice X with

3X ⊆ X# ⊆ L ⊆ X ⊆ (Z ⊥ F )#

such that X/L ∼= S2. The lattice X has minimum 2 and 480 shortest vectors. Its automorphism
group has order 432. The Aut(X)-orbit O of the subspace L/3X of X/3X has length 9. For
all other 15 lattices L′ the corresponding overlattice X ′ is isometric to X. After applying this
isometry, we hence may assume that X ′ = X and consider the subspace L′/3X ≤ X/3X. All
these subspaces lie in O. To check isometry to one of the known lattices, we do the same
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computation with the lattice P48q. The automorphism group of this lattice contains 8 conjugacy
classes of elements of order 48 with characteristic polynomial Φ2

16Φ2
48. All these elements generate

conjugate subgroups, so it is enough to consider one such element g ∈ Aut(P48q). The lattice
Z(g16) is isometric to the lattice Z in the first part, we compute X, check isometry and recognize
the subspace P48q/3X in O.

For the other 144 extremal lattices, one finds two isometry classes of lattices X, say X1 and
X2, where 48 of the lattices yield an overlattice isometric to X1 and the other 96 have overlattice
X2. The lattice X1 has minimum 2, kissing number 576 and an automorphism group of order
2434. The orbit on the sublattices L/3X has length 9 and all the 48 lattices L are in this orbit.
We check that two of the three conjugacy classes of relevant subgroups of the lattice P48p (see
Table 2) yield lattices isometric to X1 and that P48p/3X1 is in this orbit. In particular all the
48 lattices L are isometric to P48p. The lattice X2 has also minimum 2 and kissing number 576.
The automorphism group of X2 has order 2536 and the orbit of L/3X2 has length 81. All 96
lattices yield subspaces in this orbit, so does the third conjugacy class of relevant subgroups in
Aut(P48p). So also these 96 lattices are isometric to P48p.
o = 60. By Lemma 9.3 we now have 3 possibilities for the characteristic polynomial of g, χg =
Φ2

60f where f is one of Φ4
12 (case (1)), Φ2

20 (case (2)), or Φ2
12Φ20 (case (3)).

(1) In the first case let h := g12. Then h is an element of order 5 having a 16-dimensional fixed
space (as in the case o = 40 above). By [24, Theorem 3.2] any extremal lattice L with such an
automorphism h is isometric to P48m. But the automorphism group of P48m does not contain an
element of order 60, so this case is impossible.

(2) The second case is very similar to the case o = 48.
(i) Here h := g20 is an element of order 3 with a 16-dimensional fixed lattice F (h) which is

isometric to
√

3D+
16 or

√
3(E8 ⊥ E8) as for o = 48.

(ii) As Aut(D+
16) does not contain an element with characteristic polynomial Φ2

20 we conclude

that F ∼=
√

3(E8 ⊥ E8). There are two conjugacy classes of elements γ1, γ2 ∈ Aut(F ) with
characteristic polynomial Φ2

20.

(iii) The lattice Z is a maximal lattice in Qh =
(
−δ,−1
K

)
. The mass of Qh is 2, the class number

and the type number of Qh are both 9, and there is a unique maximal order M containing an
element γ of order 60. The narrow class number of K is 2 but all totally positive units in ZK are
norms of units in ZE . 7 of the 9 right ideal classes of M have trivial norm in the narrow class
group of K, so there are 7 possibilities for such ZE-lattices Z. 4 of them, Z1, . . . , Z4 give rise to
Z-lattices of minimum ≥ 6.
(iv) The construction of the even unimodular lattices is completely analogous as in the case
o = 48, as Φ20 ≡ p1p2 (mod 3) is again the product of two irreducible polynomials of degree 4 in
F3[X]. There are 184 glues that lead to extremal even unimodular lattices. To test that all these
lattices are isometric we used the same strategy as for o = 48, which is a bit easier here, as we
obtain a unique isometry class of lattices X. So we fix one of these 184 lattices L and compute
the overlattice X with X/L ∼= S2 as in the case o = 48. The lattice X has minimum 2 and 480
shortest vectors. Its automorphism group is isomorphic to (2.Alt6Y(C3

3 : C8)).2. The Aut(X)-
orbit O of the subspace L/3X of X/3X has length 54. For all other lattices L′ the corresponding
overlattice X ′ is isometric to X. After applying this isometry, we hence may assume that X ′ = X
and consider the subspace L′/3X ≤ X/3X. All these subspaces lie in O. As for o = 48 we then
check that the lattice P48m is isometric to L.

