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Chapter 1

Introduction

The finite subgroups of GL,,(Q) are those subgroups that fix a full lattice in Q*™
together with some positive definite symmetric form (see Chapter 2 for precise defini-
tions).

A subgroup of GL,,(Q) is called symplectic, if it fixes a nondegenerate skewsymmetric
form. Such groups only exist if m is even. A symplectic subgroup of GL,,(Q) is called
maximal finite symplectic if it is not contained in another finite symplectic subgroup

of GL,,(Q).

This thesis classifies all conjugacy classes of maximal finite symplectic matrix groups
in GL,,,(Q) for m < 22.

Such classifications have a long tradition. Minkowski [Min87] gave upper bounds
on the orders of finite subgroups of GL,,(Q) using the theory of quadratic forms.
Later, Schur [Sch05] gave bounds on the orders of finite subgroups of GL,,(C) having
rational traces using character theory. Serre extended this work to arbitrary fields
(see [GTTOT]). In [Blil7] Blichfeldt classified all finite subgroups of PGLy(C) and
PGL3(C). The finite (quasiprimitive) subgroups of GL,,(C) for m < 10 have been
determined by Blichfeld, Brauer, Lindsey, Wales and Feit (see [Fei76]). These results
do not depend on the classification of all finite simple groups. Using the classification of
all finite simple groups, the maximal finite subgroups of GL,,,(Q) have been determined
in [BBNZT77, Ple91l, NP95, [Neb95, [Neb96] for m < 31. Similarly, the maximal finite
subgroups of GL,,(Q) have been classified in [Neb98a] for all totally definite quaternion
algebras Q with m - dimg(Q) < 40.

Each conjugacy class of symplectic matrix groups contains a representative G in

SpPs,(Q) = {9 € GL2,(Q) | gJug™ = J,} where J, = ( 0 I”). So one might

I, 0
ask how the orbit {G* | * € GLy,(Q) such that G* < Sp,,,(Q)} decomposes into
Sps, (Q)-conjugacy classes. If the commuting algebra of G is a quadratic number field,
then Lemma [2.1.12] shows that there exists a parametrization of these classes using
norm groups. In particular, it turns out that each orbit decomposes into infinitely
many Sp,,,(Q)-conjugacy classes. Hence only GLy,(Q)-conjugacy classes of symplec-
tic matrix groups are considered in this thesis.

The natural representation of a maximal finite symplectic matrix group is a sum of
pairwise nonisomorphic rationally irreducible representations that yield maximal finite
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6 CHAPTER 1. INTRODUCTION

symplectic matrix groups. Thus it suffices to classify only the (conjugacy classes of)
symplectic irreducible maximal finite (s.i.m.f.) matrix groups.

Each sim.f. group G < GLy,(Q) is contained in a rationally irreducible maximal
finite (rim.f.) group H < GL3,(Q). But in practice, this fact cannot be used to
classify all s.i.m.f. groups by computing proper subgroups of such groups H since the
index [H : G] can be very large. For example, the sim.f. group QDgy < GL16(Q) is
contained in the rim.f. group Aut(Bjg) < GL16(Q) with index 29 - 16!.

Hence one has to proceed as in the classification of the r.i.m.f. matrix groups. The
r.im.f. or s.i.m.f. matrix groups are full automorphism groups of some lattices. Further,
two such groups are conjugate if and only if certain lattices are isometric.

The concept of primitivity is the key ingredient to these classifications since it has some
important consequences. A symplectic matrix group is called symplectic primitive if
it is not contained (up to conjugacy) in a wreath product of some symplectic matrix
group. The restriction of the natural character of a symplectic primitive irreducible
maximal finite (s.p.i.m.f.) matrix group G < GLs,(Q) to a normal subgroup N is a
multiple of a single rationally irreducible character of N. Furthermore, if G is s.p.i.m.f.
then there exists a finite list of candidates (depending only on n) for the generalized
Fitting subgroup F*(G) of G. The possible Fitting subgroups are given by a theorem
of Hall. The possible layers (central products of quasisimple groups) can be taken from
Hiss and Malle [HMO1] which is based of the atlas of finite simple groups [CCNT85].
So the completeness of this list depends on the classification of the finite simple groups.

Then it remains to construct all possible extensions G' of F*(G) up to conjugacy.
There are several shortcuts to find G or at least a large (normal) subgroup of G. A
very useful tool is the so-called generalized Bravais group. If NV is a normal subgroup
of a s.p.i.m.f. matrix group G < GLs,(Q), then the generalized Bravais group B°(N)
contains N and can be computed directly from N. Further, N and B°(NN) have the
same commuting algebras and B°(NV) is a normal subgroup of G.

It turns out that, like in the classification of r.i.m.f. matrix groups, the number of
conjugacy classes of s.i.m.f. subgroups of GLy, (Q) varies greatly depending on whether
n is divisible by a large power of 2 or not. This is due to the fact that the list of
possible Fitting subgroups is much larger in the first case. For example, there are 91
conjugacy classes of s.i.m.f. groups in GL15(Q), but there are only 5 conjugacy classes
in dimension 14.

This classification relies on calculations (computations of automorphism groups and
invariant forms, ideal arithmetic, ...) that require the use of a computer algebra
system. All these calculations were performed in MAGMA [BCP97] since this sys-
tem is extensible and it provides almost all necessary algorithms for lattices, group
theory, number fields and (quaternion) algebras. In particular, MAGMA contains
an implementation of the algorithm of Plesken and Souvignier [PS97] for computing
automorphism groups and isometries of lattices.

This thesis is organized as follows. Section 2.1 starts with basic definitions and gives a
first overview of symplectic matrix groups. It also recalls the definition of generalized
Bravais groups and elaborates the general outline of the classification. Section 2.2



explains the so-called “m-parameter argument” which allows us to construct all s.i.m.f.
supergroups of a given irreducible matrix group U whose commuting algebra is a
field. We also give an algorithm which computes all s.i.m.f. supergroups G of U
if the commuting algebra of U is a quaternion algebra provided that U < G and
|G : U] is a power of 2. This section also contains some methods that can be used to
rule out several candidates for normal subgroups. Section 2.3 explains the sublattice
algorithm. Section 2.4 describes several constructions and notational conventions for
maximal finite matrix groups. Finally, Section 2.5 contains a complete list of all
possible generalized Fitting subgroups of s.p.i.m.f. matrix groups up to dimension
2n = 22.

Chapter 3 describes some infinite families of s.i.m.f. matrix groups. In particular, all
s.i.m.f. subgroups of GL,_1(Q) and GL,:1(Q) whose orders are divisible by a prime
p > 5 are determined.

Chapter 4 deals with the classification of the s.i.m.f. subgroups of GLy,(Q) for
1 <n < 11. For each dimension, the classification of the conjugacy classes of s.i.m.f.
subgroups is given as a table. For each class, it contains a name that describes how a
representative of that class can be constructed (from p-subgroups, quasisimple groups
or smaller maximal finite matrix groups by taking generalized Bravais groups, tensor
products, wreath products or group extensions). The table also contains the following
invariants of each conjugacy class: group order, commuting algebra, number of isomor-
phism classes of invariant lattices and further information on certain invariant lattices.
Together these invariants provide an easy method for recognizing the conjugacy class
of a given s.i.m.f. matrix group.

For each conjugacy class, the appendix contains a symmetric positive definite and a
skewsymmetric form such that the automorphism group of the standard lattice with
respect to these two forms represents that particular class. These forms are also
available in a MAGMA [BCP97| readable format from

http://www.math.rwth-aachen.de/~Markus.Kirschmer/symplectic/.

First of all, I would like to express my deepest gratitude to Prof. Dr. Gabriele Nebe.
This thesis would have been impossible without her guidance and advice.

I want to thank the Deutsche Forschungsgesellschaft for my scholarship in the research
training group “Hierarchie und Symmetrie in mathematischen Modellen”.

Furthermore, I would like to thank my colleagues especially Dr. Matthias Kiinzer,
Annika Giinther, Elisabeth Nossek, Georg Deifuss, Kristina Schindelar and Moritz
Schroer for numerous discussions and social events.
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Chapter 2

Methods

2.1 Definitions

2.1.1 Symplectic matrix groups

This thesis classifies the conjugacy classes of all maximal finite symplectic subgroups
of GL,,,(Q) for 1 < m < 22. Two very important tools for the classification are the
form spaces and the commuting algebras:

Definition 2.1.1 Let G < GL,,(Q).
(a) The Q-space of G-invariant forms is given by
F(Q) ={F e Q™™ | gFg" = F for all g € G} .

Further Fyym(G), F-o(G) and Fepew(G) denote the subset of symmetric, sym-
metric positive definite and skewsymmetric G-invariant forms respectively.

The group G is called symplectic if Fgrew(G) contains an invertible element and
G is said to be uniform if dimg(Fym(G)) = 1.

(b) The enveloping algebra G of G is the subspace of Q™*™ generated by the matrices
in GG. Further

End(G) := Comxm(G) :=={X € Q™™ | Xg = gX for all g € G}

is the endomorphism ring or commuting algebra of G.

Remark 2.1.2 Let G < GL,,,(Q).

(a) If ' € F(G) is invertible, then End(G) — F(G), e — eF is an isomorphism of
Q-spaces. Its inverse is given by F(G) — End(G), F' — F'F~L.

(b) If G is finite, then }_ ;99" € Fso(G). In particular, F(G) ~ End(G).
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Remark 2.1.3 Let J,, := (_O] ]6L> € GL2,(Q).

(a) If G < GL,,(Q) is symplectic, them m is even.
(b) Sps,(Q) :={g € GL2,(Q) | gJng™ = Jn} is a subgroup of SLy,(Q).

(¢) An invertible matrix S € GLy,(Q) is skewsymmetric if and only if S = J¥ for
some = € GLy,(Q). In particular, a finite subgroup G' < GLs, (Q) is symplectic
if and only if there exists some & € GlLs,(Q) such that G* < Sp,, (Q).

Proof: See for example [Art57, Theorems 3.7 and 3.25]. 0

So any conjugacy class of (maximal) finite symplectic subgroups of GL,,(Q) has a
representative in Sp,,,(Q).

The most important computational tool for the enumeration of the maximal finite
subgroups of GL,,(Q) are the G-invariant lattices and automorphism groups. They
are defined as follows.

Definition 2.1.4 Let R be a Dedekind ring such that its quotient field K is a number
field.

(a) An R-lattice is a finitely generated R-module in some vector space over K.
(b) An R-order is a subring of a finite dimensional K-algebra that is also an R-lattice.
(c) If A is a Z-order in Q™™ then

Z(A) :={L c QY™ | L is Z-lattice of rank m with Lz C L for all z € A}

denotes the set of all A-invariant lattices.
Similarly if G < GL,,(Q), then

Z(G) :={L c Q™™ | L is a Z-lattice of rank m with Lz C L for all z € G}

is the set of all G-invariant lattices.

(d) For a Z-lattice L C Q™™ of rank m, a set F C Q™™ and some subfield K of
mem let

Autg (L, F) ={9 € GL,(Q) | Lg = L,gF¢g" = F,gc=cg forall F € F,c € K}

be the group of K-linear automorphisms of L with respect to F. If F = {F'}
consists only of one form, we write Auty (L, F) instead of Auty(L,{F}) and if
K ~Q, we will omit the subscript K.

Note that, if F contains a positive definite symmetric matrix, then
Autg (L, F) = Aut(L,{zF |x € K, F € F})

and we will switch frequently between these two notations in the sequel.
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We are now ready to give a characterization of (maximal) finite rational matrix groups.

Remark 2.1.5

(a) Let L C Q™ be a Z-lattice of rank m and F € Q™™ be symmetric and
positive definite. Then Aut(L, F') is finite.

(b) A group G < GL,,(Q) is finite if and only if F5¢(G) and Z(G) are nonempty.

(¢) If G < GL,,(Q) is finite then S := {Aut(L, F) | (L, F) € Z(G) x Fso(G)}
contains all maximal finite supergroups of G.

In particular, G is maximal finite if and only if S = {G}. The maximal finite
subgroups of GL,,(Q) have been classified in [BBNZ77, [Ple91, [NP95, [Neh95,
Neb96] for all m < 32.

Proof: (a) The norm induced by F' on R'™ is equivalent to the maximum norm. So
there exist only finitely many vectors in L of a given length. Hence there exist only
finitely many possible images for some fixed basis vectors of L under an automorphism.
(b) If G is finite then 3 ;99" € Fso(G) and 3 . Lg € Z(G) for any Z-lattice L
of rank m. Conversely, if (L, F) € Z(G) x Fxo(G) then G < Aut(L, F') is finite. g

In the same spirit, we want to characterize the maximal finite symplectic subgroups
of GLy,(Q). First we will give this characterization for rationally irreducible matrix
groups, where irreducibility is defined as follows:

Definition 2.1.6 A matrix group G < GL,,(K) is called K -irreducible (or just irre-
ducible) if the natural representation of G is irreducible over K. In the case K = Q
we also use the phrase “rationally irreducible”.

As Remark shows, there is a tight connection between the form space F(G) and

the commuting algebra End(G). In particular, symplectic matrix groups can also be
characterized by their endomorphism rings as Lemma [2.1.9| shows.

But before we state this lemma, we recall two well known facts.

Definition and Remark 2.1.7 Let G < GL,,(Q) be irreducible and finite. Then
E := End(G) is a skewfield of dimension e := dimg(F) say. Suppose that S C E is a
simple subalgebra with s := dimg(S). By the double centralizer property, we have a
sequence of Q-algebra monomorphisms

— mom mom AQ

G = Comxm(E) x(E°%)e e «— (59)s s — Q™™
where the superscript © denotes the opposite algebra. Let Ag be the composition of
the first two morphisms. Then the character of Ag(G) < GL=(S?) is not uniquely
determined by G, but the composition A% o Ag is conjugation by some z € GL,,(Q)
according to the Skolem-Noether theorem. In particular, G and A(Ag(G)) are con-
jugate and Ag(G) is irreducible.
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Remark 2.1.8 Let K be a number field of degree d = dimg(K). Further let Hy, Hy <
GL,,(K) be irreducible and finite. If H; and H, are conjugate in GL,,(K) then AQ(H,)
and AQ(H,) are also conjugate in GL,,4(Q). Conversely, if AC(H;) and AR(H,) are
conjugate then the natural characters of H; and H, must be algebraically conjugate.

Lemma 2.1.9 Let G < GL,,(Q) be irreducible and finite. Further let E := End(G)
and denote by K the center of E.

(a)

(b)

(c)

Let F € Foo(G) and e € E. If eF € F(G) is symmetric (skewsymmetric) then
the subfield Q(e) < E is totally real (totally complex).

Conversely, if Q(e) < K is totally real, then eF' is symmetric.
The following statements are equivalent:

(1) G is symplectic.

(2) E contains a (minimal) totally complex subfield.

(8) There ezists a (minimal) totally complex number field K' of degree d | m
and some H < GL= (K') such that G is conjugate to AQ(H) in GL,(Q).

In particular, G is a symplectic irreducible maximal finite (s.i.m.f.) subgroup of
GL,(Q) if and only if G = Autg/(L, F) for all (L, F) € Z(G) X F=o(G) and for
all minimal totally complex subfields K' of End(G).

Each F € Foo(G) induces involutions on E, G and K via x +— z° = Fa" F~1,

The involutions on G and K do not dependent on the form F and the fized field
of °: K — K is the mazimal totally real subfield K+ of K.

Further, K is either totally real or a CM-field (i.e. K is totally complex and
(K : Kt =2). In particular, ° is the (unique) complex conjugation on K.

Proof:

(a)

If eF is symmetric, then eF' = Fe™ shows that e is a selfadjoint automorphism
of the Euclidean space (R'*™ F). So it generates a totally real field. A similar
argument holds for skewsymmetric forms.

Suppose now e € K is totally real. Since F(G) is closed under taking transposes,
it decomposes into Fsym(G) & Fakew(G). Hence eF = e F + eoF with e F
symmetric and e; ' skewsymmetric. In particular e is totally real and ey totally
complex by the above. But e; = e —e; € Q(e, e1) is contained in a totally real
field. So es = 0.

Part (a) shows (1) = (2). For the converse fix F' € F5o(G) and note that
E ®gR cannot be a sum of copies of R. Thus G fixes at least one real valued
skewsymmetric form. Hence Fger(G) C {eF | e € E} contains a nonzero
element, S say. Since E is a skewfield, the form S is already invertible. So G is
symplectic. For (2) = (3) one can choose H := Ag/(G) where K’ is a minimal
totally complex subfield of E. For the converse, note that End(AQ(H)) ~ E has
a subfield isomorphic to K.
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(c) It is clear that ° is an involution on G and E. Thus it is an automorphism on
ENG =K. Since any F € F-o(G) is of the form eF for some e € E, it follows
that °: G — G does not depend on F. By part (a) it also follows that K™ is the
fixed field of °: K — K.

The field K is the character field of some complex constituent of the natural
representation of G. So K/Q is Galois. In particular, if K has an embedding
into R then all embeddings K — C would be real. So K is either totally real or
totally complex and the index [K : K] equals the order of °: K — K. 0

From this result, we immediately obtain the following corollary. It shows that we only
have to classify the conjugacy classes of s.i.m.f. matrix groups to get the classification
of the conjugacy classes for all maximal finite symplectic matrix groups.

Corollary 2.1.10 If G < GL,,(Q) is mazimal finite symplectic, then the natural rep-
resentation /\: G — GL,,(Q) splits into a sum of pairwise nonisomorphic irreducible
representations N;: G — GLy,,,(Q) and each group A;(G) is s.i.m.f..

Proof: We have a decomposition A = "7  n;/\; into irreducible and pairwise non-
isomorphic representations A;: G — GL,,,(Q). Hence we may assume that G <
{Diag(z1,...,2m) | #; € GLym,(Q)}. Hence End(G) and thus F(G) are given by
block diagonal matrices and each group n;/A\;(G) is maximal finite symplectic since G
fixes an invertible skewsymmetric form S.

Suppose now n; > 1 for some i. If n; > 2 then (n; — 2)A;(G) is symplectic. This is
clearly true if A\;(G) fixes a skewsymmetric form. In the other case, F; := End(A(G))
is a totally real field and S is the tensor product of an invertible skewsymmetric matrix
in E""" with some F' € Fwo(A;(G)). Thus n; is even and (n; —2)A;(G) is symplectic.
So we may suppose that n; = 2. But then 2A,;(G) is properly contained in H :=
(20(G), (Y §)) where ¢ € E; is a torsion unit of maximal order. One checks that H
is irreducible and thus symplectic by the previous lemma since its endomorphism ring
contains a cyclotomic subfield. 0

Remark 2.1.11 Suppose K is a minimal totally complex number field. Lemma[2.1.9
and Remark show that the classification of all s.i.m.f. subgroups of GLy, dimg (%) (Q)
yields all conjugacy classes of maximal finite K-irreducible subgroups H < GL,,(K)

satisfying End(AQ(H)) ~ K. If K 22 FEnd(AQ(H)), then two problems may arise:

e If H < GL,,(K) is K-irreducible and maximal finite then AQ(H) might be
reducible over Q as the example H = (£1) < GL;(Q(v/—d)) for every squarefree
d € Z-o \ {1,3} shows.

e Even if H < GL,,(K) is K-irreducible and maximal finite such that AQ(H) is
rationally irreducible, it might not be maximal finite symplectic, as the following
example shows:

Let Q.2 be the quaternion algebra over Q that is only ramified at 2 and
the infinite place. Denote by 9 a maximal order (it is unique up to conju-
gacy). Then the torsion subgroup 9*! is isomorphic to SLy(3). We denote



14

CHAPTER 2. METHODS

bY 002[SL2(3)]1 := A1) the corresponding subgroup of Sp,(Q). By The-
orem this group has (up to conjugacy) three s.i.m.f. supergroups namely
i[(Ds ® Cy).S3)2, /=5[GL2(3)]2 and o 2[SL2(3)]1 o C3. These groups have Q(3),
Q(v/—2) and Q(v/—3) as commuting algebras respectively. Let K = Q(v/—d) be
any splitting field of Q..o such that d ¢ {1,2,3} (for example K = Q(v/=5)).
Then H := AR (9M*!) is a K-irreducible maximal finite subgroup of GLy(K)
but o 2[SLa(3)]1 = AQ(H) has Qo as commuting algebra and this group is not
s.im.f..

