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1 Introduction

1.1 The local-global principle

This Habilitation thesis investigates the local-global principle for quadratic and hermitian
forms over the ring of integers in number fields. Let K be a number field with ring of
integers 0. The local-global principle shows up in various situations, for example:

e The Hasse-Minkowski theorem states that a quadratic form over K is isotropic,
i.e. it represents 0, if and only if it is isotropic over every completion of K. As
a consequence, two quadratic forms over K are isometric if and only if their
completions are isometric at every place of K.

e The same result also holds for (quaternionic) hermitian spaces over number fields.
More generally it extends to simply-connected algebraic groups defined over K.

e The Hasse-Brauer-Noether-Albert theorem (c.f. [Rei03, Theorem 32.11]) states
that a central-simple K-algebra is split, i.e. isomorphic to a full matrix ring K™*™
if and only if it splits over every completion of K. As a consequence, two central
simple K-algebras are isomorphic if and only if their completions are isomorphic at
every place of K.

e The Local-Square theorem states that an element a € K is a square if and only
if a is a square in every completion of K. Note that the result is not completely
true for higher powers as the Grunwald-Wang theorem shows.

e The Hasse norm theorem states that given a cyclic field extension F//K, then a € K
is a global norm in F'/K if and only if for each place v of K and a place w of F’
over v, a is a local norm in F,,/K,. Again, the result does not hold for arbitrary
extensions F'//K, not even for abelian ones.

e Two o-lattices, i.e. finitely generated o-submodules of a vector space over K are
equal if and only if their completions are equal at every place of K.

For arithmetic structures, the local-global principle usually fails. For example, let Z(0)
be the group of fractional ideals of 0. Every element in Z(0) is locally principal, but not
necessarily principal itself. If the local-global principle fails, it is interesting to know ‘by
how much it fails’. So in the case of fractional ideals, one investigates the class group
Cl(o) :==Z(0)/{a0; a € K*}.
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1.2 Hermitian lattices and genera

Let E/K be a field extension of degree at most 2 or let E be a quaternion skewfield over K.
The canonical involution of E/K will be denoted by : E — E. A hermitian space
over E is a (left) vector space V over E equipped with a sesquilinear form ®: V xV — E
such that

o O(z+a y) =P(x,y) + P(2/,y) for all z, 2",y € V.
o ®(azx,By) = a®(z,y)B for all 2,y € V and o, 3 € E.
o O(y,z) = P(z,y) forall z,y € V.

If E = K the above setting simply gives a quadratic space over K.

Let O be a maximal order in E. An O-lattice in V is a finitely generated O-submodule
of V' that contains an F-basis of V. The local-global principle does not hold for O-lattices
in general. As in the case of fractional ideals of o, this immediately leads to the definition
of the genus. Two O-lattices L, M in V are said to be in the same genus if and only if
the completions L, := L ®o Op and M, are isometric for every prime ideal p of 0. Each
genus is a disjoint union of (finitely many) isometry classes. The number of isometry
classes in a genus is called its class number. So again, the class number measures ‘by how
much’ the local global principle fails. In particular, the one-class genera consist precisely
of those lattices for which the local-global principle does hold.

The class number of a lattice in an indefinite hermitian space is known a priori thanks
to strong approximation, see Chapter 5 for details. It only depends on some local data
as well as some quotient of a ray class group. For lattices in definite spaces, such local
considerations do not yield the class number of a lattice. It has to be worked out explicitly,
for example using Kneser’s neighbour method.

The goal of this Habilitation project is to provide a complete classification of all definite
hermitian lattices with class number one or two. It should be stressed that the field K,
the extension E and the rank m of V over E are not fixed a priori. However, it is well
known that up to a suitable equivalence relation, there are only finitely many such genera.

The enumeration of one-class genera actually dates back to C. F. Gaufl. He relates
the class numbers of definite binary quadratic lattices to relative ideal class numbers of
CM-fields. In particular, the complete, unconditional classification of binary quadratic
lattices with class number one is out of reach with current methods.

The classification of all rational quadratic lattices with class number one and rank
at least three is originally due to G. L. Watson who classified these lattices by hand in
a long series of papers [Wat63, Wat72, Wat74, Wat78, Wat82, Wat84, Wat]. In [KL13],
D. Lorch and the author checked Watson’s computations using the algorithms given in
Chapter 6 and found them to be largely correct. They also enumerate all one-class genera
in dimensions four and five, for which G. Watson only produced partial results. Very
recently, D. Lorch in his thesis [Lor] (supervised by the author) successfully extends this
classification to all one-class genera over totally real number fields.

For E # K, no complete classifications were previously known.
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1.3 Limitations

The main strategy of the classification of all genera of definite hermitian lattices with
given class number is as follows.

1.

Enumerate the possible totally real number fields K, the possible K-algebras F
and the possible ranks m.

. Enumerate the possible similarity classes of hermitian spaces of rank m over E.

. Enumerate the genera of square-free lattices with class number at most B. Square-

free (or almost unimodular lattices as they are called by some authors) are those
lattices that are endpoints under some reduction operators which do not increase
class numbers, see Section 6.1 for details.

Enumerate the similarity classes of all genera with class number at most B by
inspecting inverse images under these reduction operators.

Steps 2—4 never pose a problem. However, the first step might simply be impossible
to do in practice. The reason is as follows. Siegel’s mass formula yields upper bounds
on the root discriminant of the possible totally real base fields K. Then one looks up
these fields in tables such as [Voi08]. However, these tables are only complete up to root
discriminant 14 (without further additional information like the number of primes ideals
of norm 2). Already this classification needed about 200 days of CPU time. Since the
search space for these fields grows exponentially with the degree of the fields, already the
enumeration of all fields with slightly larger root discriminant say 15, is completely out
of reach. This is the only reason why the classification of all definite hermitian lattices
with class number at most two is impossible in case of some unary and binary lattices.
More precisely, the following problems occur.

1.

Suppose £ = K. As mentioned before, the binary quadratic lattices lead to relative
class number problems of CM-extensions, see Section 7.2 for details. Hence this case
is out of reach. However the rational binary quadratic lattices with class number
at most two can be enumerated assuming the Generalized Riemann Hypothesis,
see Section 7.2.2.

All definite quadratic lattices with class number at most two and rank different
from two have been completely classified. A summary of the results is presented in
Chapter 7.

It is worth mentioning, that the ternary quadratic case is especially challenging.
Pfeuffer’s bounds on the local factors in Siegel’s mass formula show that the root
discriminant of K is at most 24.21, see Corollary 6.3.2. As mentioned above, this
bound is useless for practical purposes.

However, there is a different way of enumerating the ternary quadratic lattices
with class number at most B using quaternion orders, see [KL16] and Section 7.3.
The idea is as follows. The local global principle for quaternion orders also fails.
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Thus it is natural to define what is (for historical reasons) called the type of a
quaternion order. Two orders in a quaternion algebra are said to be of the same
type if and only if their completions are isomorphic (i.e. conjugate) at every prime
ideal of 0. Again, each type of orders is a finite union of conjugacy classes and the
number of such classes is called the type number. Now there are correspondences by
Brzezinski-Peters-Eichler-Brandt or J. Voight between definite, ternary quadratic
lattices over K and definite Gorenstein quaternion orders over K which maps genera
and isometry classes to types and conjugacy classes. Hence, instead of classifying
the definite quadratic o-lattices with class number at most two one can also classify
the Gorenstein quaternion orders over K with type number at most two. The latter
has the advantage, that one can bring Eichler’s mass formula into the game. It
yields a much better bound on the root discriminant of K, see Theorem 7.3.4 for
details. Using this bound, one can indeed enumerate all possible base fields K that
might admit one-class genera of definite quadratic forms.

It is also worth mentioning that the type number of a quaternion order agrees with
the type number of its Gorenstein closure. Thus the above classification actually
yields all definite quaternion orders with type number one or two, whether they are
Gorenstein or not. From this result, one can then enumerate all definite quaternion
orders with ideals class number one or two, see [KL16] for details.

2. Suppose E/K is a CM-extension. The unary hermitian case is directly related to
the binary quadratic case. So a complete classification is again impossible. In the
binary hermitian case, the situation is very similar. In this case, the possible totally
real base fields K that might occur can be worked out completely, see Section 8.2.
However, for some fixed field K, the enumeration of all possible extensions E/K
turns out to be the problem. In this case, Siegel’s mass formula does not involve the
relative discriminant dg/x but merely the relative class number # CI(E)/# CI(K).
So again, the enumeration of all definite binary hermitian lattices is a relative class
number problem, see Section 8.2 for details. However, for K = Q it turns out that
one needs to know the imaginary quadratic number fields E with class number at
most 48. These have been computed by M. Watkins in his thesis [Wat04]. So for
K = Q, the enumeration of all definite, binary hermitian lattices with class number
at most 2 is indeed feasible, see Table 8.1 for a summary of the results.

For all lattices of rank at least 3, the classification of all definite hermitian lattices
with class number at most two given in Chapter 8 is complete.

3. For quaternion algebras F over K, Chapter 9 provides a complete classification of
all definite hermitian lattices with class number at most two.

1.4 Results

Chapters 7 to 9 report on the classification of all definite quadratic, hermitian and
quaternionic hermitian lattices respectively. Below are short summaries of the results in
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each case.

Theorem 1.4.1 Let K be a totally real number field with mazimal order o. Let L be a
definite quadratic o-lattice of rank m > 3.

1. If K = Q and L has class number one, then m < 10. Up to similarity, there are
1884 definite, rational quadratic lattices with class number one and rank at least 3.
This result is due to G. Watson, see also [KL13].

2. If K =Q and L has class number two, then m < 16. Up to similarity, there exist
7283 genera of definite, rational quadratic lattices with class number one and rank
at least 3.

3. If K # Q and L has class number one, then m < 6. Further, if m € {5,6} then
K = Q(\/5) and for each rank m there are two similarity classes. Up to similarity,
there exist 4019 definite quadratic lattices over 29 different fields K # Q with class
number one and rank at least 3. The largest field has degree 5. This result is due to
D. Lorch, see [Lor].

4. If K # Q and L has class number two, then m < 8. Up to similarity, there are
17.064 genera of definite quadratic lattices over 75 different fields K # Q with class
number two and rank at least 3. The largest field has degree 6.

Details are given in Chapter 7.

Theorem 1.4.2 Let E/K be a CM-extension and let O be the mazimal order of E. If L
is a definite hermitian O-lattice of rank m > 3 and class number one (two), then m < 8
(m <9). Moreover, there are 164 (406) similarity classes of genera of such lattices over
10 (19) different fields E. The largest field E has degree 6 (8). A complete classification
is given in Chapter 8.

Theorem 1.4.3 Let E be a definite quaternion algebra over some totally real number
field K. Further let O be a mazimal order in E and let L be a hermitian O-lattice of
rank m. If L has class number one (two), then m < 4 (m <5). Further, there are only 69
(148) different algebras E over 29 (60) different centers K that admit genera of definite
lattices of class number one (two). A complete list of these lattices in given in Chapter 9.

Note that counting similarity classes of quaternionic hermitian lattices does not make
much sense since two different maximal orders yield genera which can never be similar.
However, these genera can be described uniformly using genus symbols, see Chapter 9
for details.

Since some enumerations produced large numbers of genera, not all of these genera
could be described in the thesis explicitly. Thus all the results are also electronically
available from [Kirl6] in a text-based format which can be processed easily by any
computer algebra system.

The enumeration of all genera with given class number relies heavily on calculations
(like computing automorphism groups, isometry tests, unit and class groups of orders,
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ideals and orders in quaternion algebras, computing with modules over Dedekind rings, ...)
that require the use of a computer algebra system. The author has chosen to implement
the classification in Magma [BCP97] as it covers most of the required basic algorithms
and it is easily extensible through packages. The code for performing the classification as
well as certain intermediate steps (like constructing hermitian spaces and lattices from
local data, deciding (local) isometry, Kneser’s neighbour method, ...) is available upon
request.

1.5 Outline

The Habilitation thesis is organized as follows. The second chapter gives a short intro-
duction to lattices in quadratic and hermitian spaces. Chapter 3 recalls the classification
of quadratic and hermitian spaces over local fields. It also discusses the structure of
lattices in such spaces, i.e. Jordan decompositions.

The fourth chapter presents Siegel’s mass formula, which is the most important tool
for classifying all genera with a given class number. The local factors that appear in
the mass formula were not known in all cases. Especially local factors at even prime
ideals are notoriously difficult to handle. Thus, in Sections 4.4 and 4.5 the local factors of
unimodular quadratic lattices as well as the local factors of square-free hermitian lattices
at ramified prime ideals over 2 are worked out completely using a method of M. Eichler.

In Chapter 5, Kneser’s Neighbour method is presented. It allows the complete enu-
meration of all isometry classes in a given genus. The description given here works for
quadratic as well as (quaternionic) hermitian lattices. It is very explicit, in the sense
that it provides generators for every single neighbour. Also the number of neighbours is
worked out in all cases.

Chapter 6 explains how to classify all definite hermitian lattices with a given class
number. As mentioned before, Chapters 7 to 9 report on the classification of all one- and
two-class genera of lattices in definite quadratic, hermitian and quaternionic hermitian
spaces respectively.

The concept of genera and isometry classes can be generalized to algebraic groups
over K. In that sense, the first nine chapters dealt with classical (i.e. orthogonal and
unitary) groups. The last chapter then discusses the parahoric subgroups of exceptional
algebraic groups over K having class number one.

10



2 Basic definitions

2.1 Quadratic and hermitian spaces

In this work, K always denotes some field of characteristic 0. Further, (E, ) will be
one of the following K-algebras with involution:

1. E= K and is the identity on K.
2. E~2 K[X]/(X?—a)and is the nontrivial K-linear automorphism of E.

3. E is a quaternion algebra with center K, i.e. a 4-dimensional, central simple
K-algebra. By the Artin-Wedderburn theorem, F is either a skew field or isomorphic
to the full matrix ring K2*2. In any case, it admits a K-basis (1,4, j,ij) such that

a:=iPcK, b=j2cK and ij=—ji.

The quaternion algebra over K with these multiplication rules will be denoted
by (af’(b). Further,

CCE—SE xtvyitzitwijar—yi—zj—wij withaz,y,z,we K

is called the canonical involution of E. It satisfies {a € F; a0 = a} = K. In
particular, the reduced norm and reduced trace

nwg/g: B — K a—ax and trgg: B — K a—at+a
take values in K.
In any of these three cases, let
N:EF—-K a—aa and T:F—-Ka—a+a.

If E = K these maps are simply squaring and multiplication by 2 respectively. In the
other two cases these are the (reduced) norm and (reduced) trace of E over K. Also note
that since F is a separable K-algebra, the bilinear form

ExXE— K, (o, 8) — T(ap)

associated to T is non-degenerate.

Definition 2.1.1 A hermitian space (V,®) over E is a finitely generated, free left
E-module V equipped with a map &: V x V — E such that

11
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o O(z+a y) =P(x,y) + P(2/,y) for all z, 2",y € V.
o ®(azx,By) = a®(z,y)p for all 2,y € V and o, B € E.
o O(y,x) = B(x,y) forall z,y € V.
For a hermitian space (V, ®) over E, the map
Qo: V=K, z— O(z,x)
defines a quadratic form on the K-vector space V, i.e.
1. Qolax) = a?Qg(z) foralla € K and z €V,
2. bp: VXV =K, (z,y) = Qa(r +y) — Qa(x) — Qa(y) is bilinear.

In particular, if £ = K, then 2® = bg. So in this case it makes sense to call (V,®) a
quadratic space. Since the characteristic of K is different from 2, the bilinear form ® can
be recovered from Qg or bg and vice versa. So in the sequel, the space (V, ®) will also
be denoted by (V,Qg) whenever convenient.

Definition 2.1.2 The hermitian spaces (V,®) and (V',®') over E are said to be iso-
metric (denoted by (V,®) = (V' ®")), if there exists some isomorphism o: V — V' of
E-modules such that ®(x,y) = ®'(0(x),0(y)) for all ,y € V. Any such isomorphism
is then called an isometry between (V, ®) and (V', ®'). The group of all isometries of
(V, @) itself, i.e.

UV, ®) :={oc e GL(V); ®(o(x),0(y)) = ®(x,y) for all z,y € V'}

is called the unitary group of (V,®). If (V, ®) is quadratic, then U(V,®) is also called
the orthogonal group of (V,®) and will sometimes be denoted by O(V, ®).

Definition 2.1.3 Let (V, ®) be a hermitian space over E of rank m with basis B.
1. The space (V, ®) is called regular, if ®(x, V') # {0} for all nonzero x € V.

2. The space (V, ®) is said to represent a € K, if a = Q¢ (x) for some non-zero x € V.
A vector x € V is called isotropic if Qg(x) = 0. Similarly, (V, ®) is said to be
isotropic, if ® represents zero, i.e. it contains a nonzero isotropic vector.

3. Two vectors x,y € V are called perpendicular or orthogonal if ®(z,y) = 0. Let
V1, Vo be E-submodules of V. Then V is the orthogonal sum of the V;, denoted by
V=WV LV, f V=V, @&V, and ®(V1, Va) = {0}.

4. The Gram matriz of any tuple S = (z1,...,xy,) € V™ is

G(S) = (@(xi,wj))m c pmxm.

12



2.1 Quadratic and hermitian spaces

5. The determinant det(V, ®) is the class of the Dieudonné determinant det(G(B)) in
K/N(E*) whenever E is a skew field. If E' contains zero divisors, then det(V, ®) is
defined to be the neutral element in the trivial group K*/N(E*). In any case,

disc(V, ®) := (—1)™m=D/2 . det(V, ®)
is called the discriminant of (V,®).

6. Given square matrices G1,...,Gs over E such that G; = @tr, then (Gy,...,Gs)
denotes a hermitian space over F which has a block diagonal Gram matrix

Diag(Gy,...,Gs).
7. The space (V, ®) is said to be hyperbolic, if (V,®) = ((V4),....(%{))-

The fact that the bilinear form associated to T is non-degenerate has several important
consequences.

Theorem 2.1.4 Let (V,®) be a regular hermitian space over E. Then (V,®) admits an
orthogonal E-basis, i.e. (V,®) = (ai,...,am) for some a; € K*.

Proof. Let (b1,...,by,) be any basis of V. The result is trivial if m = 1. Suppose now
m > 2 and Qg (b;) = 0 for all i. Since (V, ®) is non-degenerate there exists i > 1 such
that ®(b1,b;) # 0. Since the trace bilinear form associated to T non-degenerate, there
exists some A € E such that T(®(by,b;)A) = 1. Then Qa (b1 + Ab;) = T(®(b1, A\bg)) = 1.
So without loss of generality one may assume that a; := Qg(b1) # 0. But then

V =FEb L Z;nzz E(b; — q)(%’bl)bl). Hence the result follows by induction on m. O

Proposition 2.1.5 Let (V,®) be a regular hermitian space over E of rank m. Let
H = <_1ﬂ’{1) be Hamilton’s quaternions.

1. If K =R and E € {R,C,H} then the isomorphism type of a regular hermitian
space over E is uniquely determined by its rank and n(y,e) := #{b € B; Qa(b) < 0}
where B denotes any orthogonal basis of V over E.

2. IfN(E*) = K*, then (V,®) = (1,...,1). Note that this holds whenever K = C.

Proof. The first assertion is Sylvester’s law of inertia. The second assertion follows from
the previous theorem and the fact that ®(az,ar) = N(a)®(z,z) for all @ € E and
zeV. O

Remark 2.1.6 Let (V, ®) be a hermitian space over E. For any E-linearmapo: V — V|
the following statements are equivalent:

1. o € U(V, D).

2. Qa(o(x)) = Qa(x) for all z € V.

13



2 Basic definitions

Proof. Clearly 1. implies 2. Conversely, suppose ¢ satisfies the second condition. If
E = K, then 1. holds thanks to the polarization identity

2®(z,y) = bo(7,y) = Qo(r +y) — Qa(r) — Qo(y) forallz,yeV.

Suppose now E # K. Let x,y € V and a € E. By assumption

Qa(o(z)) + Qa(o(y)) + T((o(z),0(y)))
= Qa(o(z +y)) = Qa(z +y)
= Qa(r) + Qa(y) + T(2(x,y)) -

and therefore

T(a®(o(x),0(y))) = T(a®(x,y)) foral a € F.

The bilinear form associated to T is non-degenerate and thus ®(z,y) = ®(o(z),0(y)).0

2.2 Lattices over maximal orders

In this section, some well known facts about finitely generated, torsion free modules over
maximal orders are recalled.

Definition 2.2.1 Let o be a Dedekind ring, i.e. an integrally closed Noetherian ring of
Krull dimension 1. Further, let K be the field of fractions of 0 and let E be a separable
K-algebra.

1.

14

An o-lattice I C E is a finitely generated o-submodule of E. It is said to be full, if
the ambient K-space K1 equals F.

. A full o-lattice in E' which is also a subring of F is called an 0-order (or simply an

order) in E. An order is called maximal, if it is not properly contained in another
order.

Let I be a full o-lattice in E. Then
Oul):={zxe€E;2zICI} and O,(I):={zecE;IzCI}

are o-orders in E, the so-called left and right orders of I. The lattice I is integral,
if I C Oy(I) (or equivalently I C O,(I)).

. Let O be an order in E. An o-lattice I is called a fractional left ideal of O, if

O¢(I) € O. Similarly, one defines fractional right ideals. If I as a fractional left
and right ideal of O, it is called a fractional twosided ideal of O.

A fractional left ideal I of O is said to be invertible, if I.J = O for some o-lattice
J. If J exists, then O = Oy(I) and JI = O,(I). So there is no need to distinguish
between left, right and twosided invertible ideals. Also note that if O is maximal,
then every (left/right/twosided) ideal of O is invertible.



2.2 Lattices over maximal orders

Definition 2.2.2 Let O be a maximal order in some separable K-algebra E and let V
be a finitely generated, free left module over E.

1. An O-lattice L C V is a finitely generated O-module in V. The rank of an O-
lattice L is the rank of the ambient space EL over F and will be denoted by
rank(L). The lattice L is said to be full, if the ambient space FL equals V, i.e. L
contains an F-basis of V.

2. Let L be an O-lattice. Suppose there exists an E-basis (x1,...,z,) of EL and
fractional left ideals 21y, ...,%d, of O such that

L= é%le .
i=1

Then the sequence of pairs (2;, z;)1<i<p is called a pseudo-basis of L.

The existence of pseudo-bases over Dedekind rings is due to E. Steinitz and is well
known.

Theorem 2.2.3 (Steinitz) Let 0 be a Dedekind ring with fields of fractions K and let
M be an o-lattice in a finite dimensional K-space V.

1. The o-module M is projective and admits some pseudo-basis (a;, T;)1<i<r-

2. Let M' be an o-lattice in KM of rank s. Then s < r and there exists a pseudo-basis
(a;, zi)1<i<r of M and fractional ideals by, ..., bs of 0 such that

M =EPbja;z; and by Dby D ... Db,
j=1

The ideals by, ..., bs are called the invariant factors of M and M'; they are uniquely
determined. In particular, the index ideal of M’ in M

(M : M'], = f[bi
i=1

1s well defined.
Proof. See for example [O’M73, Chapter 81]. O

Using pseudo-bases, Magma can perform a wide range of operations for finitely generated
modules over Dedekind rings like addition, intersection, comparison, invariant factors,
etc. Hence, for algorithmic purposes, lattices over Dedekind rings will always be assumed
to be given by a pseudo-basis.

For the remainder of this section let 0 be the ring of integers of some number field K and
let O be a maximal order in some separable K-algebra FE. Then every O-lattice admits
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2 Basic definitions

a pseudo-basis, see for example [Rei03, Theorem 2.44 and Remark 2.45]. However, I do
not know of a constructive proof of this fact in the literature or even an implementation
in some computer algebra system. Hence a constructive proof will be given below. The
algorithm is based on the corresponding algorithm for finitely generated modules over
Dedekind rings by W. Bosma and M. Pohst [BP91].

First, one needs special two-element generators for (left) ideals of O:

Lemma 2.2.4 Let A be an integral left ideal of O. Let a € N be a generator of A N Z.
Then there exists some o € A such that

A=0a+ Oa and OaNZ = Zab where b € N is coprime to a .

Further, if a and o satisfy the above conditions, then A~1 = O + a~1b0.

Proof. If a = 1, then 2l = O and one can take o« = 1. Suppose now a > 1. By [Rei03,
Corollary 27.7], there exists some a € E* such that A7 a? + A~1a = A~1A. Hence
A = 0a®+Oa = Oa+ Oa. By induction it follows that A = Oa™ + O« for all n € N. Let
Oa NZ be generated by ab € N. Suppose there exists some prime divisor p of ged(a,b).
Then there exists some prime ideal p of o over p such that a is not contained in Oya.
Further, there exists some n € N such that Opa™ C Oy and therefore 2, = Opa. But
then a € Opa gives the desired contradiction. Hence a and b are coprime.

Suppose now « € O satisfies the conditions of the lemma. Let B = O 4+ o~ '6O. Then
BA = Oa + Ob + OaO + Oa~tabO. It follows that BA = O since a and b are coprime
integers and a, a~tab € O. Thus B = A~! as claimed. O

Note that, an element « satisfying the conditions of Lemma 2.2.4 is usually found as a
small linear combination of some Z-basis of 2.

Corollary 2.2.5 If 2 is a left ideal of O, then there exist oy, € A and By, Pz € A"
such that o181 + asfs = Brag + Bocg = 1.

Proof. Without loss of generality, 2 is integral. Let a,b, @ be as in Lemma 2.2.4. Since a
and b are coprime integers, there exist r, s € Z such that ra 4+ sb = 1. Then for example
B1 =1, a1 =ra, B = sba~! and oy = a will do the trick. O

Algorithm 2.2.6 PSEupoBAsIS(myq,...,m,)

Input: Generators myq, ..., m, of some left O-module M.

Output: Some pseudo- ba81s (i, 2;); of M.

. Let (v1,...,v,) be an E-basis of the ambient space EM.

ifn=0 then return (Z) end if

Write m; = v;1v1 + -+ + Vv, for 1 < <.

Set 911 ZZ 1 OUZ 1.

Compute a1, € 21 and B1, B2 € Qll_l such that Siaq + Boan = 1.

Using linear algebra over o or Z, compute hy, ho € M and wy,wy € @]22 Ev; such
that o;v1 = h; + w;.

16



2.3 Hermitian lattices over Dedekind rings

7. Set 1 = v1 — (frwi + Bows) = Brh1 + Soho.

8: For 1 <i <rsetm,=m; —v;12].

9: Let (Aa, z2), ..., (As,xs) be the output of PSEUDOBASIS(m],...,m]).
10: return (Aq,z1),..., (As, zs).

Proof. By construction, m, € M and m, — m; = v;1z; € Ajzy € M. Thus M equals
Wiz D Z§:1 (’)m;-. By induction on rank(M ), the algorithm terminates and returns a
pseudo-basis of M. O

Let p be a prime ideal of 0. Given an o-module M, let M, denote its completion at p.
Using pseudo-bases, one can not only perform the obvious operations like taking sums,
intersections, etc., but also various ‘local’ manipulations of a given O-module M. Usually,
one proceeds in three steps:

1. Construct a free O-submodule (or supermodule) M’ of M such that M, = M, for
some prime ideal p of o.

2. Using the O-basis of M’ (which is also a Op-basis for M) perform the wanted local
operation on M,.

3. By adding the module pM and intersecting with p~! M, one ensures that the places
different from p are not affected by the manipulations performed in step 2.

For example, the construction of maximal submodules can be done as follows.

Algorithm 2.2.7 MAXIMALSUBMODULES(M, p)
Input: An O-module M given by some pseudo-basis (2y,x1),...,(™Us,zs) and some
prime ideal p of o.
Output: The set of all maximal O-sublattices of M that contain pM.
1: For 1 <i < s compute a; € %; such that (;), = Opa; (for example by inspecting
small linear combinations of elements in a Z-basis of 2;).
Let M':=5%"7 | Oax; € M.
Let ¢: M’ — (O/p0O)*, Zl Aixi = (A +pO, ... A1+ pO).
Let X1,...,X, be the maximal O/pO-submodules of (O/pO)*.
return {1 X)) +pM;1<i<r}

Proof. From M, = My, it follows that (¢~ '(X;) +pM), = (¢~ (X;))p with 1 < i <r
are the maximal O,- submodules of M, that contain pM. Let q be a prime ideal of o
different from p. Then M’ C M implies that (¢~ 1(X;) + pM)q = M,. Hence the result
is correct. 0

2.3 Hermitian lattices over Dedekind rings

Let o be a Dedekind ring with field of fractions K. Further let (V,®) be a regular
hermitian space over E and fix some maximal o-order O in F.

To ease notation, the term ‘O-lattice in (V, ®)’ from now on means an O-lattice in V'
of full rank.

17



2 Basic definitions

Definition 2.3.1 Let 2 be a fractional left ideal of ©. Then N(2() and T(2() denote the
o-ideals generated by {aa; a € A} and {a + @; «a € A} respectively.

Definition 2.3.2 Let L be a free O-lattice in (V, ®) with basis B. Suppose F is a skew
field. Then

det(L) := det(G(B)) € K*/N(O*)
disc(L) := (—1)™"m=1/2 . det(L)

are called the determinant and dz'scm'mtmant of L respectively. Given square matrices
G1,...,G5 over E such that G; = G; r, then (Gq,...,Gs) denotes a free hermitian
O-lattice with Gram matrix Diag(Gy, ..., Gs).

Definition 2.3.3 Let L be an O-lattice in (V, ®).
1. Then L# :={z € V; ®(x, L) C O} is called the dual of L.
2. L is called integral if L C L#.

3. If there exists some fractional twosided ideal 2 of O such that AL# = L, then L is
said to be -modular. The O-modular lattices are also called unimodular.

4. If E is commutative, then the index ideal [L# : L] is called the volume of L and
will be denoted by v(L).

5. The scale s(L) is the set ®(L,L) = {®(x,y); z,y € L}.
6. The o-ideal generated by {Qa(x); = € L} is the norm n(L).

7. Let a be a fractional ideal of 0. Then L is said to be a-mazimal, if n(L) C a and
whenever L C L' for some O-lattice L’ then n(L’) € a.

8. Given a fractional left ideal 2 of O, let

L*={zcL;®(x,L)CA}.

9. For a € K*, the rescaled lattice L* denotes the module L in the hermitian
space (V,a®).

10. Suppose L = L1 @ Ly with some O-submodules L; such that ®(Lq, Ls) = {0}. Then
L is called the orthogonal sum of Ly and Lo. This will be denoted by L = Ly 1 Ls.

Remark 2.3.4 Let L be an O-lattice in (V, ®) with pseudo-basis (2, zi)1<i<m.

1. Let (z7,...,z},) be the basis of V, which is dual to (z1,..., %) with respect to .
Then
N1
i=1

In particular, L# is an O-lattice with pseudo-basis (2, 1, x¥)1<i<m and (L#)# = L.

18



2.4 Hermitian lattices over number fields

2. The scale s(L) is a twosided ideal of O. Moreover, the scale and norm of L can be
computed as follows:

s(L) =Y (i, ;)A;,

1<ij<m
n(L) = N@)D(xs, i) + Y T (ws,2;)2A;) .
i=1 1<i<j<m

3. If E is a field, then the volume v(L) is the fractional ideal of E generated by

{det(G(b)); b C L is linearly independent} .

4. Suppose L is A-modular. Then 2 = s(L), in particular, it make sense to call L a
modular lattice, since the ideal 2l can be recovered easily from L.

Proof. After taking completions, one may assume that L is a free O-module. The proofs
are then routine. O

Definition 2.3.5 Let (V/,®’) be a hermitian space over E. Let L and L’ be O-lattices
in (V,®) and (V’, @) respectively.

1. The lattices L and L' are isometric, denoted by L = L', if o(L) = L’ for some
isometry o: (V,®) — (V/,®’). Then o is called a isometry from L to L'.

2. The lattices L and L' are said to be similar, if L' = L* for some a € K*.

3. The automorphism group of L is the group
Aut(L) :={oc € U(V,®); o(L) = L}

of all isometries from L on itself.

2.4 Hermitian lattices over number fields

Let K be a number field with maximal order o. Further, let (V, ®) be a hermitian space
over F and fix some maximal order O in FE.
For the remainder of this work, some more notation will be needed.

1. The space (V, ®) is called (totally positive) definite, if K is totally real and Qg ()
is totally positive for all nonzero x € V.

2. The set of all places of K will be denoted by Q(K). For v € Q(K), let K, be
the completion of K at v. Similarly V, := V ®g K, is the completion of V at v.
By linearity, the form ® extends to V,. Hence (V,, ®) is a hermitian space over
E, = F®rg K,.
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2 Basic definitions

3. The set of all prime ideals of o will be denoted by P(0). The prime ideals are
identified with the finite places of K. Hence it makes sense to write P(0) C Q(K).
Further, for p € P(0) let ordy: K, — Z U {oo} be the usual p-adic valuation.

4. Let p € P(0). The completion of o at p will be denoted by o,. Moreover, if M is an
o-module, then M, := M ®, oy is the completion of M at p. In particular, given an
O-lattice L in (V, ®), then L, is an Op-lattice in (V},, ®).

5. Let Kso = {a € K*; o(a) > 0 for all real embeddings o: K — R} be the subset
of totally positive elements. Further, let 0~ := K<gNo.

6. The free abelian group of all fractional ideals of o will be denoted by Z (o) and

ClI(K) := Cl(o) :
CIT(K) := ClIt(0) :

Z(0o)/{ao;ac K*}
Z(0)/{ao; a € K50}

denote the class group and narrow class group of K (or o) respectively.
7. The group of roots of unity in a number field F' will be denoted by u(F).

Theorem 2.4.1 (Local-Global Principle) Two hermitian spaces (V,®) and (V', ®’)
over E are isometric, if and only if their completions (V,,, ®) and (V,, ®') are isometric
at every place v € Q(K).

Proof. The problem was solved by H. Minkowski, H. Hasse, W. Landherr, M. Kneser
and T. Springer. For a proof, see for example [Sch85, Chapter 10]. O

In particular, the classification of hermitian spaces over E follows immediately from the
classification of hermitian spaces over R, C and non-Archimedean local fields. The latter
classification will be discussed in Chapter 3 while the first two cases are handled by
Proposition 2.1.5. For O-lattices, the Local-Global Principle does not hold in general.
This leads to the following definition.

Definition 2.4.2 Let L be an O-lattice in (V, ®). The class and genus of L are

cls(L) :== {L' Cc V; L' is an O-lattice isometric to L},
gen(L) :={L' C V; L' is an O-lattice such that L, = L; for all p € P(0)}.

So it makes sense to say that the Local-Global Principle holds for some O-lattice L in
(V,®) if and only if gen(L) = cls(L). In the indefinite case, one can usually tell a priori
for which lattices the Local-Global Principle holds, see Chapter 5 for details. If (V, ®)
is definite, such a classification is much more difficult and it is actually the goal of this
work. First, an algorithm to compute isometries will be given. This allows to decide if
any O-lattice L’ lies in the same class as L.
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2.4 Hermitian lattices over number fields

Lemma 2.4.3 Let L and L' be O-lattices in (V,®). Further, let the Q-algebra E be
generated by the subset B C E. Given o € E, the map

Fo: VXV =Q, (z,y) = Tgo(T(a®(z,y))) .

defines a rational bilinear form on the Q-vector space V. For any Q-linear mapo: V — V,
the following statements are equivalent:

1. o is an isometry of the O-lattices L and L'.

2. o(L)=L" and Fy(o(x),0(y)) = Fol(z,y) for all z,y € V and all « € BU{1}.

Proof. Clearly, 1. implies 2. Suppose now 2. holds and let Tg/x := Tk goT denote the
reduced trace of the Q-algebra E. Since the algebra E is separable over Q, the bilinear
form

ExFE—Q, () = Tgg(aB)

associated to Tg/q is non-degenerate, see [Rei03, Section 7c] for details. In particular,
F is non-degenerate. For o € B and z,y € V it follows that

Fi(o(ax),0(y)) = Fi(az,y) = Fo(z,y) = Fo(o(2),0(y)) = Fi(ao(z),0(y)) -

Hence o(ax) = ao(x). But then o is E-linear, since B generates E as a Q-algebra. Thus

Tela®(z,y)) = Fu(z,y) = Falo(z),0(y)) = Tgla®(o(z),0(y)))

for all z,y € V and all @ € E. Since the bilinear form of Tg /g is non-degenerate, it
follows that o € U(V, ®). O

Remark 2.4.4 Suppose (V, @) is definite. Then:

1. The form F; of Lemma 2.4.3 is positive definite. Hence the number of isometries
between two O-lattices in (V, @) is finite.

2. In [PS97], W. Plesken and B. Souvignier present an algorithm to compute all
isometries between two Z-lattices preserving several rational bilinear forms, provided
at least one of the forms is positive definite. Hence one can compute isometries and
automorphism groups of O-lattices in (V, ®) using this algorithm and Lemma 2.4.3.

