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Abstract

Suppose Q is a definite quadratic form on a vector space V over some
totally real field K 6= Q. Then the maximal integral ZK-lattices in (V,Q)
are locally isometric everywhere and hence form a single genus. We enu-
merate all orthogonal spaces (V,Q) of dimension at least 3, where the cor-
responding genus of maximal integral lattices consists of a single isometry
class. It turns out, there are 471 such genera. Moreover, the dimension
of V and the degree of K are bounded by 6 and 5 respectively. This
classification also yields all maximal quaternion orders of type number
one.

1 Introduction

Let K be a totally real number field and ZK its maximal order. Two definite
quadratic forms over ZK are said to be in the same genus if they are locally
isometric everywhere. Each genus is the disjoint union of finitely many isometry
classes. The genera which consist of a single isometry class are precisely those
lattices for which the local-global principle holds. These genera have been under
study for many years. In a large series of papers [Wat63, Wat72, Wat74, Wat78,
Wat82, Wat84, Wated], Watson classified all such genera in the case K = Q in
three and more than five variables. He also produced partial results in the four
and five dimensional cases. Assuming the Generalized Riemann Hypothesis,
Voight classified the one-class genera in two variables [Voi07, Theorem 8.6].
Recently, Lorch and the author [LK13] reinvestigated Watson’s classification
with the help of a computer using the mass formula of Smith, Minkowski and
Siegel. We filled in the missing dimensions 4 and 5 and corrected some errors
in Watson’s tables.

In the case K 6= Q, the local factors in the mass formula of Smith, Minkowski
and Siegel [Sie37] are not known in all cases. However, good bounds on these
local factors are due to Pfeuffer [Pfe71]. Using these bounds, he showed that
one-class genera can only occur in at most 32 variables. Moreover Pfeuffer gave
explicit upper bounds on the degrees and discriminants of all possible base fields
that can afford one-class genera.
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If we restrict ourselfs to maximal integral lattices, the local factors are known
in all cases by the work of Shimura [Shi99]. These results have been recently
proved again by Gan, Hanke and Yu in [GHY01] using Bruhat-Tits theory. Their
proof is based on results of Gross [Gro97] which builds upon the fundamental
work of Prasad [Pra89]. Using this mass formula, Hanke classified the one-class
genera of maximal integral lattices over K = Q (see [Han11]). The current
paper extends this classification to all totally real number fields K. In a future
publication, David Lorch and the author will classify all one-class genera over
totally real number fields in at least three variables by combining the methods
of Watson and Pfeuffer. However, the complete classification will be much more
tedious since the local mass factors are not known in all cases. More information
of the classification of genera with small class numbers is given by R. Scharlau
in Section 2.5 of [Sch09].

The article is organized as follows. Section 2 recalls some basic definitions of
quadratic forms over number fields. Section 3 gives the mass formula of Shimura
and some consequences for one-class genera. The possible base fields K that
can give rise to one-class genera of maximal integral lattices are enumerated
in Section 4. Section 5 gives algorithms to perform the enumeration of these
genera. In Section 6 we recall some connections between quadratic forms and
quaternion algebras. Finally, the last section summarizes the results.

2 Preliminaries

Throughout the paper, let K be an algebraic number field of degree n ≥ 2 and
let V be an m-dimensional K-space. Further let Q : V → K be a quadratic form.
The orthogonal group of the quadratic space (V,Q) will be denoted by O(V,Q)
and SO(V,Q) = {ϕ ∈ O(V,Q) | det(ϕ) = 1} denotes the special orthogonal
group.

The quadratic form Q is isometric to a diagonal form Q′ := 〈a1, . . . , am〉
where Q′(x) =

∑m
i=1 aix

2
i . We will always assume that Q is definite, i.e. K is

totally real and each ai is totally positive.
The discriminant of Q is disc(Q) = (−1)m(m−1)/2 ·

∏
ai. It is unique up

to multiplication by (K∗)2. Further, for each prime ideal p of ZK let cp(Q) =∏
i<j

(
ai,aj
p

)
be the Hasse invariant of Q at p. Here

(
a,b
p

)
∈ {±1} denotes the

usual Hilbert symbol of (a, b) ∈ K2 at p. It takes the value 1 if and only if
ax2 + by2 = z2 admits a nontrivial solution over the completion Kp of K at p.

It is well known that the isometry class of the definite quadratic space (V,Q)
is uniquely determined by m, disc(Q) and the finite set of prime ideals p for
which cp(Q) = −1 (see for example [O’M73, Remark 66:5]). The same is true
if one replaces the Hasse invariants by the Witt-invariants ωp(Q) as defined in
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[Sch85]:

ωp(Q) =



cp(Q) if m ≡ 1, 2 mod 8,

cp(Q) ·
(
−1,−1

p

)
if m ≡ 5, 6 mod 8,

cp(Q) ·
(
−1,disc(Q)

p

)
if m ≡ 0, 3 mod 8,

cp(Q) ·
(
−1,−disc(Q)

p

)
if m ≡ 4, 7 mod 8.

(1)

If disc(Q) /∈ (K∗)2, let EQ denote the field K(
√

disc(Q)). Given any ex-
tension of number fields E/K, we denote by dE/K and NE/K its relative dis-
criminant and norm respectively. Further, dK = dK/Q denotes the absolute
discriminant of K.