By Remark any conjugacy class of maximal finite symplectic matrix groups
contains a representative in Sp,,, (Q) for some n € Z. So one might ask to find all
(maximal) finite subgroups of Sp,,(Q) up to conjugacy in Sp,,(Q). The following
remark shows that there are infinitely many of these classes:

Lemma 2.1.12 Let G < Sp,,(Q) be finite such that E := End(G) is a field. Denote
by Et its mazximal totally real subfield.

(a) Letty,... ts be representatives of Ngr,,)(G)/ (G, E*) < Out(G). For1 <i <

s let e; = t;J ;" J,; 1 € (E1)*. Then S :=J;_, e; Nrg p+(E*) is independent of
the choice of the t;.

b) Let H := {x € GL3,(Q) | G* < Sp,,, (Q)}. Thenp: H — (ET)*, x — xJ,z"J 1

18 surjective.

(c) Let x € H. Then G and G* are conjugate in Sp,,, (Q) if and only if p(z) € S.

(d) Suppose E is an imaginary quadratic number field. Then H and S are groups and

@ is a homomorphism of groups. Let x,y € H. Then G* and GY are conjugate
in Spy, (Q) if and only 1f o()S = ¢(y)S.
Moreover, the GLo,(Q) conjugacy class of G intersected with Sp,,,(Q) (i.e. the

set {G* | © € H}) decomposes into infinitely many Sp,,,(Q) conjugacy classes
and there is a bijection between these classes and Q*/S.

Proof:

(a)

(b)

Each t; normalizes G, thus it acts on Fype(G) = {eJ, | e € E1}. Hencee; € E™.
Moreover if t; and ¢; represent the same coset, then ¢, = get; for some g € G and
e € E. In particular #,.J,t/" = gee;J,e" g™ = ¢; Nrg/p+(€)Jn.

Let # € GLo,(Q). Then z € H if and only if J, € Fupew(G¥) = {z e a7 |
e € Et}. Thus z € H implies p(z) € (ET)*. So ¢ is well defined. Finally, it
follows from Remark [2.1.3|(c) and the above that ¢ is surjective.

Suppose G® = GY for some y € Sp,,(Q). Then zy~' normalizes G. So
ry ! = egt; for some 1 <i < s, e€ FE and g € G. Then p(x)J, = vJ,2% =
egtiyJnyt;" 9" e = Nrg g+ (e)e;J, shows that p(z) € S.

Conversely, if p(xr) € S then ¢(x) = Nrg/g+(e)e; for some 1 < 7 < s and
e € E. Hence xJ,z"™ = et;J,t;"e"™ implies that y := t; ‘e~ 'z € Sp,,,(Q). Further
GY = (Gt;le_1>:p = G*=.
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(d) Since ET = Q consists only of scalar matrices, one checks then H and S are
groups and ¢ is a morphism. Further G* = (GY)* for some z € Sp,,(Q) if and
only if p(zz~'y™1) € S. Since p(z) = 1 this is equivalent to ¢(z)S = ¢(y)S.
It remains to show that Q*/S is infinite. This follows from [S : Nrg/g(E*)] <
|Out(G)| and the fact that Q*/ Nrpg, g+ (£*) is always an infinite group. A proof
of this statement is given in [Ste89, pg. 208] and I would like to thank Hans
Opolka for pointing out this reference. O

From now on, conjugacy means conjugacy in Gls,(Q). Further, since we want to
classify the conjugacy classes of maximal finite symplectic matrix groups, we may
w.l.o.g. suppose that a given symplectic matrix group is contained in Sp,,(Q). Le. we
write G < Sp,,,(Q) to indicate that G < GLs, (Q) is symplectic.

2.1.2 Primitivity

To classify all maximal finite symplectic matrix groups, it suffices to classify only
s.i.m.f. matrix groups as Corollary [2.1.10] shows. In this section we will reduce the
number of groups to consider even further.

Definition 2.1.13 Let K be a number field. A K-irreducible subgroup G < GL,,(K)
is called primitive, if G is not conjugate to a subgroup of the wreath product

HQ S, = <Diag(h1, ooy hy), P@In | hi € H, P a k x k permutation matrix>

for some H < GLm (K) where k is a divisor of m.

Similarly, a Q-irreducible symplectic subgroup G < GL2,(Q) is called symplectic prim-
itive, if G is not conjugate to a subgroup of H .Sy for some H < Sp%(@) where k | n.

Remark 2.1.14 A rationally irreducible symplectic subgroup G < GLg,(Q) is sym-
plectic primitive if and only if Ak (G) is primitive for all minimal totally complex

subfields K of End(G).

The concept of primitivity is a key ingredient in the determination of all irreducible
finite matrix groups. It has some important consequences for normal subgroups.

Theorem 2.1.15 ([NP95, Lemma (II1.1)]) Let G < GL,,(K) be a rationally irre-
ducible primitive matriz group and N QG. Then (N),, < K™™ is a simple algebra
or equivalently, the natural K N-module K'*™ splits into a direct sum of k isomorphic

K N-modules of dimension 7.



16 CHAPTER 2. METHODS

Proof: The group G acts on N by conjugation. Hence it also acts on the set of central
primitive idempotents of (N),. Thus G permutes the homogeneous components of
the natural K N-module K**™. But since G is primitive, there can only be one such
component. O

Corollary 2.1.16 ([NP95, (ITI1.1)-(II1.3)]) Let G < GL2,(Q) be rationally irre-
ducible and symplectic primitive. Further let p be a prime divisor of |G|.

(a) If N QG then N < Q*?" s a simple subalgebra.
(b) If O,(G) # 1 then there exists some k > 0 such that p*(p — 1) divides 2n.

(¢) All abelian characteristic subgroups of O,(G) are cyclic.

Proof:

(a) Let K < End(G) be any minimal totally complex subfield. Let {fi,..., f.} and
{e1,...,es} be the central primitive idempotents of the enveloping algebras N
and (G) respectively. Let yx; denote the character corresponding to a simple
(G) i €; module and let L = Q(x1,...,xs) € K be their character field. Then
L/Q is Galois and ¢; = XfG(l') > gea Xilg™hg € (G),. Since G is irreducible,
{e1,...,es} is a Galois orbit under Gal(L/Q). For any 1 < j < r there ex-
ists some 4 such that e;f; # 0. Since f; € N is fixed under Gal(L/Q), we
get that e;f; # 0 for all ¢,j. The enveloping algebra (Ak(G)) is isomorphic
to (G) e; for some i. Now {e;fi,...,e;f} is a set of central idempotents of
(N)gei=(Ag(N)) k. But Ag(G) is primitive and therefore (Ag(N)), is a
simple algebra by Theorem . This shows r = 1, since no e; f; vanishes.

(b) By (a), O,(G) has a rationally irreducible representation of degree d for some
divisor d of 2n. But for any p-group, d is of the form p*(p — 1) for some k > 0.

¢) Any characteristic subgroup U of O,(G) is a normal subgroup of G. Thus by
p

(a), the abelian group U admits a faithful irreducible representation. Therefore

U is cyclic. 0

Suppose N is a normal subgroup of an irreducible and symplectic primitive group
G < GL2,(Q). Then the natural character x of N is sufficient to recover the conjugacy
class of N. If N has several Q-irreducible faithfull representations, we will use the
phrase “G contains N with character x” to distinguish the conjugacy classes of matrix
groups isomorphic to V.

If N < GL,,(Q) denotes an Q-irreducible constituent of N, we will identify N with N
since the precise notation N @ I 2 is not very handy.

The following theorem of Philip Hall classifies all finite p-groups whose abelian char-
acteristic subgroups are cyclic. In particular, together with the above result, this
classifies all possibible candidates for the Fitting subgroups of symplectic primitive
irreducible maximal finite (s.p.i.m.f.) matrix groups.
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Theorem 2.1.17 (P. Hall) If P is a finite p-group with no noncyclic abelian char-
acteristic subgroups, then P s the central product of subgroups P, and P, where

(a) Py is an extraspecial 2-group and Py is either a cyclic, dihedral, quasidihedral or
generalized quaternion 2-group.

(b) pis odd and Py is an extraspecial p-group of exponent p and Py is cyclic.
Proof: See for example [Hup67], Satz 13.10, p. 357]. 0

We close this section by showing that symplectic imprimitive matrix groups can easily
be recognized. Further, the wreath products of symplectic primitive irreducible max-
imal finite (s.p.i.m.f.) matrix groups are usually again maximal finite symplectic. So
we can restrict the classification to s.p.i.m.f. matrix groups.

Definition 2.1.18 Let F be a nonempty family of bilinear forms on R™. A lattice L in
R™ is called indecomposable w.r.t. F,if L cannot be written as a direct sum L = L1® Lo
where b(Lq, Ly) = {0} for all b € F. A vector x € L is called indecomposable in L
w.r.t. F if it cannot be written as x =y + 2 with y, 2 € L\ {0} and b(y, z) = 0 for all
be F.

Theorem 2.1.19 Let F be a family of bilinear forms on R™ that contains at least one
positive definite form f. Then each lattice L in R™ admits a decomposition L = ®F_, L;
where each L; is indecomposable w.r.t. F and b(L;, L;) = {0} for all b € F and all
1 <i<j<k. This decomposition is unique up to permutation of the L;.

Proof: We adapt [Kne02, Satz (27.2)] slightly. Let L = ®!_, L} be any decomposition
such that b(Lj, L) = 0 for all b € F and all i # j. If x € L is indecomposable w.r.t. F
then x € L] for some i. Thus two indecomposable elements x and y with b(z,y) # 0
for some b € F are in the same component L. Two indecomposable elements z,y € L
are said to be equivalent if and only if there exists some indecomposable elements
r =2x,...,x, =y € L and some by,...,b. € F such that b;(z;, x;11) # 0 for all
1 <i < r. This defines an equivalence relation on the set of indecomposable elements
of L. Since the equivalence classes give rise to a orthogonal decomposition of the
Euclidean space (R", f) there are at most n such classes K7, ..., K} say. Denote by L;
the sublattice of L generated by K;. For 1 <i < j < k we have b(L;, L;) = {0} for all
b € F by construction. Further, every nonzero x € L can be written as a finite sum of
indecomposable elements in L. If x is decomposable, we find some r, s € L such that
x=r+sand b(r,s) = 0forallb € F. In particular 0 < f(r,7), f(s,s) < f(z,x). Hence
this decomposition procedure must end. Therefore L = @, L; is a decomposition of L
which has the desired properties. Each component L; is indecomposable and contained
in L} for some j.

To proof the uniqueness, assume that all L’ are also indecomposable. For 1 < j <1
let I; ={1<i<k|L CL}andset Mj := @i, L; C L. We are done if we can
show L. = M; for all j since then |I;| = 1. Let » € L. Write z = S x; with
x; € M; C Lj for all 4. Since @_, Lj = L this implies 2; = 0 for all i # j. So M; = L]
as claimed. O
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Remark 2.1.20 Let G < GL,,(Q) be finite and L € Z(G) . Then every auto-
morphism in Aut(L, F(G)) permutes the components of the unique indecomposable
orthogonal decomposition of L wrt. F(G).

Hence a finite irreducible subgroup G < Sp,,,(Q) is symplectic primitive if and only if
each L € Z(@) is indecomposable w.r.t. F(G).

Lemma 2.1.21 ([Ple91), Proposition I1.7]) Let H < Sp,,(Q) be s.p.i.m.f. such
that E := End(H) is a minimal totally complex number field. If the 2-modular trivial
Brauer character is no constituent of the natural 2-modular character of H, then the

wreath product H ! Sk < Spo,,(Q) is s.i.m.f. for all k > 1.

Proof: Since —I,, € H we have End(HSy) = {[, ®c | ce€ E}~FE and F(H 1 Sk) =
{I.,®F | FeF(H)}.

Let L = Ly & --- @ Ly for some L; € Z(G). View the L; as a H-module where
H is the direct product of k copies of H. By our assumption L; and L; have no
common p-modular constituent for ¢ # j as H-modules. By [P1le78, Theorem I.1] we
get Z(H) = {®*_|L; | L; € Z(H)}. Hence Z(H1S,) = {®"_,L | L € Z(H)}. The
result now follows since F ~End(H !Sy) is minimal totally complex and H ! Sy =
Aut(L, F(H1Sy)) for all L € Z(H Sk). 0

The assumption on the 2-modular constituents is necessary. The group H :=
(% 3)) < Spy(Q) is s.p.im.f. but H1 Sy < Sp,(Q) is not maximal finite (see Theo-
rem [4.3.1). In fact, this is the only example that we will encounter.

2.1.3 Generalized Bravais groups

If N is a normal subgroup of a s.p.i.m.f. matrix group G then

B°(N) :={z € G | x centralizes End(N)}

is also a normal subgroup of G which contains N. We will show that B°(N) can be
computed from the group N without knowledge of G.

The natural N-module Q™™ decomposes into a direct sum of copies of a single irre-

ducible N-module V as we have seen in Corollary [2.1.16

The Z-span Aj(N) := (N), is invariant under conjugation by G' and we recursively
define an ascending chain of orders in N having the same property. This is the so
called radical idealizer process:

e If A;(N) has already been defined, then let R; be the arithmetic radical of A;(N)
i.e. the intersection of all maximal ideals of A;(N) that contain the (reduced)
discriminant of A;(N).

e Let A;y1(N) be the right order of R; in N.
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If A;(N) is G-invariant then R; is also G-invariant by definition. So g € G and
r € N1 (N) imply Ri(g7'zg) = g 'Rizg C R;. This shows that A;1(N) is G-
invariant as claimed.

Like any ascending chain of orders having full rank in N, this chain stabilizes at some
order Ay (N) say. It follows from [Rei03, Theorems (39.11), (39.14) and (40.5)] that
the above chain stabilizes at A;(V) if and only if A;(V) is hereditary. So in particular
A (N) is hereditary.

Since Aw(N) is G-invariant, G acts on Z(Ax(N)). Thus G fixes at least one of the
A (N)-lattices. This leads to the following definition.

Definition 2.1.22 With the above notation, let F' € F~o(N). The generalized Bra-
vais group of N is

B°(N):={g€ N | Lig=L; forall 1 <i < sand gFg" = F}

where {L4, ..., Ly} represents the isomorphism classes of A, (N)-lattices in V.

By construction B°(N) is a finite subgroup of N" containing N. Moreover N and
B°(N) have the same commuting algebras and thus the same invariant forms. In
particular, B°(N) does not depend on the choice of F.

Lemma 2.1.23 Let G < Sp,,,(Q) be s.p.i.m.f.. If N <G then
(a) N<IB°(N)<G
(b) If X < N is a finite subgroup such that N <X then X < B°(N).

(c) B°(N) = {x € G | z centralizes End(N)}

Proof: The parts (a) and (b) are proven in [NP95, Proposition I1.10, p. 82]. Part (c)
follows from (a), (b) and the double centralizing property. o

Part (b) can be used to find a large subgroup of B°(N). Part (a) rules out some
normal subgroups. For example, suppose G < Spy, is s.p.i.m.f. such that G contains
a normal subgroup N ~ Alt; where the character of N is a multiple of the 5-dimensional
irreducible character of Alts. Then (by Table N 4 B°(N)~Cy x Altg gives a

contradiction.
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2.1.4 General outline of the classification

We recall the definition of the generalized Fitting subgroup and its self-centralizing
property. In this section, let GG be a finite group.

Definition 2.1.24 A finite perfect group H is called quasisimple it H/Z(H) is simple.
A component of G is a subnormal quasisimple subgroup of G. The subgroup generated
by all components of G is called the layer of G and is denoted by E(G). Finally, the
generalized Fitting subgroup F*(G) of G is the subgroup generated by the layer E(G)
and the Fitting subgroup F(G) = [[,q Op(G).

Lemma 2.1.25 The layer E(G) is a central product of its components. The general-
ized Fitting subgroup F*(QG) is the central product of F(G) and E(G).

Proof: See for example [Asc00, 31.7 and 31.12]. 0

Theorem 2.1.26 The generalized Fitting subgroup F*(G) is self-centralizing in G. In
particular, G/F*(G) is isomorphic to a subgroup of Out(F*(G)).

Proof: See for example [Asc00), 31.13]. 0

Remark 2.1.27 The general outline of the classification of the s.i.m.f. subgroups of
Sps,(Q) is now as follows:

(a) The symplectic imprimitive matrix groups come from the classifications of
Speq(Q) where d runs through all divisors of n. These groups are usually s.i.m.f.

(see Lemma [2.1.21)). Suppose now G < Sp,,,(Q) is s.p.i.m.f..

(b) There are only finitely many candidates for the Fitting subgroup F'(G) according
to Theorem 2.1.17. These are listed in Table 2.5.2]

(¢) There are only finitely many candidates for the layer E(G). These are described
in [HMO1] which is based on the ATLAS [CCNT85] and listed in Table up
ton = 11. (Note that this step depends on the completeness of the classification
of all finite simple groups).

(d) For two such candidates F'(G) and E(G) we know that G/F*(G) is isomorphic
to a subgroup of Out(F*(G)). So we have to find all such possible extensions of
F*(G) up to conjugacy in GL2,(Q).

The last step is the crucial one. Although it is a cohomological task to find all abstract
extensions G, we are interested in finding all matrix group extension of F*(G). Of
course, one can always replace F*(G) by its generalized Bravais group.

In the next section, we will describe methods that construct G from F*(G) under
certain assumptions on F*(G). We will also give some more criteria that eliminate
some candidates for F'*(G).
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2.2 Methods

2.2.1 Normal subgroups of index 2*

For many s.i.m.f. matrix groups G the quotient G/B°(F*(G)) is an elementary abelian
2-group as Tables [2.5.1] and [2.5.2| show. Thus we give two results that rule out some
candidates for normal subgroups N having index 2* in G.

Part (c) of the next lemma is an analogon to [NP95, Corollary III.4]. It will be used
frequently in the classification.

Lemma 2.2.1 Let N < G with [G : N| = 2 where G < Sp,,,(Q) is irreducible and
symplectic primitive. Let g € G\ N and suppose that N is reducible in Gli,(Q).

(a) The restriction |y of the natural representation of G onto N splits into /Ny + A\
where Ay: N — GL,(Q) is irreducible.

(b) dimg Fpew(L1(N)) = 0.

(¢) L:=End(A(N)) C Q™" is a totally real number field.
Proof: (a) By Clifford theory.

(b) If dimg Fakew(A1(N)) > 0 then all nonzero elements in Fepew (A1(N)) are in-
vertible, since /\; is irreducible. Thus A;(N) is symplectic. The representation
A is induced by Ay, hence we may suppose that A(N) is given by blockdiagonal

matrices and A(g) = (A (()gz) ]0") But then G < A;(N) 1 Cy is symplectic
1
imprimitive.