3. Let L be an O-lattice in V. If F is commutative, then
w(E) — Aut(L), € — (v — €v)
is a monomorphism. Hence #u(FE) divides # Aut(L).

Theorem 2.4.5 Let L be an O-lattice in (V,®). Then there exist finitely many lattices
Ly,...,Ly € gen(L) such that gen(L) = L+J£L:1 cls(L;). The number h is called the class
number of gen(L) (or L) and will be denoted by h(gen(L)) or h(L).

21
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Proof. The theorem is a special case of a much more general result of A. Borel on
algebraic groups [Bor63, Theorem 5.1]. Alternatively, it can also be deduced as follows.
The assertion is true for indefinite spaces due to strong approximation, for details see
Chapter 5. For definite spaces, the sum st( M)ecgen(L) m' is a rational number
by Siegel’s Mass formula, c.f. Theorem 4.2.3. Further, the previous result shows that
Aut(M) can be viewed as a finite subgroup of GLj,,(Q) and thus its order is bounded
from above by some constant depending only of nm by a result of H. Minkowski [Min87].
Hence the class number is finite. O

Remark 2.4.6 Two genera G and G’ of hermitian O-lattices are said to be similar, if
G' = {L%; L € G} for some a € K*. Since similar genera necessarily share the same
class number, the classification of all genera with a given class number reduces to the
enumeration of all similarity classes of such genera. This will turn out to be a finite
problem, provided that the rank of the lattices it not tiny, see Chapter 6 for details.

The concept of definite indecomposable lattices was introduced by M. Kneser for
quadratic lattices over Z. It readily generalizes to definite O-lattices in (V, ®). This is
the last goal for this section.

Definition 2.4.7 Let L be an O-lattice in (V, ®). The lattice L is said to be indecom-
posable, if it cannot be written as an orthogonal sum L = Ly L Ly with L; # {0}. A

vector v € L is called indecomposable, if v cannot be written in the form v = vy + vy with
v; € L — {0} and ®(vy,v2) = 0.

Lemma 2.4.8 Let L be an O-lattice in (V,®). If (V,®) is definite, then every x € L is
a sum of indecomposable vectors.

Proof. Without loss of generality, L is integral. If x is indecomposable, there is nothing
to show. If = is decomposable, then z = 1 4+ z2 with 2; € L — {0} and ®(z1,22) =0. In
particular, 0 < Tg/g(Qa(7i)) < Tk/g(Qa(x)). The result follows by induction. 0

Theorem 2.4.9 Let L be an O-lattice in (V,®). If (V,®) is definite, then L admits a
unique orthogonal decomposition L = _L:Zl L; into indecomposable lattices L1, ..., L,.

Proof. The proof follows [Kne02, Satz (27.2)]. Let L = J_le L) be any orthogonal
decomposition. If z € L is indecomposable, then z € L! for some ¢. Thus two indecom-
posable elements = and y with ®(z,y) # 0 are necessarily in the same summand L.
Two indecomposable elements x,y € L are said to be equivalent if and only if there
exists some indecomposable elements z = z1,...,z, = y € L such that ®(x;, z;41) # 0
for all 1 <4 < r. This defines an equivalence relation on the set of indecomposable
elements of L. Since the equivalence classes give rise to an orthogonal decomposition of
(V,®) there are at most m := dimg (V') such classes K1,..., Kj say. Denote by L; the
O-submodule of L generated by K;. Then L = J_le L; since each vector in L is a sum
of indecomposable ones. Moreover, each component L; is indecomposable and contained
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2.4 Hermitian lattices over number fields

in L) for some j.

To prove the uniqueness, assume that all L;- are also indecomposable. For 1 < j </
let ; ={1<i<k]|L; C L;} and set M; := @, Li C L;-. It suffices to show that
L’ = Mj for all j since then |I;| = 1. Let @ € L. Write 2 = Y_/_, @; with z; € M; C L}

for all 4. Since ®f_, L} = L this implies x; = 0 for all i # j. So M; = L} as claimed.
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3 Hermitian lattices over complete discrete
valuation rings

The aim of this chapter is to give a brief overview on the classification of hermitian forms
over complete discrete valuation rings.

Unless stated otherwise, the field K will be complete with respect to a surjective,
discrete valuation ord: K — ZU{oo}. Let 0 = {a € K ; ord(a) > 0} be the corresponding
valuation ring and let p = po = {a € K ; ord(a) > 0} be the maximal ideal of 0. Further,
the residue class field o/p is always assumed to be finite.

3.1 Local fields

Let ¢ be the order of the residue class field o/p. The order of the quotient group o/(0*)?
equals 2¢°*4(2) | gee [O'MT73, 63:9] for details. In particular, if K is non-dyadic, i.e. 2 € 0*,
then o/(0*)? is isomorphic to Co. If K is dyadic however, the quotient 0*/(0*)? is much
larger. In this case an additional invariant, the so called quadratic defect, will be needed
for the classification of hermitian lattices. However, there is no need to make a general
assumption on the characteristic of o/p right now since most of the results in this section
hold whether K is dyadic or not.

Definition 3.1.1 Let a € K. The quadratic defect 9(a) of a is

(a) = [ (a—b")o.

beK
Lemma 3.1.2 Leta,be K.
1. Then d(ab?®) = b*0(a) and d(a) = (0) if and only if a is a square.
2. If a € 0, then 0(a) is the smallest ideal a of o such that a is a square modulo a.
3. If ord(a) is odd or oo, then d(a) = ao. The converse is true for dyadic fields K.
4. If a € 0*, then d(a) is one of the ideals

(0) CdoCap~ ' Cap™® - CpPCp.

=

Conversely, every such ideal is the quadratic defect of some element in o*. More
precisely, if 1 < v < ord(4) is odd and u € 0¥, then 9(1 + p’u) = p¥. The existence
of a unit of quadratic defect 40 follows from Theorem 3.1.7 and the fact that K
admits an unramified quadratic field extension.
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3 Hermitian lattices over complete discrete valuation rings

Proof. A proof of these assertions is given in [O’M73, Section 63]. O

Quadratic defects can be computed efficiently using the following lifting argument.

Algorithm 3.1.3 QUADRATICDEFECT(a)

Input: Some element a € K.
Output: The quadratic defect d(a).
. if ord(a) is odd or oo then return ao.
if ord(a) # 0 then return a - QUADRATICDEFECT (a/p®d(®)).
if ord(2) = 0 then return (0) if a is a square mod p and return o otherwise.
Compute s € 0* such that s?a = 1 (mod p). Replace a by as®.
Set v =ord(a —1) > 1.
while v < ord(4) and v is even do
Compute s € 0o* such that s> = (a —1)/p¥ (mod p).
Replace a by a/(1 + sp¥/?)? and set v = ord(a — 1).
end while
if v < ord(4) is odd then
return p°.
. else if v = ord(4) and X? + X + (a — 1)/4 € (0/p)[X] is irreducible then
return 4o.
: else
return (0).
16: end if

e e e
gul Wy 2o

Proof. By Lemma 3.1.2, the first three steps are correct. So one may suppose that K
is dyadic and a € o*. Lines 6—9 replace a with some element in the same square class
(which does not affect the quadratic defect) such that ord(a — 1) gets larger in each
iteration. In particular, the algorithm terminates. By Hensel’s Lemma, d(a) = (0)
whenever v > ord(4) and Lemma 3.1.2 shows that 9(a) = p” whenever v < ord(4) is odd.
This leaves only the case a = 1 — 49 with § € 0*. Again, the previous Lemma shows
that 9(a) = 40 or a is a square. By Hensel’s Lemma, the latter condition holds if and
only if (1 —48) = (1 + 2z)? (mod 4p) has a solution x € o. But this is equivalent to
X2+ X +6 € (0/p)[X] being reducible. 0

Remark 3.1.4 The proof of Algorithm 3.1.3 shows the following.

1. Let a € o*. Then there exists some u € 0* such that u2a = 1 + d for some d € o
with do = ?(x).

2. Let A = 1+4p € o* such that 9(A) = go = 4o. Let f(X) = X? +uX +u?p € o[X]
with u € o*. Then the image of f under the canonical epimorphism o[X] — (0/p)[X]
is irreducible. By Hensel’s Lemma, f itself must be irreducible.

Lemma 3.1.5 Let F be a field such that

e I is finite or
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3.1 Local fields

e I is a non-dyadic local field which is complete with respect to a disrete valuation
and whose residue class field is finite.

Then F = {x? +y*; x,y € F}.

Proof. By Hensel’s Lemma, one may assume that ¢ := |F| is finite. The case that ¢ is
even is trivial. Suppose now that ¢ is odd. If F2, the set of squares in F, is closed under
addition, it would be a subgroup of (F,+). But this is impossible, since #F? = %1 does
not divide q. O

Definition 3.1.6 For non-zero elements a,b in a local field F', the Hilbert symbol is
defined as

(a,b) {+1 if az? + by? = 22 has a non-zero solution (z,y,z) € F3,
a,b) =

—1 otherwise.

So (a,b) = +1 if and only if the quadratic form (a, b) represents 1. Hence (a,b) = +1 for
all a,b € C. Similarly, if F' = R, then (a,b) = —1 if and only if a,b are both negative.

Theorem 3.1.7 Let A € 0* be an element of quadratic defect 4o.
1. (a,A) = (—=1)°"4) for all a € K*.

2. If K is non-dyadic and a,b € K such that ord(a) = ord(b) = 0 (mod 2), then
(a,b) = +1.

3. The Hilbert symbol is a symmetric, non-degenerate bilinear form on the Fy-vector
space K*/(K*)?. Non-degenerate means that if a € K* — (K*)? then (a,b) = —1
for some b e K*.

4. If E = K[z]/(z% — a) for some a € K*, then b € N(E*) if and only if (a,b) = 1.
C : K* 2
In particular, K*/N(E*) = ! z.fa € )2’
Cy ifa¢ (K*).
5. The field E = K(V/A) is the unique unramified quadratic extension of K and
N(E*) = {a € K*; ord(a) € 2Z}. In particular, {a € 0*; 0(a) = 40} = A(0*)2.

Proof. For a proof the first assertion, see [O’M73, 63.11a]. For the second, one may
assume that a,b € 0*. Moreover, there is nothing to show if a or b is a square. So without
loss of generality a = b. But then (a, b) represents 1 by Lemma 3.1.5.

3. The Hilbert symbol is certainly symmetric and depends only on the square classes
of a and b. The linearity follows from the characterization in 4. using relative norms.
The proof on the non-degeneracy is more involved. By 1. one may assume that a € o*.
Without loss of generality, A =1 (mod 40) and a = 1 + ¢ such that co = ?(a). Again
by 1., the case co C 4o is trivial. So only the case that K is dyadic and ord(c) is odd
remains. Let b := A — a. Then (a,b) = (A, Aab) shows that

(a,b) — (A,Aab) — (_1)0rd(Aab) _ (_l)ord(b) _ (_1)ord(c) - 1.
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3 Hermitian lattices over complete discrete valuation rings

The fourth assertion is now clear. Further, E = K(y/a) is unramified over K if and only
if N(E*) = {a € K*; ord(a) € 2Z}. By 1. and 3. the latter condition is equivalent to
a € A(K*)2. This proves the last part. 0

F
characteristic 0 and let E° := {a € E; trg p(a) = 0} be its trace zero subspace.

Theorem 3.1.8 Let £ = (a—b> be a quaternion algebra over some local field F of

1. The following statements are equivalent:
a) E is a skewfield.
b) The quaternary quadratic space (E,nrg,p) over F is anisotropic.
¢) The ternary quadratic space (Eo,an/F) over I is anisotropic.

d) (a,b) = —1.

‘ . o~ [(—1,—1
2. If F =R, then E is a skewfield if and only if £ = ( A )

3. If F = K, then the quadratic space (E,nrg ) is universal, i.e. nrg g (E*) = K*.
Moreover, E is a skewfield if and only if B = (%).

Proof. 1. The Structure Theorem of Artin-Wedderburn implies that the F-algebra E
is either a skewfield or isometric to F2*2. Hence a), b) and c¢) are certainly equivalent.
Further, (Eo,an/F) & (—a, —b,ab) is anisotropic if and only if (b, a,1) is so. But the
latter condition is equivalent to (a,b) = —1.

2. The first assertion shows that F = <aﬁ§b) is a skewfield if and only if a,b < 0. If this

is the case, then F = (71]1’(1).

3. The previous theorem and part 1d) show that <%> is a skewfield. The fact

that all quaternion skewfields over K are isometric follows from the structure of the
Brauer group of K, see for example [Rei03, Theorem 31.8]. Finally, if F = K2*2 then

clearly nrp g (E*) = K* and if £ = <%) then nrg i (E*) contains —p as well as
{r € K*; ord(z) € 2Z}. Thus nrg, g (E*) = K* for any quaternion algebra F over K.p

Note that Hilbert symbols can be evaluated efficiently as explained in [Voil3]. Thus,
given b € K*, one can constructively decide if b € N(E*) as follows.

1. If E = K, then b € N(E*) = (K*)? if and only if 9(a) = (0).
2. If E = K[z]/(2* — a) then b € N(E*) if and only if (a,b) = 1.

3. If E is a quaternion algebra over K, then b € N(E*).

28



3.2 Hermitian spaces over local fields

3.2 Hermitian spaces over local fields

This section recalls the well known classification of hermitian spaces over K.
Definition 3.2.1 Let (V,®) = (ay,...,an) be a regular quadratic space over £ = K.

1. The Hasse invariant ¢(V, ®) := [],_;(ai, a;) € {1} is independent of the chosen
orthogonal basis.

2. The Witt invariant is defined by

c(V,®) ifm=1,2 (mod 8),
(V. D) = c(V,®) - (—1,—det(P)) %f m=3,4 (mod 8),
c(V,®)-(—1,-1) ifm=5,6 (mod 8),
c(V,®) - (—1,det(®)) ifm=7,0 (mod8).

Theorem 3.2.2 The isometry type of any regular quadratic space (V,®) over K is
uniquely determined by its rank m, its determinant d and its Hasse invariant c. Further,
(V, @) is isotropic if and only if either

e m=2and —d € (K*)?.

e m=3andc=(—1,—d).

em=4and (d¢ (K*)? orc=(-1,-1)).
em >5.

Proof. See for example [O’M73, Chapter 63]. o

The previous result shows that there is a unique anisotropic, quaternary quadratic
space over K (up to isometry). By Theorem 3.1.8, this space must be a quaternion skew
field over K equipped with its reduced norm form and it is universal.

Theorem 3.2.3 Let (V,®) be a regular hermitian form over E # K of rank m and
determinant d.

1. If dimg(F) = 2, then (V,®) = (1,...,1,d).
2. If dimy (E) = 4, then (V,®) = (1,...,1).
In particular, the isometry type of (V, ®) is uniquely determined by m and d € K*/ N(E*).

Proof. By Theorem 2.1.4, (V,®) = (ay,...,ay) for some a; € K*. Thus the result is
certainly true whenever N(E*) = K*. So only the case that £/K is a quadratic field
extension remains. Without loss of generality one may assume that m = 2. It suffices to
show that ® represents 1. This is certainly the case if ® is isotropic. If ® and thus Qg
are non-isotropic, then ® is universal by the comment just before this theorem. So ®
represents 1 in any case. O
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3 Hermitian lattices over complete discrete valuation rings

Corollary 3.2.4 Let (V,®) be a regular hermitian form over E # K of rank m and
determinant d.

1. If dimg(E) = 2, then (V, ®) is isotropic if and only if either
e m=2 and —d € N(E*) or

e m > 3.

2. If dimg (F) =4, then (V,®) is isotropic if and only if m > 2.

Proof. This follows immediately from the previous theorem. O

3.3 Jordan decompositions

Let A =1—4p € 0" such that 9(A) = 4p0 = 40. In this section, the following conventions
will be used.

e If /K is an unramified quadratic field extension, then E = K (v/A).

If F is a quaternion skewfield over K, then E = (%).

If FE is a (skew-)field, then O denotes the maximal o-order in £ and Ord is the
usual surjective, discrete valuation of E with valuation ring O.

IfE=KoK,let O =o0doandlet Ord: E — ZU{o0}, (a,b) — min(ord(a), ord(b)).
o If £ =K?*2 let O = 0%*? and let

Ord: E — Z U {oo}, (%) ~ min(ord(a),ord(b), ord(c), ord(d)) .

Let B = 7O be the largest integral twosided ideal of O that contains pO and that is
invariant under the involution .

e Given a,b € K, let A(a,b) denote the matrix (Cl‘ i)

e For any integer i, let H(i) be a binary hermitian O-lattice with Gram matrix

(foi 7{; ) Further, for any non-negative integer r, let H(i)" denote the orthogonal

sum of r copies of H (7).

Finally, (V, ®) denotes some regular hermitian space over E.
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3.3 Jordan decompositions

3.3.1 The generic case

Definition 3.3.1 An orthogonal sum J_zzl L; of O-lattices in (V, ®) is called a Jordan
decomposition if the sublattices L; are % -modular such that s; < s3 < ... < s¢. Two

Jordan decompositions J_§:1 L; and J_Z/:l L/ are said to be of the same Jordan type if
t =t and for 1 < i <t the following conditions hold:

1. rank(L;) = rank(L}).
2. s(L;) = s(L)).
3. n(L;)O = s(L;) if and only if n(L))O = s(L}).

The fact that every O-lattice in (V,®) has some Jordan decomposition follows from
the following algorithm.

Algorithm 3.3.2 JORDANDECOMPOSITION(L)
Input: An O-lattice L in (V, ).
Output: An orthogonal decomposition of L into modular sublattices of rank at most 2.

1: Let (e1,...,em) be an O-basis of L.
2: Set 0 := min{Ord(®(ex,er)); 1 < k, ¢ < m}.
3: Let (i,5) € {1,...,m}? with i = j if possible, such that Ord(®(e;,e;)) = o.
4: if i # j and there exists some A € O such that Ord(T(A®(e;,e;))) = o then
5: Replace e; by e; + Xej
6: Set 7 :=1.
7. end if
8: if i=j then
9: Swap e; with e;.
10: for 2 <k <mdo
11: Replace e by e — igif’zigel
12: end for 7
13: Set r:=1.
14: else
15: Swap e1 with eping; ) and ez with egaxg; jy-
16: for 3 <k <mdo
17: Replace e by
o — D(eg, e2)P(eg,e1) — (e, e1)P(ea, 62)61
N(®(e1,e2)) — P(e1,e1)P(e2, e2)
_ D(eg,e1)P(er,e2) — (I)(ek,eg)q)(ehel)e
N(®(e1, e2)) — ®(er, e1)P(e2, €2)
18: end for
19: Set r:= 2.
20: end if
21: return ) . Oe; L JORDANDECOMPOSITION(D .-, O¢;).
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3 Hermitian lattices over complete discrete valuation rings

Theorem 3.3.3 FEvery O-lattice L in (V,®) admits a Jordan decomposition. Further,
any two Jordan decompositions of L are of the same Jordan type.

Proof. The existence follows from Algorithm 3.3.2. For the uniqueness, note that the
proof given by O’Meara in [O’M73, Theorem 91.9] for the quadratic case carries over
unchanged. O

In most cases, such an element A from line 4 of Algorithm 3.3.2 exists. Below are some
partial results.

Lemma 3.3.4 Let a € E such that Ord(a) = o.
1. If E = K is non-dyadic, then Ord(T(1- «a)) = o.

2. If E/K is an unramified quadratic field extension, then Ord(T(Aa)) = o for

) o) 1 if K is non-dyadic,
= [0l
HT VA if K is dyadic.

3. If E/K is a ramified quadratic extension, K is non-dyadic and i is even, then
Ord(T(Aa)) = o for A =p? /o € O,

4. fFE2K x K or E= K?*2 then Ord(T(\a)) = o for some idempotent \ € O.

5. If E is a quaternion skewfield and o is even, then Ord(T(A\«a)) = o for

\ o |at if K is non-dyadic,
= 2 .
P %oﬁl if K is dyadic.
Proof. This follows from direct verifications. O

The above result immediately yields a classification of modular lattices in almost all
cases.

Proposition 3.3.5 Let L be a P*-modular O-lattice in (V,®).
1. If E = K is non-dyadic, then L = (p*, ... p',det(L)p"1—™).

2. IfEX K x K or E = K*? or E/K is an unramified quadratic field extension
then L = (p',... p').

3. If E/K is a ramified quadratic field extension, K is non-dyadic and i is even, then
L= <pi/27 o ,pi/2, det(L)pi(l_T)/2>,

4. If E is a quaternion skewfield and i is even, then L = (p'/?, ... p'/?).

5. If E/K is a ramified quadratic field extension, K is non-dyadic and i is odd, then
m is even and L =2 H(i)™/?.
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3.3 Jordan decompositions

6. If E is a quaternion skewfield over K and i is odd, then m is even and L = H (i)™,

Proof. 1.-4.: From Algorithm 3.3.2 and Lemma 3.3.4 it follows that L admits an ortho-
gonal basis. Thus 2. and 4. follow immediately from N(O*) = o*. For the proof of 1.
and 3., it suffices to show that the form (e, ) represents 1 where ¢ € 0* denotes some
non-square. But this follows immediately from Lemma 3.1.5.

5.—6.: Since 7 is odd, no rank-one submodule of L has an orthogonal complement in
L. From Algorithm 3.3.2 it follows that m is even. So it suffices to discuss the case
m = 2. After rescaling, one may also assume that ¢ = 1. Thus L has a Gram matrix
(27%) for some a,b € p. But then det(V,®) = ab — N(7) = — N(7)(1 + ¢) for some ¢ € p.
Corollary 3.2.4 shows that (V, ®) must be isotropic. Let z be some primitive, isotropic
vector of L. Then L admits some O-basis (z,y) with corresponding Gram matrix (%g)
for some d € p. Let

- {(H;ﬁA)dw_l if dimp (E) = 4 and K is dyadic,

%dﬂfl otherwise.
Then A € O and the O-basis (z,y — Az) of L has Gram matrix (27 ). 0

The previous result allows a classification of hermitian O-lattices in all but two cases.

Theorem 3.3.6 Let (V,®) and (V',®') be hermitian spaces over E. Let L = J_:Zl L;

and L' = J_f/:l L be Jordan decompositions of O-lattices in (V,®) and (V',®') respect-
ively. Suppose that E does not satisfy any of the following two conditions.

e £ = K is dyadic.

e I is a ramified quadratic field extension of the dyadic field K.
Then the following statements are equivalent.

1. The lattices L and L' are isometric.

2. The lattices L; and L} are isometric for all1 <i <t =1t

3. The hermitian spaces (EL;, ®;) and (EL,, ®}) are isometric for all 1 <i <t =1
Here ®; and @) denote the restrictions of ® and ' to EL; and EL, respectively.

4. The hermitian spaces (V,®) and (V',®') are isometric, L and L' are of the same
Jordan type and the following assertions hold.
o If E =K then det(L;)/det(L}) € (0%)? for all 1 <i <t.

e If E/K 'is a ramified field extension then det(L;)/det(L) € N(O*) for all
1 <4 <t with s(L;) is even.
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3 Hermitian lattices over complete discrete valuation rings

Proof. Proposition 3.3.5 and the classification of hermitian spaces over local fields given
in Section 3.2 show that 2., 3. and 4. are equivalent. Moreover, 2. certainly implies 1.
Suppose now 1. holds. Let ¢: L — L’ be an isometry. By Theorem 3.3.3, isometric
lattices are of the same Jordan type. Hence Proposition 3.3.5 shows that L and L’
are isometric whenever E # K and E/K is a not a ramified quadratic field extension.
Suppose now E = K or E/K is a ramified quadratic field extension. Then L;/PBL;
and L} /PBL} are hermitian spaces over O/ of the same rank. Let 7: L' — L) be the
canonical projection. Then

Li/BLy — Ly /BLy, x+pLi — 7(p(x)) + pLi

induces an isometry of hermitian spaces and thus det(L;) = det(L;) (mod p). Hence
det(L1)/ det(L;) € N(O*). The same argument applied to L¥() and (L')*(%) shows that
det(L;)/ det(L;) € N(O*) for all 2 < i <. 0

The two remaining cases are much more involved. They will be discussed in the next
sections.

3.3.2 The quadratic, dyadic case

In this section, let ¥ = K be dyadic. The classification of quadratic lattices over K is
due to T. O’Meara. In this case, more invariants are needed to distinguish the isometry
classes of o-lattices.

Definition 3.3.7 Let L be an o-lattice in (V, ®) and let a be a fractional ideal of o.
1. For a,b € K*, the equivalence relation ¢ = b mod a is defined as
a/beo® and 0(a/b) Ca/b.
2. The norm group g(L) is the additive subgroup Q¢(L)+2s(L) of (K, +). An element
a € g(L) is called a norm generator of L if ao = n(L).

3. Since 2s(L) C g(L), there exists a maximal fractional ideal m(L) contained in g(L).
Then the weight w(L) is the fractional ideal 2s(L) + pm(L).

Proposition 3.3.8 The scale, norm and weight of an o-lattice L in (V,®) satisfy the
following conditions.

1. 25(L) C w(L) C g(L) C n(L) C s(L).
2. w(L) = n(L) if and only if n(L) = 2s(L).
3. If ord(n(L)) + ord(wo(L)) is even, then w(L) = 2s(L).

Proof. See [0'MT3, Section 93)]. .

Norm generators and weights can be computed easily using the following result.
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3.3 Jordan decompositions

Lemma 3.3.9 Let L be a o-lattice in (V, ®) with basis (x1,...,Tm).

1. If n(L) = 2s(L) let o be any generator of n(L); otherwise let o = Qg (x;) for some
1 <i < m that makes o mazimal. Then « is a norm generator of L.

2. If & is any norm generator of L, then

m

w(L) = 25(L) + 3 ad(Qa(a;)/)

=1

3. v € K is a norm generator of L if and only if a =~ mod r(L).

Proof. See [O’MT73, Section 93]. 0

Norm generators and weights are enough to distinguish isometry classes of modular
lattices.

Theorem 3.3.10 Leti € Z. Let L and L' be p'-modular o-lattices in (V,®) with norm
generators o and o respectively. Then the following statements are equivalent:

1. L and L' are isometric.
2. L and L' represent the same numbers, i.e. g(L) = g(L').
3. w(L) =rw(L") and o = o' mod ro(L).
Proof. See [O’M73, Theorem 93:16 and 93:4]. O

Proposition 3.3.11 Let L be a unimodular lattice in (V, ®) with determinant d € o*
and weight vo(L) = p®. Let A =1 — 40 € 0* such that 9(A) = 490 = 4o.

1. If m = dimg (V) = 2r + 1 is odd, then either b =€ or b < e is odd.
a) If w(V,®) = +1, then

L2 (AG,0)) L {(—1)°d) L H(O) .
b) If w(V,®) = —1, then b < e and
L= (A(ph, 40p) L (A~} (~1)d) L H(0).

2. Suppose m = dimg (V') = 2r is even. Let o be a norm generator of L and let v € o
such that disc(L) = (1+7) - (0*)? and 9(1 +v) = vo0. Then v € n(L)w(L) and L is
isometric to one of the following lattices.

a) If ord(a) 4+ b is even, then b = e and

L= (Ala,—ya™Y)) L HO) . (I)
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3 Hermitian lattices over complete discrete valuation rings

b) If r =1 and ord(«) + b is odd, then
L= (Ala, —ya™1)). (IT)
Further, either e =b or e > b = ord(y) — ord(c).
¢) If r > 2 and ord(«) + b is odd, then L is isometric to either

(A(a, —7a_1)> s <A(pb,0)> 1 H(O)T_2 or (ITTa)
(Ao, (v — 4g)a) L (AG 4gp™")) LHQOY . ()

Proof. This is a consequence of Theorem 3.3.10. See [O’M73, Examples 93:17-18] for
details. -

Remark 3.3.12 Suppose the notation of Proposition 3.3.11. Witt symbols can be
used to distinguish between lattices of type (IIIa) and (IIIb). More precisely, suppose
dimg (V) = 2r > 4. Then any unimodular o-lattice L in (V, ®) with ord(n(L)ro(L)) odd
is of type (Illa) if and only if w(V, ®) equals the Hilbert symbol (a, 1+ 7).

Let L = J_;:1 L; be a Jordan decomposition. Let s; := s(L;) and to; = rw(L%).
Further pick some norm generator «; of L*. Then

(t,sl,...,ﬁt,al,...,at,ml,...,mt)

are called the fundamental invariants of L. Using the fundamental invariants of L, one
defines the ideals fy,...,fi—1 by

otherwise.

fus2 ;110 if ord(oycvi+1) is odd
T 0(@iaig) + aiwigpr + gt + 2spord(@ei)/2

Suppose that the lattices L and L’ have the fundamental invariants (¢, s;, a;, ;) and
(t',s], o}, ro}) respectively. The lattices L and L" are said to have the same fundamental
invariants if t = ¢ and for all 1 < i < ¢:

S; = 5;, 10, = 1o’

/
; and o Za; mod to;.

Isometric lattices have the same fundamental invariants. Conversely, T. O’Meara proved
the following classification.

Theorem 3.3.13 ([O°M73, Theorem 93:28]) Let L and L’ be lattices in (V,®). Let
Ly L ...L L and L} L ... L L} be Jordan decompositions of L and L' respectively.
Suppose that L and L' have the same fundamental invariants (t,s;,a;,0;). Then L and
L' are isometric if and only if the following conditions hold for all 1 <i <t —1:

1. det L(Z-)/det L/(z) =1 mod ;.
2. The quadratic space KL ;) embeds into KL’(i) 1 (@iq1) when §; 4ai+1mi_+11.
3. The quadratic space K Ly embeds into KL’(Z.) 1 (o) when §; C 4041'1‘0;1.

Here Ly =Ly L ... L L andL'(l.):L'lj_...J_L;.
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3.3.3 The hermitian, ramified dyadic case

Let E/K be a ramified quadratic field extension and suppose that K is dyadic. Let 7w be
a generator of 3. Then p := 77 is a generator of p.

Further, let D! := {a € E; T(aO) C o} be the inverse different of F/K. Then
D = 7¢O for some e > 2 and

T@ H=TED ) =0.

Thus for any i € Z _
T(7'0) = T(zTeD~1) = pl2°) .

Similar to the quadratic defect, is the concept of the normic defect.

Definition 3.3.14 The normic defect of a € K is defined by

0g(a) = () (a—N(B))o.

BeEE
For any fractional ideal a of o, there is an equivalence relation on K* defined by
a=b moda:<= a/beco” and a/b— N(a) € a for some a € O .

Remark 3.3.15 Let a,b € K. Then

1. a € N(E) if and only if 9g(a) = (0).

2. 0g(a) C ao.

3. 9p(na) =ndg(a) for all n € N(E).

4. a = N(«a) + b for some a € E and bo = 0g(a).

5. If a,b are non-zero, then a 2 b mod a if and only if a/b € 0* and dg(a/b) C a.

In view of Remark 3.3.15/3 it suffices to discuss the normic defect of elements in the
non-trivial coset of 0*/ N(O*) = (.

Lemma 3.3.16 Ifa € o* — N(O*), then 0g(a) = p¢ 1.

Proof. See for example [Joh68, Proposition 6.1]. 0

Corollary 3.3.17 There exists some u = 1 +ug € 0* such that 0p(u) = p¢~ = ugo and
0* = N(O*) uN(O*).

Using methods similar to [O’M73, Chapter 93], R. Jacobowitz proved the following
classification.
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Theorem 3.3.18 ([Jac62, Theorem 11.4]) Let (V,®) and (V',®") be two hermitian
spaces over EJ. Let L = J_Z: L;and L' = J—E:l L’ be Jordan decompositions of O-lattices
in (V,®) and (V', @) respectively. Then L and L' are isometric if and only if the following
conditions hold:

1. L and L' are of the same Jordan type.

2. det(L)/det(L") € N(O*).

8.y = n(L5E)) = n(L5ED) for all 1 < i < t.

4. det(Ly L ... L Ly)/det(Ly L ... L L) = 1 mod o N nn;15(L;)~2 for all
1<i <t

Corollary 3.3.19 Let L and L' be B*-modular O-lattices in (V,®) for some i € Z. Then
the following statements are equivalent:

1. L and L' are isometric.
2. L and L' represent the same numbers.
3. n(L) =n(L)).

Corollary 3.3.20 Let L be a B'-modular O-lattice in (V,®) and let m be the rank of V
over F.

1. If m = 2r 4+ 1 s odd, then i is even and
L2 (up/?) L H(i)" where uN(O*) = disc(L)p~™/? € 0*/N(O*).
In particular, n(L)O = s(L).
2. Suppose m = 2r + 2 is even and (V,®) is hyperbolic. Let n(L) = p*. Then
H@gﬁogﬂocwiLg(§§)¢H@T

Conversely, any O-lattice with such a Gram matriz is B'-modular with norm p*.
In particular, L =2 H(i)™ if and only if p* = T(xO).

3. Suppose m = 2r + 2 is even and (V,®) is not hyperbolic. Let n(L) = p* and let ug
be as in Corollary 3.3.17. Then

7D C pkO C 7O msz(f ﬂ%)LHmT

T —p

Conversely, any O-lattice with such a Gram matriz is B-modular with norm pF.
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3.4 Construction of global hermitian spaces defined by local
invariants

In this section, let K be a number field. The goal of this section is the following: Given
local invariants which determine a unique isometry class of hermitian spaces over F,
compute a Gram matrix of such a space.

For any place v € Q(K), the Hilbert symbol of K, will be denoted by (-, -),. The real
embeddings of K will be denoted by o1,...,0,: K — R.

Given a,b € K*, Theorem 3.1.7 shows that the set {v € Q(K); (a,b), = —1} is finite.
The product formula for Hilbert symbols (c.f. [O’'M73, Theorem 71.18]) states that

[I@ by =1.

veEQ(K)

In other words, the set {v € Q(K); (a,b), = —1} has even cardinality.
The construction of global hermitian spaces with given local invariants can be reduced
to the following important sub-problem.

Algorithm 3.4.1

Input: A finite subset S C Q(K) of even cardinality and some b € K* such that
b (K2 forallveS.
Output: Some a € o such that {v € Q(K); (a,b), = -1} = S.
1: Set 8" :={0; ¢ S; 0i(b) <0} U{peP(o)—S;p|2or ordy(b) # 0}.
2: Set P:=(SUS")NP(o).
3: Let G be the elementary abelian 2-group C’f S x C’f " and let

o: K* =G, a [((aa b)v)v657 ((a, b)v)vES’] .

Set v := [(—1)yes, (+1)ves’] € G.
Let {g1,...,gc} be a set of generators of o*.
repeat
Pick a random prime ideal q € P(0) — P.
Let {ge410,...,g70} with g; € 0 generate the kernel of the homomorphism

(PU{q}) <Z(o) = Cl(0), a > [a].
9: until v € (p(g1),...,9(g9f)) <G
10: Write v = [[,c; ¢(g;) for some index set J C {1,..., f}.
11: return a := [[;c; g; € 0.
Proof. Provided that the algorithm terminates, its output is correct, since by construction

e (a,b), =—1forallves.

e (a,b), =+1forallveS —{q}.
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3 Hermitian lattices over complete discrete valuation rings

e (a,b)y, =+1foralveQK)—(SUS U{q}).

Hence (a,b), is correct at all but possibly one place. Thus it is correct everywhere by
the product formula for Hilbert symbols.

Also note that there exists some solution a’ € o by [O’M73, Theorem 71.19]. Let D be
the divisor 4 Hpe p P11 0i of K. By Chebotarev’s density theorem, the prime ideals of o
are equally distributed over the classes of the ray class group modulo D. In particular,
the class of a’o is represented by some prime ideal q. Conversely, any such ideal q yields
a solution a € o which is supported at P U {q}. So the algorithm terminates. 0

The following remark shows that the above algorithm allows the construction of
quaternion algebras with given ramification as well as hermitian spaces over £ # K
defined by local invariants.

Remark 3.4.2

1. Algorithm 3.4.1 requires the computation of the unit and class groups of 0. But
other than that, it only makes use of linear algebra over F.

2. A quaternion algebra E = <‘}(b) is said to be ramified at v € Q(K) if and only if F,

is a skew field. By Theorem 3.1.8, this is equivalent to (a, b), = —1. In particular,
the set of all places at which FE is ramified is finite, of even cardinality and contains
no complex places. Conversely, let S C Q(K) be a finite subset of even cardinality
which contains no complex infinite place. By weak approximation, there exists some
b € K* such that b ¢ (K?)2. Let a € o such that {v € Q(K); (a,b), = —1} = S as

computed by the Algorithm 3.4.1. Then (al’(b) is ramified exactly at the places in S.

Note that the set S uniquely determines the isomorphism class of (al’{b) by the
theorem of Hasse-Brauer-Noether-Albert, see [Rei03, Theorem 32.11] for details.