Given the dimension m, the discriminant d := disc(Q) (viewed as an ele-
ment of K∗p) and the Witt invariant ωp(Q), we define the local type tp(Q) ∈
{0, I, II, II±, III±} of Q at p similar to Hanke in [Han11]. Let vp denote the
usual valuation of Kp. Then the symbol tp(Q) is nonzero if and only one of the
following cases holds.

m additional condition ωp(Q) tp(Q)
odd vp(d) even -1 I
odd vp(d) odd +1 II+
odd vp(d) odd -1 II−
even d ∈ (K∗p)2 -1 I
even d /∈ (K∗p)2 and p does not ramify in EQ/K -1 II
even d /∈ (K∗p)2 and p ramifies in EQ/K +1 III+
even d /∈ (K∗p)2 and p ramifies in EQ/K -1 III−

Table 1: Definition of tp(Q).

Definition 2.1. A lattice L ⊂ V is a finitely generated ZK-submodule of V
that contains a basis of V . It is said to be maximal integral if Q(L) ⊆ ZK and
Q(L′) 6⊆ ZK for each lattice L′ ) L.

Two lattices L,L′ in V are said to be isometric if there exists some isometry
g ∈ O(V,Q) such that g(L) = L′. The set of all isometries from L to itself is
called the automorphism group Aut(L) of L.

Given a prime ideal p of ZK we write Vp and Lp for the completions V ⊗KKp

and L⊗ZK
ZKp

respectively. The lattices L,L′ are said to be in the same genus
if for each prime ideal p of ZK there exists some gp ∈ O(Vp, Q) such that
g(Lp) = L′p.

Clearly, each genus Λ decomposes into several isometry classes represented
by L1, L2, . . . , Lh say. The number of classes h is always finite and is called the
class number of Λ (see for example [O’M73, Theorem 103:4]). Further we define

mass(Λ) =

h∑
i=1

1

#Aut(Li)
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to be the mass of Λ.

3 The mass formula

Let (V,Q) be a definite quadratic space over some totally real number field K
of degree n. Further let m denote the dimension of V and set r = bm/2c.

Definition 3.1. Let p be a prime ideal of ZK and q = NK/Q(p) = #(ZK/p) its
norm. Then the local mass factor λp(Q) is defined as follows.

m tp(Q) λp(Q)
- 0 1

2r + 1 I qm−1−1
2(q+1)

2r + 1 II±
qr+ωp(G)

2

m tp(Q) λp(Q)

2r I (qr−1−1)(qr−1)
2(q+1)

2r II (qr−1+1)(qr+1)
2(q+1)

2r III± 1/2

Proposition 3.2. The set Λ of all maximal integral lattices in (V,Q) form a
single genus.

Proof. See for example [O’M73, Theorem 91:2].

The following result is an explicit version of the mass formula of Smith,
Minkowski and Siegel [Sie37] where the local factors λp are given by the work of
Shimura [Shi99, Theorem 5.8] and also Gan, Hanke and Yu [GHY01, Proposition
2.13].

Theorem 3.3. Let Λ be the genus of all maximal integral lattices in (V,Q). If
m ≥ 3, then

2 ·mass(Λ) = τ(G) · γnG · d
dimG/2
K · L(G) ·

∏
p

λp(Q)

where

τ(G) = 2 is the Tamagawa number of G := SO(V,Q),

L(G) =


∏r
i=1 ζK(2i) if m is odd,

ζK(r) ·
∏r−1
i=1 ζK(2i) if m is even and disc(Q) ∈ (K∗)2,

ζEQ
(r)

ζK(r) ·NK/Q(dEQ/K)r−1/2 ·
∏r−1
i=1 ζK(2i) otherwise,

denotes the L-series attached to G.

dim(G) = r(2r − (−1)m) is the dimension of G,

γG =


∏r

i=1(2i−1)!
(2π)r(r+1) if m is odd,

(r−1)!·
∏r−1

i=1 (2i−1)!
(2π)r2

if m is even.

Note that the formula given in [GHY01] looks much neater then the one
above since it uses values of L-series at negative integers. However there are
two reasons to state the formula as above. First of all, the L-series involved
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might have zeros at some negative integers in which case one has to use the
first non-vanishing coefficient of some Taylor series expansion. Secondly, we
will need to find good lower bounds for the mass and therefore for the product
L(G) ·

∏
p λp(Q). This is much easier when L(G) only depends on values of

L-series at positive integers. In fact, the classification of all genera of maximal
integral lattices with class number one is based on the following observation.

Proposition 3.4. Suppose the notation of Theorem 3.3.

1. If Λ has class number one then (2 ·mass(Λ))−1 ∈ Z.

2. If λp(Q) < 1 then λp(Q) = 1/2 and

• m is even, disc(Q) /∈ (K∗)2 and p ramifies in EQ or

• m ≤ 4 and NK/Q(p) = 2.

3. If λp(Q) /∈ Z then 2λp(Q) ∈ Z and

• m is even, disc(Q) /∈ (K∗)2 and p ramifies in EQ or

• 2 ∈ p.

4. Let k be the number of prime ideals in ZK of norm 2. Then

L(G) ·
∏
p

λp(Q) >


(2/3)k if m = 3,

(8/15)k if m = 4,

1 if m ≥ 5.

5. If m is odd and Λ has class number one then(
γnG · d

dimG/2
K · L(G)

)−1
· 2`−1 ∈ Z

where ` denotes the number of prime ideals of ZK that contain 2.