(c) A can also be seen as a real representation 6: N — GL,(R). Let ¢ decom-
pose into R-irreducible representations 41, ..., ds say. Then dimg Fgew (J(N)) =
dimg Fegew(D1(N)) = 0 and hence dimpg Fgew (9;(N)) = 0 for all 4.

So Endg(0;(N)) ~R for all . Thus Endg(d(N)) ¥R ®q L ~®;_;R shows that L
must be a ring direct sum of totally real number fields. Since L is simple, the
result follows. O

Lemma 2.2.2 Let A be a simple Q-algebra. Suppose that a € Autg(A) is a Q-
algebra automorphism of order 2. If AT :={x € A | a(x) = x} is a simple ring, then

Proof: Let A= ={zx € A| a(z) = —x}. Then A = AT @ A~. The automorphism «
maps the center K of A onto itself and hence induces an automorphism of K. If |
is not trivial, there exists some x € K such that x # «a(z). But then a := z — a(z) €
K* N A~. In particular, At — A~,x — ax is an isomorphism of Q-spaces and the
result follows.

So we may now suppose that « € Autg(A). In particular, AT is a central simple
K-algebra and by Skolem-Noether, « is conjugation by some invertible g € A*. The



22 CHAPTER 2. METHODS

Wedderburn theorem allows us to identify A with Q™*" for some skewfield Q with
center K. Let s := ¢g> € K. If s € K?, then we may assume that g?> = 1 thus g is
conjugate to Diag(Iy, —1I;) in K™*™ for some k + [ = n. But then A" = Qka @ O is
simple if and only if g is central. T hlS contradicts the assumptions. So K = K(/s) is
a proper extension of K. Let g := fg and A := Ak K. Again, since A is a central

simple K-algebra, We may assume that A = Q™" for some skewfield Q with center
K. As above § := \[9 is conjugate to Diag(Ij, —1;) in K™ with k + 1 = . Thus

At = Cj(g) = Q" @ Q™. But on the other hand, e := 1(1+ §) and f := (1 - g)
are (the unique) central primitive idempotents of A*. Let (o) = Gal(K/K)~C5. By
acting on the structure constants of A", o extends to an K-algebra automorphism of

AT such that o(v/s) = —/s and o(z) = « for all z € A*. In particular o(e) = f
Thus ¢ interchanges the ring direct summands QF** and Q"!. This shows k = =

and the result follows, since dimg (A1) = dimg(A*) = ?~d1mK(C~Q) = 2dimg (4 )

| o=

If n is not a power of 2, the following corollary is used to rule out some candidates for
normal subgroups. See [Neh95, (II1.4)] for a similar result in GL,(Q).

Corollary 2.2.3 Let G < Sp,,,(Q) be irreducible and symplectic primitive. If N < G
with |G/N| = 2%, then dimg(End(G)) = 2! dimg(End(N)) for some 0 <[ < k.

Proof: Let N = Ny < Ny <...N,_1 < N, = G be a normal series of G such that
Niy1/N;~Cy. By Corollary all the commuting algebras E; := End(N;) are
simple. Let g € Ny \ Ni. Then g induces an automorphism on Fs of order at most 2.
So by the result above, Ey = Cp, (g) either equals E, or has dimension  dimg(E).
The result follows by induction. O

2.2.2 Primitive, normalized and normal critical lattices

Suppose G < GL,,(Q). To find the r.im.f. or s.i.m.f. supergroups of G, one has to
consider automorphism groups of (L, F') € Z(G) x F(G). Since the number of such
pairs (L, F) is infinite, we have to reduce this number. In this section we start with
some general results that do not depend on End(G).

The following definitions will be used frequently in the sequel.

Definition 2.2.4 Let L', L C Q™™ be Z-lattices of full rank and let F', FF € Q™*™
be symmetric and positive definite.

(a) L = {z € Q™ | xFy'™ € Z for all y € L} is the dual lattice of L wrt. F.

(b) F is said to be integral on L if L C L#F.
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(c) F is said to be primitive on L if L C L# but L ¢ kL#* for all k € Z-;.

(d) (L, F) is normalized if L C L¥*¥ and the abelian group L#¥ /L is of squarefree
exponent with rank at most 7.

(e) The pairs (L, F') and (L', F") are said to be isometric if there exists some z €
GL,,(Q) such that L' = Lz and F’ = z7'Fz~". In this case z is called an
isometry between L and L'.

The next remark shows that every finite matrix group G fixes a normalized pair (L, F).

Remark 2.2.5 Let G < GL,,,(Q) be finite.

(a) The set Z(G) is closed under the following operations

(1) Z(G) x Fo(G) — Z(G), (L, F) — L#F
(2) 2(G) x End(G)* — Z(G), (L,c) — Lc

3) 2(G)x 2(G) — 2(G), (L, L)) » L+ L
(4) Z2(G) x 2(G) = Z2(GQ), (L,L')— LNL
() Z(G) x Now,(@(G) — Z(G), (L) — Lh

(b) Let F' € F-o(G) be integral on L € Z(G). If (L, F') is not normalized, then there
exist some prime divisor p of det(L, F') such that (L N pL#¥, %F) is an integral
lattice of smaller determinant. In particular, iterating this process results in
some normalized (L', 1F) € Z(G) x F+o(G) with d | det(L, F).

Now we want to reduce the number of lattices L that we have to consider.

Remark 2.2.6 If A is a Z-order in Q™*™ then L,L" € Z(A) are isomorphic as A-
right modules if and only if there exists some x € Cgmxm(A) such that Lz = L'. The

number of isomorphism classes is finite by the Jordan-Zassenhaus theorem (see [Rei03),
Chapter 26)).

Let G < GL,,(Q) be finite. Then (L, F) € Z(G) x F(G) is isometric to (Lx, v~ Fa™")
for all z € End(G)*. Since isometric pairs have conjugate automorphism groups, it suf-
fices to consider pairs (L, F') where L runs through a (finite) system of representatives

of the isomorphism classes of Z(G).

If one wants to find all r.i.m.f. or s.p.i.m.f. groups that contain GG as a normal subgroup,
one can usually reduce the number of lattices L that one has to consider even further.

Definition 2.2.7 Let G < GL,,(Q) be finite. A finite subset S C Z(G) is called
G-normal critical, if for every finite supergroup H < GL,,(Q) with G < H there exists
some z € GL,,(Q) such that Z(H*) NS # 0. If S ={L}, then L is called G-normal

critical.
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Remark 2.2.8 Let G < GL,,(Q) be finite such that £ := End(G) is a field. When
one wants to find a set of G-normal critical lattices, one usually has to deal with one
of the following situations:

Let A := (G,Zg),. The fractional Zg-ideals act on Z(A). Let Ly,..., L, represent
the orbits.

(a) If there exists some 1 < i < s such that every h € Ngr,, () (G) of finite order
fixes the set £; := {L;a | a a fractional Zg-ideal} then S = {L;a | [a] € Cl(Zg)}
is G-normal critical.

This situation can arise as follows:

(1) Suppose there exists some 1 < i < s such that for all j # ¢ and all fractional
ideals a of Zg the determinant of a base change matrix from L; to L;a does
not equal +1. Then £; has the above property.

(2) Choose one of the following options to definite m; and M; for 1 <i < s:

o Let A’ be either A or (G),. Let m; be the number of minimal A’-
invariant sublattices of L; whose index in L; has only prime divisors in
a given fixed set.

e Let m; = [{L € Z(G)\ Z(A) | L a minimal sublattice of L;}|.

Similarly one defines My, ..., M, by taking superlattices in the definitions
above. If there exists some 1 <17 < s such that (m;, M;) # (m;, M;) for all
j # 1 then L; has the above property.

(b) Suppose that s = 4 and suppose that the L; can be chosen such that L; = Lo+ Ls,
L, = LoN L3 and there are no elements of Z(A) between L,/L;, L;/ L, for i = 2, 3.
Then § = {L;a | i € {1,2}, [a] € Cl(Zg)} is a G-normal critical set.

Proof: Let H < Ngi,,,(@)(G) be finite.

(a) Let O := L;- H be the orbit of L; under the action of H. Then L := 3}, ., L' €
Z(A). By the assumption, O C L£;. So for each L' € O there exists a fractional
Zg-ideal ay, such that L' = L;ar,. But then L = Liafora=73%",, ,a5. So S is
G-normal critical.

Part (al) is obvious since det(h) € {£1} for all h € H and (a2) follows from the
fact that the action of H on Z(G) preserves inclusions, endomorphism rings and
the index of sublattices.

(b) Summing over H shows that H fixes L;a for some fractional Zg-ideal a and some
1<i<4 Ifi=4then H fixes L1a = Loa + Lsa since Lqoa and Lsa are the
unique minimal superlattices of Lya in Z(A) which are not of the form L,a’ for
some fractional Zg-ideal a’. Using the same argument one shows that if H fixes
Lsa then it also fixes Loa. 0
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2.2.3 Fields as endomorphism rings (m-parameter argument)

In this section, we give an algorithm (the so called m-parameter argument) that con-

structs all r.i.m.f. or s.i.m.f. supergroups G of an irreducible matrix group U if End(U)
is a field. In particular, this includes irreducible cyclic matrix groups U.

By the previous section, the problem is to reduce the number of forms that one has
to consider. To do so, we need all possible prime divisors of |G|. If we have no other
assumptions on G, we can always fall back on the Minkowski bound:

Lemma 2.2.9 (Minkowski’s bound, [Min87|) The least common multiple of the
orders of all finite subgroups of GL,(Q) is given by

H pbpfl)fr =ik Lp%;}—mﬁ“'
p

where the product is taken over all primes p < n + 1.

Further, the m-parameter argument needs a set of primes II(End(U),|G|) depending

on End(U) and |G| as follows:

Definition 2.2.10 Let K be an algebraic number field.

(a) Let 0;: K — R (1 <i <d) be the real embeddings of K. If we fix the order of
the o;, we get a group homomorphism

s: K* = F', x— (z1,...,24) where z; =

0 if oy(z) > 0,
1 ifoy(z) <0

(b) For k € Z define II(k) to be the set of all primes dividing k.
(¢) We define a finite set of primes II(K) such that

(1) In each class of Cl(Zk) there exists an integral ideal which contains
[[ p* with some a, € Nj.
pell(K)
(2) The group s(K™*) is generated by s(x1), ..., s(x,) for some z; € Zg satisfying
1(Nrg (1)) € TI(K).

(d) For k € Z set TI(K, k) := II(k) U |J II(F) where the union is taken over all
F<K
subfields F' of K. Note that this set is not unique.

We follow [Neb95l Satz I11.2, p. 16] to give an algorithm which constructs all r.i.m.f.
or s.i.m.f. supergroups of a given irreducible matrix group of the same dimension.



26 CHAPTER 2. METHODS

Theorem 2.2.11 Let G < GL,(Q) be finite and irreducible. Let L be a ZG-lattice.
Assume that C' = Cgnxn(GQ) s either commutative or a positive definite quater-

nion algebra. Then there exists a F € Fso(G) such that F is primitive on L and
II(det(L, F)) C II(K) UII(|G|) where K denotes the maximal real subfield of Z(C').

Proof: 1t C'is commutative, a proof is given in [Neb95, Satz II1.2, p. 16]. So we may
assume that C' is a positive definite quaternion algebra. Choose any F' € F.((G)
which is primitive on L. Suppose that there exists some prime p ¢ II(K) such that
p | det(L,F) but p t |G|. It suffices to show that there exists some ¢ € K such
that cF' is integral on L and the primes dividing det(L, cF') are contained in (II(|G| -

det(L, F)) UTI(K))) \ {p}.

Let pi,...,p, be the prime ideals of Zg over p. Then K, := K ®qQ, = @le K,,.
Denote by €1, ...,&¢ the primitive Idempotents of K, such that K,e; = K,,.

Let L, :== L®z7Z, and C, := C®¢Q,. Since p { |G|, p is not ramified in G and the

order A, := (G), is maximal in (&), (see [Rei03, Theorems 41.1 and 41.7]). Therefore
Enda,(L,) is maximal in C, and p is not ramified in C,. Hence C}, ~ @5:1 K%,

So each Ap-lattice L,e; decomposes into two irreducible A,-lattices X;; @ X; 2. From
g, € K C Z(C) we get ;F(1 — )" = 0 which shows that the lattices L,e; are
orthogonal to each other.

Since Endg, ¢(X;1)~ Ky, there exists no symmetric G-invariant nonzero form on
Xi1. Hence F induces an embedding ¢;: X;1 < X;»", x — Fa'" for each 7. So there
exists some k; € Z such that ¢;(X;1) = p" - X;»*. Therefore the Gram matrix of
(L, F) is of the form diag(p*' Gy, ...,p"Gy) for some G; € GL,,,(Z,) (wrt. a proper
choice of a basis).

By property (1) of the definition of II(K), there exists some Zg-ideal a; whose norm
is only divisible by primes in II(K) and some y; € K such that p; - a; = y;Zx. Then
p; = (p,y;) since this identity holds locally everywhere. In particular y; € Zg and
I(Nrg/o(y:) € {p} UIL(K). By property (2) of the definition of II(K), there exists

some x € K such that Nrg/g(z) € II(K) and y := - [T, v, " is totally positive.

Let F' :=y - F. Then y,e; and pe; are both primitive elements of K,,. Hence (L,, F")
is self-dual. It might happen that F” is no longer integral on L. But then there exists
some k € N such that kF” is primitive on L and the primes dividing & are divisors of
GI. O

From this theorem we finally obtain

Corollary 2.2.12 (m-parameter argument, [Neb95, Korollar III.3, p. 17])

Let U < G < GL,(Q) be finite subgroups such that C' := End(U) is a either a field
or a positive definite quaternion algebra. Suppose L € Z(G) C Z(U). Then there
exists some F € Fuo(G) that is primitive on L with II(det(L, F)) C TI(K, |G|) where

K denotes the mazimal real subfield of the center of C.

Proof: The maximal totally real subfield K’ of the center of End(G) is contained in
K. By the theorem above, there exists some F' € F+o(G) such that F' is primitive on
L and T(det(L, F)) CII(K', |G]|) C II(K, |G]). 0
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The following rather technical remark shows how this corollary will be used later.

Remark 2.2.13 Let U < GL,,(Q) be finite such that C':= End(U) is a field. Denote
by K the maximal totally real subfield of C'. Further suppose that Ly, ..., L, represent
the isomorphism classes of U-invariant lattices. Finally fix F; € F5o(U) and let R; =
Endzy(L;) € Ze (in most cases R; = Z¢ and there exists at least one i where equality
holds). Denote by R;f := R; N K. The following algorithm finds (up to conjugacy) all
finite supergroups G of U of order dividing a given ¢ € N:

For 1 <i<slet

N; :={z € Nar,,(0)(U) | Lix = L; and 2 F;2" F; ' € R} and
P, .= {aR] | a € K+, (L;,aF}) is normalized and TI(det(L;, aF})) C II(K, 0)} .

Then the group N; acts on C, K and R; via conjugation. Moreover, P; consists of full
orbits under this action. Let S; be a set of representatives of these orbits.

Finally let U; be a coset of (R;")%,/Nro/k(R;) and let
S :={(Li,uaF;) |u € Uj,aR} € Sj;a € K+p,1 <i<s}.

Then every finite supergroup of U of order dividing ¢ is conjugate in Ngr,, @) (U) to
some group that fixes one of the lattices in the finite set S.

In particular, the r.i.m.f. supergroups of U are elements of {Aut(L, F) | (L, F) € S}
and the s.i.m.f. supergroups of U are elements of { Autg (L, F) | (L, F') € §,1 < j <r}
where K7, ..., K, denote the minimal totally complex subfields of C.

Proof: Let G < GL,,(Q) be a finite supergroup of U with |G| dividing ¢. By Corol-
lary [2.2.12] the group G fixes some (L', F') € Z(U) x Fso(U) such that F’ is integral
on L' and II(det(L’, F')) C II(K, £). Applying the process described in Definition m
yields a normalized lattice (L', F’) with II(det(L’, F")) C II(K, {).

Now L' = L;c for some 1 < i < s and ¢ € C. After replacing G by G¢ ', G fixes
(L;, F) where F' := cF'c". So there exists some aR; € P, such that F = aF; (and
thus a € K+¢). By definition, there exists some z € N; such that a®R} € S;. After
replacing G by G* ', it fixes L;z ' = L; and zaF;z'™ = afl(xFix“Fi_l)E = aF; for
some @ € K-y with aR;” = aR/. Now a or a are defined by the ideal aR;" only up
to some element of (R;")%,. For y € R it follows from Lemma that G¥ ' fixes
(Liy™" yaFiy") = (Li, Nre/k (y)als).

So we have shown that G is conjugate (in Ngr,, () (U)) to some group that fixes a
lattice in the set S.

The result now follows, if we can show that § is finite. The set U, is finite by Dirichlet’s
unit theorem (note that if K # C then (R;")? < Nr¢/x(R;)). The number of isomor-
phism classes of ZU-invariant lattices is finite by the Jordan-Zassenhaus theorem.

So it remains to prove that P, is finite: Fix bR} € P, and let J; := Ann gy (LF"7/L).

If x € K.y such that zbF; is integral on L;, then L;xJ; C Lfﬁ’bFl’Ji C L;. Thus
x e J L 0O
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To simplify the definition of the N; in the previous remark, one can use the following

Remark 2.2.14 Assume the situation of the previous remark.
(a) If F; is integral on L; and det(L;, F;) = 1 then

{F € Foo(U) | (L;, F) is integral} = {cF; | c € R; N K¢} .

(b) If {F € Foo(U) | (L;, F) is integral} = {cF; | c € R; N K-} then

N, = NGLm(Q)(U) N GL(L) = {ZE S NGLm(Q)(U) | L;x = Lz} .

Proof:

(a) Suppose ¢ € K. such that cF; is integral on L;. Then zcFy" € Z for all
x,y € L;. Hence L;c C L#F’ = L; and therefore ¢ € R;.

(b) Let € Ngr,,(@)(U) NGL(L). Then zF;a" € F.o(U). Hence there exists some
c € K- such that 2F;2" = cF;. Now xFz" is integral on L;z—! = L;. This
shows ¢ € R;. From det(c) = 1 it follows that Nrg,g(c) = 1 and thus ¢ € (R;")*.
This proves x € N;. O

Note that there does not always exist some F; such that the condition of (b) holds.

2.2.4 Quaternion algebras as endomorphism rings

We now turn to the case where a s.i.m.f. matrix group G contains an irreducible normal

subgroup N such that End(N) is a quaternion algebra Q with center K.

If N = F*(G), then Q will frequently be a totally definite quaternion algebra (i.e. Q
is ramified at all infinite places of K'). In this case the structure of G is rather limited.

Theorem 2.2.15 Let G < Sp,,,(Q) be s.p.i.m.f.. Suppose that E = End(F*(G)) is
a totally definite quaternion algebra with center K. Then G acts on E and K by
conjugation. Let

S:={9€G|gr=uxg foralxin K} and
B :=B(F*(GQ)) ={9 € G| g = xg for all x in E}

be the kernels of these actions. Then
14F*(GQ)<IB4IS<G.

Further G/S is isomorphic to a subgroup of Gal(K/Q) and S/B has exponent 1 or 2
(and is abelian).
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Proof: Only the claim that S/B has exponent 1 or 2 is not obvious. The proof given
in [Neb98b, Theorem 4] applies mutatis mutandis. 0

With the notation from above, the next lemma can be used to extend B by some
element from S.