3. Suppose E = K(V/b) is a quadratic field extension of K. Let (V,®) be a regular
hermitian space over E of rank m > 1 and determinant d N(E*) € K*/N(E*). Let

v1,..., Vs be the real places of K at which b is negative and let n; = ny, ), c.f.
Proposition 2.1.5. Loc. cit., the Local-Global Principle 2.4.1 and Theorem 3.2.3
show that

m—1
(V, (I)) = <a1, .. .,am_l,d- H ai>
=1

for any ai,...,am—1 € K* such that vi(a;) < 0 <= j < n;. In particular, if
(V, @) is definite, then (V,®) = (1,...,1,d).
By Hasse’s norm theorem, det(V, ®) = d N(E*) is uniquely determined by the set
S={veQK);d¢NE)}
={v e QK); (d,b), =—1}.
In particular, the set S is finite, of even cardinality and consists only of places which

are non-split in E. Conversely, given ni,...,n, and S, one can recover det(V, ®)
and thus a Gram matrix of (V, ®) using weak approximation and Algorithm 3.4.1.
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3.4 Construction of global hermitian spaces defined by local invariants

4. Suppose FE is a quaternion algebra with center K and let (V,®) be a regular
hermitian space over E of rank m > 1. Let vq,...,vs be the real places of K at
which E is ramified and let n; = n(V,, ) c.f. Proposition 2.1.5. Loc. cit., the
Local-Global Principle 2.4.1 and Theorem 3.2.3 show that

(V,®) = (ay,...,am)

for any ay,...,a, € K* such that v;(aj) <0 <= j < n;. In particular, if (V, ®)
is definite, then (V,®) = (1,...,1).

Constructing a quadratic space defined by local invariants is more difficult. The
Local-Global Principle 2.4.1, Proposition 2.1.5 and Theorem 3.2.3 show that any regular
quadratic space over K is uniquely determined by the following invariants:

1. Its rank m.

2. Tts determinant d € K*/(K*)2.

3. The finite set {p € P(o); c(V}, ®) = —1}.

4. The numbers n(,, o) for 1 <4 <r from Proposition 2.1.5.

Given the space (V, ®), these invariants are easy to compute. Conversely, given these
invariants, the computation of a quadratic space (V, ®) with these invariants (provided it
exists) is more involved. The algorithm given below to solve this problem is inspired by
Section 6.7 of J. Cassels’ book on rational quadratic forms [Cas78].

Algorithm 3.4.3 QUADRATICFORMFROMINVARIANTS(m,d, P, (ny,...,n;))

Input: Some integer m > 1, some nonzero element d € o, some finite subset P C IP(0)
and some integers ny,...,n, € {0,...,m}.

Output: A Gram matrix of a quadratic space (V, ®) over K of rank m and determinant d
such that {p € P(0); ¢(Vy, ®) = =1} = P and n(y, ¢) =n; forall 1 <i<r.

1: Raise an error if sign(o;(d)) # (—1)™ for some i.

2: Raise an error if m = 1 and P # ().

3: Raise an error if m =2 and —d € (K§)2 for some p € P.

4: Raise an error if #{1 < i <7r;n; =2,3 (mod 4)} + #P is odd.

5: Initialiase the list D = ().

6: while m > 2 do

7 if m > 4 then

8: By weak approximation, compute a € o such that for all 1 <4 <r:

{oi(a) <0 ifn;>0, (3‘4.1)
oi(a) >0 otherwise.

9: else if m = 3 then
10: Set P':={p e P; (—-1,—d), = 1}U{p € P(0)—P; p | 2d and (-1, —d), = —1}.
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3 Hermitian lattices over complete discrete valuation rings

11: By weak approximation, compute a € o satisfying Eq. (3.4.1) such that
ordy(ad) =1 (mod 2) forallpe P'.

12: else if m = 2 then

13: Set S := P U{o;; n; =2}.

14: Using Algorithm 3.4.1, compute some a € o0 such that
{veQK); (a,—d)y, =—1} = 5.

15: end if

16: Set P:={peP;(a,—d), =1}U{p e P(o) — P; p|2ad and (a,—d), = —1}.
17: For 1 <i <r replace n; by max{0,n; — 1}.

18: Replace m by m — 1 and d by ad.

19: Append a to D.

20: end while

21: Append d to D.

22: return the diagonal matrix Diag(D).

Proof. The conditions imposed by lines 1-4 are both necessary and sufficient for the
existence of a quadratic space with the given invariants, c.f. [O’'M73, Theorems 63.23
and 72.1]. The returned answer is certainly correct if m = 1. If m > 1, the algorithm
chooses some a € o that is represented by (V, ®) thanks to the Local-Global Principle
and Theorem 3.2.2. Hence (V,®) = (a) L (V',®’) for some quadratic space (V/, ®') of
dimension m — 1. The invariants of (V', ®') are computed in lines 15-17 from a and the
corresponding invariants of (V, ®). Hence by induction, the result is correct. O

3.5 Construction of global hermitian lattices defined by local
invariants

Let K be a number field and let (V, ®) be a hermitian space over E of rank m. Further,

let 0 and O be maximal orders of K and F respectively.

Definition 3.5.1 A prime ideal p of o is called bad, if p | 2 and one of the following
conditions holds:

o =K.
e E,/K, is a ramified quadratic field extension.

In all other cases, p is said to be good.

In Section 3.3, it is shown that Jordan decompositions are unique at the good but not at
the bad prime ideals.

The goal of this section is to describe an algorithm which computes a representative
of some genus G of O-lattices in (V,®), which is given by local invariants. First an
algorithm for computing o-maximal O-lattices in (V, ®) is presented. It is based on the
following two lemmata.
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3.5 Construction of global hermitian lattices defined by local invariants

Lemma 3.5.2 Let a be some fractional ideal of 0. The set of all a-maximal O-lattices
in (V,®) forms a single genus.

Proof. See [O’MT73, Theorem 91:2] and [Shi64, Proposition 4.13]. 0

Lemma 3.5.3 Let M be an O-lattice in (V,®). Suppose that M, is op-maximal for
some p € P(0). Then the valuation v = ordy([M¥ : M],) is given by the following local
mvariants.

1. Suppose E = K. Let d € K* be a representative of the discriminant disc(V,, @)
such that ordy(d) € {0,1} and let e = ordy(2). Then v is given by the following

table.
m d w(Vp, ) extra condition v
odd - +1 ordy(d) —e(m — 1)
odd — -1 2 —ordy(d) —e(m—1)
even square +1 —em
even square —1 2—em
even mnon-square +1 Ordp(dK(\/&)/K) —e(m — 2)
even mon-square —1  K,(V/d)/K, ramified ordp(dK(ﬂ)/K) —e(m —2)
even mnon-square —1 Ky(V/d)/K, unramified 2 —em

2. Suppose E # K and p is unramified in E. Then v =0 if det(V,, ®) € N(E*) and
v =1 otherwise.

3. Suppose dimy (E) = 2 and p is ramified in E. Let e = ordy(dg, k). Then v is given
by the following table.

m  disc(V,, @) ‘ v

odd - —e(m—1)/2
even norm —em/2
even non-norm | 1—em/2

4. Suppose dimg (E) = 4 and p is ramified in E. Then v = —2[7F].
Proof. This follows from a case by case discussion using the classification of op-maximal
Oy-lattices in (V,, @), c.f. for example [GHYO01]. O

Algorithm 3.5.4 LOCALMAXIMALLATTICE(L, p,v)
Input: Some p € P(0) and some O-lattice L in (V, ®) such that ord,(n(L)) > v.
Output: A chain of minimal O-overlattices Lo = L C Ly € --- € L, in (V, ®) such that
(Lr)p is p¥-maximal and (L;)q = Lq for all g € P(0) — {p}.
1: Let a € K* such that ordy(a) = —v.
2: Let w = ordy ([M# : M],,) where M denotes an oy-maximal Op-lattice in (Vj, a®),
c.f. Lemma 3.5.3.
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3 Hermitian lattices over complete discrete valuation rings

Let B be a maximal left ideal of O that contains p.

Let ®71:={a € E; T(aO) C o}.

Initialiase ¢ = 0 and let Ly be the lattice L* in (V, a®).

while ord,([L¥ : Lj],) > w do
Set L;11 := L; + Ox for some = € (D_le‘7£ NP~'L;) — L; with ordy(Qqa(x)) > 0.
Increment <.

end while
10: return the chain Ll/a .,L-l/a of O-lattices in (V, ®).

)

Proof. By construction, every lattice L; satisfies ordy(n(L;)) > v and (L;)q = Lq for all
q # p. Further, ord,g([LZ‘7£ : Li],) decreases in each step. So provided the element x in
line 6 always exists, the algorithm eventually returns some chain and Lemmata 3.5.2
and 3.5.3 show that the last lattice in this chain is p’-maximal in (V, ®).

To see that the element z exists, suppose that (L;), is not op-maximal. If p is non-split
in F, then P is the unique maximal left ideal of O over p. Thus the assumption on L;
implies that there exists some minimal overlattice X over L; which is contained in ' L;
such that ordy(n(X)) > 0. This result also holds if p splits in £, although for different
reasons. If p splits in F, then (L;), has a an orthogonal basis (b1, ..., by ). By assumption,
a®(b;, b;) € p for some i. Let P, = Opm. Let X be the O-lattice with Xq = Lq for all
q € P(o) — {p} and X, = (L;)p + 7 'b;. So whether p splits or not, the lattice X is a
minimal overlattice over L;, it is contained in B~1L; and ord,(n(X)) > 0. In particular,
X is of the form L; + Ox for some x € P~1L; — L;. The condition ord,(n(X)) > 0
readily translates into ordy(a®(x,x)) > 0 and T(a®(z, (L;)p)) C op. The latter condition
is equivalent to x € D 1(Lz¢)p. Hence in line 6, an element = always exists. O

Calling the above algorithm with different prime ideals yields a method for computing
a-maximal lattices:
Algorithm 3.5.5 MAXIMALLATTICE(L, a)

Input: Some fractional ideal a of 0 and some O-lattice L in (V, ®) such that n(L) C a.
Output: An O-lattice M in (V, ®) that is a-maximal and contains L.

1: Let P = {p € P(0); ordy(a) # 0 or p | dg/k or p is bad or Ly is not unimodular}.

2: Initialiase M = L.

3: for p e P do

4: Replace M by the last lattice returned by LOCALMAXIMALLATTICE(M, p, ordy(a)).
5: end for

6: return M.

Starting from a maximal lattice, one can construct a representative of any given genus
as follows.

Algorithm 3.5.6 LATTICEINGENUS(G)

Input: A genus G of hermitian O-lattices in (V, ®) given by local invariants (for example
by Gram matrices) at the places in

P:={peP(o);p| dg/k or pis bad or Ly is not modular for L € G} .
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3.5 Construction of global hermitian lattices defined by local invariants

Output: Some lattice L € G.
: From the given local invariants compute the norm ideal a of the lattices in G.
Compute an a-maximal lattice L in (V, ®) using Algorithm 3.5.5.
for p € P do
Compute an O-sublattice X of L such that X, has the correct invariants at p and
Xq = Ly for all g # p.
Replace L by X.
6: end for
7: return L.

o

Clearly, step 4 is the crucial step. Suppose p € P(0) is good. Given any Jordan
decomposition of L, it is easy (c.f. Algorithm 2.2.7) to write down a random sublattice
X of L such that

o Ly =X, forall g€ P(o) — {p}.
e The blocks of any Jordan decomposition of X}, have the correct scales and ranks.

By Theorem 3.3.6, the number of local isometry classes represented by such lattices X,
is at most 2! and the classes are equally distributed. So one quickly finds a lattice X
that does the trick. At bad primes however, the task can be quite challenging since the
number of isometry classes can be fairly large and they are not equally distributed. In
this case, one can fall back to the following deterministic procedure which makes use of
the fact that bad primes usually have small norms.

Algorithm 3.5.7 SUBLATTICE(M, M’ p,)

Input: Some prime ideal p of 0, an O-lattice M’ in a hermitian space (V’, ®') over E such
that (Vy/, @) = (V,, ®) and an O-lattice M in (V, ®) such that M, is n(M’),-maximal.

Output: Some O-lattice L C M such that L, = M, and Ly = M, for all ¢ € P(0o) — {p}.

1: Let M) C ... C M] be the output of LOCALMAXIMALLATTICE(M’, p, ord, (nr(A"))).
2: Initialiase L = M.

3 fori=r—1,...,1,0 do

4 repeat

5: Compute a random maximal O-sublattice X of L containing pL.

6 until X, = (M)),

7 Replace L by X.

8: end for

9: return L.

Proof. If the algorithm terminates, it certainly yields an O-lattice L with the desired
properties. By induction, (M, ), is isometric to L,. Hence there exists at least one
maximal O-sublattice X between L and pL such that X, = (M;),. 0

Note that if (V,®) is definite, the above search can be improved considerably. The
finite group Aut(L) acts on the maximal O-subspaces of L that contain pL. Thus one
only needs to consider orbit representatives X in step 5. This is extremely useful since
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3 Hermitian lattices over complete discrete valuation rings

the local isometry classes represented by the maximal O-sublattices of L are not always
equally distributed at bad primes.
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4 The mass formula of Siegel

In this chapter, K is a totally real number field of degree n with ring of integers 0. Let
(V,®) be a definite hermitian space over E of rank m. If £ = K, then m is assumed to
be at least 2.

Let O denote some fixed maximal order in E. Then the inverse different

D t={acE; T(aO) C o}

of O is an invertible twosided ideal of O. Moreover, the relative discriminant ideal
dg/kx = N(®) does not depend on chosen maximal order O. Note that, if £ is a
quaternion algebra over K, ramified only at the prime ideals py,...,ps of o, then
dg/k = I, p?. Hence dg /g is the square of the reduced discriminant as defined in
[Rei03, Chapter 25].

Given an algebraic number field F', let Nrp/g: F' — Q be the usual norm of F and the
absolute value of the discriminant of F' will be denoted by df.

4.1 Some properties of L-series

In this section, some well-known results of L-series of number fields are recalled. For a
proof of these results and more information, see for example [Neu06, Chapter VII].

Definition 4.1.1 The Dedekind zeta function (g of an algebraic number field F' is
defined by the Dirichlet series

1
r(s) =) o7 -
a NI‘F/@(G)S
Here the sum ranges over all ideals a of the ring of integers of F'.

Theorem 4.1.2 Let F be a number field. The series (r(s) converges absolutely and
uniformly on {s € C; R(s) > 1+ e} for every e > 0. For R(s) > 1, the series (p(s) has
an Euler product expansion

1
== g

P

where p ranges over the prime ideals of the ring of integers of F'.

E. Hecke showed that (r admits a meromorphic continuation on C, with a single pole
at 1 and it satisfies a functional equation relating (r(s) with (z(1 — s).
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4 The mass formula of Siegel

Theorem 4.1.3 (Hecke, Functional equation) Let F' be a number field with signa-
ture (r1,72) and degree n = 11 + 2ry. The completed Dedekind zeta function

dr

4raqn

s/2
Ap(s) = ( ) [(s/2)T(s)2Cr(s) (R(s) > 1)

has an analytic continuation on C — {0,1} and satisfies the functional equation
AF(S) = AF(l — S) .
Here I' denotes the usual Gamma function.

The Dedekind zeta function has a unique pole at s = 1 and this pole is simple. The
residue Res; ((r) at s = 1 gives a beautiful relation between important invariants of F'.

Theorem 4.1.4 (Class number formula) Let F be a number field with signature
(r1,72). The Dedekind zeta function (g has an analytic continuation on C — {1}. It has
a simple pole at s = 1 with residue

‘ 2" (2m)"2 Reg(F) - # CI(F)
Resy (Cr) = i;ni(s —1)¢r(s) = H#u(F) - d;ﬂ

where dp, CI(F'), u(F) and Reg(F') denote the absolute value of the discriminant, the
class group, the roots of unity and the regulator of F' respectively.

Let F'/K be a quadratic extension of the totally real number field K. The Galois group
Gal(F'/K) has two irreducible characters (i.e. homomorphisms Gal(F/K) — {£1}). To
each character y of Gal(F/K), one associates the so-called Artin map, which will also be
denoted by x. It is the multiplicative function x: Z(o) — {—1,0,+1} on the group of
fractional ideals Z(o0) of o defined by

0 if x # 1 and p ramifies in F,
x(p) =< —1 if x # 1 and p is inert in F,

+1 otherwise,

for all prime ideals p of 0. The Artin map x gives rise to the L-series

_ x(e) 1 <
o) = za: Nrgg(a)® l;[ 1= x(p) Nrg/q(p)~— (R(s) > 1)

where a and p range over the integral and prime ideals of o respectively. Clearly
Lx(1,8) = (x(s) for R(s) > 1.
Suppose now x # 1. From the decomposition of prime ideals of o in F' it follows that

Lx(x,s) = gi((‘z; (R(s) > 1). (4.1.1)

In particular, £x(x) has a meromorphic continuation on C and Theorem 4.1.3 yields a

functional equation for £x (x) relating £x(x, s) with £x(x,1 — s). Below, some of these
identities are collected that will be used later on.
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Corollary 4.1.5 Let F be a quadratic field extension of the totally real number field K.
Let R be the ring of integers of F' and let x be the non-trivial character of Gal(F/K).

Further, let n = [K : Q] and set d := g—; = dg Nrg/g(dp/k)-

1. If s > 2 is an even integer, then

Gilt=) = (07 2((2;)”'> AV ().

2. If F' is totally real and s > 2 is an even integer, then

i1 —s) = ((—1)8/2 ~ 2((2;)”') V2 g ()

3. If F' is totally complex and s > 1 is an odd integer, then

2-(s—1N\"
B - o) = (0o 2 ESA) a ps).
4. If F is totally complex, then

CRQF) (2o
SO = SOUR) G ) -

where @ == [R* : u(F)o*] € {1,2} denotes the Hasse unit index of F/K.

Proof. 1. This is an immediate consequence of Theorem 4.1.3. Further, 2. follows from

1. and equation (4.1.1).
s/2 n s/2 s—17s=1y\ "
. Ar(s) _ d I'(s _ d 2271 ()
3 Let = 355 = () e Srtes) = (ai) (ﬁ) Lx(x8).

Using the functional equation 4.1.3, one obtains

. Ap(2) d 192 1. I'z) 1-s—=z "
o= e = () et (G ey

L d N\ e e
o) et (ralm)

(1-s)/2 i
- ((4765)”) Srx,1-s) (; : (—1)<s—1)/2(gi1))!!> |

4. Follows from Theorem 4.1.4 and equation (4.1.1).

O

Quite surprising, the values (x (1 — s) and £x(x,1 — s) in the previous corollary are

in fact rational numbers:
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Theorem 4.1.6 (Klingen-Siegel, Shintani) Let F'//K be a quadratic field extension
of a totally real number field K. Let x be the non-trivial character of Gal(F'/K). Then
Cx and £ (x) are rational valued at non-positive integers.

To simplify the presentation later on, the following notation will be used.

Definition 4.1.7 Suppose d € K*. If d ¢ (K*)?, then x4 denotes the non-trivial
character of Gal(K (vV/d)/K) otherwise set yq = 1.

4.2 Siegel’s Mass formula

Suppose K is a totally real number field of degree n. Let (V, ®) be a definite hermitian
space over E of dimension m.
Let G be the reductive algebraic group defined by

G(A) ={p € Ends(A®@K V); ®(o(x),¢(y)) = ®(z,y) for all z,y € ARk V}

for every K-algebra A. The connected component of the identity will be denoted
by G°. The algebraic group G is a form of an orthogonal, hermitian or symplectic group,
depending on dimg (E) = 1, 2 or 4. For convenience, Table 4.1 lists some invariants of G,
which will be needed later on.

dimg(E) m | type [G:GY] dim(G) degrees of G
1 odd | Op 2 m(m —1)/2 2,4,6,....,m—1
1 even | Oy 2 m(m—1)/2 2,4,6,...,m—2,m/2
2 - Un 1 m? 1,2,3,...,m
4 — | Spam 1 m(2m + 1) 2,4,6,...,2m

Table 4.1: Invariants of G

Definition 4.2.1 Let L be an O-lattice in (V,®) and let Li,...,L; represent the
isometry classes in gen(L). Then

h
1

is called the mass of (the genus of) L.

Since the mass is invariant under scaling, it suffices to discuss the mass of integral
lattices only.

Definition 4.2.2 Let p be a prime ideal of 0 of norm ¢ and let L be an integral O-lattice
in (V,®). Given a commutative o-algebra R, the map ® extends to some bilinear map
on Ly ®,, R. Thus L, defines a local integral group scheme H via

HR)={p e Endop@,opR(Lp ®o, R); ®(z,y) = ®(p(x), ¢(y)) for all 2,y € L, ®,, R}
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for every commutative o-algebra R. The local density of L at p is defined by

N
oy /Y
[G:GO] N—oo qulm(G)

B(Ly) ==

The above limit 5(Ly) is known to stabilize for some N, see for example [Sie35, Satz 2]
for the case £ = K. However, if H is not smooth over o, it does not have to stabilize at
N =1.

Theorem 4.2.3 (Siegel) Let L be an integral O-lattice in (V,®). Then Mass(L) equals

(/7)™ - 7(G) - A D Ny (i) ™A [L# - L O T B(Ly)
p

where the product runs over all prime ideals of 0 and

G = {2 if dimp(E) =2,

. is the Tamagawa number of G.
1 otherwise,

m+1 ifE=K,
m(V)=<m if dimg(E) =2,
m—1/2 if dimg(F)=4.
2m if E =K and m is even,
=1 2mtD/2 if B = K and m is odd,
1 otherwise.
T 2 dl
Y = H (c(i7r)1)' where d1,...,d, are the degrees of G.
=1\ T

Proof. The proof in the quadratic case is due to Siegel [Sie35, Sie37]. For a proof of the
general case, see [GY00, Section 10]. O

The local factors 5(Ly) are known in many cases. For example
e if E = K and 2 ¢ p by work of C.-L. Siegel [Sie35, Sie37] and H. Pfeuffer [Pfe71a].
o if E = K =Q and p = 2Z by work of G. L. Watson [Wat76].
e if L, is maximal by work of G. Shimura [Shi97, Shi99a, Shi99b], see also [GHYO01].
e if p is good by work of W. T. Gan & J.-K. Yu [GYO00].
e if p is bad and K, /Q is unramified by work of S. Cho [Cho].

Suppose p is good and let L be an O-lattice in (V, ®). Then Gan and Yu associate to
L, several group schemes as follows. Let

Ly=Li1..LL
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4 The mass formula of Siegel

be a Jordan decomposition of L, which is essentially unique by Theorem 3.3.6. Let 3
be the largest twosided O-ideal over p that is invariant under the involution ~ and let
s; € Z such that s(L;) = P%. Further, let 7 € P such that P, = 710;. For 1 < i < t, the
rescaled Gram matrix 7—% G(L;) (mod ) defines a (skew-) hermitian form on L;/BL;
and hence a group scheme G; over o/p. The local factor 5(Ly) can now be expressed in
terms of these schemes:

Theorem 4.2.4 In the above situation, let m; = rank(L;) and m) = Zj>i mj. If p is a
good prime ideal of o of norm q = Nrg q(p), then
t
B(Ly) = [G: G171 gV- Hq_dlm(Gi)#Gi(U/P) :
i=1

Here N = Y"t_, d; + dsimym/, where d = dim,/, (O/B) and

(tm? if dimg (E) = 2, p is ramified in E and s; = 2t is even,

tm? + dim G; if dimg (E) = 2, p is ramified in E and s; = 2t + 1 is odd,
di = § tm;(2m; — 1) if dimg (F) =4, p is ramified in E and s; = 2t is even,

tm;(2m; — 1) + m? if dimg(E) = 4, p is ramified in E and s; = 2t + 1 is odd,

[ si(dm? —dim G;)  otherwise.
Proof. See [GY00, Theorem 7.3]. 0

For convenience, the dimension d, the type of G; and the cardinality of G;(o/p) are
given explicitly below.

Lemma 4.2.5 In the situation of Theorem 4.2.4, the dimension d and the type of G;
are given by the following table.

dimK(E) p mn FE m; S; diSC(Li) d Gl
1 — odd — — 1 Om,
1 — even — — square 1 Om,;
1 — even —  non-square | 1 O_
2 split — — - 2 GLml
2 nert — - — 2 U,
2 ramified — odd — 1 SPm,
2 ramified  odd even — 1 Om,
2 ramified  even even square 1 Om,
2 ramified  even even mnon-square | 1 O,
4 unramified  — - - 4 SPam;
4 ramified —  even — 2 U,
4 ramified —  odd - 2 Resy , /r,(SPpm,)

Here GL,, Sp,, U,, O, and O, denote the general linear group, the unitary group as
well as the split and non-split orthogonal groups over Fq = o/p in r variables respectively.
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4.2 Siegel’s Mass formula

Further, Resy , /p, (Sp,.) denotes the symplectic group in r variables over F 2 viewed as
q

an algebraic group over Fy via Weil restriction of scalars. The dimensions and numbers

of Fy-valued points of these algebraic groups are given below.

G dim(G) #G(F,)
GLn m’ ¢RI (¢ 1)
Unn m? R VN (R CS V)
Oax, 2k — Dk 2(¢" — 1)V T (¢¥ - 1)
Oa (2k =Dk 2(g"+ 1)g"ED T[] (g% — 1)
Osk1 (2k + 1)k 20" T15-1(a¥ — 1)
Sou | @hDE T D)
Ress i, (Spa) [ 2264 DE TG00

If p is bad, the computation of the local factors is much more involved. For example,
[Cho] discusses the case p is bad and K,/Q2 is unramified, see also [Chol5].

Theorem 4.2.3 states Siegel’s mass formula as an infinite product of real numbers.
Almost all factors are different from 1 and some are not even rational.

Both issues make the evaluation of the mass formula algorithmically difficult. These
problems can be addressed by reorganizing the mass formula. For this, different local
factors A(Ly) € Q have to defined such that A(Ly) = 1 for all but finitely many prime
ideals p of o.

Definition 4.2.6 Let L be an O-lattice in (V,®) and let p be a prime ideal of o of
norm ¢. Further, let Hy be the quasi-split inner form of G' over K;,. The local factor
A(Lyp) is defined as

—dim H,
A(Ly) = qordp([Lf:Lp}up)m(V)/Q-f—ap g [ P -OT#H,E(O/)p)

where m(V') is as is Theorem 4.2.3 and q; is determined by the following conditions:
e If F = K and m is even, then
ap = ordy(dg (/g /x) - (1 — m)/2 + ordy(2) - m
where disc(L) = d - (K*)2.
o If £ = K and m is odd then a, = ordy(2) - (m +1)/2.

o If £,/ K, is a ramified quadratic field extension and m is even, then

ap = ordy(dg k) -m/2.

o If £,/ K, is a quaternion skew field, then a, = m(m +1)/2.
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4 The mass formula of Siegel

e In all other cases, a, = 0.

By [GHY01], the type of H, is given by the following table.

dimg(E) m condition H,
1 odd - Om,
1 even disc(Ly) € (K)jf)2 Om
1 even disc(Ly) ¢ (K);‘)2 and Kp(/disc(Ly))/Kp unramified | O,
1 even  disc(Ly) ¢ (K;‘)2 and K, (y/disc(Ly))/Kp ramified | Op—q
2 - E,/K, split GLy,
2 — E,/K, inert Un,
2 odd E, /K, ramified Om
2 even E, /K, ramified SPum,
4 - - Sp2m

A case by case discussion immediately yields the following version of the mass formula
in terms of the A(Ly).

Proposition 4.2.7 (Siegel’s mass formula) Let L be an O-lattice in (V,®) and let
Ym be as in Theorem 4.2.5.

1. If E = K and m is odd, then

(m—1)/2
Mass(L) = ~,," dm H e (21) H( )
1 (m—1)/2
= s 1L 6@ =201 TTAZy).-
i=1 b

2. Suppose E = K and m is even. Let disc(V,®) = d - (K*)? and let xq be as in
Definition 4.1.7. Then

Mass(L)
m/2—1
= - AR N o () ™2 T Cre(26) - 2x(xam/2) - T ML)
=1 p
m/2—1
= [T 160 =201 121 =m/2)- [T A

p
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4.2 Siegel’s Mass formula

3. Suppose dimp (E) = 2. Let x be the non-trivial character of Gal(E/K). Then

Mass(L) = 295" - At /2 - Nrge g (d g i)™= ””‘)/4H£K i) - [T M)
p
2 #01
= on(m-1) £ CIK) - #u(E)-Q H|£K 1 —14)|- ];[)\(Lp)

2nm H‘SK 1_2‘ HA(LP)
p

where Q = [O* : p(E)o*] € {1,2} denotes the Hasse unit index of E/K.

4. If dimg (E) =4, then

Mass(L) = ~;;" - djm+1/2) HgK 2i) - [ MZp)
=1 p

= oo LT =20 - TT M)
=1 p

For the remainder of this section, some properties of A(Ly) are collected, that will be
useful later on.

Definition 4.2.8 For integers n,m, g such that 0 < m <mn, let

(1) - [T, (1 - )
m), T I ) T a)

be the Gaufian binomial coefficient. Note that (Z)q is always an integer. For example

if ¢ is a prime power, then (::Z)q is simply the number of m-dimensional subspaces of a
n-dimensional vector space over F,.

For good prime ideals p, the factors 3(Ly) are given by Theorem 4.2.4. Hence the
computation of A(Ly) at good prime ideals is straight forward. Below are some local
factors that will be needed later on.

Lemma 4.2.9 Let p be a good prime ideal of o and let*P be the largest twosided ideal of
O owver p that is invariant under —. Let L, = Lo L Ly be an O-lattice in (V,, ®) such
that L; is PB'-modular. Write m; = rank(L;) and set ¢ = Nrgq(p). Then M(Ly) is given
by the following table:
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4 The mass formula of Siegel

dimg(E) m  Ep/Kp ALy)
1 dd (g™ + 60)((%1/)2/2) , if mo is even,
0 o - . .
3(g™/? + 81)((77:”11/)2/2)q2 if my is even
1 %((721/_21—)1/2)(12 if mg and mq are odd,
even -
(@m0/2+e0)(q™1/2+e1) (m/2 .
: Q(q’rs(/)?f&?g&l) = (m0/2) q2 OtheTwzse
2 — split (T:Z))q
2 — inert ‘ (WTO) 7q’
; 1 ((m—1)/2
2 odd  ramified 5(( ml/)2/ )q2
2 even  ramified %(qmoﬂ + €0) (7?:1//22) p
4 —  unramified ( - )q2
L i T D) T 1) (),

Here ¢; = +1 if disc(L;) € (K;‘)2 and ¢; = —1 otherwise.

Proposition 4.2.10 Let L and M be O-lattices in (V,®) and let p be a prime ideal of o.
Then

1. MLyp) € Q.
2. The set {p € P(0); X\(Lyp) # 1} is finite.
3. MLy) = A(Ly) for all c € K.

4. Suppose E # K. Then N(L,) € %Z. Further, if N(Ly) ¢ Z, then m is odd and
E,/K, is a ramified quadratic field extension.

5. If Lg = My for all q € P(0) — {p}, then

Mass(M) = Mass(L) -

Proof. The first assertion is Corollary 4.3.6, while the second follows immediately from
Lemma 4.2.9. The last statement is trivial and the fourth follows from a case by case
discussion using Lemma 4.2.9 and Theorems 4.5.2 and 4.5.5.

The third assertion is clear if ¢ € oy. Hence one only has to discuss the case that
ordy(c) = 1. But then, one may assume that ¢ € K* is totally positive and co = pq for
some good prime ideal q of o such that Ly is unimodular. Then A(L§) = A(L,) for all
a € P(o) — {p,q} and also for a = q by Lemma 4.2.9. Moreover, L and L¢ have the same
mass. But then the formulation of Siegel’s mass formula given in Proposition 4.2.7 shows
that A(Ly) = A(Ly). O
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4.3 Comparing local factors

4.3 Comparing local factors

The purpose of this section is to present a practical method to compare the local factors
of two o-lattices in (V, ®). This result will be employed later to compute the missing local
factors of square-free lattices whenever dimg (E) = 2. The method is taken from the
article [BN97] of Ch. Bachoc and G. Nebe and it can also be deduced from Section 17 of
M. Eichler’s book [Eic52]. I would like to thank R. Schulze-Pillot for pointing out this
reference.

In this section, p always denotes a prime ideal of o.

Definition 4.3.1 Given Oy-lattices M and L in (V,, ®) the following two sets of lattices
are defined:

D(L,M)={X C L| X an Op-lattice isometric to M},
U(L,M)={X O M | X an Op-lattice isometric to L}.

Remark 4.3.2 Let M C L be Op-lattices in (V,, ®). Taking duals induces bijections
D(L,M) +— UM%, L#) and U(L,M) +— D(M# L%).

Hence, the computation of D can be turned into the computation of some suitable set U.
The latter is usually more convenient to compute.

Definition 4.3.3 Let a be a fractional ideal of 0. Given any O-lattice L in (V,®), let
L:={zxelLl;®x,x)€a}.
A similar definition is made for Op-lattices in (V},, ®).

Remark 4.3.4 Let a be a fractional ideal of o and let L be an O-lattice L in (V,®).
Then °L is an O-lattice if and only if T(s(L)) C a. If this is the case, then °L is the
maximal O-sublattice of L with norm contained in a and thus #D(Ly,"L,) =1 for all

p € P(o).
Proposition 4.3.5 Let L and M be O-lattices in (V,®) such that M, C L,. Then
A(My) - #U (Ly, My) = A(Ly) - #D(Lyp, My) .

Proof. The proof follows [BN97] and [Eic52, S. 111]. Without loss of generality, Lq = M,
for all prime ideals q # p of 0. So by Proposition 4.2.10/5, it suffices to show that

Mass(M ) - #U(Ly, My) = Mass(L) - #D(Ly, M,) .

Let Ly,...,Lp and My, ..., M, represent the isometry classes in gen(L) and gen(M)
respectively. Further, let

a;j = #{X C L; | X an O-lattice isometric to M;},
bji = #{X D M; | X an O-lattice isometric to L;} .
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4 The mass formula of Siegel

Then Zj a;j = #D(Ly, M) and similarly Y. bj; = #U(Ly, M,). Suppose ¢, ¢ € U(V, @)
such that ¢(M;), ¢'(M;) C L; with ¢(M;) = ¢'(M;). Then p~Lo¢’ € Aut(M;) and thus

aij - # Aut(Mj) = #{p € U(V, @) | o(Mj) € Li}
= #{Y e U(V,®) | Mj € P(Li)} = bji - # Aut(Ls) .

Putting everything together, one obtains

o a
#D(Ly, My) - Mass(L ;2 FAui(L
= ZZ = #U(Lp, M) - Mass(M)
o e #Aut
as claimed. 0

Corollary 4.3.6 Let L be an O-lattice in (V,®). Then X\(Ly) € Q for all p € P(0).

Proof. By Proposition 4.2.10 one may assume that L is integral. So L is contained in some
o-maximal lattice M. Then A(M,) € Q by work of G. Shimura [Shi97, Shi99a, Shi99b],
see also [GHYO01]. But then A(Ly) € Q by Proposition 4.3.5. 0

4.4 Local factors of unimodular quadratic lattices

Let (V,®) be a definite quadratic space of dimension m over E = K. The local factors
of (unimodular) o-lattices in (V, ®) are known at all good primes, c.f. Lemma 4.2.9. The
purpose of this section is to work out the local factors of unimodular lattices at any
prime ideal p over 2.

The norm and the ramification index of p will be denoted by ¢ and e respectively.
Further, let p be a uniformiser of p. Let M be a 20p-maximal op-lattice in (V},, ®). Given
any unimodular op-lattice L in (V},, ®), let

N(L) == ANL)/A(M) .
The factor A\(M) is well known by the work of G. Shimura and only depends on the
isometry type of (1}, 2®):

Theorem 4.4.1 Let M be an op-lattice in (V,,®) and let d = disc(V,, ). If M is
p*-mazimal, then N\(M) is given by the following table.

m w(Vy, p*®)  additional condition A(M)
2r +1 —1 k4 ordy(d) even and m > 1 ;(1;7;_)1
7" +w(Vy.p* ®)

2r +1 +1 k+ordy(d) odd and m > 1 5

*)2 (¢t =1D)(¢"=1)
2r —1 d ¢ (K})? and p does not ramify in Ky(Vd) %
2r +1 d ¢ (K;)? and p ramifies in Ky(Vd) :
all other cases 1
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4.4 Local factors of unimodular quadratic lattices

Proof. See Shimura [Shi99a] or Gan-Hanke-Yu [GHYO01]. 0

Proposition 4.4.2 Let L = Lo L Ly be an integral oy-lattice in (V,, ®) such that Lo is
unimodular, n(Lg) = 20, and n(L1) C 2p.

1. The map
Q: Lo/pLo, 2 +pLo — Qa(2)/2 +p

is a well-defined quadratic form on the o/p-space Ly/pLyg.