Proof. Suppose Λ consists of the isometry class of a single lattice L. Then
(2 · mass(Λ))−1 = #Aut(L)/2 is integral since −idL is always an isometry of
L. The next two assertions follow from the definition of the local factors λp(Q)
and the last statement is a reformulation of the third.

The fourth claim is clearly true if either m ≥ 5 is odd or m > 4 is even and
disc(Q) is a square since then L(G) > 1 and

∏
p λp(Q) ≥ 1. If either m = 3 or

m = 4 and disc(Q) ∈ (K∗)2 then

L(G) ·
∏
p

λp(Q) ≥ ζK(2) · (1/2)k > (1− 2−2)−k · (1/2)k = (2/3)k .

So we may now assume that m ≥ 4 is even and disc(Q) /∈ (K∗)2. Further let t
denote the number of prime ideals that are ramified in EQ/K. If m = 4 then

L(G) ·
∏
p

λp(Q) ≥ ζE(2) · (NK/Q(dEQ/K)3/2 · 2−t) · 2−k

> (1− 2−4)−k · 2−k = (8/15)k .
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Similarly, if m ≥ 6 then

L(G) ·
∏
p

λp(Q) ≥ ζK(2)

ζK(m/2)
· ζE(m/2) ·

NK/Q(dEQ/K)(m−1)/2

2t
> 1 .

Note that if m is odd and fixed, the last statement of the previous proposition
is a very strong restriction on the field K.

4 Restricting the possible base fields

The enumeration of all base fields K that can possibly give rise to one-class
genera of all maximal integral lattices is based on the following Odlyzko type
bounds.

Theorem 4.1. Let K be a totally real number field of degree n ≥ 2. Let B(n)
and B′(n) be defined by

n 2 3 4 5 6
B(n) 2.236 3.659 5.189 6.809 8.182
B′(n) 2.828 5.289 6.727 9.599 11.098
n 7 8 9 10 ≥ 11

B(n) 11.051 11.385 12.869 12.985 14.083
B′(n) 12.460 13.779 15.000 15.093 16.204

Then d
1/n
K ≥ B(n). Moreover, if ZK contains an ideal of norm 2, then d

1/n
K ≥

B′(n). The bounds B(n) and B′(n) are sharp for n ≤ 9 and n ≤ 8 respectively.

Proof. The bounds for n ≤ 9 follow from Voight’s tables [Voi08]. The other
values for B(n) have been computed by Martinet in [Mar78]. The values for
B′(n) for n ≥ 10 are given by Brueggeman and Doud in [BD08].

Let Λ be the genus of all maximal integral lattices in a definite quadratic
space (V,Q) of dimension m over some totally real number field K of degree n.

Proposition 4.2. Suppose Λ has class number one and K 6= Q. If m = 2r+1 ≥
3 is odd, then m ∈ {3, 5}. Moreover

1. If m = 3 then K = Q(
√
d) with

d ∈ {2, 3, 5, 6, 7, 13, 15, 17, 21, 29, 33, 41, 65, 69, 77, 137}

or K = Q(θ`) is the maximal totally real subfield of the `-th cyclotomic
field Q(ζ`) with ` ∈ {7, 9, 15, 20, 21, 24} or K ∼= Q[x]/(f(x)) where f(x) is
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one of
x3−x2−3x+1 x4−x3−3x2+x+1 x4−5x2−x+1 x5−5x3−x2+3x+1

x3−x2−4x−1 x4−x3−5x2+2x+4 x4−5x2+1 x5−2x4−3x3+5x2+x−1

x3−4x−1 x4−2x3−3x2+2x+1 x4−x3−9x2+4x+16 x5−5x3+4x−1

x3−x2−4x+3 x4−x3−4x2+x+2 x4−x3−5x2+5x+1 x5−x4−5x3+3x2+5x−2

x3−x2−4x+2 x4+2x3−7x2−8x+1 x4−5x2+2 x5−6x3+8x−1

x3−x2−4x+1 x4−x3−4x2+2x+1 x4−6x2−3x+3 x5−6x3−x2+8x+3

x3−x2−6x+7 x4−x3−5x2−x+1 x4−2x3−5x2+x+2 x5−2x4−4x3+7x2+3x−4

x3−x2−5x+4 x4−9x2+4 x4−7x2−6x+1 x5−2x4−4x3+4x2+3x−1

x3−7x−5 x4−6x2−4x+2 x4−x3−5x2+2x+1 x6−x5−5x4+4x3+5x2−2x−1

x3−x2−7x+8 x4−2x3−3x2+4x+1 x4−x3−6x2−x+1 x6−2x5−4x4+6x3+4x2−3x−1

x3−6x−1 x4−x3−6x2+x+1 x4−7x2+2 x6−3x5−2x4+9x3−x2−4x+1

x4−4x2−x+1 x4−2x3−6x2+7x+11 x4−x3−6x2+7x+1 x6−3x5−3x4+10x3+3x2−6x+1

2. If m = 5 then K = Q(
√

5).

Proof. If m = 3 let k be the number of prime ideals of ZK with norm 2. Other-
wise set k = 0. By Proposition 3.4 and the assumption that Λ has class number
one, it follows that

1 ≥ 2 ·mass(Λ) > 2 · γnG · d
r(2r+1)/2
K · (2/3)k

and therefore the root discriminant d
1/n
K is bounded above by

d
1/n
K < (γG · 21/n · (2/3)k/n)−2/(r(2r+1)) . (2)

Let us first assume that k ≥ 1. Then m = 3 and d
1/n
K < (4π2 · 3/2)2/3 < 15.20.