Lemma 2.2.16 Let N = B°(N) < GL,,(Q) be finite such that Q := End(N) is a
quaternion algebra with center K. Suppose z,y € GL,,(Q) induce the same outer
automorphism on N and x%,y*> € N. If x commutes with K then

(a) End((N,z)) = Co(x) ~ K[X]/(X? — d) for somed € K.

(b) There exist some g € N and ¢ € Q such thaty = gcz. In particular, y commutes
with K. Then End((N,y)) ~ K[X]/(X? — nrg/k(c)d) where nrg i denotes the
reduced norm on Q. Further nrg,i(c) is a root of unity in Z.

(c) If Co(x) is a field and nrg k(c) € (Zj)* then (N, x) and (N,y) are conjugate.
Proof:

(a) For any z € Q we have 2* € End(N*) = End(N) = Q. Hence z induces a K-
automorphism on (). By the Skolem-Noether theorem there exists some a € Q*
such that z* = z* for all z € Q. It follows from z ¢ CqL, (@) that

K G Kla] € Cg(a) = Co(x) ¢ Q-
Thus Kla] = Cg(x). Since 2* € N, it induces the identity on Q. Hence a® € K
and therefore K[a] = K[X]/(X? — d) where d := —nrg/k(a) € K.
1

(b) Since yx~! induces an inner automorphism on N, it is contained in NQ*. It
follows from part (a) that

End((N,y)) = End((N, cx)) ~ K[X]/(X? + nrg/x(ca))

as claimed.

Further cxcz™ € (g 'y)2x™2 € N has finite order. Hence the reduced norm
nrg/ i (c)? = nrg/k(c- (zcx™')) € K* also has finite order.

(¢) Let u € Zj such that nrg,x(c) = u®. Thus u € Zj; has finite order which implies
u € B°(N) = N. By the above, both a and u™'ca have vanishing traces. So
nrg i (u'c) = 1 implies that a and u™'ca have the same minimal polynomial
(over K). It follows from the Skolem-Noether theorem that there exists some
t € Q* such that a' = u~!ca. Finally

ot =t"twte e =t rata e = wteaa e = (gu) Tty

shows (N, z)" = (N, (gu)"'y) = (N, y). 0
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In most cases, we will apply this result to the following situation.

Remark 2.2.17 Let N < Sp,, (Q) be finite such that @ := End(N) is a quaternion
skewfield with center K. If B°(N) is not s.p.i.m.f., then the above lemma allows us
to construct (up to conjugacy) all s.p.i.m.f. supergroups G > N satisfying one of the
following conditions:

e Co(N) € B°(N)

e B°(N) has even index in {g € G | gx = zg for all x € K}.
(Note that this condition holds for example if N = F*(G) is assumed and @ is
a totally definite quaternion algebra over Q as Theorem [2.2.15| shows).

More precisely, one can use the following algorithm:
(a) Set X :=0.

(b) If N = F*(G) is assumed skip this step. Otherwise let 9ty,... 9, be rep-
resentatives of the conjugacy classes of maximal Zg-orders in ). Further let
Mt = {z € M; | nrg/x(x) = 1} be the torsion subgroup of M. (See [KV] for
algorithms to compute these objects).

Include to the set X all elements z € 9 1 whose order is a prime power greater
than 2, provided that X does not already have an element of the same order.

(c) Let U be the torsion subgroup of Zj Nnrg/k(Q*). For any wU? in U/U? find
some ¢, with u = nrg/x(c). Let C be the set of the ¢,. (In most cases, ) will
be a totally definite quaternion algebra, so one can choose C' = {1}).

(d) For each class of outer automorphisms in Out(/N) that is not realized in B°(N)
but its square is, compute one x € GLy,(Q) that realizes this automorphism.

If such an z exists, then include {cx | ¢ € C'} to X.

(e) Each group G satisfying the hypothesis contains (up to conjugacy) a subgroup
(N, x) for some x € X.

Since End((B°(N),x)) is a field, one can use the m-parameter argument (Corol-
lary |2.2.12)) to construct a representative of the conjugacy class of G.

Proof: We have to show that each G satisfying the hypothesis contains a subgroup
conjugate to (B°(N),z) for some z € X.

Suppose first that there exists some g € Cg(N) = Cg(B°(N)) such that g ¢ B°(N).
Taking appropriate powers, we can assume that the order of g is a prime power different
from 2 since — Iy, € B°(N). So g is conjugate (in @) to some z € X. Hence (B°(N), g)
and (B°(N), x) are conjugate in Q).

Suppose now Cg(N) = Ce(B°(N)) C B°(N). Then by the assumption, there exists
some g € G'\ B°(N) that commutes with K and ¢g*> € B°(N). So the claim follows
from Lemma [2.2.16] 0
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2.3 Algorithms

Let G < GL,,(Q) be finite. After a change of bases, we may suppose that G < GL,,(Z).
We first explain how to compute representatives for the isomorphism classes of G-
invariant lattices. Clearly Z(G) is closed under taking sums and intersections.
Suppose L' C L € Z(G). Let My,..., My be the nontrivial p-Sylow groups of L/L’.
Then G acts on L/L" as automorphisms of groups. In particular L' = (),_, L; is the
intersection of the G-invariant lattices L; = ®;4;(L’ + M;) whose index in L is a prime
power. Moreover, this intersection is unique.

Algorithm 2.3.1 ([PH84]) Let A C Z™*™ be a Z-order in a simple subalgebra A
of Q™™ Further let L = Z™ be the natural A-lattice. This algorithm returns all
A-invariant sublattices of L that contain Lp* for some k > 1 and a fixed prime p.
Input: Generators of the natural representation of A and a prime p.

(a) Using the meataxe (see [Par84]), find all p-modular constituents of the natural
representation of A and the corresponding simple A/pA-modules Sy, . .., Sk.

(b) For each A - invariant lattice M found so far, compute all maximal A - invariant
sublattices of M as kernels of A/pA-epimorphisms M — S; for some 1 < i < s.

(¢) One continues the algorithm with these newly constructed lattices, provided they
are not a scalar multiple of a lattice computed before.

Remark 2.3.2 ([Neb95|, II11.11]) In general, the above algorithm does not termi-
nate. One has to specify some additional stopping conditions as follows.

Let A := (G), for some finite rationally irreducible subgroup G < GL,,(Z) where

E :=End(G) is a field. Since A’ := (A,Zg), is an order, there exists some L € Z(G)
such that Ends (L) = Zg. So without loss of generality L = Z*™.

Denote by p, ..., ps the prime divisors of |G| and let p; 1, ..., p;n, be the prime ideals
over p;Zx. These prime ideals act on the A’-invariant sublattices of L whose index is
a power of p;. Using the above algorithm, we find representatives L; 1, ..., L;,, of the
corresponding orbits.

Let ay,...,a, be representatives of Cl(Zy). Then

S ={((Lij)a; |1 <5 <h, 1<i;<my}

=1

is finite and it contains a system of representatives for the isomorphism classes of
N -invariant lattices.

Using the above algorithm again, for each L' € &’ one computes the finite set

Z,(L') = {M = (| M; | M; € 2(G), M; < L', ' /M; a p-group and MZp = L'} .
=1

Then S := {J; s Zo(L') contains a representative of each isomorphism class of Z(G).
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Proof: By the Jordan-Zassenhaus theorem ([Rei03, Chapter 26]) the number of iso-
morphism classes of A’-invariant lattices is finite. So &’ is finite. Suppose L' < L is
N'-invariant, then [Rei03, Theorems 41.1 and 41.7] show that each prime p not dividing
|G|, does not split G and the completion A}, = N ®zZ, is a maximal order. Hence
the completions L' ®z Z, and L ®yZ, are locally isomorphic. So there exists some
fractional ideal a of Zg such that L'a < L and |L/L’a| is a product of the p;. Then it
follows from the definition of S’ that L’a is isomorphic to some lattice in S'.

Suppose now L' € 8’ and M € Z,(L’). Then there are only finitely many isomorphism
classes of such lattices M. Further x € E satisfies Mx € Z,(L') if and only if x € Z},.
Since [Z3, : Enda(M)*] is finite, it follows that Z,(L’) is finite.

Suppose now L' € Z(G). Then there exists some z € FE such that L'Zgx € S’
Furthermore |L'Zpx/L'z| is a product of the p; since Endy, (L) is maximal for all
primes p not dividing |G|. Hence L'z € Z,(L'Zgz) C S as claimed. 0

In [PS97], Plesken and Souvignier describe an algorithm which computes automor-
phism groups of lattices. Together with the Minkowski bound (see Lemma , the
m-parameter argument (see Remark and the above algorithm we can thus find
(up to conjugacy) all r.i.m.f. or s.i.m.f. supergroups of any finite matrix group G where
End(G) is a field. Provided that we can test whether two given groups are conjugate:

Algorithm 2.3.3 The following algorithm tests whether two given s.i.m.f. groups
G1,G2 < Sp,,(Q) are conjugate. If so, it returns some x € GLy,(Q) such that
Gy = GY. For i =1,2 let E; :== End(G;).

o Let d:=min{det(L, F') | F' € F~o(G) is primitive on L € Z(G;)} and fix some
primitive pair (L, F') € Z(G1) x F~o(G1) such that det(L, F') = d.

e Let L),..., L. be representatives the isomorphism classes of Z(G).

e Two elements in

U{ (L, F') | F' € F<o(Gy) is primitive on L} and det(L;, F') = d}
are said to be equivalent if there exists some isometry ¢ between them such that
EL = E,. Let S be a set of representatives of the equivalence classes.

o If there exists some isometry x between (L, F') and some element of S such that
EY = E5 then return x otherwise return false.

An algorithm for the required isometry tests is also given in [PS97].

Proof: Tt follows from the proof of Remark [2.2.13| that £’ is finite. Thus the al-
gorithm terminates. Suppose first that there exists some x € Gls,(Q) such that
(Lz,x'Fz~") € S and EY = E5. Then by maximality

G} = (Autg, (L, F))" = Autpy (Lz,z7 ' Fa™") = G, ..
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Conversely suppose that Go = GY for some y € GLy,(Q). Then (Ly,y 'Fy™ ") €
Z(Gy) X F=o(Ge) is primitive and has determinant d. So there exists some e € Ey such
that (Lye, (ye)"'F(ye)™™) € L. By definition of S, there exists some t € GLy,(Q)
such that B = Ey and (Lyet, (yet) ' F(yet) ™) € S. So x := yet furnishes an isometry
between (L, F') and some element of S satisfying Ef = E5 as claimed. 0

2.4 Some notation

Definition and Remark 2.4.1 For i = 1,2 let G; < GL,,,(Q) be finite irreducible

matrix groups and let F; := End(G;). The tensor product
G1®Gy:={g1®92 | g € Gi} < GLym, (Q)

is isomorphic to some central product G;yec Go. This matrix group is usually not
irreducible, since F; ® F, might not be a skewfield. The following definition is used
to construct a (usually irreducible) direct summand of G ® Gs.

Let @ be a maximal common subalgebra of F; and Ej of dimension d = dimg(Q).
Then GlgGg = AU LG(Gr) ® Ng(Ge)) < GLmyms (Q) is isomorphic to G1Yy¢c G

with C'= G; N Q N Gy. Moreover G1®G5 contains a normal subgroup H; isomorphic
Q

to GG; where the restriction of the natural character onto H; is a multiple of the nat-
ural character of G;. To simplify the notation, we use the following conventions: If
Q ~Q(«) is a field, we write ® instead of ® . If Q ~ Q, p, . p. is a quaternion algebra

a Q(e)
with center K ramified only at the (finite or infinite) places P;, we write —®  if
Pi,...,Pr
K = Q and we write ® if K ~Q(a). Finally, if d = ms, then G5 embeds into
a,Pr,..., P
E;. In this case, we use o instead of ®.
Q

Note that this construction does not always give irreducible matrix groups. We will
only encounter the following examples (in dimension 16) where this is not the case:

In these cases (after exchanging the G;) we have G1 ~Cg, my = 4 and E; ~Q((1p).
Further E, is a totally definite quaternion algebra which is split by E;. Thus the
maximal common subalgebra of F; and E5 equals Q and G; ® G is reducible. In these

cases, we make a slight abuse of notation and denote by GG; ® G5 an irreducible direct
\/5/

summand of G; ® Gy (this was first introduced in [NP95, page 91]). This notation

has the advantage, that in all our examples the dimension formula still holds, that is:

— _ mi1ma2
Gl\%Gg denotes a subgroup of GL;(Q) where k = 2my = Tmo(@(75)"
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Definition and Remark 2.4.2 We will use the following conventions for the names
(of the conjugacy classes) of rational/symplectic/quaternionic matrix groups.

o If G < GL,,(Q) for some skewfield @, then £G := (G, —1I,,) < GL,,(Q).

e The symbols A,,, B,, Fy = Dy, Eg, E7, Es denote (the automorphism groups of)
the corresponding root lattices.

e If a maximal finite irreducible rational/symplectic/quaternionic primitive ma-
trix group G < GL,,(Q) is not a tensor product of rational, symplectic or
quaternionic matrix groups of smaller dimension, it is denoted by g[Con|; where
E~End(G) and m = k - dimg(FE) since G can be identified with a subgroup of
GLi(FE). Further, Con describes some construction of G from building blocks
(O, and components; see Tables [2.5.1| and [2.5.2) or smaller matrix groups by

taking generalized Bravais groups, tensor products or group extensions.

Again, if E~Q we omit the subscript E. If E~Q(y/«) is a field, we write
o|Conl and if E~ Q, p, _p, is a quaternion algebra over K ramified only at the
places P; we write p, _p,[Conli if K =Q and , p,_p, [Conl; if K~Q(«).

..........

o If GG is symplectic imprimitive, then it is conjugate to the wreath product of
some s.p.i.m.f. subgroup H < Sp%((@) with Sj. In this case, we write H*.

These conventions are consistent with the ones of [Ple91l INP95, [Neb95, Neb96,
Neb98al. Moreover, for matrix groups described in loc. cit. we use the names given
there.

Example 2.4.3

e (3 denotes the torsion subgroup of Q((3p)* which gives rise to a subgroup of
GLg(Q) with Q((30) as commuting algebra. Clearly, there exists only one split
extension of this matrix group by Cy that fixes Q(v/—15). One finds that this
group is s.p.i.m.f. and we denote it by ,—5[Cso:Cyls < Spg(Q).

e The group Dg ® Cy is a subgroup of GL4(Q) and it is one of the building blocks
described in Table [2.5.2] Taking its generalized Bravais group, one obtains a
s.p.i.m.f. subgroup of Sp,(Q) denoted by its isomorphism type ;[(Ds ® Cy).S5]a.

Tensoring this group with Aut(As) < GL2(Q) gives a s.p.i.m.f. subgroup of
Sp8 (Q) which we call Z[(Dg (059 04).53]2 (%9 Ag.

Lemma [2.1.21] shows that taking wreath products of these two s.p.i.m.f. groups
also yields maximal finite groups denoted by ;[(Dg® C4).S3]5 < Spy.(Q) and
(i[(Ds ® C4).S5)2 ® Az)" < Spgr(Q).

As in the classification of the maximal finite rational and quaternionic matrix groups,

we frequently have to construct a matrix group H that contains an irreducible subgroup

G1®G5 of index 2. Most of these extensions come from one of the following three
Q

constructions:
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Definition and Remark 2.4.4 ([NP95), (II.4) Proposition]) For i = 1,2 let

Gi < GL,,,,(Q) be two finite irreducible matrix groups and let £; := End(G;). Further
let @ be a maximal common subalgebra of E; and Fj such that Gi®Gy < GL,,,(Q) is
Q

irreducible. We view G; as a subgroup of G1®G5 and G; as a subalgebra of G;®G5.
Q Q

(a) Suppose there exist some units a; € G; \ G; and a positive squarefree integer p
such that G{* = G, and p~'a? € G;. Then

2(p)
G1®G2 = <G1®G2, p1a1a2>
Q Q
is an irreducible subgroup of GL,,(Q) that contains G;®G5 with index 2.
Q

(b) Suppose G1®Gy € A C B C Q™ ™ is a chain of simple algebras with B = A®z A
Q

for some = € Bﬂlch that 22 = +1, 2A = Az and 2G; = G,z. If there exist
some units a; € G; and a positive squarefree integer p such that G;** = G; and
p'(a;z)* € G; then

2(p)
Gl X GQ = <G1®G2, p_1a1a2$>
Q Q
is an irreducible subgroup of GL,,(Q) that contains G;®G, with index 2.
Q

(¢) Suppose A C Cgmxm(Gy) is a simple subalgebra that contains G. If there exist

units a1 € A, as € G5 and a positive squarefree integer p such that G}* = G;
and p~ta? € G;, then

2(p)
G ® Gy = <G1®G2, p_la1a2>
Q Q
is an irreducible subgroup of GL,,(Q) that contains G;®G5 with index 2.
Q

In addition, the symbols are simplified as follows:

2(p) 2 2(p) 2(p) 2(p) 2(p)
o If my = dimg(Q), we write g:) (Dp) and E% instead of ®, % and X respectively.
Q Q

o If Q~Q, the subscript @ is completely omitted. If Q@ ~Q(«) is a field, we write
a instead of Q. If Q~Q, p, . p, is a quaternion algebra with center K ramified
only at the places Py, ..., P,., we replace the subscript @Q by P;,..., P if K =Q
or by a, Py, ..., Py if K~Q(«).

e If p =1, we omit (p) in the above symbols.

In most cases, two different extensions of G;®G5 by Cy can be distinguished by these
Q

symbols together with their commuting algebras. Note however, this is not always the
case due to the solvability of certain relative norm equations:
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Example 2.4.5 Let G, = 5, [SL2(5)]1 be the torsion subgroup of any maximal

order of the quaternion algebra Q\/g,oo with center @(\/3) ramified only at the two
infinite places. Since its commuting algebra is another copy of Q sz ., we find some
x € FE; of order 4. Let G5 be the subgroup generated by . Thus G := G o Gy
denotes an irreducible subgroup of GLg(Q) with commuting algebra E ~Q(i,v/5).
Since Out(G1) ~ Out(Gs) ~ Cy there exists only one class of outer automorphism that
acts nontrivially on G; and Gs. It can be represented by an automorphism of order 2,
thus there exists only two possible such extensions.

Construction (b) can be used to find some a = ajasz that acts like the nontrivial outer
automorphism on the G;. Clearly H; := (G, a) has commuting algebra Q(v/—=5). But
then u := %5 € E satisfies Nry g /=5)(v) = u-u® = —1. In particular Hy := (G, ua)
is an extension of G, not isomorphic to H; but with the same commuting algebra.

Remark 2.4.6 If (like in the previous example) there exist only two s.i.m.f. extensions
one split and one not, we write 2, (p) for the split and 2_(p) for the nonsplit extension.

Thus the groups H; from above are labeled \/57OO[SL2(5)]12D+C’4 and ﬁ,m[SL2(5)]12ﬁC’4
(see Theorem [4.5.1]).

If there are several such extensions yielding s.i.m.f. groups that cannot be distinguished
by the above, we describe the automorphisms induced by p~ta;ay or p~ta,asx explicitly
when the groups are introduced for the first time.

Frequently, one has some s.p.i.m.f. matrix group G that contains an irreducible sub-
group N := G; ®¢q G of index 2 and one wants to know whether G can be obtained
from N by one of the constructions above. We want to discuss one example, to give
some idea how this can be done. Clearly (b) is the most difficult construction, since
it requires to find 4 parameters p, ai, as, z whereas the others only require 3.