2. For any primitive vector w € Ly, set Ly, := {x € L; ®(z,w) € p}. Let v € Ly be a
fized primitive vector. If ord,(Qa(v)) = e, let X denote the set of anisotropic lines
in (Lo/pLo,Q), otherwise let X denote the set of all isotropic lines. Then

0: X — D(L, Ly), (w+pLo) — Ly
s a bijection.

Proof. The first assertion is clear. For the proof of the second, note that o does not
depend on the representative w. Suppose now that (w + pLg) € X. There exists
some isometry in O(Lg/pLg, @) that maps (v + pLg) to (w + pLp). By [Kne02, Satz
15.6], it lifts to some isometry of Ly and therefore to some element ¢ € Aut(L). Thus
Ly = Ly = ¢(Ly) € D(L, Ly). Hence o is well-defined. Since Ly is unimodular, the
map o is also one to one. It remains to show that it is onto. Let M € D(L, L,)). Then there
exists some ¢ € O(V;, ®) such that ¢(L,) = M. Let w := ¢(v). From v € L, it follows
that w € M C L. Hence, w = wy + w; for some w; € L;. Then M = ¢(L,) = Ly = Ly, .
Further, Q¢ (v) € 2p <= Qo (wo) € 2p. Thus (wo +pLoy) € X. 0

Since the number of (an)isotropic lines in regular quadratic spaces over finite fields are
well known (see for example [Kne02, Section IV.13]), the above proposition can be made
effective.

Corollary 4.4.3 Suppose the notation of Proposition 4.4.2. Let mg be the rank of Lg
and let r = | 5% |. Then

(@" —e)(g™ "t +¢) if ordy(Qa(v)) > e,

g™ —1—(q" —¢e)(gm L +¢) if ordy (Qa(v)) =e,
(@=1)7He" =)@ +e) if ordy(Qa(v)) > e,

=4 Yq" —¢) if ordy(Qa(v)) = e and mq is even,
qmo~1 if ordy(Qa(v)) = e and mg is odd,

#D(L, Ly) = (¢ —1)7" {

where € = —1 if (Lo/pLo, Q) is non-hyperbolic of even degree, and € = +1 otherwise.
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4 The mass formula of Siegel

Theorem 4.4.4 Let L be a unimodular op-lattice in (V,, ®) of weight p?. Suppose that
m =dimg (V) =2r + 1 is odd. Then

1 ifb=e,

)\/(L) — (qr - w(%v (I)))qr@ibil) lfe > b and e is Odd,
%(q% _ 1)qr(e—b—1) if e > b, e is even and w(V,, ®) = +1,
(q+ 1)qr(6_b_1) if e > b, e is even and w(V,, ®) = —1.

Proof. Let A =1 —4p € 0* such that 9(A) = 4p0 = 4o. If w(V,,P) = 1set 6 =0,
otherwise set 6 = p. There exists some Jordan decomposition L = (z,y) L (2) L H
where G(z,y) = A(p®, 40p~?) and Qg (z) € 0* and H = H(0) 1.

Suppose first that b = e. Then 2°*)L C L C (**L)# and the quotient (*°*L)# /2L is
cyclic. Thus N(L) = N (**L) = 1 since ***L is 20,-maximal.

From now on, it is assumed that b < e. By Proposition 3.3.8 this implies that b is odd. Let
M, =""L and M, =*"""L. Then again N(L) = N(M,) since Ml#/Ml is cyclic. Suppose
X € U(My, My) — {M}. Then X = (My,v) for some v € MF N p~tM,. Together with
Qa(v)o = n(M;) = p® this shows that one can assume v = px + p~'y for some p € o.
Further, Qg (v)o = p® shows that p ¢ pifb<e—2and u+2p ¢ ¢ pifb=ec—1and
w(Vp, ®) = 1. Conversely, Theorem 3.3.13 shows that all parameters p satisfying these
conditions yield a lattice X isometric to M;. Hence

X@»=XM@»{Q‘WW%@ ifh—e—1,
q ifb<e-—2.

If b =e—1 and w(V,,®) = —1 then Remark 3.1.4/2 shows that M, is 20,-maximal
and therefore N'(L) = ¢ + 1. Suppose now b = e¢ — 1 and w(V,,®) = +1. Then
N := (Ms,p~'y) is 20p,-maximal. Let X D M> be an integral lattice of norm p?*1 not
isometric to M such that [X : Ms], = p. As seen before, there are only two such
lattices, namely N and X’ = (M, —2p—¢z+p~'y). Hence U(N, My) = {N, X'}. Further,
#D(N, M) = (¢ —1)71(¢*" — 1) by Corollary 4.4.3 and N is 20,-maximal. Hence

27"_1
2

2r
N(L) = (¢—1)-N(Mp) = (1) LT =L,

N(N) =

So only the case b < e — 2 remains. Let L= (px,p~ly,z) L H. Then L is unimodular

- b+2 _ ~ ~
with weight p®*2. Let M =" L. Then N (L) = XN(M) as seen before. Let M3 = L
Using similar arguments as before, one obtains #U(Ma, M3) = 1 = #U (M, M3). Thus

N(L) =q-XN(Ms) =q- #D(M, Ms) - X(L).

So it remains to compute #D(M, Ms) = #U (M, M#). If b = e—2, then #D(M, M3) =
" Hq" — w(V,, ®)) by Corollary 4.4.3. Suppose now b < e —2 and X € U(M3#, M#).
The conditions n(X) = n(Mf) = p 3 and n(X*") = n((MF)P") = p® imply that
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X = (M#,v) with v = 2+ pup~'y + p~'h where u € 0 and h € H. Conversely,
by Theorem 3.3.13, each such vector v yields some lattice in U (Mf M #). Hence
#D(M,Ms) = ¢>~! and therefore N(L) = ¢* - N(L). The result now follows by
induction on b. O

To simplify the presentation of the local factors, the following symbol will be used:
Definition 4.4.5 Given a unimodular lattice L in (V,, ®) let
+1 if 9(disc(L)) = (0),
e(L) =4 -1 ifo(disc(L)) = 4oy,

0 otherwise.

Theorem 4.4.6 Let L be a unimodular oy-lattice in (Vy, ®). Further, let n(L) = p°,
(L) = p® and d(— det(Ly)) = p°. If m = dimg (V) = 2, then

qLefgflj(q—a(L)) ifa<b=e<c/2,
N(L) = 2¢7 2 ifb=ecanda+e+1<c<2e,
1 otherwise.

Proof. Propositions 3.3.8 and 3.3.11 show that ¢ > a + b > 2a. Moreover, if a = b
then a = e. So L is 20,-maximal in that case and therefore (L) = 1. Similarly, if
c=2a+1,then b=a+1 and L is p®-maximal. In any of these two cases, Theorem 4.4.1
shows that L has the same local density then any 20p,-maximal lattice in (Vj, ®). Hence
N(L)=1

Suppose now a < e — 1 and ¢ > 2a + 2. Let o, be as in Proposition 3.3.11 and fix some
basis (z,) of L with Gram matrix A(c, —ya~!). Let M :=*""'L = (pz,y). Remark 4.3.4
shows

N(L)=#U(L,M)-\N(M).

The rescaled lattice MP~" has norm generator pa, determinant —(1 4 ) and weight p?’
where b/ = b —1if c = a+ b and V' = e otherwise. So once #U (L, M) has been worked
out, one can finish the proof by induction on a.

Suppose first a = e — 1. Then b = e and the case ¢ = 2e — 1 has already been discussed
above, which leaves ¢ > 2e. Then (M#)P is unimodular and Corollary 4.4.3 shows that

#U(L, M) = #D((M7)P, LP) = q — w(V;, ®) .

So only the case where a < e — 2 and ¢ > 2a + 2 remains. Let L' € U(L, M). Then
L' = (M,v/p) for some v € M. Write v = pxp + vy with p,v € o. Then n(L') = p®
implies p € 0* and so one may assume that g = 1. Then L and L’ are both unimodular,
have weight p® and norm generators a and o’ := ®(z + vy/p, x + vy/p) respectively.
Theorem 3.3.13 shows that L = L’ if and only if the quadratic defect of

oJa=1+2va"t/p—viya?/p?
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is contained in p?~%. A case by case discussion yields

2 ifb=candc=e+a+1,
#U(L,M)=<q ifb=eande—aisodd and c>e+a+1,

1 otherwise.
The result now follows by induction on a. O

As a consequence of the previous result, one obtains the mass factors for unimodular
lattices L where ord,(n(L)w(L)) is even.

Lemma 4.4.7 Let L = Ly L Ly be an op-lattice in (V,, ®). Suppose that Lo is un-
imodular with n(La) = 20, and Ly is a p®-modular binary lattice such that s < 0 and
o(—det(L1)) C 2p>*Tn(L). Further let x € L1 such that Qg (x)o = n(Ly) and let z € Lo.
Let My := ((x + z)/p, L1) and M := ((x + z)/p,L). Then there exists some splitting
M = M; L M. Moreover, My = Lo and M; = (x/p,y).

Proof. The condition s < 0 implies that M exists, c.f. [O’M73, 82:15] for details.
Let a = Qg¢(x) - p~2° and write —det(L1) = p?*(1 + ) where yp* = d(—det(L)).
By [O’M73, Example 93:17], there exists some y € L; such that L; = (z,y) and
G(z,y) = p*A(a, —ya~1). The lattices X := (x/p,y) and L; are both p*~!-modular. The
assumption on d(—det(L;)) implies that det(M;) = det(X) and thus det(Msz) = det(Lz).
In particular, the quadratic spaces KL and K M; are isometric. Thus K M5 is isometric
to K Ls. From the description

_ —®(v,
My = { mya Yz + 2) + my + v ‘ v € Ly and m = 'yoz_qu,(z(;)Jf()l«Py)ps }
and the condition on 9(—det(Lq)) it is easy to check that Mj is integral and n(Ms) C
20p,. Thus M3 and Lo are both unimodular lattices of norm 2o, in isometric spaces.
Proposition 3.3.11 shows that Ms = Lo as claimed.
It remains to show that X = M;. Both lattices have weight 2p*~! 4+ o~ !yp® and norm

generators a; = ap®~ 2 and az := (ap® + Qo(2))p~? respectively. A case by case
discussion shows that the quadratic defect of as/a; =1+ p~*a"1Qqe(2) is contained in
2n(L1)~' Cw(Lq)/n(L1). Hence X = M; by Theorem 3.3.13. O

Lemma 4.4.8 Let L be a unimodular oy-lattice in (Vy, ). Suppose m = dimg (V) = 2r
is even and L admits a splitting L = L L M where L has rank 2 and n(M) = 2oy.
Let a = ordp(n(L)), ¢ = ordy(0(—det(L))), i = [55*] and j = min{i, max{0, | “=5-*|}}.

2
Then

(" —e(L)) if ¢ > 2e and a + e is even,

L@V (gm — e(L)) ("t +e(L)) if c =00 and a + e is odd,
N(L) = =D =D (g +1) if ¢ =2e and a+ e is odd,

2¢7(2r=1) ifa+e+1<c<2e,

g2 (=1 otherwise.
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4.4 Local factors of unimodular quadratic lattices

Proof. Let o be a norm generator of L and write — det(i}) =1+~ with v € o0 such that
~o = 0(—det(L)). There exists some basis (z,y) of L with G(z,y) = A(a, —ya ™).

If X € U(L,27L) then X C (2L)# = (*"L)# L M. Thus #U(L,%*L) = #U(L, L)
For 0 <t < jlet Ly = (p'x,p~ty) and L; :== Ly L M. Then Ly = *L and L; is
20p-maximal, i.e. X'(L;) = 1. Suppose first that X € U(L;, Ly—1) for some 1 < ¢ < j.
Then X = <Lt 1,v/p) for some v € Ly_;. From ®(v/p, Li—1) C ®(v/p, L) C o0, it follows
that v € th 1 N Li_1. Hence one may assume that v € Lt 1.

One checks that unless ¢ = 0o, i =t and e — a is odd, the condition n(X) =n(L;) C 20
implies X = L; and thus #U (L, Ly—1) = 1. In the special case that ¢ = co and e — a
is odd, L;—1 = H(1) and L;—; has two overlattices isometric to L; = H(0). Hence
#U(L;i, Li—1) = 2 in this exceptional case.

If i =4 > 1, then ¢ > 2¢ and Corollary 4.4.3 shows that

#D(L;, Li_y) = ¢ Hq" —e(L)) if a + e is even,
v (q—1)"Yq" — (L)) ("' +e(L)) if a+eis odd.
Suppose now 1 < ¢t < min{7 — 1,5}. Then every element in U L ,L is of the form
J y t—1
((v4+w)/p, L) with w € M and v a norm generator of L;. In particular, #U(Lfé_l, Lf&) =
2= 4U(L¥ |, L¥) by Lemma 4.4.7.
Putting everything together yields
G2r=1(-1) q""'(q"—e(L))
/ (T . T a—=(L) T 1
N(L) = N(L) - { g2r=D6—1) (d"==( Q)gé 0 +eL) jfj=j>1and a+eis odd,

g2 (r=1) otherwise.

ifi=42>1and a+eis even,

Note that the second case can only occur of (L) = 1. The result now follows from
Theorem 4.4.6. O

As an immediate consequence from the previous result, one obtains the mass factors of
forms of type (II), c.f. Proposition 3.3.11.

Theorem 4.4.9 Let L be a unimodular oy-lattice in (Vy, ®) such that ordy(n(L)ro(L)) is
even. Let a = ordy(n(L)) and ¢ = ordy(d(disc(L))). If m = dimg (V) = 2r is even, then

1 if e =a,

)\/(L) _ q(e—a)(r—l/Q)—T(qr o E(L)) z'fa <e< 6/2,
2q(cfefa71)(rfl/2) zfa +e+1 <c< 26,
gle—emal(r=1) otherwise.

Proof. By Proposition 3.3.11, there exists some splitting L = L | M where M = H(0) 1
The result follows by applying Lemma 4.4.8 to this splitting. 0
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4 The mass formula of Siegel

Theorem 4.4.10 Let L be an unimodular oy-lattice in (V,, ) such that ord,(n(L)w (L))
is odd. Let a = ordp(n(L)), b = ordy(to(L)), ¢ = ordy(d(disc(L))) and

oo if c=2e and L is of type (I11Ib) c.f. Proposition 3.3.11,
d =42 ifc=o00 and L is of type (IIIb),

c otherwise.

If m =dimg (V) = 2r > 4 is even, then

%q(e—a—l)(r—%)((f —e(L)(¢" 1 +<(L)) if b=-e and ¢ = oo,
q(e—a—l)(r—%)@ +1) if b=e and ¢ = 2e,
%qs(r—%)ntr(qw — (L)) (g* 2 — ¢(L)) ifb<eandc=c = o0,
qs(r—é)w(q 1) ifb<eand c# ¢ = o,
V(L) = S 3D (1) (g — () (L) b < e ande=¢ = 2
@D (4 1) (g + 1) if b<e and c+#c = 2e,
1 if c=a+b,
9gc—e=a)(r=3) ifa+b<c<2b=2e,
q(c—a—b—2)(r—%)+1(q2T*2 —1) otherwise

where s =2e —b—a — 3.

Proof. Let A =1 — 4p € 0* such that 9(A) = 4p0 = 40. If e = b or ¢ = a + b, then
L = L, 1L Ly where L; is binary and Ly is unimodular with n(Ls) = 20,. These cases
have been already discussed in Lemma 4.4.8.

Suppose now b < e and a + b < ¢. Let o be a norm generator of L. If L is of type (Illa),
let 6 = 0, otherwise let § = p. There exists some splitting L = (z,y) L (z,w) L H where
Gz, y) = Ala, —(y—48)a™Y), G(z, w) = A(p®,46p~") and H = H(0)"~2. Let M =*""'L
and L = (px,p~'y,z,w) L H. One verifies that #U(L, M) = q and #U(L,M) = 1.
Hence X(L) = q - #U(M#, L) - N(L).

So it remains to compute #U (M7, E) The result then follows by induction on «a since
n(L) = p®*2 + pb. Any element X € #U(M#,L) is of the form X = (L,v) with
v=pr+vp2y+nplz+7p w4 pth where h € H and pu,v,n, 7T € o.

Suppose first that « < e —2 and ¢ > a + b+ 2. The conditions ord,(Qs(v)) = a and
(X) = p® show that one can assume x4 = 1 and = 0. Conversely, it follows from
Theorem 3.3.13 that any vector v satisfying these two conditions yields some lattice in
U(M#,L). Hence #U(M#, L) = ¢*"=1 in this case.

Suppose now e = a+ 2 = b+ 1 and ¢ > 2e. The condition ord,(Qs(v)) = a shows
that one can assume 1 = 0. Let W := (x,p~2y, H). Then W/pW equipped with the
quadratic form w + pW — Qa(w) + p* is a regular quadratic space over o/p and (u, v, h)
yields an anisotropic line in this space. Conversely, every such line yields some vector
v € p~'L with ordy(Qa(v)) = a and thus a lattice X € U(M#, L) as Theorem 3.3.13
shows. Further, W/pW is hyperbolic if and only if v = 46. Hence [Kne02, Section I1V.13]
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4.5 Local factors of square-free hermitian lattices over ramified dyadic field extensions

shows that #U(M#,L) = ¢"~'(¢"~' — ¢') where ¢’ = 1 if v = 45 and —1 otherwise.

Finally, suppose ¢ = a + b + 2. There exists some splitting L = (Z,9y L (z,w) L H
where G(Z,7) = A(ap?, —(y — 40)a~1p~2), G(2,w) = A(p®,40p~¢) and H = H(0)"~2.
Any element X € U(M#, L) is of the form (L,v/p) with v = pZ 4+ vj+ nb + 72 + h
where p,v,m,7 € 0 and h € H. The conditions n(X) = n(L) and w(X) = w(L) imply
that one may assume p = 1 and v = 0. This leaves at most ¢*("~1) possibilities for X.
All of these lattices except (f), z/p) are isometric to M # as a direct computation using

Theorem 3.3.13 shows. Hence #U(M# L) = ¢*"—1) — 1. 0

4.5 Local factors of square-free hermitian lattices over ramified
dyadic field extensions

Let E/K be a CM-extension of number fields and let (V, ®) be a definite hermitian space
of dimension m over FE.

Suppose p is a bad prime ideal of o, i.e. p |2 and e := ordy(dg k) > 2. Let B be
the prime ideal of O above p and set ¢ = Nrg g (p) = #0/p. As before, 7 denotes a
uniformiser of B. Then p := 77 is a uniformiser of p.

An O-lattice L in (V,®) will be called square-free, if L, = Ly L L; where L; is
Pi-modular. These lattices will play an important role in the classification of all lattices
with given class number, see Chapter 6 for details.

The purpose of this section is to compare the local density of any square-free Oy-lattice
in (V}, ®) with the local density of some maximal lattice. The latter densities have been
worked out by G. Shimura [Shi97] and also by W. Gan, J. Hanke and J.-K. Yu [GHYO01]:

Theorem 4.5.1 Let M be a p'-mazimal Oy-lattice in (Vy, ®) for some i € Z. Then

% if m is odd,
AM)=<1 if (Vy, ®) is hyperbolic,
% otherwise.
Proof. See Propositions 4.4 and 4.5 of [GHY01]. O

If m is odd, the computation of the local factor A(Ly) is fairly easy.

Theorem 4.5.2 Let L := Ly L Ly be an Op-lattice in (Vy, ®) such that L; is B*-modular.
Let m; = rank(L;). If m = mg + my is odd, then

ML) = 1<<m - 1)/2> |

2 m1/2
Proof. For 0 <r < (m —1)/2 let L, be an Op-lattice in (V},, ®) such that

L,=(1) L HO)" L HQ1)® wheres=(m—-1)/2—r. (4.5.1)

65



4 The mass formula of Siegel

Theorem 3.3.18 shows that L is similar to L,,,_1)/2. Let

/ / / /
($07$17y17 ce 7xT7y7“7x17y1a R 7wsay3)

be a basis of L, corresponding to the orthogonal decomposition given in equation
(4.5.1). First the local factors A(L,) and A(L,4+1) will be compared. The lattices in
U(Ly41, Ly) are precisely the lattices of the form (L,,x/m) where x is a primitive vector
in (2,2, ..., 2y, Thus #U(Lyy1, L) = (¢ — 1) (¢ D=2 —1). Similarly, one
checks that

#D(Lyi1, L) = #U(LE L) = (0 1) (@0 — 1),

r+1
Thus
(m=3)/2 " 9(i41)
q —1 (m—1)/2
L) = ML(m_1y2) - e = ML) - |
)\( ) )\( ( 1)/2) l:Hr q(mfl)sz 1 )\( ( 1)/2) ((m _ 1)/2 —_r 2
and

r—1 gm—D-2% _q

ALr) = AMLo) - ] o1 A(Lo) - <m>qz '

i=0

Hence it suffices to show that A(Lg) = 1/2 or A(L(y,—1y/2) = 1/2.

Suppose first that e is even and set f = e/2. To ease notation, write M for L, _1)/s-
Then P'M is p/-maximal and #D (M, L ) = 1 as explained in Remark 4.3.4. Conversely,
#U (MY M) = 1 since ("' M)#/?'M is cyclic. Thus A(L,_1)/2) = A*'M) = 1/2 by
Theorem 4.5.1.

Suppose now that e is odd and set f = (e + 1)/2. Using the basis of Ly from above, let
My = (xo, 2y}, ..., 2%,y and M = (n/xg) L M. Then #D(Lo, M) =1 as M is the
unique maximal sublattice of Ly with norm pf. Conversely, for 0 < i < f, (m'xg) L M,
is the only superlattice of (m*t1zq) L M) which is isometric to (7%7) L H(1)m=1/2,
Whence A(Lg) = A(M). Further, M is p/-maximal and therefore A(Lg) = A\(M) = 1/2
by Theorem 4.5.1. This finishes the proof. 0

If m is even, the computation of local densities is much more involved. First, an
analogue to Proposition 4.4.2 is given.

Theorem 4.5.3 Leti € Z such that e +1 is odd and set f = % Let L =Lo 1L Ly be
an Op-lattice in (Vy, @) such that Ly is P'-modular and rank(Lg) > 2 is even. Suppose
n(Lo) = pf and n(Ly) C p/*L.

1. Let L{, denote the o/p-space Lo/BLg. Then
Q: Ly — o/p, z+PBLo— p/ Qa(z) +p

is a well defined quadratic form on L.
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4.5 Local factors of square-free hermitian lattices over ramified dyadic field extensions

2. Given any primitive vector w € Lg, set Ly, := {x € L; ®(x,w) € P}, Let v be a
fized primitive vector of Lo. If Q(v+BLo) = 0 let X denote the set of all isotropic
lines in (Ly, Q). Otherwise let X denote the set of all anisotropic lines of (L{, Q).
Then

o: X = D(L,Ly,), (w+PLo) — Ly,

s a bijection.

Proof. 1. The map Q is well defined since T(7®(z,y)) € T(PTet!) = p/*! for all
x,y € L. Further,

(z+PBLo,y+PBLo) — Q(z+y+PLo) — Q(z+PLo) — Q(y +BLo) = p ! T(D(z,y)) +p

is bilinear and thus @) is a quadratic form.

2. The most difficult part is to show that o is well defined. Let (w + PLg) € X. The
map o does not depend on the chosen representative w. By Witt’s theorem, there exists
some automorphism ¢’ € Aut(Ly, Q) such that ¢'(v+PLy) = w + PLo, see for example
[Kne02, Satz 3.4] for details. Hence there exists some O-linear map ¢1: Ly — Lo such
that 1 (v) +PLo = w + PLo and (1 (x), p1(x)) — ®(z,z) € p'*/ for all z € Ly. To
show that L,, € D(L, L,), the map ¢’ will be lifted to some (hermitian) automorphism
of Ly using arguments similar to [Kne02, Section V.15]. Suppose there exists some
O-linear lift ¢ : Ly — Lo of ¢ such that

Qo(pr(z)) — Qa(x) e p**/ forallz e Ly .

Define
Qr: Ly — o/p, 2 +BLo — p " (Qalpr(z)) — Qa(z)) +p.

As before, the map @y, is well-defined since e + ¢ is odd. Further,
Qr(z+1y) — Qr(x) — Quly) = p T T(D(pr(z), o (y) — (x,y)) +p forall z,y € Lo

defines a bilinear form on Lj,. Hence Qy, is a quadratic form on L. So there exists some
(not necessarily symmetric) bilinear form W: Lj x Ly — o/p such that

Qr(r +PLo) = V(x +PLo,z +PLy) forall z e Ly.
The assumption that Lg is B’-modular implies that
Ly x Ly = o/p, (z+%BLo,y +BLo) = p ' T(®(z,y)) +p

is bilinear and non-degenerate. In particular, given any element b in some O-basis B
of Lg, there exists some v, € Lg such that

U(x +PLo,b+PLo) = —p 7 T(®(x,v)) +p forall z e Lg. (4.5.2)

Let v: Ly — Lo be the O-linear map defined by v(b) = vy, and set @pyq = @i + pFo.
Equation (4.5.2) shows that

Qa(vr(x)) — Qa(x) + " T(®(z,v(x)) € pkﬂﬂc for all x € Ly .
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4 The mass formula of Siegel

But this is equivalent to

Qo (prs1(2)) — Qo(z) € p"TH forall z e Ly .

Proceeding in this way, one obtains a sequence (@) of O-linear maps on Ly. Remark 2.1.6
shows that ¢ := limg_, ., @ is an isometry of E' Ly and thus injective. It is surjective since
©(Lo) and Ly are both unimodular. Let ¢’ € Aut(L) be any extension of ¢ € Aut(Ly).
Then (¢'(v) +PLo) = (w+PLo) and therefore L, = ¢'(L,) € D(L, L) as claimed.

Further, o is injective since Lg is P’-modular. If M € D(L, L,), there exist some
isometry 7 € U(V,®) with M = 7(L,). Write 7(v) = vy + v; with v; € L;. Then
M = L,y = Ly, The assumption on n(L1) implies that Q(v + B Lo) = Q(vo + FLo)
and therefore (vg +PLo) € X. So o is surjective. O

Again, using [Kne02, Section IV.13], the previous result can be made effective.
Corollary 4.5.4 In the situation of Theorem 4.5.3, one has
4p(L,L) =17 @9 if ordy(Qa(v)) = =1,
T (g—1)7"1g" —e)(g*t+¢e) otherwise,

where k = %rank(Lo), € = +1 if ELg is hyperbolic and € = —1 otherwise.

Theorem 4.5.5 Let L, = Lo L Ly be an Op-lattice in (V,, ®) such that L; is B'-modular.
Write £y := ordp(n(L)), €1 := ordy(n(PLo L L1)) and m; := rank(L;). If m = mg +my

is even, then
c ([ m/2
ML) ==
B=5 (m0/2>q2

where ¢ € N is given as follows:

my o
q2 +1 ife is even,

1. If Ly = H(0)™/2 1 H(1)™/2, thenc={ ' m
f Ly = H(O) ) ¢ +1 ifeis odd.

2. If (Vy, ®) is hyperbolic and Ly, % H(0)™0/? 1 H(1)™/2 then

qm(e/2—€1)—m1/2(qm1 —1) if o = £1 and e is even,
gme2=1=to)tma/2(gmo 1) if 0y £ {1 and e is even,

€= gm\(e=D/2=b)+mo/2(gma _ 1) if 4o = 01 and e is odd,
g \(e=D)/2=bo)=mo/2(gmo _ 1) if by # 01 and e is odd.

3. If (V,, ®) is non-hyperbolic, then

fqm1/2_1 if bo = {1 =¢e/2 and e is even,
qm(e/Q—el)—ml/Q(qml —1) if bo = {1 < e/2 and e is even,
gme2=1=b)tm2(gmo 1) if 0y # €y and e is even,
gme=D/2=t)+mo/2(gma 1) if £y = 1 and e is odd,

gmo/2 — 1 if bo # 01, by = (e —1)/2 and e is odd,
gm(e=1)/2=to)=mo/2(gmo _ 1) if by # 0y, by < (e — 1)/2 and e is odd.
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Proof. Let ug be as in Corollary 3.3.17. If (V, ®) is hyperbolic, let u = 0; otherwise let
u = —ug. For 0 <r <7, let Ly, and My, be Op-lattices in (V,, ®) such that

~ p* 1 r s wi L%J =0,

Lm—<<1 up_k>>LH(0) 1 H(1) thOSkS{LeglJ futo,
(4.5.3)

M;, z<<pk i )MH(O)MH(DS with 1 < k < L5t i =0,

e 7 uplh ] ifus#0

where s = % —r — 1. Note that, if ¢y # {1, then L = L&b%_l. Conversely, if £y = /1,
then L = Mh,%'

First, the following claim will be established:

r( r+1 : __e—1
q (@ —1) if k=52,
#D(Lyy, Miy1,r) = { ( ) >

1 otherwise.
qs(qsi -1) ifk=3—1andu=0, (4.5.4)
(¢ +1) ifk=5§—1andu#0,
U(Ly., M =
# ( k,r k:+1,r) (q N 1)71(q2s+2 _ 1) if b = %,
glt?s otherwise.

The quantities #D (L, My41,) have already been worked out in Remark 4.3.4 and

Corollary 4.5.4. Also, the first two cases of #U (L, Mt1,) = #D(M,fil - Lk#r) follow
from Corollary 4.5.4. So only the last two cases of #U (Ly ., Mj41,) need to be discussed.

Let Myt1, = (z,y) L My L My where G(z,y) = (pkH 7r_k>, My = H(0)" and

T up
M, = H(1)*. Every element of U(Ly,, Mjy1,) is of the form My, + P~1v where
v =axr+ By + vy + v; with a, 5 € O and v; € M;. Comparing norms and scales shows
that one may assume vy = 0. Further, k # %1 implies a ¢ B. By Theorem 3.3.18, each
such v yields a lattice in U(Ly p, Mj41,r)-

Similarly, one shows that

_1\—1(,s+1 _ s . _ e
LU (Lgpy My) = {(q DN = 1) (¢°+1) ifk =%,

1 otherwise.
(. r+1 _ ; — —e-1
q" (q o 1) ifu=0and k= 21, (4.5.5)
q (¢ +1 ifu#0and k = &=,
#D(Lk,r; Mk,r) = ( 1 ; 42 . e 2
gtt?r otherwise.

In particular, for any fixed r, one can compare the local factors of any pair of lattices
defined in equation (4.5.3). In the following, only the cases where e is even will be
discussed. The cases where e is odd are proved similarly.
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1. Since e is assumed to be even, the lattice L3 /21 = H(0)™/? is p¢/?-maximal
and therefore A(L¢/2m/2—1) = 1. If 1 <r <m/2, then equation (4.5.5) shows that

22 1

A(Le/Q,r—l) = A(MC/Q,T) = A(Le/2,r) ) (qm/Q,T — 1)(qm/2,,1,1 1)

and therefore

p m/2—-1 22 1
ACH(0)" L H(1)™?") = N(L,/5r_1) = . .
( ( ) ( ) ) ( /2, 1) ZHT (qm/Q,l — 1)(qm/2,1,1 + 1)

_ P+l (m)2

a 2 T q2 ’

2 _ m/2
m ¢ —1 q"m 41
)‘(H(l) /2) = )\(ME/Q,O) = (Le/Q,O) ’ (qm/2 — 1)(qm/2_1 + 1) = 9 :

This proves part 1.
2. Suppose k < e/2. From equations (4.5.4) and (4.5.5) it follows that

(q2'r+2_1)qm/27177'

if =€ 1,
MLir) = MLigr,) - @7y BE7s
qm" otherwise.

Hence
)\(L ) = m(e/2—1—k)+m/2—1_rﬂ . )\(L )
kr) =4 qm/2—1—r T e/2,r) -

Equation (4.5.5) also yields

27‘+2 _ 1
)\(Mk,r) = )‘(Lk,r) . q1+27’ _ qm(e/2—1—k;)+m/2+r q

qm/2—1—T +1 : )\(LG/Q,T) .

Part 2. now follows immediately by plugging in the explicit value of A\(L./s,) into the

previous two equations.

3. The lattice M¢/p/2—1 is p¢/2-maximal and therefore AMMejom/a—1) = %.

Corollary 4.5.4 gives

M# B (qm/2—7‘—1 _ 1)(qm/2—r 4+ 1)

e/2,r+1) - :

#U(Me/2,r+17 M€/2,r) = #D(M# g—1

e/2,r’

Conversely, let M7 = My L M_; where My = H(0)"™! and M_; is B~ L-modular.

e/2,r+1
The lattices in U(Mj/élr’ M:j&'r—i-l) are precisely the lattices Mj/&Q,r—&—l + B ~1v where v

denotes a primitive vector in My. Thus #D (M /2,11, Mejar) = (g — 1)~ (g* 2 —1).
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Hence

m/2—2

q
)‘(Me/Q,r) = )\(Me/Q,e/Q—l) : H (qm/27i71 — 1)(qm/2,l + 1)

B qm/2—7’ -1 m/2
- 2 T q2 ’

—r— m/2—r /I 2r+2 1 m/2
A Leja—1,) = A Meyayr) - qm/z l(q j2=r 4 1)=gq /2—r—14 < / ) -
q

2i+2 1

2 r+1

Finally, suppose 0 < k < § — 2. Equations (4.5.4) and (4.5.5) show that

ALky) = @™ MLgs1,) = ¢ Loy,
)\(MkJrl,r) _ q2r+l—m . )\(Lk,r) _ qm(e/2—2—k)+2r+l . Le/2—l,r )
This finishes the proof of part 3. O
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5 Kneser’'s Neighbour method

Let K be a number field and let (V, ®) be a regular hermitian space over E.

In this chapter, an algorithm to compute representatives of the isometry classes in the
genus of some given O-lattice in (V, ®) will be presented. The algorithm is originally due
to M. Kneser, who introduced it in [Kne57] for quadratic lattices over the integers. It
has then been adopted for number fields by R. Scharlau & B. Hemkemeier [SH98], for
hermitian forms by A. Schiemann [Sch98| using ideas of D. Hoffmann [Hof91], and for
quaternionic hermitian forms by C. Bachoc [Bac95]. The exposition given here follows
[Sch98] and provides a uniform approach which works in all three cases.

5.1 Strong approximation

If F is commutative, some problems arise. In such a case, the orthogonal or unitary
group of (V,®) does not have the strong approximation property. Luckily there exist
finite-index subgroups which have that property. Depending on dimg (E), the following
notation will be assumed in this chapter.

The case £ = K

Let v € V be anisotropic. The reflection along (v)*

@(w,v)v
d(v,v)

To: V=V, w—w-—2

defines an isometry in O(V, ®). Conversely, any isometry ¢ € O(V, ®) can be expressed as
a finite product ¢ = 7,, 0...o7,, of reflections. Using Clifford algebras, one can show that
[T—; Qo(v;) € K*/(K*)? does not the depend on the chosen factorization (c.f. [0’'M73,
54:6]). Hence there exists a unique group homomorphism 6: O(V, ®) — K*/(K*)? such
that 0(7,) = Qo (v)(F*)? for all anisotropic vectors v € V. The map @ is called the spinor
norm of (V, ®). In [Zas62], H. Zassenhaus gives an equivalent definition of spinor norms
in terms of determinants. His characterization yields a different proof for the fact that
the spinor norm is a well defined group homomorphism.

Definition 5.1.1 The special orthogonal group of (V,®) is the kernel
SO(V,®) ={o € O(V,®); det(o) = +1}
of det: O(V,®) — {£1}. Further, let

S(V,®) = {0 € SO(V,d); () = +1}
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5 Kneser’s Neighbour method

be the kernel of #, when restricted to SO(V, ®). Similarly, one defines SO(V,, ®) and
S(Vy, @) for all p € P(o).

Two o-lattices L and M in (V, ®) are said to be in the same spinor genus if there exists
an isometry o € O(V, ®) such that L, = o(¢p(M,)) with ¢, € S(V},, ®) for all p € P(o).
The spinor genus of L will be denoted by sgen(L).

The case that E/K is a quadratic field extension

Definition 5.1.2 The special unitary group of (V,®) is the kernel
S(V,®) :={oc € U(V,®); det(c) = +1}

of det: U(V,®) — {£1}. Similarly, one defines S(V},, ®) for all p € P(o).

Two O-lattices L and M in (V, ®) are said to be in the same special genus if there exists
an isometry o € U(V, ®) such that L, = o(¢,(M,)) with ¢, € S(V},, ®) for all p € P(o).
The special genus of L will be denoted by sgen(L).

The case that E/K is a quaternion algebra

To be able to present the theory in a uniform way, set S(V,®) = U(V, ®) and let the
special genus sgen(L) of any O-lattice L in (V, ®) be the usual genus gen(L).

By Theorem 2.4.5, every genus is a disjoint union of finitely many spinor/special genera
which in turn are disjoint unions of finitely many isometry classes. As promised before,
the group S(V, ®) usually does have the strong approximation property.