By Theorem 4.1, this implies that n ≤ 10. Thus equation (2) shows that in fact

d
1/n
K < (4π2 · (1/2)1/10 · 3/2)2/3 < 14.51 and thus n ≤ 8.

Suppose now k = 0. Then by equation (2), we have

d
1/n
K < γ

−2/(r(2r+1))
G . (3)

Since K 6= Q we have d
1/n
K ≥

√
5. The right hand side of equation (3) is strictly

decreasing and the only cases where it is at most
√

5 are

r 1 2 3 4 5 6

d
1/n
K > 11.60 6.35 4.37 3.33 2.70 2.26

In particular, n ≤ 8 by Theorem 4.1.
Since Voight’s tables [Voi08] list all totally real number fields of degree n ≤ 8

with root discriminant ≤ 15, we can now simply enumerate all pairs (r,K) such
that inequality (2) holds. As it turns out, there are only 218 such pairs. Among
those, only the 71 pairs given above satisfy the fourth condition of Proposition
3.4.

If m is even, the factor L(G) does not solely depend on K but also on EQ
and therefore on the discriminant of Q. Thus we cannot get as sharp bounds
on the base field K as in Proposition 4.2. But we still can enumerate a finite
set of fields K that needs to be checked explicitly.

Proposition 4.3. Suppose Λ has class number one and K 6= Q. If m = 2r ≥ 4
is even, then m ≤ 14. Further,
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1. If m = 4 then d3K ≤ 1
2 · (2π)4n · (15/8)k where k denotes the number of

prime ideals of ZK with norm 2. There are 249 such fields and the largest
one has degree 7.

2. If m = 6 then K = Q(
√
d) with {d ∈ 2, 3, 5, 6, 7, 13, 17, 21, 29, 33, 37} or

K = Q(θ`) with ` ∈ {7, 9, 15} or K ∼= Q[x]/(f(x)) where f(x) is one of
x3 − x2 − 3x+ 1, x3 − x2 − 4x− 1, x3 − 4x− 1, x4 − x3 − 3x2 + x+ 1 or
x4 − 6x2 + 4.

3. If m = 8 then K = Q(
√
d) with d ∈ {2, 3, 5, 13, 17} or K = Q(θ`) with

` ∈ {7, 9}.

4. If m = 10 then K = Q(
√

2) or K = Q(
√

5).

5. If m ∈ {12, 14} then K = Q(
√

5).

Proof. Ifm = 4 let k be the number of prime ideals of ZK with norm 2, otherwise
set k = 0. As in the proof of Theorem 4.2 we have

d
1/n
K < (γG · 21/n · (8/15)k/n)−2/(r(2r−1)) . (4)

Suppose first that k 6= 0. Then m = 4 and the above inequality implies that

d
1/n
K < (30π4)1/3 < 14.30. Thus Theorem 4.1 shows that n ≤ 8. Suppose now

that k = 0. Then by equation (4), we have

d
1/n
K < γ

−2/(r(2r−1))
G .

The right hand side of this equation is strictly decreasing. It is greater that√
5 if and only if r ≤ 7. Further, if m = 4 it takes the value (2π)4/3 < 11.60.

Therefore n ≤ 8. Since [Voi08] lists all totally real number fields of degree ≤ 8
and root discriminant ≤ 15, we can now simply enumerate all pairs (r,K) such
that inequality (4) holds. The result follows.

5 Enumerating the one-class genera

5.1 Odd dimensions

Suppose m = 2r+1 ≥ 3 is odd. Then the enumeration of all one-class genera of
maximal integral forms is straightforward. For each of the possible pairs (m,K)
from Proposition 4.2, we apply the following algorithm.

Algorithm 5.1.
Input: Let K be a totally real number field of degree n and let m ≥ 3 be odd.
Output: A set L of representatives for the one-class genera of maximal integral
lattices in definite orthogonal K-spaces of dimension m.

1. Evaluate s(m,K) := 2 · γ(G)n · L(G) and set L = ∅.
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2. Compute all possible combinations S of local symbols such that

(s(m,K) ·
∏
p

λp(Q))−1 ∈ Z .

3. For each such combination S compute the set DS of all possible values for
disc(Q) (up to squares).

4. For each such combination S and each d ∈ DS do

(a) Turn the set S into the Hasse invariants using Table 1 and equation
(1).

(b) Check if there exists a quadratic K-space of dimension m, discrimi-
nant d and the requested local Hasse invariants.

(c) If such a space exists, construct a maximal integral lattice L in it.

(d) Let Λ be the genus of L. If #Aut(L) = 1/mass(Λ), include L into L.

5. Return L.

We give some comments and hints how to do the above steps.

1. If tp(Q) 6= 0 then λp(Q) ≥ (NK/Q(p)r − 1)/2 > 1 except if r = 1 and
NK/Q(p) ∈ {2, 3}. So we only have to consider finitely many prime ideals
p for which tp(Q) 6= 0.

2. The set DS can be computed as follows. By Dirichlet’s unit theorem, the
quotient {u ∈ Z∗K | u totally positive}/(Z∗K)2 is finite. Let u1, . . . , us be
a transversal and let J =

∏
tp(Q)=II±

p. Further, let a1, . . . , ah represent

the ideal classes of ZK . We start with DS = ∅. For each 1 ≤ i ≤ h we
then check if Ja2i = αiZK for some αi ∈ ZK such that (−1)r ·αi is totally
positive. If such an αi exists, we include {αi · uj | 1 ≤ j ≤ s} into DS .