(3) (i) In the third case χg = Φ2
60Φ20Φ2

12 and the lattice L contains a sublattice Z ⊥ F3 ⊥ F5

of index 3858, where the lattices Fp ∼=
√
pE8 are the fixed lattices of the elements of order p in

〈g〉.
(ii) For both lattices Fp there is a unique conjugacy class of automorphisms of order o/p = 20
resp. 12 that have an irreducible minimal polynomial.
(iii) The lattice Z is not maximal but a maximal sublattice in some maximal lattice M in the
same quaternion algebra as before with det(M,TrK/Q(qh)) = 58 and det(Z,TrK/Q(qh)) = 3858.

As computed above there are 7 possibilities for M each having (812 − 1)/(81− 1) = 82 maximal
sublattices Z. The mass of the genus of Z is 82 times the mass of the genus of M , mass(Z) = 41/30
and we find in total 94 isometry classes of lattices Z, 84 of which have minimum ≥ 6.
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(iv) Now we compute the overlattices N of index 58 of Z ⊥ F5 by computing suitable anti-
isometries. We find 16 (not necessarily inequivalent) such glues N that still have minimum 6 and
then continue to construct L as an overlattice of N ⊥ F3. In this last step no extremal lattice is
found.

9.2. ϕ(o) = 18. By Table 3 the prime o = 19 is not possible, so the only other possibility is
o = 27 = 33. Then g9 is an automorphism of L of order 3 whose fixed space has dimension
48− 36 = 12. This is impossible by Table 3.

9.3. ϕ(o) = 20.
o = 25. (i) Then χg = Φ2

25(X − 1)8 or χg = Φ2
25Φ2

5. In both cases h = g5 is an automorphism of

order 5 with a fixed lattice F := F (h) of dimension 8. So F is isometric to
√

5E8 by Table 3.
(ii) The lattice F has a unique conjugacy class of automorphisms of order 1 (in the first case)
resp. 5 with irreducible minimal polynomial (in the second case).
(iii) The lattice Z := Z(h) is a lattice of determinant 58 admitting an automorphism γ := g|Z
with χγ = Φ2

25. Moreover, as Z and F are both pure sublattices of L, there is an isomorphism of
Z[g]-modules

ϕ : Z#/Z → F#/F

such that L = {(z, f) ∈ Z#×F# | ϕ(z+Z) = f+F}. So in the first case γ acts trivially on Z#/Z
which implies that (1 − γ)Z# ⊆ Z. But |Z#/(1 − γ)Z#| = 52 so this case is impossible. Hence
χg = Φ2

25Φ2
5 and Φ5(γ) acts trivially on Z#/Z. As 58 = |F#/F | = |Z#/Z| we conclude that

Z = Φ5(γ)Z#. The lattice Z0 := (1−γ)15Z satisfies (Z0,qh)∗ = Z0 and hence Z0 ∈ GZK
(WK ,qh)

by Lemma 4.2. In particular Qh =
(
−δ,−1
K

)
. As hK = 1 we know that the class number of Qh

equals the type number, which we compute to be t = 172. There is a unique maximal orderM in
Qh that contains an element of order 25. As M(1) ∼= Q100 is the quaternion group of order 100,
there is a unique Hermitian embedding of ZE into M. Also the narrow class number h+K = 1.
Hence the isometry classes of lattices Z0 ∈ GZK

(Qh,hn) are in bijection with the 172 right ideal
classes of M. For 80 of these lattices Z0 the integral lattice (Z,q) := ((1− ζ25)−15Z0,TrK/Q(n))
has minimum ≥ 6. These 80 lattices fall into 9 isometry classes represented by, say, Z1, . . . , Z9.
The Z-automorphism groups of all these 9 lattices have a normal Sylow 5-subgroup 〈γ〉 that is
cyclic of order 25.