Theorem 5.1.3 (Strong approximation) Suppose dimg (V') > 3. Let S C P(o) be a
set of prime ideals of 0 and let T C S be a finite subset. Suppose that there exists a
place v of K, not corresponding to an ideal in S, such that (V,,, ®) is isotropic. Further,
let L be an O-lattice in (V,®) and for p € T fix some o, € S(V,, ®). Then for every
k € N there exists some o € S(V, ®) such that
(o —op)(Ly) Cp*Ly, forallp €T and
o(Lp) =Ly forallpeS—T.

Proof. See for example the article of M. Kneser [Kne66]. 0

Corollary 5.1.4 Suppose dimg (V') > 3 and let L be an O-lattice in (V, ).
1. If (V, ®) is indefinite, then sgen(L) = cls(L).

2. If (V,®) is definite, let p € P(0) such that (V,, ®) is isotropic. Then there exists
some M € sgen(L) such that Mq = Lq for all q € P(0o) — {p}.

Proof. Let M € sgen(L). There exist some o € U(V,®) such that for all q € P(0) one
has My = 0(74(Lq)) for some 74 € S(V;, ®). Set S =P(o) if (V, ®) is indefinite, otherwise
set S =P(o) — {p}. Let T = {q € P(0); My # 0(Lq)} and fix some k € N such that
q*Ly C 74(Ly) for all g € T. By strong approximation, there exists some ¢ € S(V, ®)
such that ¢(Lq) = 74(Lgq) for all ¢ € S. Hence My = o(¢(Lg)) for all g € S. 0

74



5.2 Neighbours of a lattice

In particular, if £ is a quaternion algebra, then every genus in (V, ®) has class number
one whenever (V, ®) is indefinite.

5.2 Neighbours of a lattice

Let L be an O-lattice in (V, ®) and let p be a good prime ideal of o such that L, is modular.
Further, let P8 be some maximal left ideal of O that contains p. After rescaling @, one
can make the following assumptions:

e If p is unramified in F, then L, is unimodular.
e If p is ramified in F, then L, is either unimodular or P~ L-modular.
e L, is integral for all q € P(0) — {p}.

Definition 5.2.1 In the above situation, one defines:

L. An O-lattice L' in (V, ®) is a B-neighbour of L if Ly is s(Ly)-modular and there
exist O-module isomorphisms

L/(LNL)=0O/P and L'/(LONL)=P '/O.

2. a) If Ly is unimodular, then z € L is said to be -admissible, if = ¢ BL and
Qo (x) € PP. If this is the case, let

_ ]
Ly ={yeL;®(x,y) €eP}and Ly := Li+P =

b) If L, is P~ !-modular, then z € L is said to be PB-admissible, if x ¢ BL and
Qa(x) € p. If this is the case, let

Ly :={yeL; ®(x,y) €O} and L, := Ly + Pz,
The lattice L, is called the P-neighbour of L at x.

Remark 5.2.2 Let x € L be P-admissible.

1. Let M be a PB-neighbour of L. Then Ly = M, for all g € P(0) — {p}. Further, L,
and M, are both s(L,)-modular. Hence M and L are in the same genus.

2. By the same argument, L and L, g are in the same genus.

3. 0(Lzg) = Lo()p for all 0 € Aut(L).
Lemma 5.2.3 Let M # L be an O-lattice in (V,®) such that Ly = My for all q € P(0)

different from p. If E is a quadratic extension of K which is split at p, it is further
assumed that B°M C L for some e > 1. Then BM NL ¢ BL.

75



5 Kneser’s Neighbour method

Proof. Suppose first that P is a twosided O-ideal. Then there exists a minimal e > 0
such that ‘,BeM C L. Note that e > 1 since L # M. The minimality of e implies that

PM NL ¢ BL.
Suppose now that P is not a twosided O-ideal. Then E is a quaternion algebra which
is unramified at p. Further 2 := {a € F; aM C L} is a proper, integral, twosided
ideal of O. Hence 21 = Op® for some e > 1, c.f. [KV10, Lemma 3.1]. Assume that
SBM N L C PL. Then

Op°M CBM N L CPL

and therefore @71(’)136 C A = Op®. But then ?71 C O yields the desired contradiction.

Note that if M is a P-neighbour of L and Ey, /Ky, = K, & Ky then M/(L N M) = O/
shows that M C L. Hence M satisfies the conditions of the previous lemma.

Proposition 5.2.4 The set of all B-neighbours of L is given by
{Lgysp; x € L is B-admissible} .
Proof. Let x € L be B-admissible. Then
Log/(LO Lyg) = (Lo + L)/L= (B 2+ L)/L=F z/(LOP '2)
If Ly is unimodular, the O-module morphism

L— OB, y— 0y,z)+P

has kernel L N L, g3 = Lé’f3 and is surjective since O/ is a simple O-module. Similarly, if
Ly is B~ -modular, then

1

12

T /0.

LB 1/0=20/B, y— (y,z) + 0

is surjective with kernel L N L, g = L%. Thus L, 5 is a P-neighbour of L in any case.

Conversely, let M be any P-neighbour of L. Lemma 5.2.3 shows that there exists some
z € (BPM N L) — PL. Then z is P-admissible. The claim is that M = L, . First
note that LN M C Léf3 since M is modular. Further, Ly is also modular, so Ly ¢ L.
Since L/(L N M) is a simple O-module it follows that L = L N M. Thus L € M and
therefore L,y € M. But then L,y = M by modularity. 0

Proposition 5.2.5 (Kneser) Let M € gen(L) such that Ly = My for all q € P(0)—{p}.
If E/K is a quadratic extension which is split at p, it is further assumed that @eM CL
for some e > 1. Then there exists a sequence of O-lattices L = Lo, L1,...,L, = M such
that L; is a B-neighbour of L;—1 for all 1 <1 < r.

Proof. Let e > 0 such that [L/(L N M)], = p°. There is nothing to show if e = 0,

so suppose e > 1. By Lemma 5.2.3 there exists some x € (BM N L) —PL. Then
x is *P-admissible. Further, L, g N M properly contains L N M since Eflx C M but

Py 'y ¢ L. Thus [L/(Lys N M)], = p/ for some f < e. The result follows by induction
on e. .
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5.3 Computing the neighbours

Definition 5.2.6 The set of all O-lattices M in (V,®) such that there exists some
o € U(V,®) and a sequence L = Lg, Ly,...,L, = c(M) where L; is a P-neighbour of
L;—1 will be denoted by N (L,R).

Proposition 5.2.7 The set N (L,*B) coincides with
{M € gen(L); there exists M' € cls(M) such that Ly = My for all g € P(o) — {p}} .

Proof. In view of Proposition 5.2.5, only the case that E, = K, ® K, requires proof.
Let M € N(L,B). By loc. cit. it suffices to show that there exists some M’ € cls(M)
such that M’ C L for some e > 0. There exists some f > 0 such that (PPR) M C
L. Without loss of generality, 3/ is principal, say generated by o € E*. But then

M’ = a@ ' M € cls(M) satisfies T M’ =T/ (B 'p)/ M = (Pp)/ M C L. -
Corollary 5.2.8 Suppose dimg (V') > 3. If (V,, ®) is isotropic, then

sgen(L) C N(L,*P) .
Proof. This follows immediately from Proposition 5.2.7 and Corollary 5.1.4. O

Note that (V;, ®) is isotropic at almost all prime ideals p, c.f. Theorem 3.2.2 and
Corollary 3.2.4 for details.

5.3 Computing the neighbours

The space (V,®), the lattice L as well as the prime ideals p and ‘R are as before. This
section explains the neighbour algorithm to compute a system of representatives of the
isometry classes in M(L,P) whenever (V, P) is definite. Let O' = O N O,(*B) be the
intersection of the left and right orders of 3. Then L/BL is a vector space over the
finite field O’ /B. For x € L —PBL, the class of x + PL in the projective O /P-space
L/BL will be denoted by [z]. Note that O’ = O unless F is a quaternion algebra which
is unramified at p. In this special case, P is a non-invertible twosided ideal of ©" and

O'/B=0/p.

The first question one has to answer is: ‘Which projective classes yield B-neighbours
of L and if so, how many?’ The exposition below follows A. Schiemann [Sch98, Section 3|
who discusses the case that dimg (F) = 2.

Lemma 5.3.1 ForB-admissible vectors x,y € L, the following statements are equivalent:
1' vam = Lyz‘p

2. [z] = [y] and ®(x,y) € Ps(L)P.

Proof. 1. — 2. From

B0, y) P =F® & F y) CO(Log, Logyp)
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5 Kneser’s Neighbour method

it follows that ®(z,y) € Ps(L)P and

PLy +O(B)z = PLaog = PLyp = PLy +O(P)y

~—— ——

CBL CPBL
shows that y = ax (mod BL) for some a € O,(R). It remains to show that « € O. Thus
one may assume that F is a quaternion algebra which is unramified at p. Since O and
O, (*B) agree at all places of K different from p, it suffices to show that a € O,. Without

loss of generality, O, = og *2 and P = Oy - ((1)2) where p denotes some uniformizer of p.

Then O,(P), = <p0p pop) and a = (pa éf) for some a,b, c,d € o,. Suppose ¢ ¢ poy.

Lo, op —1c
Let (b1,...,bm) be any Op-basis of Ly. Then x = > _." | A\;b; for some \; = (iz gi) € Oy.
The condition ax € L shows that a); € O, for all . This is equivalent to a;,b; € p, i.e.
A € ﬁp. But this contradicts the assumption z ¢ ‘BL. Hence c € po, and therefore
aeO.
2. — 1. If Ly is unimodular, let 2 = B, otherwise let A = O. There exist a, 3 € O' —P

and v,w € PL such that 2 = ay +v and y = Bz +w. Let yz + 2 € L where v € @‘1
and z € L;’i;. To show that vz + 2z = yay + yv + z € Ly, it suffices to show that
Y+ 2z € L%:

O(y,yv + 2) = O(fx,yv + z) = (fz,yv) = P(z,z —ay) =0 (mod A).
5/_/
PP
Hence L, g3 € Lyg. The converse inclusion follows the same way. O

Using the previous result, one can write down minimal subsets R(L,) C L such that
{Lyyp: v € R(L,B)} are the P-neighbours of L. This generalizes [Sch98, Section 3].

Proposition 5.3.2 Let S be a system of representatives of the projective O' /B-space
L/BL. Define a subset R(L,B) C L as follows:

1. If E= K, fix some p € p —p>. For any x € S with Qa(x) € p, there exists some
2y € L such that ®(z;,x) ¢ p. Set

R(L,m) = {$+pbx2x7 T e S7 Q@(x) € p}

__Qs(x)
2p® (24 ,2)

where by € 0 such that b, = (mod p).

2. If By & K, ® Ky, set R(L,B) := {rx; z € S} where m € P —P.

3. If Ey = Kg“, let m € P —B. For any x € S, there exist some z, € L such that
D(z,, mx) ¢ B. Further, there exists some B, € pO such that By ®(zy, mx) ¢ PP.
Set

R(L,B) := {72 + bBrzz; v € S,b+p €o/p}.
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4. Suppose E is ramified at p and Ly is unimodular. For any x € S with Qg () € p,
there exists some z, € L such that ®(z,,x) ¢ PB. Set

R(L,B) :={z + Bzp; 2 € S, Qa(z) € p, B+ P* € P/P?}.

5. Suppose E is ramified at p and Ly is P~ -modular. For any x € S, there exists
some zg € L such that ®(zz,z) ¢ O. Set

R(L,P) :={x + Pzp; z €S, B+ P> € P/P* and Qo(z) + T(®(Bzy, ) € p} .

6. If dimg (E) =2 and p is inert in E, let p € p —p>. For any v € S with Qg(x) € p,
there exists some zy € L such that ®(z,x) ¢ B. Let R(L,B) denote the set

{z+Ppze; 2 €S, Qa(x) €p, B+P € O/P and Qo(x)/p + T(6P(2, 7)) € p} -

Then {Lysy; x € R(L,*B)} are the ‘B-neighbours of L and no proper subset of R(L,*P)
has this property.

Proof. 1. Let © € L — pL. Then Q4(x) = Qa(y) (mod p) for all y + pL € [z]. Hence
the projective lines [x] with Q4 (x) ¢ p never yield p-neighbours. If Q¢ (z) € p, then z,
exists since Ly is unimodular. Further x 4+ pA;z, is p-admissible. So after replacing x
with x 4+ p\;z,, one may suppose that z is p-admissible. Let y € L with [z] = [y] also be
p-admissible. Then y = ax + bz for some a € 0 —p, b € p and z € L. Thus

Qa(y) = a°Qo(x) + 2ab®(z, 2) + b*Qo(2) € p*

and therefore ®(z,y) = b®(z, 2) =0 (mod p?). Hence Lemma 5.3.1 shows that [z] yields
a single neighbour.

2. and 3. Let z € L —BL. Then Qq¢(mz) € PP. Note that this implies that 7o ¢ PL.
This is clearly true if F is commutative and in the quaternion case one can argue as
in the proof of Lemma 5.3.1. Hence R(L,*) contains only B-admissible vectors. Let
y = anx + Bz be P-admissible where a € O’ —, 3 € P and z € L. Then

Qa(y) = aE@Qq;(x) —{—@Qq{z) + a®(rz, 2) BP(z, mx)a

B +

—— —~~

€p € p ep
shows that S®(z,7z)a € B. From B®(z,7z) € P C O’ and @ ¢ ‘P it follows that
BP(z,mx) € P NP. If F is commutative, then P NP = PP and therefore ®(y,z) =
BP(z,mx) =0 (mod PP). So by Lemma 5.3.1, the line [x] only yields a single neighbour.

This finishes the proof of part 2.

Suppose now E is a quaternion algebra. The element z, exists since 7z ¢ ‘BL and L is
unimodular. To show that 3, exists, one may suppose that O, = ogw and B = O, - ((1)2)
where p denotes some uniformiser of p. Then ®(z,, 7x) = (‘é g) with a,b,c,d € 0p. Set

Be=1p (; £> with e, f,g,h € op. Then B, ®(z,, 7z) € (PP), if and only if eb + hd € p.
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5 Kneser’s Neighbour method

The condition ®(z,,7x) ¢ P implies that b and d cannot both lie in p. Hence there
exists 3, € pO such that B, (2, 77) ¢ PPB. Let i = o’mx+ B2 be P-admissible where
o e 0 -9, 3 ePand 2’ € L. By Lemma 5.3.1,

Lyyp=Lyg < BO(z,mz)a+ ad(nz,2)3 € PB.

Since (B N*P) /PP is an one-dimensional o/p-space, the line [z] gives rise to no more
than #(o0/p) neighbours. Conversely, the set {mx + bfz2,; b+ p € o/p} yields #(o/p)
different neighbours.

4. If x € L —PL and Qg () € p then Qs (y) € p for all y + PL € [z]. Hence one only
has to consider the projective lines [x] such that Q¢ (z) € p and then every representative
of [z] is P-admissible. The existence of z, follows from the fact that L is unimodular
and = ¢ PL. Suppose now y = ax + [z for some o € O — B, f € P and z € L. By
Lemma 5.3.1, x and y yield the same neighbour if and only if 3®(z,2) € 2. Since
B € ‘B, the line [z] can yield no more than #(O/Y) different neighbours. Conversely,
different vectors from {x + Bz, ; B+ B2 € P/P2} never give the same neighbours.

5. A vector x4+ Bz, with 8 € P is P-admissible if and only if Qo (z) +T (5P (25, x)) € p.
Let 2/ :=x+ Bz, and y = ax’ +vz with « € O —B, 8,7 € P and 2 € L be P-admissible.
After rescaling y with some element in O — B, one may assume that « = 1. The
assumption that y is P-admissible yields that ®(y,y) = T(y®(z,2’)) =0 (mod p). By
Lemma 5.3.1, 2’ and y yield the same neighbour if and only if 0 = ®(y,2’) = y®(z, 2')
(mod ). Now the relative field extension (O/)/(0/p) is either trivial or quadratic,
depending on dimg (E). So [z] yields a single neighbour if E is commutative but #(o/p)
different neighbours if E' is a quaternion algebra. Conversely, the set

{z + Bzy; B+P* € B/P* and Qo (z) + T((Bz,, 7)) € p}

consists of P-admissible representatives of [z] that yield the correct number of neighbours.

6. If z € L —PL such that Qa(x) ¢ p, then [x] contains no admissible vector. Suppose
now z € L —PL and Qg (z) € p. Let y = ax+pfz witha € O—P, B € O and z € L by
any representative of [z]. If y is P-admissible, so is ay and the two vectors give the same
neighbour. Hence one may assume that a = 1. Then y is B-admissible if and only if
Qa(x)/p+T(BP(y,z)) € p. If (y,x) € P and y is P-admissible, then z is P-admissible
and L, = Lyp. Suppose ®(y,x) ¢ PB. The trace bilinear form of the relative extension
(O/B)/(0/p) is non-degenerate, hence there are #(0/p) classes S+ B € O/ such that y
is P-admissible. From Lemma 5.3.1 it follows that the projective line [z] yields no more
than #(o/p) different neighbours. Conversely, the vectors in

{z +pBze; B+P € O/P and Qa(x)/p + T(BP(24,2)) € p}

are *P-admissible and they give rise to different neighbours. O

Using the previous result, one can count the number of B-neighbours of L, see [Sch98,
Lemma 3.3].
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Corollary 5.3.3 In the situation of Lemma 5.3.1 let ¢ = Nrgg(p) and s5(Ly) = pLi
The number #R(L,RB) of P-neighbours of L is given by the following table:

dimg(E) m  EyJK, i #R(L, )
1 odd - — (@' =1)/(g—1)
1 even - - (@2 —e)(@™* 1 +¢)/(qg—1)
2 — split - (¢"—1)/(g—1)
2 - inert — | qlg™ = (=)™ (g™ + (=1)™)/(¢* — 1)
2 odd  ramified even q(g™ ' —=1)/(g—1)
2 even  ramified  even q(q m/2Z _ g (q m/2-1 4 €)/(q¢—1)
2 — ramified  odd (¢"—=1)/(g—1)
4 —  unramified — q(®™ —1)/(qg—1)
4 — ramified  even | ¢*(¢™ — (=1)™)(¢™ 1 + (=1)™)/(¢* - 1)
4 — ramified  odd a(® = 1)/(¢® = 1)

where ¢ = +1 if disc(V, @) € N(Ey) and € = —1 otherwise.

Proof. If E = K, one may assume that ¢ = 0. Then #R(L,*) is the number of isotropic
lines in the o/p-space L' := L/BL equipped with the quadratic form

Q: L —o/p, 2+PL— Qolx)+p.

These numbers have been worked out for example in [Kne02, Section V.13]. Suppose
dimg (E) = 2. The split case as well as the ramified case with i odd are obvious. In
the remaining cases, one may assume that ¢ = 0 and again, it boils down to work out
the number of isotropic lines in (L', Q’). Note that if p is inert in E, then (L', Q') is of
dimension 2m and hyperbolic if and only if m is even, see [Sch98, Lemma 3.3] for details.
Suppose now dimg (E) = 4. If p is ramified in F and i is even, one may assume that i = 0.
Then #R(L,B)(¢*> — 1)/¢* is the number of anisotropic vectors in the 2m-dimensional
o/p-space L' := L/BL equipped with the quadratic form

QL' —o/p, v +PL— Qo(z) +p.

The quadratic space (L', Q') is again hyperbolic if and only if m is even. All other cases
are again trivial. O

Lemma 5.3.1 yields a method to enumerate the set of all isometry classes in gen(L)
which are represented by N(L,*B).

Algorithm 5.3.4 ITERATEDNEIGHBOURS(L,}3)

Input: An O-lattice L in a definite hermitian space (V, ®) over E of dimension m and
some maximal left ideal B of O such that p := P N o satisfies the assumptions made
in the beginning of Section 5.2.
Output: A set S of representatives of the isometry classes in N'(L, ).
1: If Ly is unimodular, set 2 = B otherwise set A = O.

81



5 Kneser’s Neighbour method

2: Initialise the sets S =T = {L}.

3: while there exists some M € T do

4: Exclude M from T

5 Let (21,...,%y) be a basis of a free O-submodule M’ of M such that M, = M,.
6 for x € R(M,) do

7: Set I :=={1<i<m; ®(x,z;) ¢ A} and i := min([).

8 For j € I — {i} let \; € O such that ®(z,z;) — ®(z,2;)A; € 2A.

9 Set L' := 301 Oxj + 35 5cp iy Owj — Ajai) + Ay + T o+ pM.

10: if L’ is not isometric to any element in S then
11: Include L' to both S and T.

12: end if

13: end for

14: end while
15: return S.

Proof. Note that by induction, the lattice M is always modular at p. Hence [ is nonempty.
Further, the lattice L’ in line 9 equals M, q. So the algorithm does enumerate some
lattices in N'(L,B). The algorithm terminates since the number of isometry classes in
gen(L) is finite. The fact that the algorithm reaches every isometry class in N (L, )
follows from Proposition 5.2.5 and Remark 5.2.2. 0

5.4 Enumerating all isometry classes in a given genus

In this section, algorithms to compute a system of representatives of all isometry classes
of an O-lattice L in (V, ®) are given. In view of Corollary 5.1.4 and Algorithm 5.3.4, it
suffices to answer the question, which spinor/special genera have to be joined to cover a
given genus completely. If E is a quaternion algebra, then gen(L) = sgen(L). So only the
two cases where E is commutative remain. They will be discussed individually below.

5.4.1 The quadratic case

Suppose E = K is a number field and let (V, ®) be a regular quadratic space over K of
rank m > 3. The question how the genus of some lattice decomposes into spinor genera
is answered by M. Kneser in [Kne56] using the spinor norms introduced by M. Eichler.
It turns out that a description using proper isometry classes is more suitable.

Definition 5.4.1 Let L, L’ be o-lattices in (V, ®).

1. The lattices L and L' are said to be properly isometric, if L' = ¢(L) for some
© € SO(V, ®). The proper isometry class clst (L) is the set of all o-lattices properly
isometric to L and Aut™ (L) := Aut(L) N SO(V, ®) is the proper automorphism
group of L. Similarly one defines Aut*(L,) for p € P(o).

2. The lattices L and L’ are said to be in the same proper spinor genus, if there exists
some ¢ € SO(V, ®) such that (L), = oy(Ly,) with o, € S(V,, @) for all p € P(o0).
The proper spinor genus of L will be denoted by sgen™(L).
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5.4 Enumerating all isometry classes in a given genus

The following remark explains how classes, spinor genera and genera differ from their
proper’ counterparts, see also Corollary 5.4.8.

¢

Remark 5.4.2 Let L be an o-lattice in (V, ®) and let p € P(o).

1. cls(L) = clsT(L) if and only if Aut(L) # Aut™(L). In particular, if m is odd, then
—idy € Aut(L) — Aut™ (L), so cls(L) = cls*(L).

2. If Aut(L) = Aut™ (L), then cls(L) = cls™(L) WclsT(7(L)) where 7 denotes any
isometry in O(V,®) — SO(V, ®). For example one can take 7 to be a reflection.

3. Let x € Ly such that Qg (x)o = n(Ly). The reflection 7, fixes L. In particular,
[Aut(Ly) : Aut™(Ly)] = 2. Moreover, if L’ € gen(L), then for all p € P(0) there
exists some oy, € SO(V}, ) such that L, = oy(Ly,).

For the remainder of this section let L be a fixed o-lattice in (V, ®).

Definition 5.4.3 Given a prime ideal p of o, the group of spinor norms of Ly is
O(Ly) := 0(Aut™ (Ly)) = {0(0); 0 € Aut™(L)}.
For odd prime ideals, the computation of spinor norms was also solved by M. Kneser.

Theorem 5.4.4 Suppose p € P(0) is odd. Let L, = J_:zl L; be a Jordan decomposition
and let

F= |J {Qe(2); x € Li and Qo(x) ¢ ps(L;)} .
1<i<r
Then 0(Ly) = {(H?ﬁl Z)(K;‘)Q, fi € F and ¢ € N}. In particular, 0;;(K’;‘)2 C O(Ly) if
rank(L;) > 1 for some i and 0(Ly) = 0}(K3)? if L is modular.

Proof. See [Kneb6, Satz 3]. O

If p is a prime ideal over 2, then oj (KI;*)2 C 0(Ly) if Ly has a Jordan block of rank at
least 3, c.f. [O’M73, Example 93:20]. The explicit computation of 6(Ly) is quite involved
and was only solved recently by C. Beli in [Bel03].

The question, whether M € gen(L) is in the same proper spinor genus as L can
be answered using ideles. The presentation given here follows T. O’Meara [O’M73,
Section 102]. For the remainder of this section, the following notation will be used.

e The group of idéles of K will be denoted by

J={(zy)y € HK:7 zy € oy for all but finitely many p € P(o0)} .
veEQ(K)

Note that K* can be regarded as a subgroup of J via the diagonal embedding.

e Given a prime ideal p of 0 and some z € K, let j(p,z) be the idele satisfying
Jj(p,z), = x and j(p,z), = 1 for all places v different from p.
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5 Kneser’s Neighbour method

o Let JL = {je J;j, €0(Ly) for all p € P(0)}.

e Let S be the set of all infinite places v of K such that (V;,, ®) is anisotropic. For
any subgroup X of J, let Xg be the subgroup {z € X ; z, > 0 for all v € S} of X.

e Let P = {p € P(0); 0(Ly) # o5 (K;)?}, which can be computed using Theorem 5.4.4
and [Bel03]. Further, let D be the divisor [[,cqv - Hpepp1+°rdp (). The ray class
group of o with respect to D will be denoted by Clp(o).

o Let Jp ={j € Js; jy =1 (mod p'*ord®) for p € P and j, € o} for p ¢ P}.

e Given a fractional ideal a of K which is not supported at P, let [a] be its class in
Clp(o). Similarly, given an idele j € J with j, € o; for all p € P, then [j] denotes
the class of [ ep(o porde (o) in Clp (o).

Using idele groups and spinor norms it is possible to answer which lattices in gen(L)
are contained in the same proper spinor genus.

Theorem 5.4.5 Let M € gen(L). Define some idéle j € J as follows. If p € P(0) with
L, # M, set j, = 0(oy) where o, € SO(V,,, ®) such that My, = o,(Ly). On all other
places v of K set j, = 1. Then M € sgen™ (L) if and only if j € KEJL. In particular,
the number of proper spinor genera in gen(L) is [J : K§J¥] < oo.

Proof. See for example [O’M73, Section 102]. 0
So the above theorem tells exactly, which (proper) spinor genera have to be joined in
order to cover all isometry classes of gen(L). However, the group J/KgJ L being a
quotient of two infinite groups, is difficult to handle algorithmically. Thus an explicit
isomorphism between J/K%JY and some quotient of the ray class group Clp (o) will

be given below. I learned this description from Wai Kiu Chan [Chal3] on the AIM
conference on Algorithms for lattices and algebraic automorphic forms.

Theorem 5.4.6 1. The map J/K* — J/K5JE, jK* — cjK5JE with ¢ € K* such
that ¢j € Jg is a well defined, surjective homomorphism of groups with kernel
K*Jé:/K* Hence it induces an isomorphism

Y1 JJK*TE — J/K5TR .

2. The map : J/K* — Clp(o), jK* + [cj] where ¢ € K* such that c¢j € Jg and
cjp =1 (mod p1+°rd*’(4)) for all p € P is a well defined, surjective homomorphism
of groups with kernel K*Jp/K*. Hence it induces an isomorphism

wgl J/K*JD — CID(U) .
3. Forp € P let X, be a set of generators of O(Lp)/(Kg)Q. Then

U= ({¢(i(p,2)K); 2(K;)* € X,, p € P}, Clp(0)?)
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5.4 Enumerating all isometry classes in a given genus

does not depend the chosen representatives. Further,
¢: JJKLJE — Clp(0)/U, jK5JE — (jK*)U
s an isomorphism.

Proof. The first two parts are verified directly. The choice of D implies that J?Jp C J SL~ .
Further, 1 maps K*J?Jp/K* onto Clp(0)?. Since Clp(o)/Clp(0)? is an elementary
abelian 2-group, the subgroup U does not depend on the sets X,. The elements in
K*Jk/K*J?Jp are generated by ideles of the form {j(p,z); p € P and = € X,,}. So the
image of KgJ L/K*Jp under 19 is U. Thus ¢ is an isomorphism. O

Theorems 5.4.5 and 5.4.6 yield the following results, including an algorithm for com-
puting representatives of the isometry classes in gen(L) in the definite case.

Corollary 5.4.7 Let M € gen(L) and let j be the idéle from Theorem 5.4.5. Then the
following statements are equivalent.

1. M € sgen™(L).
2. jeK5JE.
3. ¢(j) = 1 where ¢ is as in Theorem 5.4.6.

Corollary 5.4.8 Let x € V' be anisotropic and let Q = {p € P(0); Qa(x)o, # n(L),}.
Forpe PUQ let xy € Ly such that Qa(xy)op =n(L),. Let j € J be defined by

e ifvd PUQ,
v {me(mv) ifve PUQ.
Then the following statements are equivalent:
1. sgen™ (L) = sgen(L).
2. sgen™ (L) = sgen(L') for all L' € gen(L).
3. ¢(j) = 1 where ¢ is as in Theorem 5.4.6.

In particular, if these conditions hold, then the number of proper spinor genera in gen(L)
equals the number of spinor genera in gen(L). Otherwise it is twice that number.

Proof. The equality sgen™ (L) = sgen(L) holds if and only if 7, (L) € sgen™(L). The
latter condition is equivalent to ¢(j) = 1 by Theorems 5.4.5 and 5.4.6. Further, j only
depends on gen(L) by construction. O

In view of Proposition 5.2.7, let N (L, p) be the set
{M € gen(L); there exists M’ € cls* (M) such that Ly = M for all q € P(0) — {p}} .

The decomposition of N7 (L, p) into proper spinor genera is explained by the following
result which strengthens Corollary 5.2.8/3.
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5 Kneser’s Neighbour method

Lemma 5.4.9 Let U be the subgroup of Clp(o) as in Theorem 5.4.6. Let p € P(0) be
odd such that Ly is modular. Further, let M be a p-neighbour of L and let p denote a
uniformiser of p.

1. There exists some o € SO(V,, ®) such that My = o(Ly) and 0(c) = p(K*)%.

2. The set NT(L,p) consists of at most two proper spinor genera. More precisely, if
[p] € U, then N*(L,p) = sgent(L). Otherwise NT(L,p) = sgen™ (L) & sgen™ (M).

Proof. 1. There exists some p-admissible x € L such that M = L, ,. Let y € L, such
that ®(z,y) = 1. In particular, L, = (x,y) L L’ for some suitable sublattice L' of Lj.
Then M, = (p~ 'z, py) L L'. Hence it suffices to discuss the case that rank(L) = 2. After
replacing « with x + upy for some u € oy, one may assume that Q¢ (z) = 0. So without
loss of generality, the Gram matrix of (z,y) is H(0). But then o := 7,_p, 0 7, does
the trick.

2. This is an immediate consequence of the previous corollary and the first part. O

Corollary 5.4.10 Suppose (V, ®) is indefinite. Let ¢,U be as in Theorem 5.4.6 and let
J be as in Corollary 5.4.8. Then

1. sgen(L) = cls(L) and sgen™ (L) = cls*(L). Moreover, cls™(L) = cls(L) if and only
if $(4) = 0.

2. Let p1,...,pp+ be odd prime ideals of o such that Ly, is modular and [p1], ..., [pp+]
is a transversal of U in Clp(0). Let L; be a p;-neighbour of L. Then Ly, ..., Ly+
represent the proper isometry classes (proper spinor genera) in gen(L).

3. Letpi,...,pp be odd prime ideals of o such that Ly, is modular and [p1], ..., [ps) is a
transversal of (U, ¢(j)) in Clp(o). Let L; be a p;-neighbour of L. Then Ly, ..., Ly,
represent the isometry classes (spinor genera) in gen(L).

Proof. The first assertion is a consequence of strong approximation, c.f. Corollary 5.1.4
and the second follows immediately from Corollary 5.4.7 and Lemma 5.4.9. The last
assertion follows from the first two parts and Corollary 5.4.8. 0

So the above result solves the indefinite case. The definite case is handled by the
following algorithm.

Algorithm 5.4.11 GENUSREPRESENTATIVES(L)

Input: An o-lattice L in the definite quadratic space (V, ®) over K.
Output: A set of representatives of the isometry classes in gen(L).
1: Let p € P(o) of minimal norm such that 2 ¢ p and L, is modular.
2: Let U be the subgroup of Clp(o) as in Theorem 5.4.6.
3: Replace U by (U, [p]) < Clp(o).
4: Compute a set G of prime ideals, coprime to 20, such that Ly is modular for all g € G
and {[g]U ; g € G} generates Clp(o)/U.
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5: Let S be the output of ITERATEDNEIGHBOURS(L, p) and initialize the list S = [S].
6: Initialise ¢ = 1.

7: while i < #S do

8: for g € G do

9: Let M be a g-neighbour of L’ where L' € SJi].

10: if there exists no lattice in (Jg.g S isometric to M then
11: Let S be the output of ITERATEDNEIGHBOURS(M, p).
12: Append S as the last element of S.

13: end if

14: end for

15: Increment <.

16: end while
17: return (Jges S.

Proof. Theorems 5.4.5 and 5.4.6 show that the group Clp(0)/U acts transitively on the
spinor genera in the genus of L via

([g]U, sgen(L")) + sgen(M') where M’ denotes some g-neighbour of L'.

The algorithm simply implements the standard orbit enumeration of the orbit of sgen(L)
under this action. Note that Algorithm 5.3.4 computes representatives of the isometry
classes of one or two spinor genera. Hence the check in line 10 ensures that each spinor
genus is only visited once. O

5.4.2 The hermitian case

Suppose E/K is a quadratic extension of number fields. The question how the genus
of a given O-lattice L decomposes into special genera was answered by G. Shimura in
[Shi64]. To state the result, some more notation is required.

e Let Cp = {[/] € CI(O); A=A} A CI(O). The group Cy is generated by

{[B] € CI(O); B a ramified prime ideal of O} U {[aO] € CI(O); [a] € Cl(0)} .

e Further, let J and Jy be the subgroups of the group Z(O) of fractional ideals of O
defined by

J={AcZ(0); AA = O} and
Jo={aO0;a € E*, aa=1}<J.
e Given a prime ideal q of o, set

Eo={e€0O;; =1},
Egr={ec"l ;e €0} <&,
E(Lq) = {det(0); o0 € Aut(Lq)} I &0 -
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Remark 5.4.12 Let q be a prime ideal of o that is ramified in E.

1. The homomorphism C' — J/Jy, [2A] — D/DTI Jo is well-defined and surjective with
kernel Cy. In particular, [C : Co] = [J : Jo].

2. The homomorphism Ej — &0 /Eq1, a5 aa1E, 1 is surjective by Hilbert’s The-
orem 90 and has kernel K;Op. In particular, [€q0 : &q1] = [Ey : KjO5] = 2.
3. The homomorphism ¢: Ef — 5q70/5§,0, a — aa” " is surjective by Hilbert’s

Theorem 90 and has kernel K& = Ky (E; )2. Therefore

1

En0/E20 = By Kyqo = By K3 (Ey)*

This isomorphism also gives a method of computing representatives of &0/ 8q270 of

the form \/\ with \ € O.

Proof. The first two assertions are obvious. The last one can be seen as follows. The
groups K& 0 and Kj(E; )2 are clearly contained in Ker (). Conversely, let o € Ker(e).
Thus a/a = &% with € € £;9. Hence oz = e € K* and a = (ag)e € K*&;p. Further,

e = () for some A € E*. Hence a = (aZ)\/A = (aZAN) A le K*(E*)2. 0

The exact value of £(Lg) is known in almost all cases. The following result is due to
G. Shimura. However, a simpler proof is given below.

Proposition 5.4.13 Let Q be a prime ideal of O and set q:= QN o.
1. If Q is unramified or Lq has a Jordan block of odd rank, then

E(Lq) = Eq0 -

2. If Q is ramified and 2 ¢ q then

Eqo if Ly has a Q'-modular Jordan block with i even,
E(Lq) =

Eq1  otherwise.

3. If Q is ramified and 2 € q then
E20 CE(Lqg) C Eqp -
If the rank of some Jordan block of Lq is different from 2, then 1 C E(Ly).

Proof. By Algorithm 3.3.2, L splits into Ly L Ly with rank(L;) < 2. If rank(L;) = 1,
then £(Lq) = &q0. If rank(Lo) = 2, then 5(12,0 C &(Lgq). Further, the hyperbolic planes
H (i) admit the isometries {Diag(g,e™'); e € O;}. In view of Proposition 3.3.5 and
Corollary 3.3.20, this only leaves the case that 9 is ramified, 2 ¢ q and the scales of all
Jordan blocks of Ly have odd valuation. Under these assumptions, Proposition 3.3.5 shows
that (V4, ®) is hyperbolic and has a skew-symmetric Gram matrix. But determinants of
isometries of such spaces lie in &; 1, see for example [Sch85, Theorem 7.6]. 0
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Theorem 5.4.14 Let P be the set of all primes ideals q of o (ramified in E) such that
Eq0 # E(Lyg). Set

E(L) =[] q0/E(Ly)

qeP
R ={(¢€(Lq))qer € E(L); € € O such that e€ =1},
H ={(€0, (¢€(Lq))qep) € J x E(L); € € E such that e =1} .