3. In step (4a) one has to evaluate several Hilbert symbols. An computa-
tionally efficient way to evaluate these symbols has been given in [Voiar].

4. Step (4b) is done as follows. By [O’M73, 72:1] there exists a definite
orthogonal K-space with discriminant d and given Hasse invariants if and
only if the Hasse invariants are −1 at an even number of prime ideals.

5. Constructing a global space with the given invariants can be done by trial
and error. Let T be a set of prime ideals of ZK that includes the ideals
for which tp(Q) 6= 0. Then one tests quadratic forms

〈a1, . . . , am−1, (−1)r · a1 · · · am−1 · d〉

where the ai are totally positive generators of products of ideals in T . If
the set T is large enough, this will quickly produce a form Q that has
the correct local Hasse invariants. The computation of a maximal integral
lattice with respect to Q is then straightforward. Finally, the computation
of the automorphism group of this lattice is done using the algorithm of
Plesken and Souvignier [PS97].
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If in step 4d equality did not hold, the genus Λ has been enumerated com-
pletely with Kneser’s neighbor method. An explanation of this method is given
by Schulze-Pillot in [SP91] as well as Hemkemeier and Scharlau in [HS98]. This
cautionary check assures that we have evaluated the mass correctly and that we
have constructed a maximal lattice in the correct orthogonal space.

5.2 Even dimensions

Suppose m = 2r ≥ 4 is even. In the odd dimensional cases, one can reconstruct
the possible values for disc(Q) by the local types tp(Q). If m is even however,
we first have to compute all possible values for disc(Q). For this we compute
all possible quadratic extensions EQ/K.

Lemma 5.2. Suppose m ≥ 4 is even and the genus of all maximal integral
lattices Λ of (V,Q) has class number one. If m = 4, let k denote the number of
ideals of ZK of norm 2 otherwise set k = 0. Further, for each prime ideal p of
ZK set ep = 2 if 2 ∈ p and set ep = 1 otherwise. If disc(Q) /∈ (K∗)2 then

∏
p|dEQ/K

NK/Q(p)ep(r−1/2)

2
≤ 2k−1 · γ(G)−n · ζK(r) · dr(1−2r)/2K ·

r∏
i=1

ζK(2i)−1 .

Proof. If p ramifies in EQ/K then pep divides dEQ/K (see for example [Ser95,
Proposition III.13]). Thus it follows from Proposition 3.4 that

1 ≥ 2 ·mass(Λ)

≥ 2 · γ(G)n · dr(2r−1)/2K ·
r−1∏
i=1

ζK(2i) ·
ζEQ

(r)

ζK(r)
· 2−k

∏
p|dEQ/K

NK/Q(p)ep(r−1/2)

2
.

The result follows since ζEQ
(r) ≥ ζK(2r).

The above lemma restricts the prime ideals of K that could possibly be
ramified in EQ/K to a finite set. By Class Field Theory, we can now construct
all quadratic extensions E/K such that dE/K satisfies the inequality in Lemma
5.2. There are only finitely many such fields. Now if E = EQ then E = K(

√
α)

for some α ∈ K such that (−1)rα is totally positive since α/disc(Q) ∈ (K∗)2.
By listing all such fields E, we have then effectively enumerated all possible
discriminants disc(Q) ∈ K∗/(K∗)2 that can give rise to one-class genera of
maximal integral lattices.

The computation of all one-class genera is now similar to the odd dimensional
case.

Algorithm 5.3.
Input: Let K be a totally real number field of degree n and let m ≥ 4 be even.
Output: A set L of representatives for the one-class genera of maximal integral
lattices in definite orthogonal K-spaces of dimension m.
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1. Set L = ∅.

2. Compute the set D of possible nonsquare discriminants disc(Q) with Lemma
5.2. If m ∈ 4Z, include 1 to D.

3. For all d ∈ D do:

(a) Compute all possible combinations S of local symbols such that

(2 · γ(G)n · L(G) ·
∏
p

λp(Q))−1 ∈ Z .

Note that tp(Q) ∈ {III+, III−} if and only if d 6= 1 and p | dK(
√
d)/K .

(b) For each such set S do:

i. Turn the set S into the Hasse invariants using Table 1 and equa-
tion (1).

ii. Check if there exists a quadratic K-space of dimension m, dis-
criminant d and the requested local Hasse invariants.

iii. If such a space exists, find a maximal integral lattice L in it.

iv. Let Λ be the genus of L. If #Aut(L) = 1/mass(Λ) then include
L into L.

4. Return L.

6 Quaternion orders

We first recall some basic properties of quaternion orders. More details can be
found in the book of Vignéras [Vig80] for example.

Let K be a number field. A quaternion algebra Q over K is a central simple
K-algabra of dimension four. Every quaternion algebra Q admits a unique
involution ¯: Q → Q such that the reduced norm nrQ/K(x) := xx̄ and reduced
trace trQ/K(x) := x+ x̄ are contained in K for all x ∈ Q. The reduced norm is
a quadratic form on Q with corresponding bilinear form

Q×Q → K, (x, y) 7→ nrQ/K(x+ y)− nrQ/K(x)− nrQ/K(y) = trQ/K(xȳ) .

We say that Q is ramified at some place v of K if and only if the completion
Qv := Q ⊗K Kv of Q at v is a skew-field. The algebra Q is determined by its
ramified places up to isomorphism and Q is said to be (totally) definite, if it is
ramified at all infinite places of K. This is equivalent to say that (Q,nrQ/K) is
totally positive definite.