(iv) The lattice F from above is isometric to
√

5E8 and its automorphism group contains a
unique conjugacy class of elements with characteristic polynomial Φ2

5, represented by, say, γ′. As
γ′ is unique up to conjugacy in Aut(F ) and 〈γ〉 is unique up to conjugacy in Aut(Zj) we may
assume that the element g ∈ Aut(L,q) acts on the sublattice Zj ⊥ F as (γ, γ′).

To classify the extremal even unimodular lattices L we hence need to compute the (γ, γ′)-anti-

isometries that lead to lattices of minimum 6: Now Z#
j /Zj

∼= F#/F ∼= S2 are modules over the
chain ring

S = Z[ζ25]/(Φ5(ζ25)) ∼= Z[ζ5]/(5).

Let π be a generator of the maximal ideal of S. We find vectors b1, b2 ∈ Z# \ Z#π such that
bq(bi, bi) ∈ {12/5, 14/5}, the minimal possible norms, and such that the classes of

B := (b1, γ(b1), γ2(b1), γ3(b1), b2, γ(b2), γ2(b2), γ3(b3))

form a basis of Z#
j /Zj . The classes in (F#/F ) \ (F#/F )π are represented by elements of norm

≤ 18/5. So for L having minimum ≥ 6 the image ϕ(bi + Z) ∈ F#/F should have norm 18/5
respectively 16/5. As in the case o = 48 we compute orbit representatives of these classes under
CAut(F )(γ

′) to narrow down the possibilities for ϕ(b1 + Z). No extremal lattice L is found.
By Table 3 the maximal dimension of a fixed lattices of an automorphism of order 5 of an

extremal 48-dimensional unimodular lattice L is 16. In particular any automorphism of order 25
of L has to be semilarge, therefore we note:

Corollary 9.4. There is no extremal even unimodular lattice of dimension 48 with an automor-
phism of order 25.
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o = 33. (i) Here h := g3 is an element of order 11. By Table 3 the type of h is 11− (4, 8)− 4 and
the fixed lattice F of h in L is the unique extremal 8-dimensional even 11-modular lattice.
(ii) The restriction of g to F is an automorphism γ′ of order 3 of F acting as a primitive third
root of unity on F#/F ∼= F4

11. The automorphism group of F contains a unique conjugacy class
of such elements γ′ of order 3 and these have χγ′ = Φ4

3, so χg = Φ2
33Φ4

3.
(iii) The lattice Z = Z(h) = {` ∈ L | (`, F ) = {0}} is a 40-dimensional Z-lattice of determinant
114 on which g acts with characteristic polynomial Φ2

33. Moreover by Lemma 5.4 Z#(1− h) = Z
and the Q[ζ11] Hermitian space (WQ[ζ11],TrE/Q[ζ11] ◦ h) contains a Hermitian unimodular lattice
(M,TrE/Q[ζ11] ◦ h). As in Lemma 5.2 we compute the dual of the ZE-lattice M as (M,h)∗ =
DE/Q[ζ11]M. As E/K is unramified we are in the position to apply Remark 7.6 to obtain det(h) = 1

and Qh =
(
−δ,−1
K

)
. The mass of Qh is 2105

22 , the class number and the type number of Qh are

both 115, and there is a unique maximal order M containing an element γ of order 33. The
narrow class number of K is 2 but all totally positive units in ZK are norms of units in ZE . 63
of the 115 right ideal classes ofM have trivial norm in the narrow class group of K, so there are
63 possibilities for such ZE-lattices Z. 14 of them, Z1, . . . , Z14 give rise to Z-lattices of minimum
≥ 6.
(iv) The even unimodular lattice L is of the form

L = {x+ y | x ∈ Z#
j , y ∈ F

#, ϕ(x+ Zj) = y + F}

for some 1 ≤ j ≤ 14 and some (γ, γ′)-anti-isometry ϕ (see Definition 2.4).

Now F#/F ∼= Z#
j /Zj is just the sum of two isomorphic F11[g]-modules, so there is no reduction

from the representation theoretic side. Instead we use the fact that the minimum of L needs to

be 6: For all j the minimum of Z#
j is either 30/11 or 32/11. The maximal minimal norm of a

class v + F in F#/F is 36/11 and there are 600 classes of norm 36/11 falling into three orbits
under CAut(F )(γ

′) and 720 classes of norm 34/11 falling into two such orbits. So for each j we fix

a tuple (b1, γ(b1), b2, γ(b2)) of minimal vectors of Z#
j whose classes form a basis of Z#

j /Zj
∼= F4

11.