Consider the map
U: gen(L) = J x E(L), M — ([L: Mo, (det(oq)E(Lq))qepr)
where oq € U(Vy, @) such that Mq = 04(Lq) for all q € P.

1. The map ¥V induces a bijection between the special genera in gen(L) and

(J x E(L))/H .

2. Let (a1,...,a,) and (y1,...,7s) be systems of representatives of J/Jo and E(L)/R
respectively. Then {(a;,v;)H ;1 <i<r, 1<j<r} is a system of representatives
of (J x E(L))/H. Thus, the number of special genera in gen(L) is

[J:Jo]-[E(L): R =[C:Co]-[E(L): R].
Proof. See [Shi64, Theorems 5.24 and 5.27]. O

The above theorem immediately gives an algorithm to compute representatives of the
isometry classes in a given genus, see [Sch98].

Algorithm 5.4.15 GENUSREPRESENTATIVES(L)

Input: An O-lattice L in the definite hermitian space (V, ®) over E.
Output: A system S of representatives of the isometry classes in gen(L).
1: Let B be the set of all prime ideals 9 of O such that Lnnq, is not modular or 9 is a
ramified prime ideal over 2.
2: Let P ¢ B be a prime ideal of O of minimal norm.
3: Let A= {21,...,2,} be a set of ideals of O, not supported at B, such that

{26]Co; 1 < i <7} U{[B]Co}

generates C/Cp.
Let P be the set of prime ideals q of o such that £(Lg) is not (known to be) & .
Let A be a generating set of £(L)/R where R is as in Theorem 5.4.14.
for yR € A do
For q € P let 5; € O with ordg(5,) € {0,1} such that ’qug,o = Bq/ﬁing%o.
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8: Compute some « € E such that

afq —1€4q0, for all g € P
a € OF for all split ideals Q € B

9: Include aO to A.

10: end for

11: Initialiase the list S = [S] where S is the output of ITERATEDNEIGHBOURS(L, 13).
12: Initialise ¢ = 1.

13: while i < #S do

14: for 2l € A do

15: Compute a lattice M € gen(L) such that [L': M]p = AA " where L' € SJi).
16: if there exists no lattice in | Jgcg S isometric to M then

17: Append the output of ITERATEDNEIGHBOURS(M, B) at the end of S.
18: end if

19: end for

20: Increment q.

21: end while

22: return Jg g 5.

Proof. Suppose the notation of Theorem 5.4.14 and let £ = (JgcgS. Corollary 5.2.8
shows that | J; ., cls(L) is a union of special genera and line 16 ensures that £ represents
no isometry class twice. In particular, since h(L) is finite, the algorithm terminates. It
remains to show that £ represents every special genus in gen(L). For this, let ¢ € P
and write qO = Q2. The element « from line 8 satisfies that a3, is a square in 035.
Thus (84/6q) (/@) € 8({270 C &(Lg). Hence ary =1 € £(L) and therefore (O,v)H =
(@O, 1)H. Theorem 5.4.14 shows that {(2A,1)H ; A € A} generates (J x £(L))/H and
that (J x £(L))/H acts transitively on the set of special genera in gen(L) via

(J x E(L))/H x gen(L) — gen(L), ((A,1)H,sgen(L")) — sgen(M)

where [L' : M]o = 22 '. Thus the standard orbit enumeration in line 13 eventually
reaches every special genus in gen(L). O

Remark 5.4.16 Here are some hints, how the individual steps of the previous algorithm
can be performed in practise.

1. A (non-minimal) generating set A as in line 5 can be obtained from Remark 5.4.12
if one replaces £(L)/R by [[,cp Sq,O/EqQ’O. This does not change the validity of the
algorithm.

2. The lattice M from line 15 can be obtained as follows. The choice of 2 implies that
A =Pi1,..., BB with split prime ideals P; ¢ B and some fractional ideal B € Cp.
Consider the sequence

L' =Lg,Ly,...,L; where L; is a B;-neighbour of L; 1 .
Then M := L; satisfies [L' : M]o = A2
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number

The purpose of this chapter is to present an algorithm which classifies the definite
hermitian lattices of rank m and class number at most B over any totally real number
field. The algorithm proceeds in four steps.

1. Enumerate the possible totally real number fields K, the possible K-algebras E
and the possible ranks m.

2. Enumerate the possible similarity classes of hermitian spaces of rank m over FE.
3. Enumerate the genera of square-free lattices with class number at most B.
4. Enumerate the similarity classes of all genera with class number at most B.

Throughout this chapter, let K be a totally real number field of degree n and let (V, @)
be a definite hermitian space over E of rank m. Further, let 0 and O be maximal orders
in K and E respectively.

Note that D. Lorch in [Lor] uses a slightly different approach for enumerating the
one-class genera of definite quadratic lattices.

6.1 Square-free lattices

This section defines the so-called square-free lattices and shows that every integral lattice
can be reduced to a square-free lattice by reduction operators that do not increase class
numbers.

Definition 6.1.1 Let £ denote the set of all O-lattices in (V,®) and let L € L. Let P
be a maximal twosided ideal of O and set p = P N o. Further, let A be an integral
twosided ideal of O such that 2 = 2.

1. If B, = K, ® Ky, then Ly is said to be square-free, if Ly is unimodular. In all other
cases, Ly is called square-free, if

PLY C L, C LY .
Moreover, Ly is called ,-square-free, if Ly is square-free and A, C s(Ly) C Oy.

2. The lattice L is said to be square-free or 2-square-free, if Ly, is square-free or
2,-square-free for all p € (o).
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3. Let pyp be the map defined by

L+ (P 'LNL¥) ifE, 2K, K,,

L= L L
i {L + (P'LNPL#) otherwise.

Clearly, if a genus contains some 2-square-free O-lattice, then all lattices in the genus
have that property. It is worthwhile to mention that square-free lattices are also called
almost or nearly unimodular by some authors.

The maps py generalize the maps defined by L. Gerstein in [Ger72] to hermitian spaces.
They are similar in nature to the p-mappings introduced by G. Watson in [Wat62]. Below
is a summary of some important properties of these maps pg, which will be used later on.

Remark 6.1.2 Let L be an O-lattice in (V, ®). Let P be a maximal twosided ideal of O
and set p =P No.

1. If g € P(o) — {p}, then (pp(L))q = L.

2. Suppose E, 2 K, ® K;, and let L, = J_ieZ L; be a Jordan decomposition where
L; = (0) or P'-modular. Then

L; ifi<1
L)), = L where L= ! -7
(,O‘B( ))P ljei ) ) {‘Ble ifi>1

3. Suppose E, = K, @ K, and let L, = J—iEZ L; be a Jordan decomposition where
L; = (0) or p’O-modular. Then

L; ife <1,

L — L, hee L,:
(L)) = | Li where Lj {ap—lLi ifi>1.

1€Z
In particular, pp(L) and %(L) are in the same genus.
4. If L, is integral, then (pp(L))y = Ly <= Ly is square-free.
5. If Q is a maximal twosided ideal of O, then pg o pq = pa © pyp.
6. If L is integral, there exist some maximal twosided ideals By, ..., P of O such that
L' = (pp, o...0pp,)(L)
is square-free. Moreover, the genus of L’ is uniquely determined by L.

Proof. The first five assertions are obvious and the last follows from the second and third
by induction on the largest valuation of the scales of the non-zero Jordan blocks. O

Lemma 6.1.3 Let L, M be O-lattices in (V,®) and let B be a maximal twosided ideal
of O.
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6.1 Square-free lattices

1. If L and M are (locally) isometric, then so are pp(L) and pp(M). In particular,
py(gen(L)) = gen(pyp(L)).
2. Suppose pp(M) = L. Then Aut(M) is the stabilizer of M under Aut(L).

3. Suppose pp(M) = L and let Ly, ..., Ly represent the isometry classes in gen(L).
The group Aut(L;) acts on p‘il(Li) Ngen(M). Let M;a,...,M;, represent the
orbits of this action. Then

{M;;;1<i<h, 1<5<h}
represents the isometry classes of gen(M). In particular, h(M) > h(L).
4. If pp(M) = L, then Mass(M) = ]pq}l(L) Ngen(M)| - Mass(L) > Mass(L).

Proof. The lattice pp(L) is constructed from L by taking sums and intersections of
(rescaled copies of) L and its dual. All these operations commute with (local) isometries.
This shows the first and the second assertions. The third is an immediate consequence
of the previous ones: Let M’ € gen(M). Then py(M') = L; for some i. Without loss of
generality p,(M') = L;. Hence M’ lies in some orbit under Aut(L;), whence M’ = M, ;
for some j. So the claimed set represents each isometry class at least once. Suppose M, ;
and M, s are isometric, then so are L; and L,. This shows i = . But any isometry from
M; ; to M; s induces an isometry on L;. Hence j = s. So the claimed set represents each
isometry class in gen(M) uniquely. The last assertion follows from Proposition 4.3.5.
Alternatively it can also be deduced from the second and third parts. O

Definition 6.1.4 Let G be a genus of integral O-lattices and let G’ be a genus of square-
free O-lattices. The genus G can be reduced to G', if there exists some maximal twosided
ideals By, ...,Bs of O and L € G such that

(ppy 0. opp,)(L) € G .
Lemma 6.1.3 shows that G’ is uniquely determined by G.

Lemma 6.1.3 also shows that if (V,®) admits an O-lattice with class number h, it
must admit a square-free O-lattice L with class number at most h. However, there are
infinitely many genera of square-free lattices similar to gen(L) which necessarily all have
the same class number. This is where the 2(-square-free lattices come into the game.

Remark 6.1.5 Let L be a square-free O-lattice in (V, ®). Let py,...,p, be the prime
ideals of o that divide dg/x and let p;O = B2. Further, let a be an integral ideal of o
such that {b € Z(0); a C b C o} represents the classes of the narrow class group C17 (o).
Then 2 = aO - [[_; P, satisfies A = A and there exists some totally positive a € K*
such that L* is 2-square-free. Moreover, a is unique up to multiplication with elements
from 0% .

Proof. The construction of 2 implies that A = A. Let s(L) = ¢O - [[[_; P with
e; € {0,1} and some integral ideal ¢ of 0. The choice of a guarantees that there exists a
totally positive a € K*, unique up to multiplication by totally positive units, such that
a"t'c C o is a divisor of a. O
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6 Enumerating genera with small class number

6.2 Partial duals

The maps pyp from the previous section act on the (genera of all) O-lattices in (V, @)
such that class numbers are not increased. This section describes similar maps which
actually do preserve class numbers.

Definition 6.2.1 Let L be an O-lattice in (V, ®) and let p € P(0) be a prime ideal of o.
The partial dual of L at p is the unique O-lattice L#P in (V, ®) that satisfies

Ly ifg#p,
(L#’p)q = {Lj# .
y ifg=p

for all q € P(o).
Remark 6.2.2 Let L, M be O-lattices in (V,®) and let p,q € P(o).

1. The partial dual L#P? can be computed explicitly as follows. From the Jordan
decomposition of L, one obtains integers ¢ and j such that pin - Lff’E C pl L.
Then L#P = (p'L + L#)Np’L.

2. (L#,p)#,q = (L#,q)#,p and (L#,p)#,p = L.
3. If L and M are (locally) isometric, then so are L#? and M7#P.
4. Aut(L) = Aut(L7*) and h(L) = h(L**).

Proof. The claimed identity in the first part holds locally at every place of 0. Hence it
holds globally. The second assertion follows from the definition of partial duals. The
lattice L#* is constructed from L by taking sums and intersections of rescaled copies
of L. These constructions are preserved under isometries. This shows the third part, the
inclusion Aut(L) C Aut(L¥*) as well as h(L) > h(L#"). The fact that (L#P)# = L
now finishes the proof of the last assertion. O

Definition 6.2.3 Two hermitian O-lattices L and M are said to be equivalent, if there
exists some chain of O-lattices L = Lg, L1, ..., L, = M and some prime ideals p1,...,p,
of o such that L; is similar to the partial dual Lfé_”{i for all 1 <7 < r. Note that this
induces an equivalence relation on the set of all hermitian O-lattices, which preserves
automorphism groups.

This equivalence relation induces an equivalence relation on the similarity classes of
genera of O-lattices, which preserves class numbers.

6.3 Enumerating the possible definite hermitian spaces

The purpose of this section is to enumerate all similarity classes of definite hermitian
spaces over number fields that could possibly contain lattices of class number at most B
for some fixed integer B.

Let K be a totally real number field of degree n and let (V, ®) be a definite hermitian
space of rank m over E.
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6.3 Enumerating the possible definite hermitian spaces

6.3.1 The quadratic case

Suppose £ = K and m > 3. The local densities of square-free o-lattices at a prime
ideal p over 2 are not known in all cases. For a given o-lattice L, the local factor A(Ly)
can be computed explicitly using Proposition 4.3.5, see also Remark 6.3.3 below. But
this does not help in enumerating the possible base fields. For that one needs a bound
that only depends on Nrg q(p) and m. Such a bound was provided by H. Pfeuffer in his
thesis [Pfe71al:

Theorem 6.3.1 Let p € P(0) be a prime ideal of norm q over 2 and let e = ordy(2) its
ramification index. Further let L be an o-lattice in (V, ®) such that Ly is square-free. If
m = dimg (V') > 3, then

3/2 ifm=3andq=2,
B(Ly) - q~ OB CENHD/2 < gem L g8 ifm =4 and q = 2,

1 otherwise.
Proof. See Korollar 1a, Theorem 2 and Hilfssatz 8 of [Pfe71al. 0
Corollary 6.3.2 Suppose (V,®) admits an o-lattice with class number at most 2. If

K =Q, then m <30. If K # Q, then m < 14 and the root discriminant d}(/n 1s bounded
as follows:

m | 3 4 5 6 7 8 9 10 11 12 13 14
4" <] 2412 1206 837 6.52 533 450 3.89 342 3.06 2.76 2.52 2.31

If m > 4, a complete list of the possible fields K is available from [Voi08]. For example,
there are only 361 totally real fields K whose root discriminant is below 12.06. The largest
one has degree 8.

Proof. Let vy, be as in Theorem 4.2.3 and let L be a square-free olattice in (V, ®) with
class number at most 2. Siegel’s mass formula and Theorem 6.3.1 show that

1 > Mass(L)

B onm if m is even
> Ao, grm=D/A o(L))(m+1)/2 L) L. ’
> " dy ri/g(o(L)) 1

peP(o)
B9 ifm=4,

4 if m > 6 is even,

_ 1

> 7ndm(m /4

=Tm K 27 (2/3)" if m =3,
2

—n(m=1)/2 " if iy > 5 is odd.
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6 Enumerating genera with small class number

In particular, the root discriminant d}(/n satisfies

(9/8)1/3 if m = 4,

1/n 4/m(m—1) 1 if m > 6 is even,

22/m if m > 5 is odd.

The right hand side of the above inequality is less that 1 for m > 30 and less than /5
for m > 15. It also yields the claimed bounds on d}(/n. O

The enumeration of all totally real number fields with root discriminants at most 24.12
is out of reach with current methods and computers. Thus, for the ternary quadratic
lattices, different methods are needed which will yield better bounds on d}(/". This case
will be discussed in detail in Section 7.3.

Remark 6.3.3 Let p € P(0) be a prime ideal over 2 and let L be an o-lattice in (V, ®).
If p is unramified, the local factor A(Ly) is given by results of S. Cho, see [Chol5]. In
general, one can compute A\(Ly) as follows:

1. Compute a chain of minimal oy-overlattices Ly, = Lo C L1 € ... C L, where L, is
n(Ly)-maximal, c.f. Algorithm 3.5.4.

2. Look up A(L,) from Theorem 4.4.1.

3. Compute A(Ly) by a successive comparison of A\(L;) with A(L;—1) fori=r,...,1
using Proposition 4.3.5.

Note that one can speed up this method considerably as follows. As explained in Sec-
tion 3.4, construct a definite hermitian space (V', ®') such that (V,, ®) = (V}, ®’). Using
Algorithm 3.5.4, construct an o-lattice L] in (V’/, ®) such that (L}.), is n(Ly)-maximal.
Then (L), = L, and thus A\(L,) = A((L})p). The maximal o-sublattices between L/ and
pL! correspond to the projective lines of the o/p-space L../pL!. The finite group Aut(L})
acts on these sublattices and hence on the projective lines. From orbit representatives
and the orbit lengths, one obtains a sublattice L!_; of L such that (L]_;), = L,_; as
well as the cardinality #D((L;.)p, (L;._;)p). Similarly, one can then use the finite group
Aut(L!_;) to speed up the enumeration of #U ((L;.),, (L,._;)p). This immediately gives
A((LL_1)p) = A(Ly—1). Iterating this procedure finally yields A(Ly).

Algorithm 6.3.4

Input: An integral ideal a of 0 and some integers m > 3 and B > 1.

Output: A set £ of quadratic spaces over K such that every genus of a-square-free
o-lattices of rank m and class number at most B is represented by some lattice in
exactly one of the spaces in L.

1. Set My =~,," - d?(m_l)ﬂl where 7, is given by Theorem 4.2.3.
2: Let Py:={p € P(o); p | 2}.
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6.3 Enumerating the possible definite hermitian spaces

3: Enumerate the finite set D := {S C P(0); Mo - [[,esup, Ay < B/2} where

min{A(L); L is a square-free op-lattice of rank m} if p |2

1 ifp|laandpt2,
Xp = Negjo(p)m1-1 1420 and m is odd
W 1 p Jf aana mis o s
- NrK/@(p)(m_l)/2 if p 1 2a and m is even.
4: Initialiase £ = 0.
5: Let (u1,...,us) be a transversal of (0*)% in 0%,.
6: for S € D and [b] € Cl(0) do
7 Let g be a totally positive generator of b? - Hpes p. If none exists, go to step 6.
8: for 1 <i<sdo
m—1
o
IT I¢x (1 —29)] if m is odd,
9: Set M := 2 nlg ). é:_ll
2
[T 1€k (X = 25)| - [€x (X (—1ym/20,9> Zm)| - if m is even.
j=1
10: Set D' :={C C P(0); #C is even and M - [[,csucup, Ay < B/2} where
% / / if miseven, pf2aandp e S
(Nrgjq(p)™/ 2= 1) (Nrge ()27 -1) . .
Ay = “K/Q 2(NrK/@(r£QQ1) if miseven, pt2aandp ¢ S,
Ap otherwise.
11: for C € D' do
12: Let (V,®) := QUADRATICFORMFROMINVARIANTS(m, u;g, C, (0, ...,0)).
13: Include (V, @) to L.
14: end for
15: end for
16: end for

17: return L.

Proof. First note that for any rational number ¢, the set {p € P(0); A, < c} is finite.
Thus the set D is finite. Similarly one sees that D’ is always finite. Hence the algorithm
terminates. Let L be an a-square-free lattice of rank m > 3 and h(L) < B. Let (V, ®)
be its ambient quadratic space and set S := {p € P(0); ordy(det(V, ®)) is odd}. It
remains to show that £ contains a unique space isometric to (V, ®). If m is even, let
F = K(y/disc(V, ®)). By construction, A\(Ly) > A}, for all p | 2. Lemma 4.2.9 shows that
A(Lp) > 1 for all p{2. Let p € S be a prime ideal of norm ¢ such that p { 2a. Again,
Lemma 4.2.9 shows that

R mD/2 N[y > Lyme1)/2

N

whenever m is even. Similarly, if m is odd, then

L e (m—1)/2 gm -1
AlLp) = 5(g ﬂ_n<7mm >¢22@+D
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6 Enumerating genera with small class number

where mg denotes the rank of a unimodular Jordan component of L,. Hence Siegel’s
mass formula shows that

B/2>Mass(L) > My~ [[ X
peSUP,

and therefore S € D. In particular, there exists some fractional ideal b of K such
that det(V,®)o = b2 - Hpesp has a totally positive generator and b? is unique up to
multiplication by elements in (K*)2. Whence the class det(V,®)(K*)? is eventually
represented by some unique product u;g.

Let C :={p € P(0); c(V}, @) = —1}. A case by case discussion using Lemma 4.2.9 shows
that A(Ly) > Ay for all p € P(0). Again by Siegel’s mass formula, shows that

B/2>Mass(L) > M- [ M-
pESUCUP,

Thus C' € D’ and the algorithm therefore constructs a space isometric to (V, @) in line 12
at some point. The fact that the spaces in £ are pairwise non-isometric follows from the
Local-Global Principle. O

Remark 6.3.5 Let p be a prime ideal of o over 2. Then )\; in Algorithm 6.3.4 can
be computed from Remark 6.3.3 and the description of all square-free op-lattices, c.f.
Proposition 3.3.11.

6.3.2 The hermitian case

Suppose E/K is a CM-extension of number fields and m > 2. From Lemma 4.2.9
and Theorem 4.5.2 it follows that A(Ly) € 3Z and A(Ly) = % is only possible if p is
ramified in £ and m is odd. This result combined with Siegel’s mass formula immediately
yields the following bounds.

Proposition 6.3.6 Let L be an O-lattice in (V,®) and let vy, be as in Theorem 4.2.5.
1. The root discriminant d%n of K is bounded by

n m\ 2/ (m?=1)
dym < (h(L)l/"l) .

2

2. If p € P(o) is ramified in E, then

2 \" (m2-1)/2 m(m—(—1)™)/4—1/2 1 me 1S even,
wo) > (2Z) .4 N .
(L= <7m> K /() 1/2 if m is odd .

3. If K =Q, then h(L) > 7%3m(m—(71)m)/471/2.
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6.3 Enumerating the possible definite hermitian spaces

Proof. Let x be the non-trivial character of Gal(E/K) and let Q = [O* : 0*u(E)] be the
Hasse unit index of F/K. Siegel’s mass formula 4.2.7 shows that

h(L o o m
#/E(E)> > Mass(L) = 27" dig " Negeyg (i) ™"~V [T () [T ML) -
=1 p

I ¢ > 1, then x(x*,2t) - L (6, 2 + 1) = Cie(2) EEEY > (p(2t +1) > 1. Thus

m? m(m—(—1)™
(L) > 29" - #1(E) - Lxc(x, 1) - djf /2 Ny g (dpy )™ V™A T ALy)
p

Tm Q . #CI(K) K
>1

.NrK/Q(dE/K)m(m—(—l)m)/4—1/2 . H A(Ly)
p

2r\" (m2— e (—1)™) /4—
> (fy) A2 N o (d gy U2 T AL
m p

>1

This shows the first two assertions. The last assertion follows from the fact that if K = Q,
then dg > 3. O

Corollary 6.3.7 Suppose that m > 3 and (V,®) admits an O-lattice of class number at

most 2. If K =Q, then m < 16. If K # Q, then m < 12 and the root discriminant d%n
s bounded as indicated below.

m |3 4 5 6 7 8 9 10 11 12
d/" <913 6.83 549 459 3.95 347 3.09 2.79 254 2.33

A complete list of these fields K is given in [Voi08].

Proof. If K = Q, the previous result shows that %3’”(’”_(_1)"1)/4_1/2 < 2 which only
holds for m < 16. If K # Q, then loc. cit. implies that

1/n 1/27m 2/(m*=1)
< — .
V5 <dg < (2 271')

This is only satisfied for m < 12 and the above table lists the values of the right hand
side for 3 <m < 12. 0

Remark 6.3.8 Suppose that m > 3 and (V, ®) admits an O-lattice of class number < B.
For any fixed field K, Proposition 6.3.6/2 effectively bounds the possible candidates
for the relative discriminant dg/x. The set of all quadratic extensions E/K with given
relative discriminant dg,x can then be obtained from (Magma’s interface to) Class Field
Theory.
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6 Enumerating genera with small class number

So for m > 3 and B < 2, one can easily write down all CM-extensions F/K which
might yield a hermitian O-lattice of class number at most B. It remains to be discussed,
which ambient hermitian spaces (V,®) over E might occur. This is achieved by the
following algorithm.

Algorithm 6.3.9

Input: Some integral ideal 2 of O such that 2 = 2A and integers m > 2, B > 1.
Output: A set £ of hermitian spaces of dimension m over E such that every genus of
A-square-free O-lattices of rank and class number at most B is represented by some
O-lattice in exactly one of the spaces in L.
1: Let My = 2t—mm. H;n:ﬂgK(Xj»l — j)| where x is the non-trivial character of
Gal(E/K).

2: Enumerate the finite set

D ={C CP(0); By, ¥ K, ® K, for all p € C and My - [[ N, < B/#u(E)}
peCUP

where P = {p € P(0o); p | dg/x} and
if m is odd and p is ramified in F,

Nry/q(p)™ ! if p is inert in E and pO {2,

otherwise.

’
Ap =

= NI N

3: Initialiase £ = ().
4: for C € D such that #C is even do
5: As explained in Remark 3.4.2, construct some definite, m-dimensional hermitian

space (V,®) over E such that
{p € P(o): det(Vh, @) ¢ N(E!)} = C.

6: Include (V, @) to L.
7: end for
8 return L.

Proof. First note that for every rational number ¢, the set
{peP(o); E, 2 K, ® K, for all p € C' and )\;, <c}

is finite. Thus the set D is finite and so the algorithm terminates. Suppose L is a
A-square-free O-lattice of rank m and class number at most B. Let (V, ®) be its ambient
hermitian space and set C' = {p € P(0); det(V}, ®) ¢ N(E})}. It remains to show that
(V,®) is isometric to some unique space in L. First, #C is even by the product formula
for Hilbert symbols. If m is odd and p ramifies in F, then A(L,) > 1/2. In all other cases,
A(Lp) > 1. Suppose now p € C' is not unramified in E. Then p is inert in E. Let ¢ be
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the norm of p. If pO is coprime to A, then A(Ly) > ’(T) _q‘ > ¢"™1/2 by Lemma 4.2.9.
So Siegel’s mass formula shows that

B/#u(E) > Mass(L) > Mo - [ [ A -
peCUP

Hence C € D and thus (V, ®) is isometric to a unique space in £ by the Local-Global
Principle 2.4.1. O

6.3.3 The quaternionic hermitian case

Let E be a definite quaternion algebra over some totally real number field K. Further,
let (V,®) be a definite hermitian space of rank m over E.

Proposition 6.3.10 Let L be an O-lattice in (V,®) and let vy, be as in Theorem 4.2.35.
Then

2
m(2m+1)

4" < | (L))" - T HNrK/@ + (=17

PldE/KJ 1
Proof. Without loss of generality, L is square-free. Proposition 4.2.7 shows that

h(L)/2 > Mass(L) > 7" d™ 2 T A(Ly)
plde,/ Kk

> dp VDT T Neregg(p)? + (1)

pldg/k J=1

(6.3.1)

O

Corollary 6.3.11 Suppose (V,®) admits an O-lattice of class number 1 or 2 and let vy,
be as Theorem 4.2.3. Then m <9 and the following holds:

N

. If m =1, then dl/n < 11.60. For a complete list of these fields, see [Voi08].

2. If m =2, then dl/n

< 6.34.

Ifm =3, then K = Q or K = Q(v/d) where d € {2,3,5,13,17}.
Ifm =4, then K = Q or K = Q(v/d) where d € {2,5}.

Ifm € {5,6}, then K = Q or K = Q(/5).

If m € {7,8,9}, then K = Q.

R

The algebra E satisfies

TT T Nekjaly + (—1)7) < g - a2
pldg/x J=1
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6 Enumerating genera with small class number

Proof. The last assertion is simply equation (6.3.1). If K = Q, then E/K is ramified
and thus 1 > v, H;-n:l(2j + (=1)7). This inequality only holds for m < 9. Suppose now

2
K #+ Q. By Proposition 6.3.10, shows that /5 < d%n < A ®m D This only holds for
m < 6. The right hand side is maximal for m = 1, in which case it yields the upper
bound d%n < 11.60. In particular, K is contained in the list [Voi08]. The result now
follows by enumerating all fields K for which

1 if n is even
1> Mass(L) >y . d7m+/2), : , ’
= Mass(L) 2 7" - dye IT7 (@ + (~1)7) if n is odd,
where ¢ denotes the norm of the smallest prime ideal of ring of integers of K. O

Remark 6.3.12 Suppose (V, ®) contains an O-ideal with class number at most 2. Con-
ditions 1.-6. of Corollary 6.3.11 and [Voi08] provide a finite list of candidates for (K, m).
For any such pair, the last condition of Corollary 6.3.11 is only satisfied by finitely dis-
criminants dg/ . The corresponding quaternion algebras E' can be constructed explicitly
as explained in Remark 3.4.2. Since there is only one isometry class of definite hermitian
spaces of rank m over F, one immediately obtains a finite list of candidates (V, ®) that
can possibly admit genera of class number one or two.

6.4 Enumerating the square-free genera with bounded class
number

The previous section showed how to compute all definite hermitian spaces (V, ®) that
can possibly admit square-free lattices with a certain class number, provided the rank of
the space is sufficiently large. Next is an algorithm to enumerate representatives of the
genera of these square-free lattices in (V, ®) explicitly.

Algorithm 6.4.1 ALLASQUAREFREELATTICES((V, ®), B,2)

Input: Some definite hermitian space (V, ®) over E of rank m > 2 and dimg (V) > 3.
Some positive integer B and some integral ideal 2 of O such that 2 = .

Output: A set S representing the genera of all A-square-free O-lattices in (V, ®) with
class number at most B.

1. if £ = K then

Set co := ][, p min{A(L); L a Ap-square-free Op-lattice in (V;, @)}

if m is odd then
Set ¢ = 2-n(m=1/2 Tm=D/2) ¢ (1 = 24)] - ¢,

m—1

Set Py := {p € P(o); p |2 or % < BJc}.

else

Set d := disc(V, ®) and r := {p € P(0); ordy(d) ¢ 27Z and p 1 2}.
Set ¢ := 27"/ [P Gre (1 - 20)] - | €k (xa, 1 = m/2)] - co.

Nr m=1_1)(Nr m/2_1
Set Py 1= {p € P(o); p | 2 or (e o000 P) gy
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10: end if

11: else if F/K is a quadratic field extension then

12: Set Py := {p € P(0); p ramifies in E}.

13: Set ¢ = 27" . T]™,|€x (X", 1 — i)| where y is the non-trivial character of
Gal(E/K).

14: if m is odd then replace ¢ by ¢/27#1 end if

15: Set Py := Py U {p € P(0); p is inert in E and Nrg g(p)™ ! < %}

16: else

17: Set ¢ :=27"" - T[%, |Ck (1 — 2i)|.

18: Set Py := {p € P(0); E, is ramified or

19: end if

20: Let {p1,...,ps} = PoU{p € P(0); M, is not unimodular or A, # O,}.

21: Compute some o-maximal O-lattice M in (V, ®) using Algorithm 3.5.5.

22: For 1 <i < slet S; be be a set of O-sublattices of M such that:

Nrgg(p)2—-1 — 2¢J°

o {L,; L € S;} represents the isometry classes of 2,-square-free Oy,-lattices in
(Vi @).
o Ly= M, forall L €S andqeP(o)— {p;}
23: return S := {(, L;; L; € S; and h((), L;) < B}.

Proof. Let w be the number of roots of unity of the center of E. Further, let L be
an 2A-square-free O-lattice in (V, ®). Then Mass(L) < ¢ by Lemma 4.2.9. Moreover, if
p € P(o) —{p1,...,ps} and Ly is not unimodular, then Mass(L) > B/w and so h(L) > B.
Hence h(L) < B implies that Ly, is isometric to some lattice in S; and M, = L, for all
p € P(o) — {p1,...,ps}. In particular, gen(L) is represented by some lattice in S. O

Remark 6.4.2 Here are some hints how the individual steps ofAlgorithm 6.4.1 can be
performed in practise:

1. The constant cg in line 2 of the previous algorithm can be computed using Proposi-
tion 3.3.11 and Remark 6.3.3.

2. The sets S; from line 22 can be computed using the results of Section 3.3 and
Algorithm LATTICEINGENUS 3.5.6.

3. The check h((); L;) < B in the last line can be done using Kneser’s neighbour
method, see Section 5.4. But of course, one should check Mass((); L;) < B/w first,
where w denotes the number of roots of unity of the center of E. Note that the
needed local factors are given by Lemma 4.2.9 and Section 4.5 or can be computed
using Remark 6.3.3.

6.5 Enumerating all genera with bounded class number

The previous section showed how to compute the definite hermitian, square-free O-lattices
of rank m and class number at most B. Given these lattices, one can enumerate all
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6 Enumerating genera with small class number

similarity classes of genera of definite hermitian O-lattices of rank m and class number at
most B by computing preimages under the reduction operators py successively. Before
this procedure can be stated explicitly, one needs to know how the local factors change
under pyp as well as whether this procedure actually terminates. These questions are
answered by the following two results.

Lemma 6.5.1 Let L and M be O-lattices in (V,®) and let P be a mazimal twosided
ideal of O such that p := PNo is good and unramified in K. Suppose that Ly is unimodular
and pp(M) = L. Then A(Ly) = 1.

If Fy, = K, ® K, then A(M,) is given by Lemma 4.2.9. In all other cases, M, = My 1. My
where M; is B -modular and the local factor A(M,) is given by the following table.

dimg(E) mo  ma | A(My)
L even odd | g (g eg) - (00
1
3

1 odd even | ¢mom2/2 . L(gm2/2 4 ¢)) . ((“;;21/)2/2)(12

1 odd odd | g(mom2—1)/2 . 1. ((n%/fl_)l/z)qg

1 even even | g"om2/2. (qmogzr;?ggf;i/jﬁl) ) (;10//22) .
N Lt

_ _ q2mom2 . (7210)(12

Here q denotes the norm of p, m; = rank(M;) and e; = +1 if disc(M;) € (K})? and
e = —1 otherwise.

Proof. This follows immediately from Theorem 4.2.4. O

Theorem 6.5.2 Let B be a mazximal twosided ideal of O and let A be an integral ideal
of O such that A = A. Let (L;)ien be a sequence of O-lattices in (V,®) such that
A C S(LZ) C O and Li+1 € ,Oqgl(Li) — {Li} fOT all i. Then # {Z € N; h(Ll) = h(Li+1)}
s bounded from above by some number which only depends on p := P No and Ly.

Proof. The group Aut(L;) is a subgroup of Aut(L;—1) and (h(L;));en is monotonic
increasing by Lemma 6.1.3. Loc. cit. also shows that h(L;) = h(L;—1) implies that
pq}l(Li,l) Ngen(L;) = {Li—1} or Aut(L;) € Aut(L;—1). Note that since Aut(L;) is a
subgroup of Aut(Ly), the latter case can only happen finitely many times. Hence is
suffices to show that there exists some integer N > 2, depending only on p, such that
pq}l(Li_l) N gen(L;) contains some lattice X different from L; for all i > N. Let m € O
such that ‘B = 7O and let ¢ > 2. Then (L;), = My L My where M; is square-free
and s(M>) C B2, Note that neither My or My are zero as (5(L;))en is bounded and
L; # L;+1. By Algorithm 3.3.2, M7 and M» have orthogonal decompositions into modular
lattices of rank at most 2. For showing the existence of such a lattice X, one may assume
that the M; itself are modular lattices of rank one or two. Let © € M; and z € M5 such
that Qg (x)o = n(M;) and Qg (2)o = n(My). If M; has rank 2, let y € M; such that
(x,y) is a basis of Mj; otherwise set y = 0. Similarly, if My has rank 2, let w € My such
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6.5 Enumerating all genera with bounded class number

that (z,w) is a basis of Moy; otherwise set w = 0. Let X; and Xy be the Oy-lattices
generated by (z — 77 '2,9) and (z + qu> x), ﬂgf: ;“:Ul)) respectively. Let X be the
O-lattice which coincides with L; at all places of o dlfferent from p and X, = X7 L Xo.
Note that s(Ms) C B. So if i is large enough, then X; L X» is an Op-sublattice of
L;_; different, yet isometric to My L My and pp(X) = pyp(Li—1). Explicit bounds for i
depend on whether p is good or bad and can be worked out case by case. O

The computation of all O-lattices in (V, ®) with a given class number B, can be reduced
to the enumeration of square-free lattices as follows.

Algorithm 6.5.3 INVERSESEARCH(L, B, %)
Input: Some positive integer B, some twosided ideal of O such that 2 = 2 and some
2-square-free O-lattice L in (V, ®) such that h(L) < B.
Output: A sequence L of O-lattices representing the genera G of all O-lattices in (V, ®)
that satisfy the following conditions:
e h(G) < B.
e G is reducible to gen(L).
e AC s(M)COforal MeG.
1: Initialiase the list £ = (L) and let w be the number of roots of unity in the center

of E.
2: Let P = {p € P(0); p is bad or ramified in E or Ly is not unimodular or 2, # O, }.