Example 2.4.7 Suppose G < Spg(Q) is s.p.im.f. and it contains a normal sub-
group N := ,—[GLy(3)]> ® Dy with index 2 and End(G)~Q(v/—10). Then E :=
End(N)~Q(v/=2,v5) and every g € G \ N acts on E by v/—2’ = —/=2 and
V5" = —/5. In particular, this rules out constructions (a) and (c) from Definition
244

Let ¢: Gy == ,=5[GL2(3)]2=> (SL2(3), (§ °)) C F3** and set z := ¢ *((§ %)). Fur-
ther let Gy := Dy be generated by some a,b € N that satisfy a® = b*> = (ab)? = 1.
Since Out(G;) ~Cy we find some g € G which satisfies a9 = ¢g* = b,29 = —z and
g € Ca(B°(02(@))) where B°(0O2(G)) ~ SLy(3). (Note that we might have to exchange
b by zb).

Now suppose g = p~lajasx as described in Definition m (b). Then

b=g° = p lmaxr’aias = £p *(araf)(aza)

since the a; € G; commute and 22 = +1 by our assumption. The action of x on
G is explicitly known and one finds (using Groebner bases in MAGMA) that ay :=
(1+a® + a®) + b satisfies agad = b. In particular, if we set p =a; = 1 and 2 := a; ' - g,
then 22 = 1. One easily checks that these elements meet all requirements and thus

P
G~ /5ly=3/GLa(3)]2 & Dygls (see Theorem 4.9.1)).
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2.5 Some tables

2.5.1 Candidates for the layer
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Table 2.5.1 This table lists all quasisimple finite rational irreducible matrixz groups
N in GL,,(Q) for 2 <m < 22.
The representations with m > 12 and Schur index + are omitted since they can not be
a subgroup of E(G) for some s.p.i.m.f. subgroup G < Sp,,,(Q) for 1 <n < 11.

N B°(N) m | character End(N) omit
Altg, :l:S5 == A4 4 X4 Q -
A1t5 :i:SG = A5 5) X5 Q +
Altg +56 = As 5 | Xsa OT Xsb Q —
Alts +Alts 6 X3ab Q(v/5)

Ly(7) +Ls(7) 6 X3ab @(\/—_7) —
L, (7) L, (7) 6 Xo Q -
Alt7 :i:S7 = A6 6 X6 Q —
U4(2) :EU4(2) 2= EG 6 X6 Q -
Altg :i:Sg = A7 7 X7 Q —
Us(3) +55(2) = By 7 X7 Q +
La(7) +55(2) = By 7 X7 Q +
Ly(8) +55(2) = By 7 X7a Q -
S6(2) +55(2) = Er 7 X7 Q —
SLy(5) SLy(5) 8 2X2ab Q /500 —
SL2(5) SL2(9> 8 2X4 Qoo,3 —|—
L2(7> iLQ(?)Q = M&g 8 Xs @ —
SL2(7) SL2(7) 8 X4ab @(\/—_7) —
SLy(9) SL(9) 8 | 2X4a 0T 2Xap Qo3 —
Ls(8) 20{(2)2=E5s |38 Xs Q +
2A1t7 2A1t7 8 X4ab Q(\/—_’Z) —
Sp4(3) Sp4(3) o C3 8 X4ab @(\/__3) -
Altg 204(2)2=Es | 8 Xs Q +
2.Alty 2.07(2)2=Es | 8 Xs Q +
2.Sp6(2) 2.0;(2).2 = Fyg 8 X8 Q +
2.0;(2) 2.0;(2).2 = Fyg 8 X8 Q —
Altg +£510 = Ay 9 X9 Q +
Altyg £510 = Ay 9 X9 Q —
L,(11) +1,(11) 10 Xsab Q(v/—11) —
Us(2) = S4(3) +5,(3) 0 Cs 10 X5ab Q(v-3) —
Lo(11) +Ly(11):2 =AY | 10 X10a Q —
L, (11) FL,(11) 10 X106 Q —
Altg £ 5, 10 Y10 Q -
Alty +511 = Ay 10 X10 Q —
My +511 = Ao 10 X10a Q +
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A1t12 :|:512 = All 11 X11 Q —
My, +Mn 11 X11 Q -
Lo(11) TS50 = Ap; 11 i1 Q T
M, £S5 = An 11| X1ita 07 X110 Q +
SL,(5) SL,(5) 12 2X6 Qoo 2 -
6.U,4(3) 6.U4(3).2 12 X124b QW-3) | -
3.Altg +3.Altg 12 | Xsab + Xoao | QW=3,V5) | —
3.Altg +3.Altg 12 x6+ x4 Q(v-3) -
SL,(11) SL,(11) 12 Xoab Qlv—-11) | -
3.Alt; 6.04(3).2 12 X6+ X Q(V-3) +
Us(3) +U3(3) 12 2Xo Qoo 3 -
6.L4(3) 6.L4(3) 12 x6+ x5 Q(V-3) -
Us(3) Us(3) 0 O, 14 X7ab Q(4) -
SL,(7) SLy(7) 16 2Xs Qoo,3 ~
Lo(17) +L,(17).2 16 X16 Q —
L2(16) :ESU 16 X16 Q +
2.A1t10 2A1t10 16 X16 Q —
Alty; +517 16 X16 Q —
3 Altg 3. Mo 18 Xoab Q(v-3) -
L,(19) +1,,(19) 18 X9ab Qv=19) | -
SLy(11) SLy(11) 20 2X10 Qo2 -
A1t7 :I:Alt7 20 X10ab Q(\/__7> —
My, 2.M5:2 20 X10be Q(v-2) +
2.Mi5 2.Mi9:2 20 X10ab Q(\/__Q) -
2.M22 2.M22 22 20 X10ab Q(\/__’r) —
Us(2) +U4(2) 0 Cy 20 X10ab Q(v~-3) —
Us(2) +U5(2) 20 2X10 Qoo2 ~
2.Ly(4) 2.Ls(4):2 [ 20| Xiow Qv=7 | -
SL,(19) SL,(19) 20| Xuoa Qv-19) | -
U5(2) 1tU;(2)0 C; | 22 X11ab Q(v/-3) -
L,(23) +1,(23) 22 X11ab Qv-23) | -

If N is not normal in B°(N), then N is not a normal subgroup of any s.p.i.m.f. matriz
group (see Lemma . These cases are indicated in the last row with a +.
Note also that the above characters are indexed by their degrees and not the numbers

given in the ATLAS [CCN*85).

Proof: This table can be taken from [Neb98a, Table 9.1]. Alternatively, the repre-
sentations can be taken from [Nic06] which is based on [HMO0I]. For the generalized
Bravais groups, one computes the order Ao (N) C Q"*™ (cf. Section using lin-
ear algebra over Z. Then one computes some A (N)-invariant lattices and takes the
intersection A of their automorphism groups wrt. the full form space F(N). If N <A
then B°(N) = A. Otherwise, one computes B°(N) using the isomorphism classes of
Z(Ax(N)) using Remark This method works for all the groups N from above
except SLg(5) with character 2y, since here N ¢ B°(N) and End(N) is not a field.
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In this case, one can use the algorithm [Neb95, II1.11] to compute the isomorphism
classes of A (IV)-invariant lattices. 0

2.5.2 Candidates for the Fitting subgroup

Table 2.5.2 All candidates for N = O,(G) of an irreducible symplectic primitive
matriz group G are given by

N B°(N) dimg (N) End(N)
Cpm +N P p—1) Q(Gm)
pi (p>2) £NSpo,(p) | P'(p—1) Q&)
212 N.O;5 (2) o Q

ol +2n N.O,, (2) on+1 Qnoo
P Y Cpm, (m>1) [E£N.Sp,,(p) [p" " p—1) Q(¢)
2172y Dogm, (m > 3) N.Sp,,(2) Qntm=2 Q(fym—)
2177 Qom,  (m > 3) N.Sp,,,(2) ontm—1 Qb1 00
27"y QDgm, (m >3)| N.Spy,(2) ontm=2 Q(Com—1 — (o 1)

In the last three rows n = 0 is allowed. In these cases N is Dom,Qom or QQDom
respectively.
Note that B°(N) is only correct under the assumption that N < G.

Proof: All abelian characteristic subgroups of N are cyclic by Corollary [2.1.16] Thus
N must be isomorphic to a subgroup from above by a theorem of Ph. Hall (see Theo-
rem [2.1.17). These groups have only one faithfull rational irreducible representation.
The generalized Bravais groups B°(N) of these representations have been computed
in [Neb98al Chapter 8] (under the assumption that N < G). 0

2.5.3 Tables for number fields

Table 2.5.3 This table contains information on cyclotomic number fields that is
needed to construct the s.i.m.f. supergroups of some irreducible cyclic subgroups of
order m.

The second column contains the set Sy, := I1(Q(6,,), m)\II(m) of “additional primes”;
if not empty. The third column contains the decomposition of pZ[0,,] into prime ideals
for various primes p. The last column contains generators for all minimal totally

complez subfields of Q((n)-

The fourth column contains the narrow class group CIT(Z[0,,)); if not trivial. It is
given as follows: Let )y, : CIT(Z[0n]) = D;Z/amZ be an isomorphism where the
apm; are elementary divisors. The first row lists the a,,;. The following rows list the
nonzero images of the prime ideals from above under 1,,. The superscript (x) means
all ideals of a given norm.



40 CHAPTER 2. METHODS
m | S, |prime decomposition in Z[0,,] ClT(Z[0,,)) | minimal totally complex
subfields of Q((n)
8 (2) =93 (3). (5 i, V=2
12 (2) =¥ (3) = 93, (5) TR
2, P3
14 (2), (3), (5), () =93 VT
16 (2) =p3 (3). (5) i V=2, G6 — G
18 (2). 3) =p3. (5). (7) V=3
20 (2) =1, (3). (5) =} i, V5, G
2 @) =ph 3) =¥ () =pobs i V=2 VB VB
2
m @ =ph 6)=ph (), () =P VT
P35 Pr 1
30 (2). (3) = b3, (5) = bt V3 VTS, G
32 (2> = pg, (3)7 (5); Z.; \/__2; Cl6 - C1_61;
(7) = prp'7, (11), (13) Coo — G
36 @) =93 3) =85 ). () o0, VB
. 2|, V=2, V=5, vV/—10,
40 (2) - p%; (3) = P3ps; (5) = pg o 1 CIO; \/§'<<10 . C1_01>
2
42 (2>7 (3) - pgr (5) = p5p/57 ( ) = pg Ps pg*) 1 \/__3; \/__7
(2) =93, (3), (5) = psps. 2l —
H (11) = py? popu [1]” \/__11 s
217, /=2, /=3, /=6,
48 (2> = pg; (3> = p?’) po 1 \/g'(clﬁ_Cf(jl)f g16_€1_61
50 (2), (3), (5) = pg" Cio
54 (2). 3) =p3, (5), (7), (11), (13) V-3
60 | (11,50} |(2) = P2 (3) =3, (5) =5, 2|1, V=3, V=5, V15,
L) = pupt i - L[ 1o, V3-(C10 = Cio')
2) = paph, (3) =3, (5), (7), 2
66 él)l) :;ﬁ ( ) 3 ( ) ( ) pg*)’pn ; \/_—3’ \/_—11

All cyclotomic fields Q((,,) from above have class number 1. This implies that their
mazximal totally real subfields Q(6,,) also have class number 1 (see [Was96, Theo-

rem 4.10]). Moreover NrQ(Cm)/Q(gm)(Z[gm]*)

= Z[0,)%o in all cases. So one only has

to consider a single class of totally positive units in the m-parameter arqgument (see

Remark .

Proof: Follows from explicit calculations with MAGMA [BCP97]. O
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Table 2.5.4 The following table contains information on some totally real number
fields K needed for the m-parameter argument in the sequel. The second column con-
tains the set TI(K, 2)\{2}. The fourth column describes the narrow class group Cl* (Zg)
in the notation of the previous table.

K prime decomposition in Lk Cl™(Zk) Z}‘(’>O/(Z}<)2
Q(ﬂ) 0 (2) - P%, (3); (5) 1 1
QW3 |0 @=B =60 i G
Q) 0[2), ), (5) = #? 1 1

2 a2 _ ! 2
Q<\/6) 0 (2) = Pp3, (3) =3, (5) = PspPs p2,pé*) 1 02
VD) 3@ = ) = b ). (D=0 G
VL) | (3] )= B () =, () =y O
QU2 (Go =) 0 |(2) =3, (3), (5) = # G
QW25 | 0 |(2) = (3) = wath, (5) = 1 1
QVEVE) |} =8 B) =8 G) =0 1 G

Proof: Follows from explicit calculations with MAGMA [BCP97]. 0



42

CHAPTER 2. METHODS



Chapter 3

Some infinite s.i.m.f. families

3.1 Some subgroups of 5p, ;(Q)

Let p > 5 be a prime and write p — 1 = 2% - 0 with 0 odd. In the spirit of [NP95,
chapter V] we describe all s.i.m.f. supergroups G of C, in dimension p — 1 where C,
denotes the (up to conjugacy) unique cyclic matrix group of order p in GL,_1(Q).

Clearly, one possibility is that G contains a normal subgroup conjugate to C),. Since
the commuting algebra of C,, is isomorphic to Q((,) we have G/ £ C, < Ca x C,. By
Galois theory, G is symplectic if and only if G/ £ C,, < C, and therefore G~ +C,,:C,
by maximality. (The group £C,:C, has only one irreducible rational representation
of degree p — 1 and we identify the group with this representation.)

Another class of candidates are extensions of Ly(p). The smallest faithful irreducible
complex representations of Ly(p) are of degree ;%1 and algebraically conjugate. The
corresponding character field is Q(y/=Ep) with the — sign if and only if p =4 —1 (see
[Dor71l, §38]).

If p =4 —1 then Ly(p) contains a subgroup U isomorphic to C),: Cp-1. The restriction of

the natural representation of Ly(p) on U is irreducible and has the same character field
Q(v/—p) (|[Dor71 §38]). By [Lor7ll Satz 1.2.1, p. 67], the Schur index of Ly(p) is equal
to the Schur index of U which is 1. Thus Cy X Ly(p) has a unique p — 1 dimensional
rationally irreducible representation (denoted by \/fp[j:IQ(p)]% in the sequel) with

commuting algebra Q(/—p).

The next result shows that there are no further possibilites. More precisely:

Theorem 3.1.1 Let p > 11 be prime and G < Sp, ,(Q) such that p divides |G|.
Write p — 1 = 2%-0 with o odd.
+C,:C, fp=,+1
Then G is s.i.m.f. if and only if G is conjugate to P z'fp ! .
vlELe(p)]es ifp=4 -1

Proof: Let 1, 1 < G < Sp,_;(Q) such that p divides |G|. Further let P € Syl (G).
Then by Minkowski’s bound, |P| = p. So the commuting algebra E of P is isomorphic
to Q(¢). Thus x1, ; < Z(G) < Cg(P) = £P. Since G must have a faithful

43
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irreducible complex character of degree < p%l it follows from a theorem of H. Blau
[Fei82, VIII Theorem 7.2, p. 365] that either P I G or G/Z(G) ~La(p). In the first
case, G is conjugate to a subgroup of +C,:C,. In the second case, Z(G) = £P would
imply that G = £P since £P is self-centralizing in G. So Z(G) = +I,_;. Since
Lao(p) is perfect, G is either isomorphic to +Ls(p) or SLa(p). So by [Dor71l, Th. 38.1]
this implies p =4 —1. But if p =4 —1 the real Schur indices of the ’%1 dimensional
complex characters of SLy(p) are 2 (which can be computed from the character table
of SLa(p)). Thus G is conjugate to \/jp[j:LQ(p)]p%l. Since \/jp[:l:LQ(p)]prl contains a

subgroup conjugate to £C),: C, the result follows. O

Note that the above result is also true for p = 5 and 7 as the explicit calculations in

Lemmas [4.3.3] and [4.4.2] show.

3.2 Some subgroups of 5p, ;(Q)

Let p > 5 be a prime. If p =4 —1 then G := SLy(p) has only two algebraically conjugate
complex representations of degree ’%1 as the generic character table [Dor71l, Th. 38.1]
shows. Let x denote one of the corresponding characters and let P € Syl,(G). An
explicit calculation shows (1%, x)¢ = (1p, x|p)p = 1. Thus (by [[sa94, Corollary (10.2)
part (c)]) x is realizable over its character field, which is Q(y/—p). So x gives rise to
a subgroup of Sp,,;(Q) denoted by H[SLQ(}?)]%I.

Theorem 3.2.1 Let p > 11 be prime and G < Sp,,,(Q) such that p divides |G]|.
Then G is s.i.m.f. if and only if p =4 —1 and G is conjugate to ,—;[SLa(p)]ps .

Proof: Let P € Syl (G). Then again, by Minkowski’s bound, |P| = p. Thus the
natural representation of P splits into twice the trivial one and the Q-irreducible of
degree p — 1. Since there exists an embedding §: G — GL,,(K) for some totally
complex number field K with m-[K : Q] = p + 1 there is only the possibility K =
Q(y/=p) and m = L. So the commuting algebra of §(P) in K™ ™ is isomorphic to
Q(¢) x Q(y/—p). In particular, Z(G) is isomorphic to a subgroup of Cy, x Cy. By
Corollary We know that P j{l G and therefore Z(G) < Cy x (. Since G cannot
be imprimitive by Minkowski’s bound, Z(G) is not isomorphic to Cy x Cy. This shows
Z(G) = £1,41. From Blau’s theorem [Fei82) VIII Theorem 7.2, p. 365] it follows that
G must be isomorphic to £Ly(p) or SLy(p). Since K ~Q(y/—p) it follows from the
character table of SLy(p) [Dor71l Th. 38.1] that p =, —1 and that +Ls(p) has no
ptl

faithful complex character of degree %=. So G must be conjugate to ,—;[SLa(p)] 1

and the result follows. 0

Remark 3.2.2 Theorem [£.4.1] shows that the above result also holds for p = 5. But
according to Theorem [4.5.1] the unique s.i.m.f. subgroup of Spg(Q) whose order is
divisible by 7 is ,—[2.Alt7]4 (which contains a subgroup conjugate to SLy(7)).



3.3. THE GROUP QD 45

3.3 The group ()Do

Let n > 4. The group QD = <:1c,y | 22"y 2y = x2n_2_1> has one rationally

irreducible representation of degree 2"~2. This representation has Q((gn-1 — Q;,l) as
commuting algebra, so we denote it by o1 —Co [QDan]s.
n— on—

Lemma 3.3.1 Ifn > 5 then Gyt —C) 1[QD2n]Q is a s.i.m.f. subggroup of Spyn—2(Q).
n— on—

Proof: The commuting algebra of H := e (@ Danly is isomorphic to K :=
Q(Con—1 — G5uh1). This is the fixed field of the automorphism of Q((an-1) induced by
Con—1 +— —C;,},l = Cg::f ~!. The subfields of K are linearly ordered by Galois theory and
the maximal subfield is the fixed-field of complex conjugation i.e. totally real. Thus
each s.i.m.f. supergroup G' of H embeds into GLy(K). Therefore G := G/Z(G) =
G/ (£1Iyn-2) embeds into PGLy(K). Since n > 5 is assumed we get G is a dihedral
group (of order 2"~ ') according to Blichfeldt’s classification [BIiI7]. This shows G = H
as claimed. 0

3.4 The group 2}™"

In this section, which is heavily based on Section 5 of [NRS01], let 7,, ~ 21" be the
n-fold tensor product of ((93), (§ %))~ Dg. We describe the construction of B°(T},)
and define a maximal finite subgroup of GLan (Q(v/—2)).