An order O ⊂ Q is a subring of Q that is also a ZK-lattice in Q. The order
O is said to be maximal if it is not contained in a larger one.

Finally, given a subset S ⊂ Q we denote by S0 = {s ∈ S | trQ/K(s) = 0}
the set of all elements in S that have trace 0.
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Lemma 6.1. Let (V,Q) be a four-dimensional definite quadratic space over K
such that disc(Q) ∈ (K∗)2.

1. There exists a definite quaternion algebra Q over K such that (V,Q) is
isometric to (Q,nrQ/K). Further, Q is unique up to isomorphism.

2. Each maximal order M in Q is a maximal integral lattice in (Q,nrQ/K).

3. Two maximal orders in Q are conjugate in Q if and only if they are iso-
metric lattices in (Q,nrQ/K).

4. Let p1, . . . , ps be the prime ideals at which Q ramifies and let M be some
maximal order in Q. The genus Λ of all maximal integral lattices in
(Q,nrQ/K) has class number one if and only if every maximal order of
Q is conjugate to M and

2n

|ζK(−1)|
= #M1 ·

s∏
i=1

(NK/Q(p)− 1)

where M1 = {x ∈M | nrQ/K(x) = 1} denotes the norm one group of M .

Proof. A proof for the first assertion is for example given in [Pon76, Propositions
1 and 4]. The second statement is clear from the local descriptions of maximal
orders. For a proof of the third assertion, see for example [Neb98, Corollary
4.4].

For the proof of the last statement, let H denote the number of isomorphism
classes of finitely generated nonzero M -bimodules in Q. Under the assumption
that M is unique up to conjugacy, Eichler’s mass formula (see for example
[Vig80, Corollaire V.2.3]) states that

H

[M∗ : Z∗K ]
= 21−n · |ζK(−1)| · hK ·

s∏
i=1

(NK/Q(p)− 1)

where hK denotes the class number of ZK . The quotient H
[M∗:Z∗

K ] is related to

the automorphism group of the lattice M in (Q,nrQ/K) by [Neb98, Corollary
4.5] as follows

H

[M∗ : Z∗K ]
=

2s+1 · hK ·#M1

#Aut(M)
.

The last two equations show that

1

#Aut(M)
= 2−n · |ζK(−1)| · 1

#M1
·
s∏
i=1

NK/Q(p)− 1

2
.

Theorem 3.3 implies that Λ has class number one if and only if

2

#Aut(M)
= 21−2n · ζK(−1)2 ·

s∏
i=1

(NK/Q(p)− 1)2

2

12



since the local type of the norm form tp(nrQ/K) ∈ {0, I} and it takes the value I
if and only if Q ramifies at p. Combining the two equations for #Aut(M) gives
the result.

There is a similar correspondence for ternary lattices.

Lemma 6.2. Let M,N be maximal orders in a definite quaternion algebra Q.

1. Every isometry ϕ : M0 → N0 (with respect to nrQ0/K) extends to an isom-
etry ψ : M → N (with respect to nrQ/K).

2. The orders of the automorphism groups satisfy #Aut(M) = #M1·#Aut(M0).

Proof. Since the canonical involution is an isometry on M0 with determinant
−1, we may assume that det(ϕ) = 1. By extension of scalars, ϕ is an isometry
on Q0. Then ψ : Q → Q, λ + x 7→ λ + ϕ(x) for all λ ∈ K and x ∈ Q0 is
the only isometry of determinant 1 that extends ϕ. It remains to shows that
ψ(M) = N . By [Die69, Appendix IV, Proposition 3], ψ is simply conjugation
by some element in Q∗. In particular, ψ(M) is a maximal order that contains
N0. If Q ramifies at p then Qp has a unique maximal order which implies
that ϕ(M)p = Np. If Q does not ramify at p then without loss of generality
Np = Z2×2

Kp
. Then ϕ(M)p contains e := ( 0 1

0 0 ) and f := ( 0 0
1 0 ). Hence the order

ϕ(M)p must also contain the ZKp
-span of {e, f, ef, fe} which is Np. This proves

the first claim.
For a proof of the second, let Aut+(M) = Aut(M) ∩ SO(Q,nrQ/K) and

Aut+(M0) = Aut(M0) ∩ SO(Q0,nrQ0/K). Since the canonical involution in-
duces isometries of determinant −1 on M and M0, it suffices to show that
[Aut+(M) : Aut+(M0)] = #M1. From the first part of the proof we know that
Aut+(M0) can be identified with the subgroup S = {ψ ∈ Aut+(M) | ψ(1) =
1} of Aut+(M). But S has index #M1 in Aut+(M) by [Neb98, Corollary
4.5].

Lemma 6.3. Let (V,Q) be a three-dimensional definite quadratic space over K
such that −disc(Q) ∈ (K∗)2.

1. There exists a definite quaternion algebra Q over K such that (V,Q) is
isometric to (Q0,nrQ0/K). Further, Q is unique up to isomorphism.

2. The trace zero submodule M0 of any maximal order M in Q is a maximal
integral lattice in (Q0,nrQ0/K).

3. Two maximal orders in Q are conjugate in Q if and only if their trace
zero submodules are isometric lattices in (Q0,nrQ0/K).