Mass(M) < B/w for some M € pg'(L) where ‘13
:Let P=P cP ; B
o e - {p (0) denotes a maximal twosided ideal of O over p

4: for p € P do

5: Set ¢ = 1 and fix some maximal twosided ideal 3 of O over p.

6: while i <#L do

7: Let M = {M € pg (Li); M # L; and A C s(M)}.

8: Let S be a set of lattices that represent {gen(M); M € M and h(M) < B}.
9: Append the lattices in S at the end of the list L.

10: Increment 1.

11: end while

12: end for

13: return L.

Proof. The set P is finite by Lemma 6.5.1. Hence Theorem 6.5.2 shows that the algorithm
terminates. Also £ does not contain two representatives in the same genus. It remains
to show that the lattices in £ represent any given genus G of integral O-lattices in
(V,®@) that satisfies the three conditions specified at the beginning of the algorithm. By
definition, there exist some M € G and maximal twosided ideals B1,..., B, of O and
some integer e; > 1 such that (pyy o...o0py )(M) = L. By Lemmata 6.1.3 and 6.5.1
one has PB; No € P for all 4. If e := ), e; 1s zero, then M = L. Suppose now e > 0.
The algorithm runs through the list P in a given order. Since the reduction operators
py, commute, one may suppose that B, N o comes after F; No for all ¢ < r. Hence

105



6 Enumerating genera with small class number

by induction, the list £ represents gen(pyp(M)). But then, the list £ also represents
gen(M) = G. 0

Again, the check h(M) < B in line 8 of Algorithm 6.5.3 can be done using Kneser’s
neighbour method, see Section 5.4. Finally, the way to enumerate all similarity classes of
genera of O-lattices of rank m and class number at most B is paved:

Algorithm 6.5.4 ENUMERATE(K, O, m, B)

Input: A totally real number field K and some maximal order O of a K-algebra F such
that either £ = K or E/K is a CM-extension or F is a definite quaternion algebra
with center K. Integers B > 1 and m > 2 such that m > 3 whenever £ = K.

Output: A set £ representing the similarity classes of all genera of O-lattices in hermitian
spaces of rank m over F having class numbers at most B.

1: Let 2 be the integral ideal of O from Remark 6.1.5.

2: Compute representatives (Vi, ®1), ..., (V;, ®;) of the isometry classes of all definite
hermitian spaces over E of rank m, that might admit 2A-square-free O-lattices with
class numbers at most B, see Algorithms 6.3.4 and 6.3.9 and Remark 6.3.12.

3: For 1 < i <t let £; be the output of ALLASQUAREFREELATTICES((V;, ®;), B, ).

4: Compute the set

t
L= U U INVERSESEARCH(L, B, %) .
=1 LG[:Z'

5: Eliminate duplicate entries from L, i.e. lattices that represent similar genera.
6: return L.

Proof. The algorithm terminates since it only makes finitely many calls to algorithms
that are already known to terminate. Let M be an O-lattice in some hermitian space
(V,®) of rank m such that h(L) < B. It remains to show that £ represents a genus
similar to gen(M). By the choice of 2, there exists some totally positive element a € K
such that the rescaled lattice M* satisfies % C s(M*?) C O. Thus (V,a®) is isometric
to (V;, ®;) for some i and one may assume that M C V;. Now gen(M) reduces to some
unique 2A-square-free genus G. Hence G is represented by some lattice L in £; and thus
gen(M) is represented by some lattice in INVERSESEARCH(L, B,2l). O

Remark 6.5.5 In the end, Algorithm 6.5.4 only returns similarity classes of genera.
Thus it can be optimized in two ways.

1. The group o%  acts on the the isometry classes of all definite hermitian spaces over
E of rank m, that might admit 2A-square-free O-lattices with class numbers at most
B via rescaling. It suffices to let (V1,®),...,(V;, @) in step 2 of Algorithm 6.5.4
represent the orbits of that action.

2. One can replace step 3 by the following steps.
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6.5 Enumerating all genera with bounded class number

1: Change Algorithm 6.4.1 to only return a set £ representing the 2-square-free
O-lattices in (V;, ®;) of class number at most B such that the rank of the
unimodular component of a Jordan composition of L, has rank at least m/2
for all p € P(0) such that Ay, # Oy.

2: for1<i<tdo

3: Let P = {p € P(0); A, # Op and L; is not unimodular for some L € L]}
4: for p € P do

5: for L € £} such that L, is not unimodular do

6: Let a € K* be totally positive such that (L#*)¢ is 2A-square-free.
7 Insert (L##)% into £/

8: end for

9: end for

10: Set L; := L].

11: end for

Note that an element a as above always exists, by the choice of 2. Further, (L#F)?
and L share the same class number. Also note that the set £} is usually much smaller
than the set £; from Algorithm 6.5.4 and thus can be computed much quicker.
Now after step 11, the set |J, £; will represent each genus of definite hermitian
2A-square-free O-lattices. Hence it is save to replace the sets £; in Algorithm 6.4.1
by the ones from above.
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7 Quadratic lattices with class number at
most 2

The purpose of this chapter is to report on the classification of all definite quadratic
lattices over totally real number fields of rank at least 3 and class number at most 2.

The classification of all rational quadratic forms with class number 1 is originally
due to G. L. Watson who classified these lattices by hand in a long series of papers
[Wat63, Wat72, Wat74, Wat78, Wat82, Wat84, Wat|. In [KL13], D. Lorch and the author
checked Watson’s computations using the algorithms given in Chapter 6 and found them
to be largely correct. They also enumerate all one-class genera in dimensions 4 and 5, for
which G. Watson only produced partial results.

In [Kirl4], the author classifies the one-class genera of maximal quadratic lattices over
totally real number fields having rank at least 3. Very recently, D. Lorch in his thesis
successfully extends this classification to all one-class genera over totally real number
fields, see [Lor] for details. Prior to that, the literature mostly discussed unimodular
lattices over number fields, see [Sch94] and the references therein.

Throughout this chapter, let £ = K be a totally real number field of degree n and let
(V,®) be a definite quadratic space over K of rank m. Further, let 0 be the maximal
order in K.

7.1 The unary case

Suppose m = 1 and let L, L’ be o-lattices in (V, ®) in the same genus. For any prime
ideal p of o, there exists some x, € K such that L; = Lyxy, and xg = 1. Whence
xp € {£1} and Ly, = Ly,. But then L' = L. In particular, any unary o-lattice has class
number one.

7.2 The binary case

7.2.1 Definite binary quadratic lattices over totally real number fields

Suppose that m = 2. In his seminal book ‘Disquisitiones Arithmeticae’ [Gau0l],
C. F. Gau} introduces (among many other things) the composition of binary, rational
quadratic forms and the notion of (proper) isometry classes and genera. He relates the
proper isometry classes in a given genus with the so called ambiguous ideal classes of
some quadratic extension of Q. A similar result holds for any totally real number field K.
The following approach is taken from H. Pfeuffer [Pfe81] and O. Korner [Kor81].
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7 Quadratic lattices with class number at most 2

The discriminant disc(V,®) = —det(V, ®) is a non-square, as (V, ®) is anisotropic.
Hence F' = K (4/disc(V, ®)) is a quadratic field extension of K. Let o be the non-trivial
Galois automorphism of F'//K and let f denote the ring of integers of F'. For any subset S
of (a completion of) F, let S' = {x € S; xo(x) = 1} be the elements of relative norm 1
in S.

By [Kne02, (6.15)], the even part of the Clifford algebra of (V,®) is isomorphic to
the field F. Further, the space (V, ®) is similar to the field F' equipped with the trace
bilinear form

zo(y) +o(z)y

1
FxF = E, (z,y) — §TF/K($U(?J)) = 5

So for the classification of all definite binary quadratic lattices with a given class number,
one may assume that V' = F and ® is the bilinear form from above. Then the quadratic
form Qg associated to @ is the usual relative norm Nrp/x: F — K, x — xo(z).

Lemma 7.2.1 The map ¥: F! — SO(F,®), a — (z — azx) is an isomorphism of
groups and o € O(F, ®) is an isometry of determinant —1. Similarly, Fp1 = SO(Fp, ®)
for all p € P(o).

Proof. Only the surjectivity of ¥ requires proof. Let ¢ € SO(F, ®). Then a := (1) € F*.
Let z € F* be such that Tp/g(z) = 0. Then (1,z) is an orthogonal basis of (F, ®).
Hence its image under ¢ must also be such a basis. Thus ¢(z) = asz for some s € K*.
Comparing norms shows that s2 = 1. Together with det(p) = +1 this implies that s = 1
and therefore p = ¥(a). O

Given any o-lattice L in (F,®), let h™(L) denote the proper class number of L, i.e.
the number of proper isometry classes in the genus of L. Let A = O, (L) be the (right)
order of L. The previous lemma shows that Aut™ (L) = A! is finite. Thus A’ = pu(F)N A
is the group of roots of unity in A*. Moreover, ¢ € Aut(A) — Aut™(A) shows that
cls(A) = cls™(A). Hence

h(A) < hT(A) <2h(A) —1. (7.2.1)

In particular, h(A) =1 < hT(A) = 1.
Lemma 7.2.2 Let L be an o-lattice in (F,®) and let A = O,(L).
1. L is an invertible, fractional ideal of A.

2. The set gen(A) forms a group with respect to the usual multiplication of ideals and
cls™(A) is a subgroup.

3. The map V: gen(A) — gen(L), M — LM is a bijection, which preserves proper
isometry classes.

4. KT (L) = h*(A) = [gen(A) : clsT(A)].
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7.2 The binary case

Proof. The product Lo(L) is generated as A-module by {zo(x); z € L}. But then
Lo (L) = Nrpjk (L) - A. Thus Nrp/g (L)~ 'o(L) is the inverse of L. An o-lattice X is in
gen(A) if and only if for all p € P(0) such that X, # A, there exists some x), € Fp1 with
Xy = Apzy. The second part follows immediately from this characterization. Similarly,
one characterizes the elements in gen(L). This shows that ¥ is well-defined. It is a
bijection, since L is invertible. Two lattices L, Lo € gen(L) are properly isometric if
and only if L1 = Loc for some ¢ € F'. This is equivalent to L='L; = L™ !Lyc, i.e.
U—Y(L1) = U1(Ly)e. Hence Ly € clsT(Lg) <= ¥ (L) = U1(Ly) (mod clst(A)).
So U~! and thus ¥ preserve proper isometry classes and the number of such classes is
equal to the index [gen(A) : cls™(A)]. 0

The previous lemma shows that the classification of all o-lattices in (F, ®) with a certain
proper class number boils down to classification of all o-orders A in F' with that proper
class number. The latter number can be related to h™(f) as follows.

Theorem 7.2.3 Let A be an o-order in F with conductor c. Then ht(A) > ht(f) and

VRN S ERON | [ F 5

ple

Proof. The proof follows [K6r81, Lemma 3|. The case ¢ = o is trivial, so suppose ¢ # o.
The map ¢: gen(A) — gen(f), L — Lf is a group homomorphism. Let M € gen(f). For
every prime ideal p of o, there exists some z, € Fp1 such that M, = f,x, and one can
choose z, = 1 at all but finitely many places. Hence there exists some o-lattice L such
that L, = Ayx, everywhere. This shows that ¢ is onto with kernel

Ker(p) = {(J(F N Apzy) s ap € 3} -
ple

This yields the first assertion and an epimorphism 1: gen(A)/ clst(A) — gen(§)/ cls™ (f)
such that

Ker () = Ker(p)/(Ker(¢) Nclst(A)) .

Further,
II5 — Ker(e), (wp) = [\(F 0 Apay)

ple ple

is a group epimorphism with kernel Hp‘ . A; and therefore

Ker(y) = Hf;/A; .

ple

Finally, note that Ker(p) Nclst(A) = {zA; z € f!} = f1/A!. Combining the above
indices shows that h*(A) = h*(f) - # Ker(v)) = hT(f) - [f* : Al]7L- Hpk[f; LAy 0
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7 Quadratic lattices with class number at most 2

In particular, there are only finitely many conductors ¢ such that h*t(A) < B for any
given bound B. It is worth mentioning that, O. Korner expresses [f! : A1]7! . I, [Fp : Ay
in terms of some invariants of gen(L) making the above theorem even more explicit, see
[K6r81, Theorem 2] for details.

What remains is a study of the proper class number of f, which is classical. Let Z(f)
be the group of fractional f-ideals and consider the following subgroups.

o P:={xaf; x € F*} and Py := {zf; x € K*}.
e A:={aecZ(f); a=o0(a)} the subgroup of ambiguous ideals.
o 7y :={af; a € Z(0)} the image of Z(o0) in Z(f).
Hilbert’s Theorem 90 shows that the group homomorphism
Z() — gen(}), ar+ ao(a)”!

is actually onto. Hence it induces an group epimorphism Z(f) — gen(f)/cls™(f). The
kernel of this epimorphism is AP and thus

gen(f)/ cls™ (f) = Z(f)/ AP .

To evaluate the index h* (f) = [Z(f) : AP], consider the diagram

Z(f)

were 7 denotes the number of prime ideals of o that ramify in F.

By Hilbert’s Theorem 90, ¢: F* — F!, x + zo(x)~! is an epimorphism of groups
with kernel K*. For x € F*, the ideal zf is ambiguous if and only if ¢(z) € §'. Let
U={zeF*;p(x)€f} Then U — (ANP)/Py, x + zf is a group epimorphism with
kernel K*f*. Hence

(ANP)/Py = U/K*F .
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7.2 The binary case

Further, ¢ induces isomorphisms U/K*f* 2 f1 /(%) and §*/o*f' = o(§*)/(f})?. From
[f1: (f1)2] = 2, its follows that

[ANP: Pl =2/Q

where @Q = [f* : u(F)o*] € {1,2} denotes the Hasse unit index of F/K. Comparing
indices yields the following theorem.

Theorem 7.2.4 Let r be the number of prime ideals of o that ramify in F and let
Q = [f* : u(F)o*] be the Hasse unit index of F//K. Then

o #CUF) 1
P = [0 AP = e g

In particular, any CM-extension F'/K with relative class number ﬁgfl((?) equal to 1
yields definite, binary quadratic o-lattices with class number one. However, the exact list
of all CM-fields with relative class number one is currently unknown. See [LKO06] for an
overview of the problem. Thus the classification of all definite, binary quadratic forms
with class number one is out of reach with current methods.

Provided that there are infinitely many real quadratic fields of class number one,
[Kor81, Theorem 1] shows that there are infinitely many indefinite, binary quadratic
lattices with class number one over the integers.

Despite the fact that Theorem 7.2.4 is ineffective, the enumeration of all definite binary
quadratic lattices is still a finite problem. The result is due to A. Earnest and D. Estes
[EE81].

Theorem 7.2.5 Gliven any positive integer B, there are only finitely many similarity
classes of definite binary quadratic forms over totally real number fields with class number
at most B.

Proof. See [EE81, Section 5]. O

7.2.2 Definite binary quadratic lattices over the rationals

While Theorem 7.2.4 does not allow a classification of all binary quadratic forms of class
number one in general, it does so for K = Q under the assumption of the Generalized
Riemann Hypothesis (GRH). The discriminants of the maximal orders corresponding to
these forms are L. Euler’s well known 65 idoneal numbers. The classification is based on
the following observation and Louboutin’s bound which will be recalled in Theorem 7.2.7.

Remark 7.2.6 Let A be an imaginary quadratic Z-order. Then
1. h(A)=1 < ht(A) =1.

2. h(A) =2 < ht(A) € {2,3}.
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7 Quadratic lattices with class number at most 2

Proof. By equation 7.2.1, only the implication h*(A) = 3 = h(A) = 2 requires
proof. Let I be a fractional ideal of A such that cls™(I) generates gen(A)/ clst(A) = Cs.
Suppose h(A) # 2. Then h(A) = 3 and thus cls(L) = cls*(L) for all L € gen(A). In
particular, o(I) € cls™(I). By Hilbert’s Theorem 90, one may assume that o(I) = I is
ambiguous. Since Q has class number one, this implies that al is a product of ramified
ideals of A for some a € Q*. But then clst(I) has order at most 2 which yields the
desired contradiction. O

Theorem 7.2.7 ([Lou90, Theorem 1]) Let F' be an imaginary quadratic number field.
Assuming (GRH), one has

T Ve
FOE = S s

Suppose now F' is an imaginary quadratic number field with maximal order f such that
h*(§f) < B. If (GRH) holds, then Theorems 7.2.4 and 7.2.7 imply that

Var _ 3esp()

Indp — T

2B <26-2""'B (7.2.2)

where r denotes the number of primes that ramify in F. Thus dg is a product of r
coprime integers from
{4,8} U{p € Z; p an odd prime} .

In particular, the left hand side of equation 7.2.2 tends to oo as r — oo. For example in
the case B = 3, one checks that » < 9 and 9973 is the largest possible prime divisor of
dr. An explicit search using Magma yields the following result. The first part is due to
P. Weinberger [Wei73].

Theorem 7.2.8 Assuming (GRH), the following holds.

1. There are 65 mazimal, imaginary quadratic Z-orders § such that h™(f) = 1. The
discriminants of these orders are Fuler’s idoneal numbers. They are listed in
Table 7.1.

2. There are 161 mazimal, imaginary quadratic Z-orders § such that h*(f) = 2.
3. There are 338 mazximal, imaginary quadratic Z-orders f such that h*(f) = 3.

A list of these orders is available from [Kirl6].

Suppose now A is a Z-suborder of f with conductor ¢ # 1 such that h*(A) < B.
Theorem 7.2.3 shows that ht(f) < h*(A) < B. Hence for all orders § from Theorem 7.2.8,
one simply has to compute the possible conductors that yield orders with proper ideal
class number at most B. If p | c and p{2dp, then fll, is mapped to the elements of f,/pf,
of norm one and A} is mapped to {£1}. Hence [f} : Al] > %. Thus c¢ is supported at

{p;pl2dp orp <1+ 2B[f" : {£1}]/hT(})} .
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This yields all possible prime divisors of ¢. The same argument as used in Theorem 7.2.3
actually shows that h*(A’) > h™(A) for any suborder A’ of A. Thus for any prospective
prime divisor p of ¢ one can test the o-suborders of § having conductor p,p?, p3,... until
one reaches an order A with h™(A) > B. This gives an upper bound for the p-adic
valuation of ¢ and thus all possible conductors c. If one applies this strategy to all orders
given by Theorem 7.2.8, one obtains the result below.

Theorem 7.2.9 Assuming (GRH), the following holds.

1. There are 101 imaginary quadratic Z-orders A such that h*(A) = 1. They are listed
in Table 7.1.

2. There are 324 imaginary quadratic Z-orders A such that h™(A) = 2.
3. There are 683 imaginary quadratic Z-orders A such that h*(A) = 3.

A list of these orders is available from [Kir16].

The above result and Remark 7.2.6 immediately yield a classification of all definite
binary quadratic lattices of class number at most 2 over the rationals.

Corollary 7.2.10 Assuming (GRH), there are 101 imaginary quadratic Z-orders A such
that h(A) =1 and 1007 imaginary quadratic Z-orders A such that h(A) = 2.

Table 7.1: Fundamental discriminants — dz and conductors ¢ of orders with h™ = 1.

dr ¢ dr ¢ dr ¢ dr ¢ dr ¢ dr ¢

3 1,2,3,4,5,7,8|| 43 1 | 148 1 || 340 1 595 1 || 1320 1,2

4 1,2,3,4,5 51 1 163 1 372 1 627 1 1380 1

7 1,2,4,8 52 1 168 1,2 403 1 660 1 1428 1

8 1,2,3,6 67 1 187 1 408 1,2 || 708 1 1435 1
11 1,3 84 1 195 1 420 1 715 1 1540 1
15 1,2,4,8 88 1,211 228 1 427 1 760 1,2 || 1848 1,2
19 1 91 1 232 1,21/ 435 1 795 1 1995 1
20 1,3 115 1 235 1 483 1 840 1,2/ 3003 1
24 1,2 120 1,21 267 1 520 1,2 || 1012 1 3315 1
35 1,3 123 1 280 1,21 532 1 1092 1 5460 1
40 1,2 132 1 312 1,2 555 1 1155 1

7.3 The ternary case

Suppose m = 3. The bound given in Corollary 6.3.2 is simply not good enough to be able
to write down all possible base fields K that might admit one-class genera of definite,
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7 Quadratic lattices with class number at most 2

ternary quadratic forms. However, there is a well known correspondence between ternary
quadratic forms and quaternion orders due to J. Brzezinski [Brz80, Brz82] and M. Peters
[Pet69]. It is based on work of M. Eichler [Eic52] and H. Brandt [Bra43]. In [KL16],
D. Lorch and the author used this correspondence to classify all ternary quadratic forms
of class number at most 2. The section at hand gives a summary of the method used.

By [Kne02, Section 6], the even part of the Clifford algebra of (V,®) is a definite
quaternion algebra Q. Let 0: Q — Q be its canonical involution and let nrg /K and trg /K
denote the reduced norm and trace of Q. By [Kne02, (6.20)], the trace zero subspace
QV:={reQ; trg/k (z) = 0} equipped with the trace bilinear form

Q" x Q" = K, (r,y) v+ 3 tr(ao(y)

is similar to (V, ®). So for the classification of all definite ternary quadratic lattices with
a given class number, one may assume that V = Q° and ® is the bilinear form from
above. Its associated quadratic form Q¢ is then the reduced norm nrg,x-.

An o-order O in Q is called Gorenstein, if the inverse reduced different

o .= {x e Q; tro/k(zO) C o}

is an invertible twosided ideal of 0. For example maximal or more generally hereditary
orders are Gorenstein. For any order O, the ideal D(O) := nrg,x (O#)~! of 0 is called

the reduced discriminant of O. If O is a maximal order in Q, then D(O) = dlg//QK is the
product of all prime ideals of o that ramify in Q. Two o-orders O, O’ in Q are said to be
of the same type, if Op and O}, are isomorphic (i.e. conjugate) for all p € P(0). The set of
all orders in @ which are of the same type as O is a union of finitely many isomorphism
classes. The number of the classes is called the type number of O. Note that any order is
contained in some canonical Gorenstein order, the so-called Gorenstein closure. Further
the type number of an order always agrees with the type number of it Gorenstein closure,
see Section 2 of [KL16] for details. Hence the classification of all orders with given type
number boils down to the enumeration of all Gorenstein orders with that type number.

If L is an o-lattice in (Q°, ®), then

is a Gorenstein order in Q (see [Pet69, Satz 7] and [Brz82, Proposition 2.3]). Conversely,
if O is a Gorenstein order in Q then

£(0) :=D(0) - (07 N QY
is an o-lattice in (QO, D).

Theorem 7.3.1 Let Q be a quaternion algebra over some number field K and let L, L'
be o-lattices in (Q°, ®).
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7.3 The ternary case

1. Each Gorenstein order O in Q satisfies O = O(£(0)).
2. There exists a fractional ideal a of o such that aL = £(O(L)).

3. O(L) and O(L') are isomorphic if and only if L' is isometric to aL for some
fractional ideal a of o.

Proof. The first assertion follows from [Brz82, Proposition 3.2] and it implies O(L) =
O(L(O(L))). Hence L and £(O(L)) differ by some fractional ideal as [Eic52, Satz 14.
shows. The last part is proven in [Brz80, Corollary 3.10]. O

The two constructions D and £ are compatible with taking completions. This shows
the following result.

Corollary 7.3.2 Let L be a ternary o-lattice in (Q, ®). Then the class number of gen(L)
coincides with the type number of O(L).

Recently J. Voight came up with a functorial correspondence between ternary quad-
ratic forms and quaternion orders which preserves class numbers [Voill]. Using either
correspondence shows that the classification of all definite ternary quadratic forms over K
with class number A is equivalent to the enumeration of all definite quaternion Gorenstein
orders over K with type number h.

Let O be a Gorenstein order in Q and let p € P(0). There exists some twosided ideal
I of O such that I/pO is the radical of the o/p-algebra O/pO. The radical idealizer
process 1d,(O) of O is the Gorenstein closure of the right order of I. The radical idealizer
process is similar to the reduction operators p, from Definition 6.1.1, as it satisfies the
following conditions.

e (Idy(0))y = Oy if and only if Oy is hereditary, c.f. [Rei03, Chapter 39].
o 1d,(Idp(0)) = 1d,(Idg(O)) for all q € P(o).
e The type number of O is at least the type number of Id, (O), c.f. [KL16, Lemma 5.4].

In particular, if K admits a definite, ternary quadratic o-lattice with class number h,
it also admits a definite, hereditary, quaternion order with type number at most h.

Theorem 7.3.3 (Eichler’s Mass formula) Let O be a hereditary order in Q. Write
D(O) = dlg//?K-[ for some integral ideal | of 0. Further let O1,...,O; represent the

isomorphism classes of all orders in Q that are of the same type as O. Then

h(O;
M(0) =) [O;E : 0)*]

=1

=217 |G (= 1)) - # CUK) - ] (Negeyg(p) = 1) - [ (Negeyqp) +1) -
wlal a

Here h(0O;) denotes the number of isomorphism classes of invertible, twosided ideals of O;.
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7 Quadratic lattices with class number at most 2

Proof. See for example [Eic55, Section 4]. 0

If O is an order in Q, let No«(0) = {z € Q*; zOz~! = O} be its normalizer in Q*.
If O is hereditary, [Eic55, Section 4] shows that the number h(O) occurring in Eichler’s
mass formula is given by

2" - # Cl(K) [O* : 0%]
No-(0) : O°K*] WNo-(0) : K¥|
where r denotes the number of prime ideals dividing D(O).

Combining equation (7.3.1) with Eichler’s mass formula yields a major improvement
over Corollary 6.3.2.

h(0) = = 9" # CIK) - (7.3.1)

Theorem 7.3.4 If O is a hereditary order in Q with type number t, then
A" < (t/2)H" - am? - (3/2) 20/ mP/s,
Here wy(K) denotes the number of prime ideals in o of norm 2.

Proof. Let r and {O1,...,0:} be as in Theorem 7.3.3. Eichler’s mass formula and
equation (7.3.1) show that

t

Y

S 1 MO
; Wo-(05) : K]~ 27 # CI(K)
N | =

2
p‘dl/Q
Q/K

> 217 |G (— 1) - 27w > K
3/2
T n

as claimed. 0
Corollary 7.3.5 If O is a hereditary order in Q with type number t < 2, then
A" < (4n? - (3/2)2(F)/m)2/3 (7.3.2)

There are 358 totally real number fields K that satisfy equation (7.3.2). The largest one
has degree §.

Proof. Let K be a totally real number field that satisfies equation (7.3.2) and let n be
its degree. Then d%” < (6m2)%/3 < 15.20. The bounds from [BDO08] imply that n < 10.
If n = 10, then [BDO08] shows that d%n < 15.20 is only possible if we(K) < 1. But
A" < (472 - (3/2)1/19)2/3 < 11,92 is impossible by [Voi08]. The case n = 9 is ruled out

similarly. The tables [Voi08] list all totally real number fields K with d}(/n < 15.5 and

degree at most 8. The result follows from an explicit search. 0
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7.3 The ternary case

With the possible base fields at hand, the enumeration of all ternary quadratic o-lattices
with class number at most 2 can now proceed as in Chapter 6. However, enumerating
the quaternion orders of type number 2 directly as it is done in [KL16], is much more
efficient:

Suppose a hereditary order O in Q has type number ¢t < 2. Let D(O) = dlg/2K -[ for
some integral, square-free ideal [ of 0. As in the proof of Theorem 7.3.4 it follows that

22>t 2 2"k (1)) [ Nergop) = 1) - TT Newyq(p) +1) -

1/2 [
p|dQ/K Pl

For any field K from Corollary 7.3.5, there are only finitely many pairs of integral,
square-free coprime ideals (dlg//QK, [) of o that satisfy this inequality. From dg,x one

obtains the quaternion algebra Q as explained in Remark 3.4.2. Every order O in Q

with discriminant D(O) = dlg//QK [ is hereditary and of the same type. The construction
of such an order can be done as follows.

1. Start with a maximal order O in @ which can be computed using Zassenhaus’

Round?2 algorithm, see [Zas72].

2. For p | [ find an isomorphism ¢y: O/pO — (0/p)?*2. This boils down to find some
nonzero element in O/pO with reducible minimal polynomial over o/p.

3. For p | [ replace O by the preimage of the upper triangular matrices under .

Once O is constructed, a set of representatives of the conjugacy classes of hereditary
orders with discriminant D(O) can be obtained from [KV10, Algorithm 7.10]. This yields
the type number of O. So the enumeration of all definite, hereditary quaternion orders
with type number 2 is now clear, see also [KL16, Algorithm 4.5]. The non-hereditary
orders with type number at most 2 can be gotten by successively taking preimages under
Id, but two questions still remain:

o At which places p does one have to compute preimages of Id, to reach all Gorenstein
orders of type number 27

e How to compute the type number of such a preimage.

These two questions are answered by the following lemma.

Lemma 7.3.6 Let A,O be Gorenstein orders in Q such that Idy,(A) = O for some
p € P(o). Let (Oq,...,0;) represent the conjugacy classes of all orders in Q which are
of the same type as O.

1. The normalizer Ng-(O;) acts on
Xi={AN c 9; A is of the same type as A and Idy(A') = O;}
by conjugation. Let {A;1,...,N;n,} represent the orbits of this action. Then

{Aij [1<j<mi, 1<i<t}
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7 Quadratic lattices with class number at most 2

s a complete set of representatives of the conjugacy classes of all orders in Q which
are of the same type as A.

2. Suppose p { D(O) and Ay is not hereditary. Then #X; > Nrg o(p)(Nrg/g(p)—1)/2.
In particular, the type number of A is at least

L [Nrg/o(p) (Nrg/q(p) — 1)
Z[ 2 #Ng-(0;) -‘ '

i=1
Proof. See [KL16, Lemmata 5.4 and 5.5]. O

A complete description of the method to compute all definite Gorenstein quaternion
orders with a given type number is presented in [KL16, Algorithms 4.5 and 5.6]. If one
applies these algorithms to the fields K given by Corollary 7.3.5, one finally obtains the
following result.

Theorem 7.3.7

1. There are 4194 types of definite Gorenstein quaternion orders of type number one
over 30 different base fields. The largest field has degree 5.

2. There are 18538 types of definite Gorenstein quaternion orders of type number two
over 75 different base fields. The largest field has degree 6.

A complete list of representatives is available electronically from [Kirl6].

Note that since the type number of an quaternion order agrees with the type number
of its Gorenstein closure, the above result actually classifies all definite quaternion orders
with type number at most 2. From that classification it is fairly easy to enumerate all
definite quaternion orders which ideal class number (i.e. the number of isomorphism
classes of invertible left ideals) at most 2. See [KL16, Section 6] for details.

7.4 The general case

As mentioned in the beginning of this chapter, the enumeration of all one-class genera of
definite quadratic lattices is due to G. Watson, see also [KL13|. D. Lorch very recently
extends this classification to arbitrary totally real number fields in his thesis [Lor].

Applying Algorithm 6.5.4 to the fields K and ranks m > 4 given by Corollary 6.3.2
yields the following results.

Theorem 7.4.1 The number of similarity classes of genera of definite quadratic Z-lattices
with rank m > 4 and class number h < 2 is given by the following table.

m ‘ 4 5 6 7 8§ 9 10 11 12 13 14 15 16 =>17
h=1] 481 295 186 8 36 4 2 0 0 0 0 0 O 0
h=2|1717 967 581 302 131 52 16 7 6 0 2 2 1 0

A complete list of representatives is available electronically from [Kirl6].
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7.5 Unimodular lattices with mass at most 1/2

To state the results for K # Q, two specific lattices over Q(\/g) will be needed.

Let Vi := Q(¢5) and let o1: Q(¢5) — Q(¢5) the field morphism which maps (5 to (5 '
Similarly, let V5 := (g) and let oo be the canonical involution of V5. Any maximal

Q(v5)
order M; of V; equipped with the trace bilinear form

zoi(y) + yoi(x)
2

(I)i:‘/ixw*)‘/iv (x,y)+—>

yields an indecomposable, definite binary or quaternary quadratic Z[Lf]—lattice having
class number one. Using the notation of [Neb98], the automorphism groups of M; and
My are £D1p and (SLg(5) o SLa(5)):2. Note that the lattice Mj is similar to the lattice
H, of [Sch94].

Theorem 7.4.2 Suppose L is a definite quadratic lattice over K # Q of rank m > 4.

1. There are 607 similarity classes of one-class genera of quaternary lattices over 22
different base fields. The largest field has degree 5.

2. There are 1737 similarity classes of two-class genera of quaternary lattices over 32

different base fields. The largest field has degree 6.

8. Ifm >5 and h(L) = 1, then m < 6 and K = Q(\/5). Moreover, either L or L* is
sitmilar to (1) L My or My L M.

4. If m > 5 and h(L) = 2, then K is either Q(v/5),Q(v/2),Q(+/13) or the mazimal
totally real subfield Q(67) of the seventh cyclotomic field Q(¢7). The number of
similarity classes of such genera is as follows.

m |5 6 78 >9
Q(5) [40 11 2 1 0
QH+?2) |10 0 0 0 0
QW13)|2 0 0 0 0
QBz) |4 2 00 O

A complete list of representatives is available electronically from [Kirl6].

The first and third part of the previous theorem are due to D. Lorch, see also [Lor].

7.5 Unimodular lattices with mass at most 1/2
Let L be a unimodular o-lattice in a definite quadratic space (V,®) over K such that
Mass(L) < 1/2.

Lemma 7.5.1 Let K be a totally real number field of degree n. Suppose L is a unimodular,
definite quadratic o-lattice of rank m > 3 and mass at most 1/2. Then

4
d%n < (27% *Ym ot Cm)m(m_l)
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7 Quadratic lattices with class number at most 2

where v, s given by Theorem 4.2.3 and

3/2 ifm =3,
cm=19/8 ifm=4,
1 otherwise.

In particular, m < 28 and m < 14 whenever K # Q.
Proof. Suppose first m is odd. Then A(Ly) > 1 unless m = 3 and Nrg/g(p) = 2, see
Section 4.4 for details. Hence Siegel’s mass formula states that

(m—1)/2
1/2 > Mass(L) = v, d (m=1)/4 H(K (29) H)\ Ly)

Z _ndm(m 1) 4 (2/3) 1fm:3,
1 otherwise.

Suppose now that m is even. Let disc(L) = d - (K*)2. Then A(Ly) > 1 unless p ramifies
in K (v/d) or all of the following conditions hold: m = 4, Nrg/g(p) =2 and d € (K;)Q.
Hence

1/2 > Mass(L)

m/2—1
= " A N g (e vy ) ™ TT G (20) - 2 (xam/2) - [T ML)
=1 p

= grm=D/1, 8/9)" if m =4,
moK 1 otherwise.

This yields the claimed bounds on dl/ ". Note that this bound becomes less than 1 (or

less than v/5) if m > 29 (or m > 15). O

The previous lemma shows that there are only finitely many pairs (K, m) such that K
admits unimodular lattices of rank m and mass at most 1/2. Further, all possible base
fields K are listed in the tables [Voi08].

The assumption that L is unimodular, forces c¢(V;, ®) = +1 for all odd prime ideals p
of 0. Hence one can easily adopt Algorithms 6.3.4 and 6.4.1 to just enumerate the genera
of unimodular o-lattices with mass at most 1/2 and rank m.

Let I,,(K) denote the lattice 0™ equipped with the standard bilinear form. The
isometry classes of all unimodular Z-lattices are enumerated in J. Conway and N. Sloane
in [CS99] up to rank 25. It turns out that gen(l26(Q)) and gen(l27(Q)) are the only
genera of unimodular lattices with rank m > 26. However, I was unable to split these two
genera into isometry classes using Kneser’s method since the class numbers and ranks of
the lattices are simply too large.

For K # Q, splitting the genera was not much of a problem. The numbers of isometry
classes, genera and base fields K are given by the following table.
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7.5 Unimodular lattices with mass at most 1/2

rank | # genera # isometry classes # base fields K
3 158 574 86
4 235 1760 131
5 19 191 11
6 19 295 10
7 7 252 3
8 15 544 7
9 2 43 2
10 3 261 2
11 1 100 1
12 1 15 1

> 13 0 0 0

In each case, after splitting the genera into isometry classes, the Mass of the genus was
compared with Siegel’s mass formula using the local factors given in Section 4.4. They
agreed in all cases, which is a good indicator that the results in Section 4.4 are correct.

Finding the pairs (K, m) such that I,,,(K) has class number one, has been studied
extensively by various authors. The case m > 4 was settled by J. Dzewas and K. Barner
[Dze60, Bar68]. In [Pfe71b], H. Pfeuffer gives a list of 6 fields K such that I3(K) has
class number one, but he could not prove the completeness of this list. The enumeration
of all unimodular lattices with mass at most 1/2 or [KL16] show that Pfeuffer’s list is in
fact complete. More precisely, the following result holds.