Let (bg,...,bon_1) be the standard basis of Q. We identify v € F} with j =
>, 021 and thereby we index the basis vectors b; with elements of F%. For an affine
subspace U of Fy let xp = Y.,y bu. Then L, and L) are the Z-lattices in Q"%
spanned by

{2ln=dim@+)/2)y ;| U an affine subspace of Fj }
where 6 =0 for L,, and 6 =1 for L],.

In [Wal62, Theorem 3.2] it is shown that H,, := Aut(L,,, Ion) N Aut(L], Is) is isomor-
phic to 2172".05 (2) and further Oy(H,,) is conjugate to Tj,.

By [Win72] we have Out(2*")~ 05 (2) : 2~ GO, (2) the full orthogonal group of
a quadratic form of Witt defect 0. Conjugation by h, := (1 1) ® In-1 induces an
outer automorphism on 7,, which is not realized by H,. Since End(T,)~Q and
h? = 2[5, there exists no element in GLyx(Q) of finite order which induces the same
automorphism on 7,,. Thus H,, is conjugate to B°(T,). Moreover \/%hn normalizes

T,, and therefore B°(T,,). Hence H, := <Hn, \/%—21171> is the unique extension of H,

in GLan (Q(+/—2)). The group H,, gives rise to a finite symplectic matrix group in
Spyn+1(Q) which will be denoted by /=5[2}7°".(05,(2):2)]s» in the sequel.
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Finally, by extending scalars M,, := /—2L! + L,, is a Z[\/—2]-lattice generated by

{\/ -2 _dim(U)XU | U an affine subspace of Fg} .

Lemma 3.4.1 The lattice M, is the n-fold tensor product M; ® ... & M.
Zlv=2]  Z[V-2]

Proof: We use induction on n. Let V,,_1 = (ey,...,e,-1) and V] = (e,). One checks
that b, ® by, = b,y for all z € V,,_1,y € V;.

Let U be a d-dimensional affine subspace of V,, ;. For y in V; it follows that
\/—_2n_1_dXU ®+/—2b, = \/—_2"_dxy+U € M,. Similarly, since U + V; has dimension
d+1,we get v—2""""xv@x1, = v—2"""yus1. € M,. Thus M,_, ® M, C M,.
Conversely, suppose U is a d-dimensional affine subspace of F}. Write U = x 4+ y + Uy
where Uy is a subspace of F} and x € V,,_1, y € V.

If Uy < V,_; then \/—_ande = \/—_QﬂfldeHU@\/—_Zby € M,_1 ® M,. Otherwise
Un—1:=UyNV,_1is a (d — 1)-dimensional subspace and Uy = U,,_1 U (2 + €, + U,,_1)
for some z € V,,_;.

If z€ U,_1, then \/—2n_dXU = \/—2n_1_(d_1)xx+Un71 ® xv;, otherwise we have

—d n—1—d
1/_2 XU = 4/ —2 Xx+Un_1+<z> ®\/ —Qby
——n—1—(d—1)
+Vv—2 Xa+z+4Up—1 ®XV1
1 (d—1
—V=2(v-2 ( )Xz:+z+Un,1 ® v —2by)

This shows M, C M,_1 ® M. O

Lemma 3.4.2 The group H, is conjugate to the Hermitian automorphism group

Proof: For n = 3 the result can be checked explicitly. So we may assume that n #
3. Let (v1,...,vm) be a Z-basis of L such that (2vy,...,2v5n-1,V9n-1,1,...,Von)
is a Z-basis of L,. Then (v/—2vi,...,v/—2v09n0,201,..., 20901, Vgn-141,...,0V9n) IS a
Z-basis of M, = /—2L', ® L,. In particular, the Z-lattices L, and /—2L! are
perpendicular with respect to the scalar product (z,y) — %TrQ(\/_ﬁ) so(@y™). Thus
the group Autgy,/—5 (M,) is the subgroup of Aut(v/=2L), L Ly, Iyn+1) which commutes
with v/=2. Since n # 3 is assumed, the automorphism groups of L, and L, equal
H,, [Wal62, Theorem 3.2]. Hence using appropriate bases, Autq,/=3) (M,) contains a
subgroup G, of index at most two where

0
Gn = {(gol 92) | g1,92 € Hn} N Aut@(\/j)(Mn)
Now /=2 interchanges \/—2L!, and Ly, i.e. it operates as a block matrix ( _o 1§ )

for some w € GLgn (Q). So (901 902) € G, if and only if go = ¢} and therefore G,, ~ H,,.
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On the other hand, \/%hn actson M, @ M,y = M,,. So Ath(m)(Mn) is isomorphic
to ‘H,. Both groups have conjugate Fitting subgroups and therefore their general-
ized Bravais groups must be conjugate as well. But then the whole groups must be
conjugate, since H,, is the unique extension of H, in GLan(Q(yv/—2)) by the extra
automorphism induced by h,,. 0

Lemma 3.4.3 Ifn > 2, then ,=[27".(03,(2):2)]on is the (up to conjugacy) unique
s.i.m.f. subgroup of Spayn+1(Q) with Fitting group 217"

Proof: Since Z[\/—2] is a PID, M, has a Z[\/—2]-basis. With respect to this basis, its
automorphism group G, is a finite subgroup of GLax (Z[v/—2]). By explicit calculations
in MAGMA one checks that for n € {2, 3} the Z-span (G,,), equals Z[v/—2]*"*?". For

n > 4 it follows from M, = M, o ® M, that Go®G,_» C G,, (using appropriate
Z[v=2]
bases). By induction, we get

ZIV=2P"% = (Gu-a)y ® (Galy € (G)y CZIV 2P

Zlv=2]

In particular, each G,,-invariant Z[y/—2|-lattice is a multiple of M,,, since Z[/—2] has
class number 1. Thus G,, is a maximal finite subgroup of GLgx(Q(v/—2)). But any
finite symplectic supergroup of ,=5[2}"*".(03,(2):2)]2~ comes from a finite supergroup
of H,, =G, < GLan(Q(v/=2)). Thus ,=5[21"*".(03,(2) : 2)]n is sim.f.. The second
statement follows from the construction of H,, and Remark O

3.5 The group p ™"

In this section, let p be an odd prime. We will describe a family of irreducible sym-
plectic matrix groups in dimension p™(p — 1) which will be maximal finite in the case
that p is a Fermat prime, i.e. p — 1 is a power of two.

Let T,&p ) ~ p}f?” be the n-fold tensor product of Tl(p ) where Tl(p ) is the subgroup
of GL,(Q((p)) generated by the diagonal matrix Diag(1,¢p,...,¢2™") and the per-
mutation matrix corresponding to the p-cycle (1,...,p). Further let oY -
NUpn(Q(Cp))(T,(Lp)). By [Win72] HY is isomorphic to a subgroup of Cy x pit2" Sp,, (p),
since the group of outer automorphisms which act trivially on the center of TP is
isomorphic to Sp,,,(p).

In [Wal62l, Section 4] Wall constructs a (p— 1)p"™ dimensional rational lattice on which
Cy x pit".Sp,,, (p) acts. Thus HP = BO(T,gp)) ~ Cy x pi".Sp,,, (p) (if we assume that
TP < Bo(T)). Now HP gives rise to a finite subgroup of SPyn(p—1)(Q) which will
be denoted by ¢, [£piT".Spy, (p)]pn-
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Theorem 3.5.1 If p is a Fermat prime, then , [+ Spo,, (p)]pn is @ s.i.m.f. sub-
group of Sppyn,-1y(Q).

Proof: The commuting algebra C of ¢, [£p}*".Sp,, (p)],» is isomorphic to Q(¢,). Since
p is a Fermat prime, C' has only one maximal subfield, which must be totally real. Thus
any symplectic supergroup must come from a finite subgroup of GL,» (Q((,)). But oy
is maximal finite in GL,n(Q((,)) according to [NRSOI, Theorem 7.3]. 0



Chapter 4

The classification

In this final chapter, we classify all s.i.m.f. subgroups of GLs,(Q) for 1 <n < 11.
The first section handles the generic case n > 3 prime. The subsequent sections each
deal with one particular dimension 2n. The s.i.m.f. subgroups G < GLy,(Q) are listed
in tables as follows:

The s.i.m.f. groups are grouped together by their commuting algebras. Groups having
the same commuting algebras are sorted by group order (descending) and minimal
determinant d (ascending). The invariant d is explained below.

The first column contains a number for the group for easy referencing. The primitive
groups are numbered consecutively. For the imprimitive groups we use triples [i, j, k]
with jk = 2n which stands for the wreath product of the i-th s.p.i.m.f. matrix group
in dimension j with Sk.

The second column contains the name of G using the conventions from Definition
2.4.2] The next two columns list the group order |G| and the number of isomorphism
classes of G-invariant lattices. These two numbers and the endomorphism ring (which
can be read off the second column) are invariants of the conjugacy class of G. But
usually this does not identify the class of G uniquely.

Thus the fifth column (labeled L,,;,) contains some more invariants: Let

S:={(L, F) € Z(G) x F>o(GQ) | F integral on L} and

d := min{det(L, F) | (L, F) € S}.
Then {(L,F) € S | det(L,F) = d} partitions into several isometry classes. If
(Ly, 1), ..., (Ls, Fy) represent these classes, then the third column lists the distinct

triples [d, min(L;, F;), |SV(L;, F;)|] for (1 < i < s). Here min(L, F) and SV(L, F)
denote the minimum and the set of shortest vectors of (L, F') respectively.

It turns out that in almost all cases, these invariants determine the conjugacy class

of G uniquely. (In fact, the only exceptions are (5., [SL2(5)]; o C5)® Ay and

c10lC10]1 ® 00,3[SL2(9)]2 < Spy(Q). But they can easily be distinguised by their Fitting
\/5/

subgroups.)

Finally the last column lists the r.i.m.f. supergroups of G' (up to conjugacy).

49
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4.1 Dimension 2p

Let G be a s.p.i.m.f. matrix group of degree 2p for some prime p > 3.

Lemma 4.1.1 The Fitting subgroup F(G) is cyclic of order 2,4 or 6.

Proof: By Corollary 2.1.16| O,(G) = 1 for all primes ¢ with £ — 11 2p. Suppose first
q :=2p+1is prime and ¢ | |G|. Then g > 11 and ¢ =4 —1. So Theorem [3.1.1] shows
that G~ ,=;[£L2(q)], and thus F(G) ~ Cs.

So we may now assume that F(G) = O2(G)O3(G). In particular G cannot be cyclic
since otherwise G is either reducible or O,(G) # 1. Thus G embeds irreducibly into
GL,(K) for some imaginary quadratic number field K. So the result follows from
Table [2.5.2] since Dg does not have such an embedding. 0

Corollary 4.1.2 The group G is not soluble. Moreover, K := End(G) is an imagi-
nary quadratic number field such that Ak (E(G)) < GLy(K) is absolutely irreducible.

Thus E(G) is either reducible with Q**? as commuting algebra or it is irreducible and
its commuting algebra is an imaginary quadratic number field. In both cases, G can
easily be recovered from F*(G) (cf. Sections [2.2.3] and [2.2.4)).

4.2 Dimension 2

Theorem 4.2.1 The s.i.m.f. subgroups G of Sp,(Q) are

| [Cd [ 22 ] 1 [[1,1,4]] B, \
| =slCsh (23] 1 [[3,2,6] | A, |

#| G |IGI]IZ(G)]] Lmin | rim.f. supergroups |
1
2

|
|
|

Proof: Every finite subgroup of Sp,(Q) is cyclic since it admits a faithful representation
of degree 1 over some imaginary quadratic number field. 0
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4.3 Dimension 4

Theorem 4.3.1 The s.i.m.f. subgroups G of Sp,(Q) are

| # ] G | G| [IZ(G)]]| Lmin | rim.f. supergroups |
T | [(Ds®Ch).Saz | 23] 1 | 252 24] Fr
2 o4, | 23| 2 | 3219 A2

| 3 | =IGL@B) 223 ] 1 [[2%,2,24] | Fy \
1 |o2BL@)ioCs | 2282 2 |[252,24] 2
2,2,2] =G |23 1 | [32,17 A2

| 5 | lCuli |25 ] 1 |[5,2,20] | Ay |

Proof: Tt follows from explicit calculations, that the above table is correct and yields
s.im.f. groups. The r.i.m.f. supergroups are easily constructed, since all these groups
except ¢,,[Ciol1 are uniform. Further (,[Cio]; can only be contained in Aut(A4) by
comparison of orders. The imprimitive s.i.m.f. matrix groups can only be conjugate to
/=31C6lt or ;[C4]}. The first group if s.i.m.f. by Lemma . The group H :=;[C,]?
has Q(i) as commuting algebra. Further it fixes two lattices Ly, Lo. One checks that
one of the groups Aut(L;, F(H)) (j = 1,2) is conjugate to ;[(Ds ® Cy).S3]2. Thus H
is not maximal finite.

So it remains to prove that each s.p.i.m.f. subgroup of Sp,(Q) is conjugate to one of
the groups from above. This is done in Section [4.3.2] 0

4.3.1 Irreducible cyclic subgroups

Before we prove the completeness, we classify all finite subgroups G < Sp,(Q) that
contain an irreducible cyclic subgroup U. Then | £ U| € {8, 10, 12}.

Lemma 4.3.2 If |U| = 8 then G is conjugate to ,—[GLy(3)]2 or ;[(Ds ® Cy).Ss)s.

Proof: 1t follows from Minkowski’s bound that II(G) C {2,3,5}. The commuting
algebra of U is isomorphic to Q((s) and has class number 1. So U fixes only one
lattice L. One finds some F' € F+((U) that is integral on L such that det(L, F') = 1.
By Table G must be conjugate to Autgy,— (L, psF) for some a € {0,1} and
d € {1,2}. This leaves the candidates:

] Q) [ QvV=2 |
F 1 <i(Ds®Cy).Ss]p | £ y=[GLa(3)]2
paF' | i[(Ds®Cy).Ssla | y=3[GLa(3)]2 O

Lemma 4.3.3 If £U is of order 10 then G =~ ¢,[Co)1-



52 CHAPTER 4. THE CLASSIFICATION

Proof: The commuting algebra End(U)>~Q((10) has only one proper subfield, which
is Q(+v/5). So End(U) = End(G). Further U fixes up to isomorphism only one lattice
L. Let F € F5o(U), then Autgc,q) (L, F') = £U shows that £U is s.im.f.. 0

Lemma 4.3.4 If U is of order 12 then G is conjugate to ;[(Ds ® Cy).Ssa, i[Ca]1 ® As,
0072[SL2(3)]1 (6] 03 or \/jg[Cﬁ]%

Proof: Again by Minkowski’s bound II(G) C {2,3,5}. The commuting algebra of
U is isomorphic to Q((12) and has class number 1. So U fixes only one lattice L.
Further, one finds some F' € F.o(U) that is integral on L such that det(L, F') = 4. By
Table @, G must be conjugate to Autg =g (L, p;“p§F’) for some a € {0,1} and
d € {1,3}. This leaves the four candidates:

| \ Q(7) | QW-3) ]
F i[(Ds @ Cy).S3)2 | 002[SLa(3)]1 0 Cs
po psF | i[Cii® Ay v=3lC67

So the result follows. 0

4.3.2 Proof of Theorem [4.3.1]
Let G < Sp,(Q) be s.p.im.f.. Then E(G) = 1 according to Table[2.5.1] Thus F(G) is

selfcentralizing.

By Corollary [2.1.16( we know that O,(G) = 1 for all p > 7. The case O5(G) # 1
is handled in Lemma [4.3.3 The remaining cases are handled in the two subsequent
lemmas.

Lemma 4.3.5 If O5(G) # 1 then G is conjugate to ;[Cy]i1 ® Ay 0or o 2[SLa(3)]1 0 Cs.

Proof: By Table 2.5.2] we get O3(G) = C5 and O»(G) is one of Cy,Cy, Dg or Qs. If
02(G) = Cy then [G : Cg] < |Out(C)| = 2 contradicts Lemma 2.2.1] In all other

cases GG contains an irreducible cyclic subgroup of order 12, so the result follows from

Lemma [£.3.4] O

Lemma 4.3.6 If F(G) is a 2-group, then G is conjugate to ;[(Ds® Cy).Ss]a or
v=2(GL2(3)]2.

Proof: We already know that B°(Ds® Cy) = ;[(Ds ® Cy).Ss]2 is maximal finite. As-
sume now that O(G) is cyclic or isomorphic to Dg, then G = Oy(G) since E(G) =1
and Out(F(Q))) is a 2-group. Thus G = O(G) is either reducible or not maxi-
mal. If Oy(G)~@QD;s then G contains an irreducible cyclic subgroup of order 8.
This contradicts Lemma [£.3.2] So there remains the case that Os(G)~Qs. Then
B = B°(02(G)) ~ x2[SLa(3)]; and [G : B] = 2 since B is not maximal. By Re-
mark there is only one such extension, which is ,—[GL2(3)]s. 0
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4.4 Dimension 6

Theorem 4.4.1 The s.i.m.f. subgroups G of Spg(Q) are

’ # ‘ G ‘ |G| ‘ |Z(G)| ‘ Loin ‘ r.i.m.f. supergroups‘

1[2,1,3] | i[Cul3 | 273 | 3 [ [1,1,12] | B |
1 /=3[E377:SLy(3)]5 | 2*-3° 2 (3,2, 72] Es
2,2, 3] =lCe 2137 1 | [3%,2, 18] A3

2 | =ELM 2037 1 [[7%,4,49] AP |

We need two lemmas for the proof. The first lemma shows that Theorem [3.1.1] also
holds for p = 7.

Lemma 4.4.2 Let G < Spg(Q) be s.i.m.f. such that |G| is divisible by 7. Then G is
conjugate to  ,—[£Ly(7)]s.

Proof: As in the proof of Theorem [3.1.1] it follows that G is symplectic primitive and
contains an irreducible subgroup U isomorphic to C7;. By Minkowski’s bound we get

II(|G|) € {2,3,5,7}. The group U fixes only one lattice L since End(U) ~Q((14) has
class number 1. Further there exists some F' € F.((U) that is integral on L with
det(L,F') = 7. Table shows that G is conjugate to Autq /=7 (L, p5F) for some
k € {0,1}. So the result is easily verified. 0

Lemma 4.4.3 Let G < Sps(Q) be s.p.i.m.f. such that |O3(G)| > 3 or G contains an
irreducible subgroup U ~ Cis. Then O3(G) ~31"* and G~ ,—[+31*:SLy(3)]5.