For ϕ(b1 + Zj) we choose one of the three or two orbit representatives v1 + F of the classes of
suitable norm, and for ϕ(b2 + Zj) we run through all classes of the right norm and check that ϕ
is an anti-isometry by testing if L is even and unimodular.

We find exactly 5 extremal lattices L, corresponding the 5 conjugacy classes of elements of
order 33 in Aut(P48p), so all these lattices are isometric to P48p.
o = 44. By Lemma 9.3 the characteristic polynomial is χg = Φ2

44Φ4
4.

(i) Now h := g4 is an element of order 11 and as in the case o = 33 the type of h is 11− (4, 8)− 4
and the fixed lattice F of h in L is unique.
(ii) The restriction of g to F is an automorphism γ′ of order 4 of F acting as a primitive fourth
root of unity on F#/F ∼= F4

11. The automorphism group of F contains a unique conjugacy class
of such elements γ′.
(iii) The lattice Z := Z(h) = {` ∈ L | (`, F ) = {0}} is a 40-dimensional Z-lattice of determinant

114 on which g acts with characteristic polynomial Φ2
44. As for o = 33 we obtain Qh =

(
−δ,−1
K

)
.

The mass of Qh is 109585
132 , the class number and the type number of Qh are both 880, and there

is a unique maximal order M containing an element γ of order 44. The narrow class number of
K is 2 but all totally positive units in ZK are norms of units in ZE . 445 of the 880 right ideal
classes of M have trivial norm in the narrow class group of K, so there are 445 possibilities for
such ZE-lattices Z. 14 of them, Z1, . . . , Z14 give rise to Z-lattices of minimum ≥ 6.
(iv) The gluing strategy is the same as for o = 33 but we additionally use the action of the
stabilizer StabCAut(F )(γ′)(v1 + F ) to narrow down the possibilities for ϕ(b2 +Zj). Then we find 5

extremal lattices L corresponding to the 5 conjugacy classes of elements of order 44 in Aut(P48p),
which allows us to conclude that all these lattices are isometric to P48p.

9.4. ϕ(o) = 22. Then o = 23 and this case has been handled in Section 8.2.2.

9.5. ϕ(o) = 24. In this case F = {0} so steps (i), (ii), and (iv) are not necessary as L = Z is a
binary Hermitian lattice. The possibilities for o are given in Table 4 below. In all cases o is not a
prime power, so the field extension E/K is unramified outside the infinite places. By Remark 5.3
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ZE = Z[ζo] and ZK = Z[ζo + ζ−1o ] embed into EndZ(L) by letting ζo act as g. In particular L is a
4-dimensional ZK-lattice with an Hermitian embedding ν : ZE → EndZK

(L). By Lemma 5.2 the
ZK-dual lattice of L is L∗ = DK/QL and so Remark 7.6 shows that

Qh =

(
(ζo + ζ−1o )2 − 4,−1

K

)
.

As in the proof of Remark 7.6 there is a fractional ZE-ideal A such that DK/Q = Aσ(A) and

replacing L by A−1L we may achieve that L = L∗. Lemma 4.2 shows L ∈ GZK
(Qh, n) and we

may use Theorem 7.5 to enumerate all such ZE-lattices L. There are three cases (see Table 4)
where the type number t(Qh) is > 104, i.e. o = 52, 56, 72. In these cases our computations took
about 3 weeks of computing time.

To describe our computation we first note that in all seven cases we compute hK = 1 and
Z∗K,>0 = {uσ(u) | u ∈ Z∗E}. Hence for all maximal orders M such that ZE embeds into M and

all M-right ideals J the group U(J) = Z∗K,>0. As seen in the proof of Lemma 8.1, there is a

unique Hermitian embedding of ZE into M if and only if M(1) ∼= Q4o is the quaternion group
of order 4o; otherwise there are two such embeddings ν and ν ◦ σ. Note that there is a unique
maximal order M with M(1) ∼= Q4o.