Theorem 7.5.2 Let K be a totally real number field and let m > 3 be an integer. Then
I,(K) has class number one if and only if one of the following conditions holds.

e m =3 and K is one of

Q, Q(v2), Q(V5), Q(V17), Q(67), Qa]/(z* — 2? — 3z + 1)

where Q(07) denotes the mazimal totally real subfield of the seventh cyclotomic field
Q(¢r)-

e m=4and K € {Q, Q(v2), Q(v5)}.
e 5 <m<8and K =Q.
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8 Hermitian lattices with class number at
most 2

Let E/K be a CM-extension of number fields and let (V,®) be a definite hermitian
space over F of rank m. The maximal orders of K and F will be denoted by o and O
respectively.

In this chapter a complete classification of definite hermitian lattices over F of rank
m > 3 with class number at most 2 will be given.

8.1 The unary case

Suppose m = 1. Up to similarity, the space V = E carries only one definite hermitian
form, which is its trace bilinear form
Ty + yx

2

b: ExFE— K, (x,y) —

with the relative norm of E//K as associated quadratic form Qg.

Every O-lattice L in (E,®) is a binary quadratic o-lattice (but not vice versa). By
Lemma 7.2.1, this identification preserves genera and maps isometry classes to proper
isometry classes. So the class number of L is given by Theorem 7.2.4. As mentioned in
the comment after Theorem 7.2.4, every CM-extension F/K with relative class number
one admits unary hermitian lattices with class number one. However, already the list
of all such extensions E/K is currently unknown, see [LK06] for an overview of that
problem.

8.2 The binary case

In this section, suppose that m = 2. If (V, ®) admits an O-lattice L of class number at
most 2, then Proposition 6.3.6 shows that

2/(m2-1 i =
d}(/n < (21/n . 4772) /( ) < 14.61 ?f n=2,
13.53 ifn > 3.

A complete list of all such fields K is available from [Voi08].

125



8 Hermitian lattices with class number at most 2

Let x be the non-trivial character of Gal(E/K). Siegel’s mass formula 4.2.7 shows that

h(L) > #u(E) - Mass(L) = #u(E) - 2(87%) ™" - df Lk (x. 1) - (x (2) [] MIp)

peP(o)
> #u(E) - 2(87°) 7" - di Lk (x, 1) - (k (2) (8.2.1)

where @) € {1,2} denotes the Hasse unit index of E//K. In particular, the above inequality
(which is sharp for some lattices L) does not involve the relative discriminant dg /K- SO
for m = 2, the enumeration of all possible CM-fields F/K that might occur is a relative
class number problem. Even the most recent bounds on relative class numbers do not
allow the enumeration of all possible fields F in practise (although they show that it is
indeed a finite problem).

To see how bad the situation is, let K = Q(+/5). By [Has85, Satz 25], the Hasse unit
index of E/K is always 1. Thus equation 8.2.1 shows that

167

Assuming for a moment that E/Q is cyclic, [Lou06, Corollary 20] shows that

, Ny
120 2 # OUE) 2 30 0Mn?  Tlog(dz /5)/2 + 2 + 7 — log(dm))?

where v denotes the Euler-Mascheroni constant. Hence /dg /5 < 9.163 - 10° and thus
dg < 4.198 - 10'2. So a complete enumeration of all such extensions E/K is simply
impossible. Also note that without the assumption that E/Q is cyclic, the bounds on dg
get much worse, see for example [Lou06, Theorems 28 and 31].

However for K = Q, the classification of all possible extension E/Q is indeed possible.
In this case, equation 8.2.1 shows that

# CIE) < 41 /(g(2) = 48 .

The imaginary quadratic number fields of class number at most 48 have been enumerated
by M. Watkins in his thesis [Wat04]. He shows that dg < 462883. An explicit search in
Magma shows that there are 10153 such fields.

If one applies Algorithm 6.5.4 to all these fields F, one obtains the genera of binary
definite hermitian forms with class number one or two. Table 8.1 gives the absolute value
of the discriminants dg as well as the number of similarity classes of genera with class
number one or two over E. A complete list is available from [Kir16].
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8.2 The binary case

Table 8.1: The imaginary quadratic fields £ that admit definite, binary hermitian lattices
with class number one or two.

dg |#h=1 #h=2] dg |#h=1 #h=2] dp |#h=1 #h=2
3 19 36 4 17 34 7 14 18
8 18 28 11 18 20 15 13 24
19 16 38 20 15 21 24 25 32
35 11 29 39 0 8 40 18 35
43 18 44 51 16 55 52 17 39
55 0 1 56 0 9 67 18 52
68 0 13 84 12 45 88 14 38
01 3 31 115 9 40 120 | 17 42
123 | 16 58 132 | 15 36 136 0 10
148 | 16 43 155 0 9 163 | 18 52
168 | 14 40 184 0 11 187 2 20
195 0 49 203 0 2 219 0 10
228 | 12 1 232 | 13 34 235 9 44
259 0 2 260 0 5 264 0 13
267 | 16 55 276 0 14 280 5 31
291 0 10 292 0 15 308 0 1
312 | 14 32 328 0 13 340 5 30
355 0 9 372 | 12 44 388 0 14
403 1 23 408 | 12 29 420 0 30
427 2 32 435 0 40 456 0 14
483 0 28 520 5 26 532 0 27
552 0 12 555 0 46 564 0 14
568 0 14 580 0 5 595 0 13
616 0 1 627 0 19 660 0 25
708 | 14 42 715 0 12 723 0 10
760 5 23 763 0 2 772 0 15
795 0 40 820 0 5 840 0 28
852 0 14 955 0 9 1012] 1 17
1027 0 1 1032 0 14 [|1060] o0 5
1092 0 16 |[1128] 0 12 [[1227] o0 10
1240 0 5 1243 0 2 1320 0 27
1380 | 0 24 |[1428 0 17 || 1435] o0 13
1507 | 0 1540 | 0 7 1555 | 0 9
1672 0 1 1752 | 0 14 ||1780] 0 5
1848 0 16 || 1992] 0 12 [[2020] o0 5
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8 Hermitian lattices with class number at most 2

8.3 The general case

Finally suppose that the rank m of (V, ®) is at least 3.
Definition 8.3.1 Let G be a genus of O-lattices in (V,®) and let L € G.

1. Suppose L, = J_zt':1 L; is a Jordan decomposition of L at some prime ideal p of o.
Let B be the largest ideal of O over p that is invariant under the involution .
Then s(L;) = PB* for some integers s; < s9 < ... < 5.

a) If p is good, the local genus symbol of Ly is the tuple

(Sllank(Ll)’ o 75t1;snk(Lt))

where the i-th subscript is determined as follows: If disc(L;) € N(Ej), then +
is written, otherwise — is written.

Proposition 3.3.5 and Theorem 3.3.6 show that the local genus symbol is
well defined and it determines the isomorphism class of L, is uniquely. For
example, (0”) denotes a unimodular lattice L, of rank m such that disc(Ly)
is not a local norm (at a place p that is necessarily ramified in E). Note that
if Ey/K, is unramified, then the subscripts can be recovered from s(L;) and
rank(L;). Hence they can be safely omitted at such places.

b) If p is bad, then the local genus symbol of Ly, is the tuple

rank(L1) rank(L¢)
( 14 ordp(n(L1))? """ ’Sti,ordp(“(Lt)))

where the sign is chosen depending on disc(L;) just as before. Note that in
these cases, the local genus symbol is not well defined, i.e. it does depend
on the chosen Jordan splitting. However, given any local genus symbol,
Corollary 3.3.20 allows the reader to write down an Op-lattice locally isometric
to L, explicitly. Further, Theorem 3.3.18 can be used to decide whether two
local genus symbols define the same isometry class.

In both cases, superscripts being equal to 1 will be omitted.

2. Let py,...,ps be the prime ideals of 0 which ramify in F or at which L is locally
not unimodular. Let g; be a local genus symbol of L at p;. Then the genus symbol
[91p,5 - - -5 gsp,| determines G.

Corollary 6.3.7 and Remark 6.3.8 list all possible fields £ and ranks m > 3 such
that E could admit a definite O-lattice of rank m and class number at most 2. Applying
Algorithm 6.5.4 to the possible combinations (E,m), yields the following result.

Theorem 8.3.2 Let E/K be a CM-extension of number fields. If G is a genus of definite
hermitian lattices over E of rank m > 3 and class number at most two, then m < 9. A
complete list of all such genera is given below and is also electronically available [Kirl6].
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8.3 The general case
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8 Hermitian lattices with class number at most 2
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8.3 The general case
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8 Hermitian lattices with class number at most 2
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8.3 The general case
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8 Hermitian lattices with class number at most 2
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8.3 The general case
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8 Hermitian lattices with class number at most 2
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8.3 The general case
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8 Hermitian lattices with class number at most 2
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8.3 The general case
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8 Hermitian lattices with class number at most 2
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9 Quaternionic hermitian lattices with class
number at most 2

This chapter gives a complete classification of all definite quaternionic hermitian lattices
with class number at most two.

Throughout the chapter, let E be a definite quaternion algebra over some totally real
number field K of degree n and (V,®) denotes a definite hermitian space of rank m
over E. Further, let 0 and O be maximal orders of K and E respectively.

9.1 Two remarks

The maximal orders in E are not unique. The following remark deals with this nuisance.

Remark 9.1.1 Let O and O be maximal orders in E. There exists some left ideal 2(
of O with right order ', for example 2 := OQO’. The bijection

{L' c E; L is an O'-lattice in (V,®)} — {L C E; L is an O-lattice in (V,®)}
L' AL’
preserves genera, isometry classes and thus class numbers. Note that this map does not
necessarily preserve norms and scales. However, if the narrow class group of K is trivial,

the situation can be remedied. In that case, 221 = = 'O for some totally positive scalar
a € K*. Then

{L' Cc E; L is an O'-lattice in (V,®)} — {L C E; L is an O-lattice in (V,a®)}
L' — (AL")*

not only preserves genera, isometry classes and class numbers, but also norms and scales.

So Remark 9.1.1 shows that for the classification of all genera of lattices over £ with
given class number, it suffices to consider only O-lattices for some maximal order O of E,
which will be fixed now once and for all.

The unique decomposition of definite lattices into indecomposable ones is extremely
powerful in the case of quaternionic hermitian lattices since there are no obstructions on
which hermitian spaces over F exist.

Remark 9.1.2 Let G be a genus of O-lattices in (V, D).

1. There exists some O-lattice Ly L ... L Ls; € G such that L; is indecomposable and
rank(L;) < 2.
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9 Quaternionic hermitian lattices with class number at most 2

2. h(G) > h(J_jGI L;) for all nonempty subsets I C {1,...,s}.

Proof. 1. Let L € G and P = {p € P(0) ; Ej, is ramified or Ly is not unimodular}. Given
p € P(o), Algorithm 3.3.2 shows that L, = Ly1 L --- L Ly, with rank(Ly;) = 2 for
all i < s := [m/2]. Since there exists only one hermitian space over E, of a given
rank, there exists some definite O-lattice L; such that (L;)q is unimodular for all q ¢ P
and (L;)y = Ly for all p € P. The result now follows by splitting each lattice L; into
indecomposable ones, c.f. Theorem 2.4.9.

2. Let X = J—jel Ljand Y = J_jgg L;. Further let X, ..., X} represent the isometry
classes of gen(X). Then X; L Y € G and the unique decomposition of O-lattices into
irreducible ones shows that X; 1 Y = X; 1 Y implies X; = X;. So h(G) > h. 0

In particular, if the algebra E admits definite hermitian lattices with class number at
most B and rank m > 3, it must also admit such lattices of rank m — 1 or m — 2. This
usually rules out a lot of candidates for F.

9.2 The unary case

Suppose m = 1. Up to similarity, V' = E carries only one definite hermitian form, which
is its trace bilinear form
Ty +yT

¢: ExE— K, (z,y) — 5

The corresponding quadratic form Q¢ is the reduced norm nrg i = N. Let £ denote
the set of all O-lattices in (E, ®), i.e. left ideals of O. It is well known that the map

U: L CIT (o), [21] — [n(2A)]

is surjective, see for example [Rei03, Theorem (35.14)]. The set gen(2A) consists of all
n(A)-modular O-lattices in (F,®). A system of representatives of the isometry classes in
gen(2A) is given by the following theorem.

Theorem 9.2.1 Let a be an ideal of 0 and let Ay, ..., A, represent the isomorphism
classes of the fibre W~1({[a]}). For 1 <i < h let A; := O,(%;) denote the right order
of Ui and let {u;1,...,uir;,} be a system of representatives of 0%,/ N(AY).

1. There exists xv; € E* such that n(;)x;T; = a and there exists y; j € E* such that

YijYij = Uij-

2. Wy 1 < j <y, 1 <i<h) represents the isometry classes in the genus of
all a-modular lattices in (E,®). In particular, the class number of this genus is

S5 s N(AD)].

Proof. The first assertion follows from the Norm Theorem of Hasse-Schilling-Maass, see
[Rei03, Theorem (33.15)]. For a proof of the second note that the O-lattices 2;y; jx;
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9.2 The unary case

all have rank 1 and they are a-modular. Hence they form a single genus. Suppose
first that A;y; jx; is isometric to Apyy xp. Isometries in (£, ®) are given by right
multiplication with elements of E having norm one. Hence there exists some x € E* such
that ;y; j7;2 = Ay 2 and 2T = 1. Thus 2; is isomorphic to 2 which shows ¢ = k
and further yiijixxi_ly;el € A;. Therefore N(y; ;) N(y; )~ = N(yivjmimxi_lyi_’el) e N(A;)
implies that j = /.

Suppose now B € gen(A). Then B is also a-modular, i.e. n(B) = a. Hence B
is isomorphic to some 2; say A;zx; = B with x € E*. Comparing reduced norms
shows that N(z) is a totally positive unit of 0. Whence N(z) = N(u)u;; for some
1 <j <r; and some u € A}. Hence N(z) = N(uy; ;), say « = uy; je for some e € E* of
norm 1. Therefore xi_lexi also has reduced norm 1 and induces an isometry between
B = Ql,:c:c, = Q[iyi,jexi = Qliyi,jxi(mi_lexi) and Qliyi7j:ci. O

The previous algorithm and Remark 9.1.1 immediately show how to decide if (E, ®)
admits O-lattices with a given class number:

Algorithm 9.2.2

Input: Some definite quaternion algebra FE and some integer h > 1.

Output: True if and only if E admits unary hermitian lattices of class number h.
1: Let O be a maximal order in F.

2: Let 2Aq,...,%2, represent the isomorphism classes of left ideals of O.
3: for [a] € C17(0) do

4: LetI:{lgigé;\Il(Qli) [Cl}

5
6
7

]
h then return true end if

if Eie[[oio : N(O;()%)]
- end for
: return false.

Note that all algorithms for quaternion algebras needed in Algorithm 9.2.2 have been
implemented by J. Voight, S. Donnelly and the author in Magma. For example, a maximal
order can be computed using the Round2 algorithm of H. Zassenhaus [Zas72] or the
more specialized algorithm [Voil3, Algorithm 7.10]. The computation of left ideal class
representatives and unit groups is explained in the author’s paper with J. Voight [KV10].

The remainder of this section answers the question which definite quaternion algebras
admit hermitian lattices of rank 1 and class number at most 2. By Corollary 6.3.11 such
an algebra F over K satisfies

d%n <11.6 and H (NTK/Q(P) —-1)<2". KK(_l)‘_l .
plde/x

This leaves only finitely many candidates, which can easily be worked out using [Voi08]
and Remark 3.4.2. Applying Algorithm 9.2.2 to these candidates with h € {1, 2}, yields
the following result.

Theorem 9.2.3 There are 69 (148) definite quaternion algebras E over 29 (60) different
base fields K that admit unary hermitian lattices of class number one (two).
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9 Quaternionic hermitian lattices with class number at most 2

Tables 9.1 and 9.2 list the degree n of the center K, the discriminant dg as well as

D=

NrK/@(dE/K)1/2 for these algebras. A complete list is available from [Kirl6].

The information given by Tables 9.1 and 9.2 usually does not define the algebra E or
even a genus uniquely, but it is certainly enough to recover all genera of class number at
most 2 quickly using Magma.

Table 9.1: Quaternion algebras that admit one-class genera of hermitian forms

n dK D|n dK D|n dK D|n dK D|n dK D
1 1 272 12 1|2 33 1|3 148 2|4 197 1
3 6 60 1 ) 2000 1
) 2613 49 7 13 20
7 13 1 8 169 5 2304 1
13 12 13 13 18
2 5 1 17 1 29 229 4 271
20 21 1 43 316 2 3600 1
44 24 1 81 3 321 3 4352 1
8§ 1 6 1914 725 1 4752 1
14 28 1 37 1125 1 10512 1
18 5 24217 5

50

9.3 The general case

In this section the rank m of (V,®) over E is assumed to be at least 2.
To be able to write down genera in a unique and efficient way, the following notation
will be used.

Definition 9.3.1 Let G be a genus of O-lattices in (V,®) and let L € G.

1. Suppose L, = J_;f:l L; is a Jordan decomposition of L at some prime ideal p of o.

144

Let P be the maximal twosided ideal of O over p. Then s(L;) = P* for some
integers s1 < ... < s4. The local genus symbol of Ly is

rank(L1) rank(Lg¢)
(s; yeey Sy ).

Note that the superscripts rank(L;) will be omitted whenever they are 1. For
example, (0™) describes a unimodular lattice of rank m. By Proposition 3.3.5
and Theorem 3.3.6, the local genus symbol is well defined, i.e. independent from the
Jordan decomposition chosen. Moreover, the isomorphism class of Ly is uniquely
determined by the local genus symbol.



9.3 The general case

Table 9.2: Quaternion algebras that admit two-class genera of hermitian forms

n dg D |n dg D|n dg D |n dx D |n dg D

1 1 112 17 42 69 1 |3 321 3 |4 6125 1

17 18|13 49 27 7 6809 1

19 26 41 361 7 7056 1

30 21 1 71 404 2 7488 1

42 12 97 469 4 7537 1

70 15 113 568 2 9909 1

78 20 12714 1125 1 |5 14641 11

2 5 36 24 1 81 8 45 23

45 15 17 80 24217 17

55 28 1 73 1600 1 36497 3

95 6 148 17 1957 21 13

99 14 25 2048 1 38569 7

124 29 1 169 8 2225 1 13

155 33 1 229 2 2525 1 |6 300125 1

164 6 7 2624 1 371293 1

8 34 37 1 13 3981 1 434581 1

62 40 1 257 3 15 453789 1

63 41 1 5 4205 1 485125 1

12 39 44 1 7 4352 14 592661 1

50 57 1 9 4752 12 1397493 1

13 9 60 6 316 2 5125 1 | 8 324000000 1
39
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9 Quaternionic hermitian lattices with class number at most 2

2.

Let p1,...,ps be the prime ideals of o such that Ly, is not unimodular and let g;
be the local genus symbol of L at p;. Then the genus symbol

[91p15 S gSpS]

is well defined and it uniquely determines the genus G. For example, G consists of
unimodular lattices if and only if its genus symbol is the empty list [].

Corollary 6.3.11 lists finitely many pairs (E, m) of quaternion algebras E and integers
m > 2 such that F might admit definite hermitian lattices of rank m of class number at
most 2. Applying Algorithm 6.5.4 to these candidates, immediately yields the following
result.

Theorem 9.3.2 Let (V,®) be a definite hermitian space over a definite quaternion
algebra E of rank m > 2. Let O be a mazimal order of E and let G be a genus of
O-lattices in (V,®). If h(G) =1, then m < 4 and h(G) = 2 implies m < 5. The complete
list of all genera with class number at most 2 is given at the end of this section.

For each similarity class of genera as in Theorem 9.3.2, the table below lists the
following information:

The rank m of the lattices.

The quaternion algebra E. Here Qq 0o p;,...p, denotes the definite quaternion algebra
over K = Q(«) ramified only at the finite places py,...,p,. The subscript a will
be omitted if K = Q. Further, 07 = (7 + (- ! for some primitive 7-th root of unity
¢r eC.

The genus symbol of a genus G in the similarity class. Here p, denotes a prime
ideal over p, which will be unique in all cases. The classification shows that the
center of E always has narrow class number one. By Remark 9.1.1, this means that
the genus symbols are independent from the maximal order . So there is no need
to list O itself.

The class number h(G) of the genus.

The automorphism groups Aut(L) where L ranges over representatives of the
isometry classes in G. The naming conventions for the groups are the same as
used by G. Nebe in [Neb98] with the exception that the subscripts expressing the
quaternion algebras are omitted.

The factored orders of these automorphism groups.

Maximal finite subgroups of GL,,(F) that contain these automorphism groups.

The similarity classes are grouped according to equivalence classes with respect to the
equivalence relation from Definition 6.2.3.
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10 Exceptional groups

In the previous chapters, only classical (i.e. orthogonal and hermitian) groups have been
studied. This final chapter discusses the problem of enumerating one-class genera of
some special subgroups of exceptional algebraic groups. The exposition below is taken
from the author‘s recent preprint [Kir].

10.1 Preliminaries

In this chapter, let K be a number field of degree n with ring of integers 0. The infinite
places of K will be denoted by Qo (K).

Let G be an absolutely quasi-simple, simply connected algebraic group defined over K
such that [[,cq_ (x) G(Kv) is compact. Then K is totally real. Most of the time, G will
be exceptional, i.e. a K-form of G, Fy, Eg, E7, Eg or a triality form of D4. By fixing a
presentation of (G, one one may assume that G is a subgroup of GL,, for some m.

As described in [Bor63, CNP98| any full o-lattice L in K™ describes an integral group
scheme G as follows. For each extension (or completion) E of K with ring of integers O,
let G(O) be the stabilizer of L ®, O in G(E).

Let A = {(aw)veq(x) | ap & op for only finitely many p € P(0)} be the adele ring
of K. Suppose a € G(A). Then L - a denotes the o-lattice L' with Lj, = Lyay for
all p € P(0). Similarly, one defines G - a to be the stabilizer of L - o in G(K). Then
(G- a)(op) = ap_lg(op)ap for all p € P(o).

Definition 10.1.1 Two integral forms G and G’ of G are isomorphic if G- a = G’ for
some o € G(K). Similarly, they are said to be in the same genus if G - a = G’ for some
a e G(A).

Let C' = [[,cq.. (k) G(Kv) X [Iyep(o) G(0p). Note that a~!Ga is the stabilizer of G - «
in G(A). Thus
CaG(K)— G-«

induces a bijection between the double cosets C\G(A)/G(K) and the isomorphism classes
in the genus of G.

Lemma 10.1.2 ([CNP98, Proposition 3.3]) Let G be an integral group scheme as
above. Then G(oy) is a subgroup of finite index in a mazimal compact subgroup of G(K,)
and G(op) is a hyperspecial maximal compact subgroup at all but finitely many places

p € P(o).
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10 Exceptional groups

The most important integral group schemes G are those for which G(o,) is a parahoric
subgroup B, of G(K}) at each prime ideal p of 0. The genus of such a scheme is uniquely
determined by the family P = (P,),cp(o)- By the previous lemma, P, is hyperspecial
almost everywhere. Such a family P is called coherent in [Pra89].

It is well known ([Bor63, Theorem 5.1]) that the genus of integral forms corresponding
to P decomposes into finitely many isomorphism classes represented by Gy, ..., Qh( P)
say. Then the rational number

Mass(P) = —_—
pawt #G(0)

is called the mass of P. Clearly, h(P) > Mass(P) and h(P) = 1 implies Mass(P)~! € Z.

10.2 The mass formula of Prasad

Let P be a coherent family of parahoric subgroups of G and let G be the unique quasi-split
inner K-form of G. If G is of type °Dy, let F//K be a cubic extension contained in the
Galois extension of K over which G splits. In all other cases let F' be the minimal
extension of K over which G splits. If G splits over K, let s(G) = 0, if G is a triality form
of Dy, set s(G) =7 and if G is an outer form of Eg let s(G) = 6.

Fix a family P = (Py)pep(o) of maximal parahoric subgroups of G such that P, is
hyperspecial (special) if G splits (does not split) over the maximal unramified extension
of Ky and [[,cy, G(Ko) X [[yep(o) Pr is an open subgroup of G(A). See [Pra89, Section
1.2] for more details.

Let Gy and G, be the groups Gy ®,, 0p/p and Gy ®q, 0,/p. By [Tit79, Section 3.5],
both these groups admit a Levi decomposition over o,/p. Hence there exists some
maximal connected reductive o, /p-subgroups M, and Mp such that Ep = M;.R, (Ep)
and Gy = M,.R,(G,). Here R, denotes the unipotent radical.

Further, let r be the rank of G and (di,...,d,) denote the degrees of G. Then the
dimension of G can be expressed as dim(G) =2>,_; d; — .

In his seminal paper [Pra89], Prasad gave the following explicit formula for Mass(P).

Theorem 10.2.1 ([Pra89])

imG S d d’L - 1 ! !
Mass(P) = d(}l( /2. Nrg/o(dr/k) @72 (H W) : H B(P) (10.2.1)
i=1 peP(o)

)(dim Mp+dim My)/2

#N, (0/7) > 1

where B(Py) = Nrxc/op

For computational purposes, it is usually more convenient to express Mass(P) in terms
of Mass(P) which is a product of special values of certain L-series of K. For p € P(0) let

im M, —dim M
A(Py) = B(P)/B(Pp) = Nrg () (dimMp—d MMW'
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10.3 The exceptional groups

Then Mass(P) = Mass(P) - [[,ep(o) A(F3). Moreover, there is the following empirical fact.
Lemma 10.2.2 ([PY12, 2.5]) The local factors A\(P,) are integral.

Proof. This follows from explicit computations using Bruhat-Tits theory. In most cases
however, these computations can be avoided, see [PY12, 2.5] for details. O

10.3 The exceptional groups
10.3.1 The case G

Let O be the octonion algebra over K with totally definite norm form and denote by Q°
its trace zero subspace. The automorphism group Aut(Q) of O, i.e. the stabilizer of the
octonion multiplication in the special orthogonal group of O yields an algebraic group
of type G2 and OV is an invariant subspace (cf. [SV00, Chapter 2]). Thus it yields an
algebraic group G' < GL7 of type G5. Further, the construction shows that G(K}) is of
type G2 for all prime ideals p of o.

The extended Dynkin diagram of G5 is as follows.

© ® ®
By [Tit79, 3.5.2], the parahoric subgroups P, of G(kK,) are in one-to-one correspondence

with the non-empty subsets of {0, 1,2}. For any non-empty subset 7" of {0, 1,2} let PpT be
the parahoric subgroup of G(Kj,) whose Dynkin diagram is obtained from the extended

Dynkin diagram of G by omitting the vertices in T'. For example, Pp{o} is hyperspecial
and P{* is of type A.

Theorem 10.3.1 Suppose P is a coherent family of parahoric subgroups of G such that
h(P) =1. Then K = Q and P, is hyperspecial for all primes p ¢ {2,3,5}. The possible
combinations (T»,T3,Ts) such that P, = ng forp € {2,3,5} are given below.

Ty T3 T5 | Mass(P)~! G(Z) sgdb
{o} {0} {o}| 2°.3%.7 G2(2) —
{0y {0} {2} 2°.3 (Cy x Cy).S3 64
{0}y {2} {o}| 2*.33 3472.QDyg 520
{2y {0} {o}| 26-3-7 23. GL3(2) 814
{2y {2} {0} 24.3 GL2(3) 29
{13 {0} {o}| 26.3%2 |2t ((C5xC3).2) | 82821
{1,2} {0} {0} 26.3 2485 1494
{0,2} {0} {0} 20.3 ((Cy x Cy).2).53 | 956
{0,1} {0} {0} 26.3 24t4.5; 988
{0,1,2} {0} {0} 26 Syly(Ga(2)) 134

The last column gives the label of the group G(Z) in the list of all groups of order
Mass(P)~! = #G(Z) as defined by the small group database ([BEO01]).

!The group is isomorphic to a index 2 subgroup of the automorphism group of the root lattice Fy.
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10 Exceptional groups

Proof. If G is of type Gg, then F' = K, r = 2 and (d;,d2) = (2,6). In particular,
dim G = 2(dy + d2) —r = 14. Thus Theorem 10.2.1 shows

15 \"
>dn (=) .
2 (2

n 2 8\ 1/7
dim < (3175T> <4.123.

Hence h(P) =1 implies

The tables [Voi08] show that K is one of Q, Q(v/d) with d € {2,3, 5,13} or the maximal
totally real subfield Q(67) of the seventh cyclotomic field Q(¢{7). The assumption h(P) =1
forces Mass(P)™! € Z. Hence Mass(P)~! € Z by Lemma 10.2.2. The exact values of
Mass(P) = 2727|Cx (—1)Cx (—5)| for the various possible base fields K is given in the
following table.

K Q Q(v2) | Q(V3) | Q(V5) | Q(V13) | Q(br)

1 1 361 1681 67 33463 7393
Mass(P) | gog7 = #Co(2) | 48384 | 12096 | 302400 | 157248 | 84672

This shows that K = Q as claimed. For any given prime p, the local factor A\(P,) is given
by the following table.

root system of P, 1] Ay Ay A x A1 | Gy
A(Fp) PPt —pP+ 1| p°—1|pP+1pt+pP+1] 1

If p > 23 then #G2(2) - (p® + 1) > 1 and therefore P, is hyperspecial. For p < 23 one
can simply check all possible combinations of P, which yield Mass(P)~! € Z. This yields
precisely the claimed combinations.

Let B be an Iwahori subgroup of G. The set of all Z, B-invariant lattices in @2 have been
worked out in [CNP9S8|. For each candidate P one finds some lattice L such that the
stabilizer G(Z) of L in G < GL(Q°) is of type P. It turns out that Mass(P)™! = #G(Z)

in all cases. O
10.3.2 The case I}

Proposition 10.3.2 Suppose G is of type Fy. Then there exists no coherent family P
of parahoric subgroups of G with class number one.

Proof. If G is of type Fy, then r = 4 and (dy,...,d4) = (2,6,8,12). In particular,
dimG =2),d; —r = 52 and Theorem 10.2.1 shows that

736745625 ) "

> 26
MP) 2 dig ( 8192728

Hence h(P) = 1 implies

8192728 \ /%0
d}(/n = (73674?625) <2213<V5.
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10.3 The exceptional groups

Thus K = Q and

4 4
736745625 1 691
Mass(P) = g H ald ZH 40l = Sisge5er13
In particular, Mass(P)~! ¢ Z. 0

Note that if K = Q, then P is the model in the sense of Gross and it actually has class
number 2 (see [Gro96, Proposition 5.3]).

10.3.3 Triality of D,

Let G be of type D4 or ©D4. The field F is a totally real cubic extension of K. The
extension is normal (and thus cyclic) if and only if G is of type 3Dj.

Lemma 10.3.3 Suppose G is a K-form of D4 and P a parahoric family of G with class
number one. Then the base field K is either Q, Q(v/d) with d € {2,3,5,13,17} or the
mazximal totally real subfield Q(0.) of Q({.) for e € {7,9}.

Proof. If G is any form of Dy, then r =4 and (dy,...,ds) = (2,4,4,6). Hence dim G =
2>, d; —r = 28. Thus Theorem 10.2.1 shows that
135 \"

So h(P) =1 implies

135
The result now follows from the tables of totally real number fields [Voi08]. 0

ol1 16 1/14
d}{/”<< W) < 4.493.

Let p € P(0) be a prime ideal of norm ¢. By [Tit79, Section 4], the type of G at p is
(using the notation of [Tit79, Tables 4.2 and 4.3])

1Dy if p is completely split in F,

3D, if F,/K, is an unramified cubic field extension,

G} if F,/K, is a ramified cubic field extension,

2Dy if F, = K, @ F} for some unramified quadratic extension Fy /Ky,
(B—C3 if F, = K, © F} for some ramified quadratic extension Fy /K.

Therefore (Py) = (1 — q%) (1 — q%) - B, where 3 is given by

( <1 — q%)2 if p is completely split in F,
1+ q%l + q% if F,/K, is an unramified cubic field extension,
1 if F,/K, is a ramified cubic field extension,
(1 + q%) (1 — q%) if Fy, = Ky @ F} for some unramified extension Fy /Ky,
1— q% if Fy, = Ky @ F}, for some ramified extension Fy,/Kj.
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10 Exceptional groups

The functional equation for L-series shows that
Mass(P) = 27" - [(x(—1) - £k (x, —3) - (x (D) (10.3.1)
where x denotes the non-trivial character of Gal(F/K), see also [PY12, Section 2.8].

Proposition 10.3.4 If G is of type 3Dy or Dy then there exists no coherent parahoric
family of class number one.

Proof. If G admits a one-class parahoric family P, then

1 n
1 > Mass(P) > Mass(P) > d;(/Q d;ﬂ <2113516>
T

2n/7
or equivalently, dp < df(l . % . By Lemma 10.3.3, there are only finitely many

candidates for K. For each such field K, [Voi08] lists all possible cubic extensions F' that
satisfy the previous inequality. It turns out that K = Q and F = Q|z]/(f(x)) where
f(zx) is one of the ten polynomials given below. In each case, Mass(P) can be evaluated
explicitly using equation (10.3.1).

f(x) Mass(P)
23— 22 —2r+1  79/84672
3 -3z -1 199/36288

23— -3z +1  577/12096
w3 — 2% —4xr —1 11227/157248
23 —dx —1 1333/6048

23— 2% — 4z +3  1891/6048
3 2% —4x+2  2185/3024
w3 -2 —dr+1  925/1344
23— 2% —6x+7  4087/4032
23 —2? -5z —1 19613/12096

The result now follows from the fact that Mass(P) is an integral multiple of Mass(P)
and therefore never the reciprocal of an integer. O

10.3.4 The case Ej

Let G be a form of Eg. The assumption that GK,) is anisotropic for all infinite places
v of K forces G to be of type 2Es. Thus the splitting field F of G is a totally complex
quadratic extension of K.

Proposition 10.3.5 There exists no coherent family P of parahoric subgroups of G with
class number one.
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10.3 The exceptional groups

Proof. If G is of type 2Fg, then r = 6, (d1,...,ds) = (2,5,6,8,9,12), s(G) = 26 and
dim G = 78. Suppose P is a parahoric family of class number one. Then Theorem 10.2.1
implies
6
1 = h(P) > Mass(P) > d3¥2. NrK/Q(dF/K)13 A" > d32 4" where = H
i=1

(d; — 1)!

and therefore d}(/" < ~y71/39 < 2.31. Hence K is either Q or Q(v/5).

If K = Q(v/5), then Nrg/q(dp/x) > 4. Hence h(P) > 5% -413.4% > 1. So K = Q and
1 = h(P) > d}? -y implies that dp < 12. Thus F is Q(v/—d) for some d € {1,2,3,7,11}.
For any p € P(0), the group G is quasi-split over K. Moreover, the type of G over K, is
1Es, 2Fg or F} (using the notation of [Tit79, Section 4]) depending on whether p is split,
inert or ramified in F. Thus 8(P,) ! equals

(1—¢5)(1—¢ 9% ifpis split in F,
1-¢HA-q¢A-¢HA =g ) - L Q+¢ 51 +¢ 9 ifpisinert in F,
1 if p is ramified in F,

where ¢ = Nrg/g(p). Let x be the nontrivial character of Gal(F'/Q). The functional
equation for L-series shows that

Mass(P) = 27° - [¢o(~1) - Lo(x, —4) - Co(~5) - Ca(=7) - La(x, —8) - Ca(~11)].
The values for Mass(P) for all possible fields F = Q(v/—d) are

d 1 2 3 7 11
Mass(P) 191407 1097308691 559019 6102221 7340406625
243465191424 | 169073049600 | 30813563289600 | 5200977600 | 18598035456

In particular, there exists no parahoric family P such that Mass(P)~! € Z. O

10.3.5 The case E;

Proposition 10.3.6 IfG is of type E7 then there exists no coherent family P of parahoric
subgroups of G with class number one.

Proof. 1f G is of type E7 thenr =7, (dy,...,d7) = (2,6,8,10,12,14, 18) and dim G = 133.
If h(P) =1, then Theorem 10.2.1 implies that

7 (2 2/133

1/n ™)

4" < (HM> <1.547 < V5.
=1

Thus K = Q and then

7
691 - 43867
— 97 N —
Mass(P) =2 1:11 ol =)l = gy iisior
shows that h(P) > 1 for all parahoric families P. O
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10 Exceptional groups

10.3.6 The case Ejy

Proposition 10.3.7 If G is of type Eg and P is a coherent family of parahoric subgroups
of G then h(P) > 8435.

Proof. If G is of type Eg then r =8 and (dy,...,ds) = (2,8,12, 14, 18,20, 24, 30). Thus
Theorem 10.2.1 implies that
= (di — 1)!
h(P) > Mass(P) > | | =5~ > 8434.
i (2m*
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good, 42
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radical idealizer process, 117
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reduced trace, 11
reflection, 73

relative discriminant ideal, 47

root discriminant, 95

scale, 18
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