Proof: If |O5(G)| > 3 then, by Table 2.5.2) O3(G) is either cyclic of order 9 or iso-
morphic to 3}, In the latter case B°(O3(G)) ~ /=5[£31":SLa(3)]3 and this group is
s.im.f. by Theorem [3.5.1} So we may assume that G contains an irreducible subgroup
U ~ (5. The commuting algebra of U is isomorphic to Q((35) and has class number 1.
Thus U fixes only one lattice L. One finds some F' € F.o(U) that is integral on L such
that det(L, F') = 3. Table shows that G is conjugate to Aut —5(L,p5F) for some
k € {0,1}. These two automorphism groups are conjugate to \/53[:|:3}r+2 :SL2(3)]3 and
/—31C6]; respectively. O

Proof (of Theorem[4.4.1]): One checks explicitely that the table given in Theorem [£.4.1]
is correct. (Note that the r.i.m.f. supergroups are easily constructed sind all s.i.m.f.
groups are uniform.) The group ,=5[Cg]} is s.i.m.f. by Lemma . The group
:[C4]3 fixes three lattices and has Q(i) as commuting algebra. So one checks that it is
maximal. Thus it remains to show that each s.p.i.m.f. group G < Spg(Q) is conjugate
to y=3[+347% : SLy(3)]5 or ,=5[+L(7)]5. By Table and the preceding lemmas
we may assume that O3(G) < C5 and O,(G) = 1 for all primes p > 3. If E(G) =1
then F(G) € {1, Cy,£C5, Dg}. In any case [G : F(G)] < 2, which contradicts
Lemma [2.2.1] Hence E(G) # 1 and from Table it follows that F(G)~Ly(7).
But then G~ ,—[£Ly(7)]3 by the above. 0
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Theorem 4.5.1 The s.i.m.f. subgroups G of Spg(Q) are:

r.a.m.f.
* G Gl 2(G)] Linin supergroups
1 (25 @ Cy).Sela 210.32.5 1 [1,2,240] Esg
4,1,2] 1(Ds® Cy).S5)2 21132 1 27,2, 48] F2
2,1,4] JC 2113 3 [1,1,16] B
[4,2,2 G[Ca]: @ A3)? 27.32 2 3%,2,24] Al
2 J(Ds® Cy).S5], @ Ay 26.32 2 |2%35,4,72]| A, 0F,
[4,3,2] [GLQ( NE 29.32 1 27,2, 48] 2
3 ﬁ[m[ TAlt;],:2]; | 2535 1 [1,2,240] Eq
I+ [T
4 v=22 (07 (2): D)) 28.3? 1 24,2, 48] F}
= /=a[Fu:2]4
5 /=315p4(3) o C)4 27.3%.5 1 [1,2,240] Fyq
2,2,4] /=3C6]" 27 . 35 1 3%,2,24] Al
[4,4,2] | (002[SLa(3)]1 0 C3)? 2731 2 24,2, 48] F?
6 /31061 ® Fly 27.33 2 |R2%35,4,72]| A, 0F
7 Oos[SLQ( ):2]5 0 Cs 27.32.5 2 [5%,4,120] S
8 /31061 ® Ay 27.32.5 2 | [3%52,4,60] | A, ® Ay
9 m[ﬁm[SLg(as)]lu’alh 25.3.5 2 [1,2,240] Eq
10| sl S OCL | 2235 | 2 | [5%4,120 s
11 \/TE)[CZO . 04]4 245 4 [52, 2, 40] Ai
12 Vil Sl OG5l 25.32 2 | [,2,240] F
13 m[foo[a]fﬁcy,h 25.32 2 24,2, 48] F?
14 W[Dm& /=3lCsl1]a 25.3 4 34,2,24] | AL A0 F,
|15 | 712 Alt]y (283257 1 [ [1,2,240] | Eg |
16 | /15[5.00[SLa(5 )]1 Cyls | 24325 2 [1,2,240] Eq
17 | /15l500[SLa(5 B Csla | 24325 2 5%, 4,120] S
18 /151050 Cils 2%.3-5 4 [[3%52,4,60] | A, ® Ay
19 ﬁoo[SLz(@]l o Cs 2%.3.52 1 [1,2,240] Egs, S
[4,5,2] N 23.52 1 52,2, 40] A2
20 0[Cro]1 ® Ay 22.3.5 2 [[3%5%,4,60] | A, ® Ay
’ 21 ‘ (16—§1_61 [QD32]2 ‘ 25 ‘ 2 ‘ {]'7 17 16] ‘ B87 F42

where S denotes the r.i.m.f. matriz group [(SL2(5)58L2(5)) :2]s.

To distinguish the groups \/56[\/5700[5’4]12503]4 and \/56[\/5700[54]12503]4 we make the

following convention. Both groups are generated by N := \/5700[5’4]1 o (3 and some o €
G with o® € N that centralizes B°(O9(G)) ~ 0 2[SL2(3)]1 and induces the nontrivial
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outer automorphisms on Sy and Cs. Up to isomorphism there are two choices for o®.
.2 ~ 2

The name =g,/ o0 [Sa)1 0Cs)s stands for o2 = Iy and we write V=6lvz.00 19410 C3l4 if

052 = —Ig.

The proof of the theorem is given in Section [4.5.2]

4.5.1 Irreducible cyclic subgroups

If G < Spg(Q) is s.i.m.f. and contains an irreducible cyclic subgroup U then |+ U] €
{16, 20,24, 30}. In this section, we construct all such groups G.

Lemma 4.5.2 Let G < Spg(Q) be s.i.m.f. with an irreducible subgroup U ~ C1g. Sup-
pose that II(|G|) C {2,3,5} or that there exists some (L, F) € Z(G) x Fso(G) such
that F is integral on L and I1(det(L, F')) C {2,3,5}. Then G is conjugate to one of
the following groups:

co—c |@Ds2l2, i[Culi, y=[GLa(3)]3, i[(Ds ® C1).S3]5

Proof: The commuting algebra of U is isomorphic to Q((;6) and has class number 1.
Thus U fixes only one lattice L. One finds some F' € F~((U) such that F' is integral
on L and det(L, F') = 1. By Table[2.5.3| we have to consider the groups Autg (L, p5F’)

for some 0 < k <2 and K € {Q(i), Q(v/—2),Q(C16 — (1) }-

foom| Q@) [ QWV-2 | Q-G |
F i[Culi < v=lGLaB)S | ¢yt [@Ds2)s
po i[Cull < v=lGLa(3)3 | ¢yt [@Dsa)
p3F [ i[(Ds®Cy).S5]3 | =alGLe(3)]3 | (ot [@Ds2]2
So the result follows. 0

Lemma 4.5.3 Let G < Spg(Q) be s.i.m.f. with an irreducible subgroup U ~ Cyy. Sup-
pose that I1(|G|) C {2,3,5} or that there exists some (L, F) € Z(G) x Fxo(G) such
that F is integral on L and I1(det(L, F)) C {2,3,5}. Then G is conjugate to ¢,[Chol3,

V=500 41, s [SLa(3)]1 0 Cs, =5l s [SLa(5)i Cls, J=slysa0[SLa(8)]i DCuls or
i[(2<1i>+4®04)'86]4-

Proof: The commuting algebra of U is isomorphic to Q((z) and has class number 1.
Thus U fixes only one lattice L. One finds some F' € F-o(U) such that F' is integral
on L and det(L, F) = 1. By Table[2.5.3| we have to consider the groups Autg (L, p5F’)

for some 0 < k <2 and K € {Q(i), Q(v/=5),Q(Ci0)}.
[ form | Q0) | QVH) [ 0

)
F | @ @00 S | Jeslysa[SLaB)i 00 | ysnlSTa(B)]1 0 C
psF | <[(257 © Cy). Sl /=5(C2 34]42 c0o[Croli
PEF | <25 @ Ca)-Sela | ysly5.00SL2(5)1 D Clls | 5,00 [SLa(5)]1 0 C5

This proves the claim. O
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Lemma 4.5.4 Let G < Spg(Q) be s.i.m.f. with an irreducible subgroup U ~ Cyy. Sup-
pose that II(|G|) C {2,3,5} or that there exists some (L, F) € Z(G) x Fso(G) such
that F is integral on L and II(det(L, F)) C {2,3,5}. Then G is conjugate to one of:

Joslvaac S Ol ymslyzalSil OCsla, i[((Ds ® Cu).85))s @ As,
\/52[0072[21_+4.A1t5]2 . 2]4, 1[(23_-’_4 ® 04).56}4, \/jg[Sp4(3) o 03]4, (z [04]1 ®A2)2,
v3lC6)1, (s0,2[SLa(3)]1 0 C3)?, i[((Ds ® Cy).53)]3, /=3(Ce]1 @ Fi,

2
0,5[59L2(5):2]y 0 Cs, =6[D16 X —5[Cé]1]a, —5[Fa:2]s.

Proof: The commuting algebra End(U)~Q((3) has class number 1, so U fixes up
to isomorphism one lattice L. One finds some F € F.o(U) such that F' is in-
tegral on L and det(L,F) = 1. By Table m we have to consider the groups
Ath(\/jd)(L,pgapgpgpgch) for a,b,c,c € {0,1} and d € {1,2,3,6}.

Since there exists some @ € Ngiy)(U) N GL(L) such that pZ = p; (and necessarily
pd = po, p5 = p3) we may assume that ¢ < c. Since pspi = 5Z[0s4] we may even
assume that ¢ = 0. So we have 32 possibilities:

| form | Qi) | Q=2 |
F 125 ® Cy).Sela e [2TE Alts]5 - 2] 4
p3F il(Ds ® Cy).Ss]5 /=3l Fu:2]y
p3F (1[04]1 ® A2>2 S i[oo,2 [21,+4.A1t5]2 : 2]4
pops | i[(Ds ® Cy).Ss)y ® Ay < vslFai2)y
ps L <23 ©Cy).Sela < vslFai2)y
png)F ﬁ (Z[C4]1 ®A2)2 $ i[oo,g[21_+4.Alt5]222]4
pspsF | <[22 @ Cy).Sela < =[Fii2y
papspsF | < (i[Ca]1 @ Ay)? < o225 Alts]5: 24
|_form | Q(V=3) | Q(vV=6) |
~ 2_
F v=315p4(3) 0 Csls V/=6ly2.00[94]1 0 Cs]4
~ 2
PF | (w2lSLe@®)i0Cs)’ | el sacSiliDCHl
2
psF v=31C6]1 v=6lD16 X /=5[Csl1la
2
paps v=3lCel @ Fy vslD16 B =53] Ce] 14
~ 2_
pst” 005[SL2(5):2]20C3 | £ /=5l/5.00[54]10C 34
2
paps | < y=3lSpa(3) 0 Csla | S y=5[D16 W =5(Celila
~ 2_
PspsF | S 005[SL2(5):2]a0 Cs | S /=6la.00[S11 0 Cs)s
2
papapsF | < =5[Spa(3) 0 Csls | S y=5[D16 B =5[Ci]ia

This proves the claim. 0
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Lemma 4.5.5 Let G < Spg(Q) be s.i.m.f. with an irreducible subgroup U ~ Csy. Sup-
pose that II(|G|) C {2,3,5} or that there exists some (L, F) € Z(G) x Fso(G) such
that F is integral on L and TI(det(L, F')) C {2,3,5}. Then G is conjugate to one of
the following groups:

v=3l5P4(3) 0 Csla, ¢10[Croli ® Az, /=15[Ca0:4]s, =5[Co)1 ® Ay o05[SL2(5):2]2 0 Cs,

2 2_
T5[v5ee[SL2(B)1 B Csla, =15l /500 [SL2(5)1 0 Csla, 5,00 [SL2(5)]1 0 Cs .

Proof: The commuting algebra End(U)~@Q((3p) has class number 1, so U fixes
up to isomorphism one lattice L. Further there exists some F' € F.o(U) such
that F' is integral on L and det(L,F) = 1. By Table we have to con-
sider the groups Auty(L,pspeF) where a € {0,1}, b € {0,1,2} with a =, b and
K € {Q(v-3),Q(v/~15),Q(¢10)}. So we have the following 9 automorphism groups
to check:

’ form ‘ Q(vV-3) ‘ Q(v/—15) ‘ Q(C10) ‘
F | /=l9p4(3) 0 Csls | /=i5ly/5.00[SL2(5)1 0 Csls | /5.00[SL2(5)]1 © Cs
papsF | =5lCe)i @ Ay /151050 4]42 ¢10[Cio]1 ® Ap
P2F | sos[SLa(5):2]20 C5 | /15l y5.00[SL2(5)1 0 C5s | y5,00[SLa(5)]1 0 Cs

These groups are all maximal finite. O

4.5.2 Proof of Theorem [4.5.1]

We have to prove the completeness of the list given in Theorem [4.5.1, The candidates
for the maximal finite symplectic imprimitive groups come from the classification of

the s.p.i.m.f. subgroups of Sp,(Q) and Sp,(Q). By Lemma [2.1.21) we only have to
check the group ;[C4]{. It fixes up to isomorphism three lattices and has Q(i) as

commuting algebra. One verifies that it is s.i.m.f..

So it remains to prove the completeness for the s.p.i.m.f. subgroups of Spg(Q). Thus,
for the remainder of this section let G < Spg(Q) be s.p.i.m.f..

First we handle the case that G contains a quasisimple normal subgroup N. By
Table [2.5.1) N must be conjugate to Alts, SLa(5), SLa(7), SL2(9), 2.Alt; or Sp,(3).
These cases are handled in the next two lemmas.

Lemma 4.5.6 Let N be a normal subgroup of G.
(a) If N is conjugate to Alts then G ~ ,—[Cgl1 ® Ay.
(b) If N is conjugate to 2.Alt7, then G = N.

(c) If N is conjugate to Spy(3), then G = B°(N) ~ ,—[Sp4(3) o Csls.
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(d) N is not conjugate to SLy(7).

(e) N is not conjugate to SLy(9).

Proof:

(a) Let H := B°(N)~=+S55~Aut(As). So H cannot be self centralizing since
Out(H) is trivial and End(H)~Q?*?. Thus G must contain a subgroup con-
jugate to O, ® Ay with k& € {6,4}. These groups have Q(v/—3) and Q(i) as
commuting algebras and they fix 2 and 4 lattices respectively. One easily
checks that ,—[Cs|i ® Ay is s.im.f. whereas Cy ® Ay is properly contained in

(24 ® Cy).S6la

(b) Up to isomorphism, N fixes only one lattice L and it has Q(1/—7) as commuting
algebra. So the claim is easily verified.

(c) Again, B°(N)~ ,—[Sp,(3) o Cs]4 fixes only one lattice L and has Q(v/—3) as
commuting algebra. The result follows as above.

(d) N fixes 5 lattices and has Q(v/—7) as commuting algebra. Let F' € F.o(N).
One checks that Autg,=7 (L, F) is either conjugate to N or  ,=[2.Alt]4 for all
L€ Z(N).

(e) The commuting algebra of N is isomorphic to Q3 and Out(N)~C5y x Cy but
only one class of outer automorphisms can be realized in GLg(Q). Using Re-
mark [2.2.17] one finds that G contains a subgroup conjugate to N o Cy, N o Cjs
or N.2. The first group fixes 2 lattices and is only contained in ;[(2}* ® Cy).Sg)4
the other two groups fix only one lattice and they are only contained in
/315p4(3) © Cs]4. So the result follows. 0

Lemma 4.5.7 If G contains a normal subgroup N conjugate to 5 . [SLa(5)]1, then
G is conjugate to one of

2_ 2
V151500 SL2(3)]1 0 Csla, 15[y5.00[SL2(5)1 D C5l4, o0,5[SLa(5):2]2 0 Cs,

2_ 2
V=550 ST (D) 0 Culs, =550 [SLa(3)i T Culs or 5 [SLa(5)1 0 Cs .

Proof: Let ) := End(N) ~ Q5.0 and let K ~Q(+/5) be its center. Further denote
by M a maximal Zg-order of Q. If C4(N) C N, then [G : N] = |Out(N)| = 2. The
outer automorphism of N does not centralize K. So End(G) < Q is a totally definite
quaternion algebra with center Q ramified at a subset of II(|G|) = {2,3,5}. Hence it
contains nontrivial torsion units which contradicts the assumption Cg(N) C N.

Thus there exists some g € Ca(N)\ N. We may assume that g is contained in the
torsion group IMM*! ~SLy(5), since all maximal Zg-orders of @) are conjugate. This

leaves three cases and in any case II(|G|) = {2, 3,5}.
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e U = No(C3; < G. Then K is the maximal totally real subfield of
End(U) ~Q(v/=3,/5). Further U fixes only one lattice L and there exists some
F € F.o(U) which is integral on L with det(L, F) = 1. By the 2-parameter
argument (see Table [2.5.4), G must either fix (L, F) or (L,psF). The minimal
totally complex subfields of K are isomorphic to Q(v/—3) and Q(v/—15), this
gives rise to four candidates:

| form | Q(v/-3) ‘ Q(v-15) |

F /=3[9p4(3) 0 Cs]4 m[\/goo[SLQ(5)]lzD_C3]4
PsF | oo s5[SLa(5):2]s 0 Oy | 15[z o0 [SLa(5)] T Csla

e U:=NoCy<G. Then End(U) ~Q(i,+/5). As above, U fixes only one lattice
L and there exists some F' € F~o(U) which is integral on L and det(L, F') = 1.
Again we have four candidates

[ form | Q(i) | Q(W=5) |

2_
F | @8 ®CY)-Ssle | y=s[y5.00[SLa(5)10 Culs
2
psF | S 3l(25 @ Cy).-Sla | y=slys 00 [SLa(5)11 0 Culs

e U:=NoC(Cs; <G. Then End(U)~Q((yp) is minimal totally complex. Further
U fixes only one lattice L. One checks that U is already s.i.m.f..

After omitting the groups which do not contain a normal subgroup conjugate to N,
one gets the claimed result. O

We now turn to a case to case discussion of the various Fitting subgroups.

Lemma 4.5.8 If O5(G) # 1 then G is conjugate to one of the following groups:

a0[Crol1 ® Az, /=15C30:Cala, y=1[C0:Culs o1 s5,.[SLa(5)]1 0 Cs .

Proof: Table shows O5(G) ~C5. If O3(G)~C5 then G contains an irreducible
cyclic normal subgroup of order 30. Since [Aut(C3o)| = 8, it follows from Lemma [4.5.5]
that G ~ 10 [010]1 X A2 or \/T15[030 . 04]4.

Suppose now O3(G) = 1. By Table[2.5.2] O5(G) must be conjugate to one of Cy, Cy, D
or Qs (note that Q((yo) splits Quo2). In the latter three cases, G contains an irreducible
cyclic subgroup of order 20 and II(|G]) € {2,3,5}. Hence G~ ,—[Cy : C4ls by
Lemma [4.5.3

If Oy(G)~Cy, then Cq(F(G)) embeds into GLa(Q(C10)). If E(G) # 1, then
by Table E(G) is conjugate to 5 [SLa(5)];. In this case, Lemma
shows that G~ g [SLa(5)]1 o C5. It remains the case that F*(G)=~Cyy. Then
G/F*(G)~Aut(Cyp) ~Cy by Lemma [2.2.1] There are two such extensions. The
group Chg : Cy is reducible, whereas Cyo-Cy has Q5 as commuting algebra. This
group cannot be maximal finite since Q 5 contains nontrivial torsion units. 0
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O3(G) #1 and O5(G) =1

We now suppose that Os(G) = 1 and O3(G) # 1. By Table we have O3(G) ~C3
and Oy(G) € {Cy, C4, Cs, Dy, Qs, 21++4a 21f47 Dg ® Cy, Dyg, @D, Qi }-
These cases are handled in the following lemmas.

Lemma 4.5.9
2
(CL) ]f OQ(G) 2D16 then G~ \/jﬁ[Dlﬁ X \/j3[06]1]4.
(b) Os(G) is not conjugate to Cs, QD1 or Q1.

Proof: In all these cases GG contains an irreducible cyclic subgroup of order 24 and
II(|G|) = {2,3,5}. So the result follows from Lemma [4.5.4] 0

Lemma 4.5.10 If O4(G) ~ 2i+4, then G~ ;—[Cg|1 @ Fy.