The table below summarizes our computations by listing the following information:

• The type number t of Qh which is also the class number of Qh in all cases.
• The narrow class number h+K of K.
• The mass of the quaternion algebra Qh.
• The number t0 of conjugacy classes of maximal orders in Qh into which ZE embeds.
• The number #G of isometry classes in the genus G := GD−1

K/Q
(Qh,hn).

• The mass of the genus G.
• The number of isometry classes in G that yield an extremal even unimodular lattice of

rank 48.

Table 4. Some details for the relevant quaternion algebras.

o t(Qh) h+K mass(Qh) t0 #G mass(G) # ext.

35 1880 2 381433
210 1 952 381433

29400 3

39 6866 4 6669 2 6856 171
2 1

45 3024 2 265501
90 1 1518 265501

16200 0

52 89108 2 1066603
12 2 133842 1066603

416 1

56 48674 4 338195
7 2 48626 338195

392 6

72 75844 2 604903
8 2 113946 604903

384 0

84 3520 2 10322
3 1 1778 5161

252 3

We summarize the result of the computations described in this section in the following theorem.

Theorem 9.5. Let L be an extremal even unimodular lattice of dimension 48 admitting a semi-
large automorphism. Then L is isometric to one of P48p, P48q, or P48n.

10. An application to extremal 36-dimensional 3-modular lattices

The dissertation of Michael Jürgens [14] exhibits the possible automorphisms of an extremal
3-modular lattice in dimension 36, whose existence is still open. In particular [14, Section 4.2.3]
shows that such an extremal lattice has no automorphisms of order 11, 13, or any prime p ≥ 23
and specifies a unique possible type for automorphisms of order 17 and 19 . In this section we use
binary Hermitian lattices to exclude these automorphisms and to achieve the following result.

Theorem 10.1. Let L be an extremal even 3-modular lattice of dimension 36. Then all primes
p dividing |Aut(L)| are ≤ 7.
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Proof. Most of the proof of the theorem is already contained in [14], it remains to exclude the
automorphisms of order 17 and 19:

Let g ∈ Aut(L) be an automorphism of order 19. Then by [14] the characteristic polynomial
χg = Φ2

19 and hence L is a Hermitian lattice of rank 2 over Z[ζ19]. So let E = Q[ζ19], (V,h) =

E ⊗Z[ζ19] L, and K := Q[ζ19 + ζ−119 ]. Then the narrow class number h+K = 1 and det(h) = 3.

Therefore the ZE-lattice L is a maximal lattice in Qh :=
(
−δ,−3
K

)
with δ = 4 − (ζ19 + ζ−119 )2 as

usual. Using the algorithm in [16] we compute the type number of Qh as t = 189574 and the
class number is 378374. There is a unique conjugacy class of maximal orders M that contain an
element of order 19 and there are two Hermitian embeddings of ZE intoM. As the trace lattices
for both embeddings are the same, we need to consider 378374 different 3-modular Z-lattices of
dimension 36. None of them has minimum 8.

Now assume that there is some g ∈ Aut(L) of order 17. Then by [14] the characteristic
polynomial is χg = Φ2

17(X − 1)4 and L contains a g-invariant sublattice Z ⊥ F ⊆ L of index
172 such that F is a unique 4-dimensional lattice of determinant 32172 and minimum 8 and Z
is some 32-dimensional lattice of determinant 316172 admitting an automorphism g′ := g|Z with

χg′ = Φ2
17. More precisely (1− g′)(Z# + 17Z) = Z.

So here E = Q[ζ17] and K := Q[ζ17 + ζ−117 ] and again h+K = 1 and the determinant of the

Hermitian form is 3. So Qh :=
(
−δ,−3
K

)
with δ = 4 − (ζ17 + ζ−117 )2 is the quaternion algebra

ramified at the 8 infinite places of K and at the places above 3 and 17. The type number of Qh

is 75425 and there is a unique maximal order M containing an element of order 17. This order
has 300478 right-ideal classes yielding Z-lattices Z of dimension 32. Only four of these lattices
have minimum ≥ 8. For each of the four lattices Z we computed the 3-modular overlattices of
Z ⊥ F ; none of them is extremal. �
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