Proof. For the first claim, see for example [Kne02, (6.20) and (6.21)]. The
second assertion follows again from the local description of maximal orders. The
third statement is an immediate consequence of Lemmas 6.1 and 6.2.
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Theorem 6.4. Let Q be a definite quaternion algebra over K. Then the genus
Λ of all maximal integral lattices in (Q0,nrQ0/K) has class number one if and
only if all maximal orders in Q are conjugate.

Proof. If Λ has class number one then all maximal orders inQmust be conjugate
by the previous Lemma. The converse follows again from comparing the mass
formulas of Eichler and Shimura while using the identity #Aut(M) = #M1 ·
#Aut(M0).

Note that there are other maps between ternary quadratic forms and quater-
nion orders such that a similar statement as Theorem 6.4 holds. There is the
correspondence of Brzeziński [Brz82] which goes back to work of Peters [Pet69],
Brandt [Bra43] and Lardier [Lat37]. There is also the correspondence of Nipp
[Nip74] which generalizes a result of Pall [Pal46]. These maps are in general
not onto. Further, they do not map maximal integral forms to maximal orders.
Hence we do not pursue these connections further.

7 Results

The enumeration of all one-class genera has been implemented by the author in
Magma (see [BCP97]). A summary of the results is given here.

Theorem 7.1. Let (V,Q) be a definite quadratic space of dimension m ≥ 3
over some totally real number field K 6= Q. If the genus of all maximal integral
lattices in (V,Q) has class number one then m ≤ 6. Moreover:

1. If m = 3 then there are 402 such genera over 29 different fields. In 96
cases, −disc(Q) is a square.

2. If m = 4 then there are 67 such genera over 19 different fields. In 51 cases
the discriminant of Q is a square.

3. If m = 5 then K = Q(
√

5) and (V,Q) ∼= 〈1, 1, 1, 1, 1〉.

4. If m = 6 then K = Q(
√

5) and (V,Q) ∼=
〈
1, 1, 1, 1, 1, (5 +

√
5)/2

〉
.

The complete list of these genera can be obtained electronically from [Kir12].

Almost all lattices in Theorem 7.1 are free. More precisely, the following is
true.

Remark 7.2. The field K = Q(
√

15) is the only base field with non-trivial class
group that affords maximal integral lattices with class number one and rank at
least 3. In fact, up to isometry there are four such lattices and all of them have
exactly rank 3. These lattices can be constructed as follows.

Let Q be the definite quaternion algebra over K ramified at the prime ideals
p2 and p3 of norm 2 and 3 respectively. Let M be a maximal order in Q. It is
unique up to isometry. Hence (M0,nrQ0/K) is a maximal integral lattice with
class number one by Lemma 6.4.
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Let u =
√

15+4 be a fundamental unit of Z[
√

15]. Then (pa3M,ub/3a·nrQ0/K)
is maximal integral for all a, b ∈ {0, 1}. By comparing discriminants, we see
that this gives 4 pairwise non-isomorphic lattices. Further, rescaling forms and
lattices does not change class numbers. Since M0 is free and p3 generates the
class group of Z[

√
15] we see that p3M

0 cannot be free by Steinitz’ theorem.
Thus the classification in Theorem 7.1 contains only two non-free lattices.

By [LK13] or [Han11], there exist 9 one-class genera of maximal integral
ternary lattices in rational orthogonal spaces (V,Q) such that −disc(Q) ∈ Q2.
Together with Theorems 6.4 and 7.1 we have thus just proven the following.

Theorem 7.3. Let Q be a definite quaternion algebra over some number field K
(possibly Q) such that Q contains up to conjugacy only one maximal order M .
Let c denote the ideal class number of M , i.e. the number of finitely generated
nonzero M -left modules in Q. Then c ∈ {1, 2, 4, 8}. More precisely:

1. There are 49 algebras with c = 1 and 53 algebras with c = 2. They have
been enumerated by Voight and the author in [KV10].

2. If c = 4 then either K = Q(
√

7) and Q ramifies at the two prime ideals
over 2 and 7 or K = Q(

√
21) and Q ramifies at the the two prime ideals

over 3 and 7.

3. If c = 8 then K = Q(
√

15) and Q ramifies at the two prime ideals over 2
and 3.

We now give some more details for the one-class genera for base fields K 6= Q.
Let Λ be a one-class genus of maximal integral lattices in (V,Q). Further let L
be a representative of Λ.

It is clear that for a Galois extension K/Q, the Galois group acts on the
set of definite quadratic spaces (V,Q) over K and thus on the set of genera of
maximal integral lattices. Further, the action preserves class numbers. Thus it
suffices to give only one representative for each orbit.

Dimension 4

Among the 102 quaternion algebras in Theorem 7.3, only 56 satisfy the condition
of Lemma 6.1 part 4. In 51 cases, the center of these algebras is a proper
extension of Q which agrees with Theorem 7.1. They are listed in the following
table. For each algebraQ we give its ramified prime ideals where pq denotes some
prime ideal of ZK over the rational prime q. Further we give the isomorphism
type of Aut(M) for some maximal order M in Q as well as the length of the
Galois orbit.

K ram. primes #orbit Aut(M)

Q(
√

5) − 1 Aut(H4)

Q(
√

5) p2, p5 1 (±D10)2

Q(
√

5) p2, p11 2 D2
8
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K ram. primes #orbit Aut(M)

Q(
√

2) − 1 Aut(D4(
√

2))

Q(
√

2) p2, p7 2 D2
16

Q(
√

2) p2, p3 1 (±S3)2

Q(
√

2) p2, p5 1 C4
2

Q(
√

3) p2, p3 1 (D12.2)2

Q(
√

3) p2, p13 2 C4
2

Q(
√

13) − 1 Aut(D∼4 )

Q(
√

13) p2, p3 2 D2
8

Q(
√

17) − 1 Aut((2A2)∼)

Q(
√

6) p2, p3 1 D2
8

Q(θ7) p2 1 Aut(D4)
Q(θ7) p7 1 (±D14) o C2

Q(θ7) p13 3 ±D2
14

Q(θ7) p29 3 ±D2
6

Q(θ7) p43 3 C4
2 .C2

Q(θ9) p3 1 D2
36

Q(θ9) p19 3 C4
2 .C2

Q(θ9) p37 3 C3
2

x3 − x2 − 3x+ 1 p2 1 Aut(D4)
x3 − x2 − 3x+ 1 p5 1 ±S2

3

x3 − x2 − 3x+ 1 p13 1 C3
2

x3 − x2 − 4x− 1 p5 3 ±S2
3

x3 − x2 − 4x− 1 p13 1 C3
2

x3 − 4x− 1 p2 1 C3
2 .C2

x3 − x2 − 4x+ 2 p2 1 ±S2
3

x3 − x2 − 4x+ 1 p3 1 C4
2 .C2

x4 − x3 − 3x2 + x+ 1 − 1 Aut(H4)
x4 − 4x2 − x+ 1 − 1 Aut(D∼4 )

Q(θ20) p2, p5 1 C4
2

Q(θ24) p2, p3 1 C4
2

x4 − x3 − 4x2 + x+ 2 − 1 Aut((2A2)∼)
x5 − 5x3 − x2 + 3x+ 1 p5 1 ±S2

3

Here Si, Ci and Di denote the symmetric, cyclic and dihedral groups of order
i respectively. Further A and D stand for the root lattices of the corresponding
type. The four one-class genera of unimodular lattices over totally real quadratic
fields have been found by Scharlau in [Sch94]. In this paper, he gives explicit
constructions for these lattices and the corresponding automorphism groups
Aut(H4) = (SL2(5) ◦ SL2(5)) : 2 in the notation of [NP95], Aut(D4(

√
2)) =

Aut(D4).2, Aut(D∼4 ) and Aut((2A2)∼).
The 16 quaternary one-class genera for which disc(Q) is not a square, are

organized in 11 Galois orbits. For each such orbit, the following table lists the
base field K, the determinant of L (which is a free ZK-module), the set of
primes for which the Hasse invariant cp(Q) is −1, the orbit length and finally
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the isomorphism type of Aut(L).

K det(L) cp = −1 #orbit Aut(L)

Q(
√

5) p22p5 p2, p5 1 (C2 o S3)× C2

Q(
√

5) p22p3 p2, p3 1 D10 × C2
2

Q(
√

5) p3p5 − 1 (±A5)× {±1}
Q(
√

5) p3p5 p3, p5 1 (±D10)× (±S3)

Q(
√

5) p29 − 2 (±A5)× {±1}
Q(
√

5) p5p41 p5, p41 2 S3 × C2
2

Q(
√

2) p22p3 p2, p3 1 D16 × C2
2

Q(
√

2) p22p17 p2, p17 2 S3 × C2
2

Q(
√

3) p22p5 p2, p5 1 C3
2

Q(θ7) p3p7 p2, p3 1 C2 o S3

Q(θ9) p3p71 p2, p71 3 ±S4

Dimensions 5 and 6

In dimensions 5 and 6 we have K = Q(
√

5). Let M be a maximal order in
Q =

(−1,−1
K

)
, the quaternion algebra over K ramified only at the infinite places.

By Theorem 7.1, the two quadratic spaces of dimension 5 or 6 over K that
admit one-class genera of maximal integral lattices are (Q,nrQ/K) ⊥ 〈1〉 and
(Q,nrQ/K) ⊥ (Q(ζ5), NQ(ζ5)/K).
The lattices L1 = M ⊥ 〈1〉 and L2 = M ⊥ Z[ζ5] are maximal integral in these
spaces respectively. The corresponding automorphism groups are

Aut(L1) = Aut(H4)× {±1} = ((SL2(5) ◦ SL2(5)) :2)× {±1} and

Aut(L2) = Aut(H4)× {±D10} = ((SL2(5) ◦ SL2(5)) :2)× {±D10} .

Dimension 3

Instead of listing all 402 one-class genera of maximal integral ternary lattices,
we only list the number nK of genera for each base field K in Table 3.
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K nK K nK K nK
x2−5 64 x3−x2−2x+1 38 x4−4x2−x+1 6
x2−2 48 x3−3x−1 28 x4−5x2+5 4
x2−3 34 x3−x2−3x+1 12 x4−4x2+1 4
x2−13 31 x3−x2−4x−1 14 x4−x3−4x2+x+2 2
x2−17 15 x3−4x−1 6 x4−6x2−4x+2 8
x2−21 16 x3−x2−4x+3 6 x4−2x3−3x2+4x+1 4
x2−6 12 x3−x2−4x+2 4 x5−5x3−x2+3x+1 2
x2−7 12 x3−x2−4x+1 4 x5−2x4−3x3+5x2+x−1 2
x2−33 8 x4−x3−3x2+x+1 6 x5−5x3+4x−1 4
x2−15 4 x4−x3−4x2+4x+1 4

Table 3: Distribution of the 402 ternary one-class genera among the 29 different
base fields.
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