Proof: B°(F(G)) is conjugate to ., —3[Cs|1 ® Fy and fixes only one lattice. Its commut-
ing algebra is isomorphic to Q(v/—3). Hence the claim is easily verified. 0

Lemma 4.5.11 Oy(G) %21,

Proof: Suppose Oy(G) ~ 2. Then G contains the normal subgroup N := B°(F(G))
conjugate to s o[22 Alts] o C5. The group N fixes 2 lattices and has Q(v/—3) as
commuting algebra. One easily checks that it is only contained in ,—[Sp,(3) o Cs4
(which has the wrong Fitting subgroup). O

Lemma 4.5.12 If OQ(G) ~ Dg X 04, then G ~ Z[(Dg X 04).53]2 X AQ.

Proof: The subgroup N := B°(F(G)) ~;[(Ds ® Cy4).S3]o ® C5 of G contains an irre-
ducible cyclic subgroup of order 24 and II(|G|) = {2,3}. So the result follows from
Lemma [4.5.4] 0O

Lemma 4.5.13 O(G) # Dg and Oy(G) # Cy.

Proof: Suppose Oy(@G) is one of these groups. In either case G contains an irreducible
normal subgroup N < F(G) which is isomorphic to Cy2. Then C' := Cg(N) embeds
into GLy(Q(¢12)) and contains N. Thus E(G) =1 and G/F(G) < Out(F(G)) ~Cy x
Cy. If O3(G) € Z(G) then there exists some g € G such that g induces the nontrivial
outer automorphism on O3(G) and ¢g? € Oo(G). By maximality we get g € Oz(G)
which contradicts O2(G) C Cg(O5(G)). So G/F(G) < C,. But this contradicts
Lemma [2.2.1] 0
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Lemma 4.5.14 If Oy(G) ~ C; then G is conjugate to ,—[Ce]1 @ Ay, ,—3[Sp4(3)0Cs]4,
2 2
50,51SL2(5):2]2 0 C3, /=15 /5,00[SL2(5)1 O C3la 0r 15[ 5,00 [SL2(5)]1 T Chla.

Proof: If E(G) = 1, then G/F(G) < Out(Cs) ~Cy contradicts Lemma [2.2.1} So
E(G) # 1. But all these cases have already been handled in Lemmas |4.5.6|and |4.5.7.o

~ 2
Lemma 4.5.15 If Oy(G)~Qs then G is either conjugate to /=] /3,91 0Cs]y or

~ 2_
v=6lv2,0094]10 Csls.

Proof: Let N := B°(F(G))~2[SL2(3)]1 © C35. Then C := Cg(N) embeds into
GL2(Q(v/=3)) which implies that C' is soluble. Therefore G/N < Out(N)~Cy x Cs.
By Lemma [2.2.1] we know that [G : N] = 4. So there is some @ € G\ N such that o
induces the outer automorphism on SLy(3) and acts trivially on O3(G). Hence o com-
mutes with the center of £ := End(N) ~Q(v/—3)?*2. By Lemma , H :=(N,a)
is (up to conjugacy) uniquely determined by the isomorphism type of K := Cg(a).
There are two possibilities, namely K ~Q(v/—=3,v/2) or K ~Q(v/—3,v/—-2).

o K~Q(v/-3,v/—2): The maximal totally real subfield of K is isomorphic to
Q(v/6). Further H fixes only one lattice L and there exists some F € Foo(H)
that is integral on L such that det(L, F') = 16. Since Nry o /5)(Z)) = A
we may restrict ourselves to one class of totally positive units. By Table [2.5.4]
this leaves the following four candidates.

| form | Q(v-3) | QW-2) |
F (OO’Q[SLQ(?))]l O 03)2 \/TQ[F4Z2]2
p3F /31C6)1 ® Fy < valFai2)

But none of these groups has the correct Fitting subgroup.

e K~Q(v/—3,v2): The maximal totally real subfield of K is isomorphic to
Q(v/2). Further H fixes only one lattice L and there exists some F € Foo(H)
which is integral on L such that det(L, F) = 1. By Table there are four

candidates:

form| QW3 | QW6 |

~ 2_
F M[Sp4(3) © C(3]4 \/_76[\/5700[84]1 O 03]4
~ 2
pQF (0072 [SL2(3)]1 o 03)2 \/TG[\/ZOO[S4]1 503]4

The result follows if one checks the Fitting subgroups of these candidates. O
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0,(G) =1 for all odd primes p
In this last section, suppose that F'(G) = O2(G). By Table [2.5.2) O5(G) is isomorphic
to one of 027 047 087 CYlG? D87 Q87 2—1:_47 21—+47 D8 ® 047 DS @ 087 D8 ® QD167 2—1:_4 ® 047

Dig, QD1g, Q16 or QD35. These cases are handled below. This concludes the clas-
sification of the s.i.m.f. matrix groups of degree 8.

Lemma 4.5.16 If F(G)~2"®Cy, then G = B°(F(Q)) ~[(21* @ Cy).Se) 4.

Proof: The group B°(F(G)) fixes up to isomorphism only one lattice L and has Q(7)
as commuting algebra. Hence the claim is easily verified. 0

Lemma 4.5.17 If F(G)~QDs,, then G = F(G).

Proof: Follows from Lemma [3.3.1 O

Lemma 4.5.18 F(G) is not isomorphic to Cs, Dig, QD1g or Q1.

Proof: In all these cases G would contain a normal cyclic subgroup N of order 8.
Then C := Cg(N) embeds into GLy(Q((s)). Hence E(G) = 1 and this implies that
G/F(G) < Out(F(GQ)) is a 2-group. So G = F(G) is reducible. 0

Lemma 4.5.19 If F(G)~2", then G is conjugate to \/52[0072[21,+4.A1t5]2:2]4.

and End(N)~ Q2. Hence [G : N| < 2. Thus by Remark [2.2.17, G must contain a
subgroup U conjugate to N.2. Since U fixes up to isomorphism a unique lattice and
has Q(v/—2) as commuting algebra, the claim is easily verified. O

Proof: The normal subgroup N := B°(F(G)) = o o[217* . Alts), is self centralizing in G
h

Lemma 4.5.20 If F(G)~2** then G is conjugate to vl Fu: 2.
Proof: Let N := B°(F(G))~F,. Then C := Cg(N) embeds into Q**?. So C' and

G are soluble. Thus again [G : N| < 2 and by Remark [2.2.17] we conclude that
G~ /—[Fy:2]4. Finally one checks that this group is s.i.m.f.. 0

Lemma 4.5.21 F(G) % Cy.

Proof: Follows from Lemma [4.5.2 0
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Lemma 4.5.22 F(G) is neither isomorphic to Dy @ Cy nor Dg ® QQD1g.

Proof: In both cases, G would contain an irreducible normal subgroup N ~ Dg ® Cs.
Then B := B°(N) ~ N.Ss fixes only one lattice L and has Q((s) as commuting algebra.
One finds some F' € F-o(B) that is integral on L such that det(L, F') = 1. Since
II(|G]) = {2,3} it follows from Table that we have to check the following four

candidates: .
L Q1) | V-2 |
F Z[(2i+4 ® C4>'56]4 \/T2[0072[21_+4.A1t5]2 : 2]4
po I | i[(Ds ® Cy).Ss)5 vl Fu:2]y
None of these groups has the correct Fitting subgroup. 0

Lemma 4.5.23 F(G) # Dy ® Cy.

Proof: Suppose F(G) =~ Dg® Cy. Then N := B°(F(G)) ~(Dg ® C4).S3 has Q()**? as
commuting algebra. Thus E(G) = 1. But then [G : N] < 2 contradicts Lemma[2.2.1] 5

Lemma 4.5.24 F(G) # Qs.

Proof: Suppose F(G)~Qs. Then N := B°(F(G)) =~ »2[SL2(3)]1 and Cg(N) embeds
into GL2(Qw2). Hence it follows from Table that E(G) = 1. Thus G/N <
Out(SLz(3)) ~ Cy contradicts Lemma [2.2.1] 0

Lemma 4.5.25

(a) If F(G)is isomorphic to Cy, then G is conjugate to \/55[\/57OO[SL2(5)]12D+C4]4 or
2
V=5 VB .00 [SL2(5)]1 0 Cl 4.
(b) The Fitting group F(G) is not isomorphic to Ds.

Proof: If E(G) =1 then [G : F(G)] < 2 contradicts Lemma [2.2.1, So by Table [2.5.1]
E(G) must be conjugate to Alts or SL(5). Thus the result follows from Lemmas [4.5.6]

and [£.5.7] m

Lemma 4.5.26 If I'(G) ~Cy, then G is conjugate to ,—[2.Altr]y.

Proof: By Table 2.5.1, F(G) is conjugate to one of Alts, SLa(5), SLy(7), SL2(9) or
2.Alt; (note that O3(B°(Sp,(3))) ~ Cs3). We have already classified these groups G in
Lemmas [£.5.6| and £.5.7] 0
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4.6 Dimension 10

Theorem 4.6.1 The s.i.m.f. subgroups G of Sp;,(Q) are

| # ] G 1G] [1Z2(G)]] Lonin | r.i.m.f. supergroups
2,1, 5] JCuE 213.3.5 3 [1,1,20] Big
1 (CiL ® A5 26.32.5 6 32,2, 60] A2
2,2,5] /31063 28.35.5 1 3,2, 30] A3
2 | 5ESB)oCyly | 27355 2 | [22-35,4,270] | [(Cs x Sa(3))-2]0
|3 | mlEL(D]s 223511 1 | [115,6,110] | AP |

Proof: We know that that ,—5[C4]; is maximal finite by Lemma [2.1.21] The group
;[C4]3 fixes three lattices and has Q(i) as commuting algebra. One checks that it is
also maximal finite. So we may now suppose that G is s.p.i.m.f..

Then G cannot be soluble according to Corollary [£.1.2] So Table [2.5.1] shows that
E(G) is isomorphic to Altg, La(11) or S4(3).

The group /=r7[+Ly(11)]5 is s.i.m.f. by Theorem [3.1.1}

If E(G)~54(3), then End(N) ~Q(v/—=3) and B°(E(G)) ~ /=5[+54(3) o C3]5 fixes up
to isomorphism one lattice L. One immediately verifies that it is maximal finite.
Suppose now E(G) =~ Altg. Then N := B°(E(G)) ~Aut(As) ~£Ss. If F(G) = £14
then G = N is reducible, since the exceptional outer automorphism of Sg cannot be
realized in GL5(C). So F(G) is cyclic of order 6 or 4 by Lemma In the first case
G would be properly contained in ,—[454(3)0C3]s. In the latter case G = ;[C4]; ® A

which one easily verifies to be maximal finite by computing the automorphism groups
of all six G-invariant lattices.

The r.i.m.f. supergroups are easily constructed since G is uniform in any case. 0
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4.7 Dimension 12

Theorem 4.7.1 The s.i.m.f. subgroups G of Sp;5(Q) are

# G G| 1Z2(G)] Limin supergroups
[4,1,3] J(Ds® Cy).55]3 21634 1 26,2, 72] F}
2,1, 6] oA 216.32.5 | 3 [1,1,24] B1o
1 Cu]1 @ Fg 29.3%5 2 [32,2,144] E2
[4,2,3] GICH]: @ Ay)? 210,37 2 35,2, 36] AS
2 o3| £U3(3)]5 0 Cy 27T | 2 3,4, 756] [6.04(3)-27] 15
3 JCIL ® Ag 263257 2 [72,2,84] AZ
2(2) 2
4 1S ® 5[Cilie 26.34 4 | [26-34,4,216] | [S X SLy(3)]1e
V=3
202) 202)
5 L2 (7) @3 [Calis 26.3.7 2 | [26-72,4,336] [L2(7)®D8]
6 {[Ca)y @ AP 26.3.7 | 2 75,4, 84] (AP))2
2(2) 6
7 z[ﬁ[iLg(?)]g >0 2[04]1]6 2637 2 [2676,8,336] [LQ(?) Dg]m
[4,3,3] /—2[GL(3)]3 213,34 1 25,2, 72] F}
8 £ L2(7)-2]s 25.3.7 2 [72,2,84] AZ
202)
9 \/TQ[OO7Q[SL2(5>]3: ]6 2435 6 [22'5, 3, 80] [SL2(5) o SL2(3)]12
10 /—316.04(3).2]s 293757 1 [35,4,750] [6.U4(3).2% 15
2,2, 6] /=31C6l8 210385 [ 1 3%, 2, 36] AS
6,1,2]] 5E3FESLLB)] 29.38 2 32,2, 144] E2
[4,4,3]] (0.2[SLa(3)]1 0 C5)3 210,37 2 25,2,72] F3
2
11 S ® s2[SLa(3)]1 26.35 4 | [26-34,4,216] | [S X SLy(3)]12
V=3 V=3
12 /—3[E3-Miols 25.3%.5 2 [ [3%-5°,8,270] | [£3.Alt12.27]5
13 /=3[C6)1 ® Mg » 27325 | 6 | [35-5°,6,60] A, ® M6 5
14 50.2[SL2(5)]3 0 C 23.32.5 | 8 | [22:5% 4,360 [SL2(5) 5 SLZ( )iz
=N . 1,1, 24]
15 /=5li[Ca]1  Alts]s 25.3.5 | 14 11,2, 264] B
25 564, 60
6 | olChbal | 235 | w0t M2,
(6,2, 2] =L (D3 29.32.72 | 1 72,4, 84] (A2
17 | = [ELa(7)]3 @ wolSsli| 25-3%7 | 2 36,4, 756] [6.U4(3).22]15
V=T
18 s EL(Ms@ A, | 25:327 | 2 | [36.7°,8,126] Ay @ AP
3 a. [1,1,24]
19 [SLy(11)] 23.3.5.-11] 5 11,2, 264] Bio
20 153 Altg -2, 25.3%.5 2 3,4, 756] [6.0,4(3).27] 15
21 /15| E3.Altg 21 25.3%.5 2 | [35-55,8,270] | [£3-Alt12.27]15
[4,5,3]] aolCioli | 29358 | 1 [53,2,60] A3
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2
22 10[Co)1 @ Alts 23.3.52 2 | [2%-5%,4,420] | [Dg X Alts]io
V5 V5
y 23 \ cantcircs, | Cas: Cls \ 2.3-13 \ 9 \ [13,2, 156] \ Aqy \

Here S denotes the s.p.i.m.f. subgroup ,=[£35":SLs(3)]5 < Sps(Q). A proof of this
theorem is given in Section [4.7.4

4.7.1 Irreducible cyclic subgroups

Let G < Spy5(Q) be s.i.m.f. such that G contains an irreducible cyclic subgroup U.
Then | + U] € {26,28,36,42}. These groups are classified below.

Lemma 4.7.2 If £U has order 26 then G is conjugate to ¢, 3 13 [Cos: Csls.

Proof: Follows from Theorem [3.1.1] 0

Lemma 4.7.3 If U has order 28, then G is conjugate to ;[Cy]y ® As, 1[04]1®Aé2),
2(2) 2(2)
i[La(7)6@i[Calils, ily=7[FLa(7)]3 B i[Cilils or =[FLa(7)]3.

Proof: The commuting algebra of U is isomorphic to Q((2s) and has class number
1. Thus U fixes only one lattice L. Further there exists some F € F-o(U) such
that F is integral on L and det(L, F) = 7. It follows from Minkowski’s bound that
II(|G|) = {2,3,5,7,11,13}. The cases that |G| is divisible by 11 or 13 are handled
in Theorems [3.1.1] and [3.2.1] So we have II(|G|) = {2,3,5,7}. By Table G
is conjugate to Autg,/—g (L, p5p3' F) for some k,l € {0,1} and d € {1,7}. These
automorphism groups are

’ form \ Q) ‘ Q(v-7) ‘
F [04] ®A6 < yrlELa(7)];
po I’ i[La(7 )6®z[04} E < ylEL(7)]3
pF i[Ca]1 ® ) =7l ELa(7)]3
papzF | il =7 [iLz(7)] i[Calils | £ y==[FLa(7)]3
So the result follows. 0

Lemma 4.7.4 If U has order 36, then G is conjugate to one of:

(Ci @ Ea, 53172 :SLy@)2, o[ —5[23142:SLa(3)]s 3 4[Cil o
valE3? 0o (3)]3 ® w0 2[SLa(3)]1, (i[Cali ® A2)?, =3[ClS -
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Proof: The commuting algebra of U is isomorphic to Q((3s) and has class number 1.
Thus U fixes only one lattice L. Further there exists some F' € F+(U) such that F is
integral on L and det(L, F') = 9. As above, we have II(|G|) C {2,3,5,7}. Restricting
to normalized lattices (see Definition [2.2.4), Table shows that G is conjugate
to Autg,—a (L, p5p5F) for some (k,1) € {(0,0),(1,1),(0,2)} and d € {1,3}. These
groups are glven below.

’ form \ Q(7) ‘ Q(v-3) ‘

F :[Cu]1 ® Eg /=337 SL(3)]3
papsF | o[ =3[E3577:SLa(3)]s 2)1'[04]1]6 V=3l E32:S1s(3)]3 © 0o 2[SLa2(3)]1
p3F ([C1 ® A5)? v=3lC6]?
This proves the result. O

Lemma 4.7.5 If +U has order 42, then G is conjugate to one of

v316.U4(3) .26, =5[ELa(7)]s ® Az, /—[£La(7)]3 \;8;0073[53]1.

Proof: The commuting algebra of U is isomorphic to Q((42) and has class number 1. So
U fixes only one lattice L. Further one finds some F' € F-o(U) such that F'is integral
on L and det(L, F') = 3%. As above we have II(|G]|) = {2 3,5,7}. By Table[2.5.3] G is
conjugate to Ath(m)(L,pgkp’gpé ) or Autg F)<L ps Fpl pl7F) for some k € {O 1},

0<l<3andde {37} Since Ath v=a(L; b3 "piptF) = Autgy=a)(L, p3 TpsplF) =
Autgy—3)(L, phF) N Autg (L, ptF) for all [ and d we have eight groups to check.

[form|  Q(W=3) | Q=) |

F /316.U4(3).2]s ﬁ[iL2(7)]3%w3[53]1
prl | < y=5(6.U4(3) 2] | £ y=z[ELa(T)]3 ® Ay
p2F v=316.U4(3) 2]6 | £ =[£La(7)]3 ®7oo3[53]
piF | < /=506.Ua(3)-2)s v=7lEL2(7)]3 ®
So the lemma is proven. 0

4.7.2 Proof of Theorem 4.7.1]

We have to prove the completeness of the list given in Theorem (the correct-
ness follows from explicit calculations). The candidates for the maximal finite sym-
plectic imprimitive groups come from the classification of the s.p.i.m.f. subgroups of
Sp,(Q), Sp,(Q) and Spg(Q). By Lemma [2.1.21] we only have to check the group
:[C4]8. Tt fixes up to isomorphism three lattices and has Q(i) as commuting algebra.
One verifies that it is s.i.m.f..

So it remains to prove the completeness for the s.p.i.m.f. matrix groups. Thus, for the
remainder of this section let G < Sp;,(Q) be s.p.im.f..
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The case that O13(G) # 1 is handled in Lemma 4.7.2] Hence we may assume that
F(GQ) = 042(G)03(G)05(G). So Theorem follows by discussing all possible can-
didates for the Fitting subgroup of G. This is done in the subsequent lemmas.

Again, we handle the irreducible quasisimple normal subgroups first.

Lemma 4.7.6 Suppose G < Spy5(Q) is s.p.i.m.f. and G contains an irreducible qua-
sisimple normal subgroup N. Then one of the following holds.

(a) If N ~6.Uy(3) then G = B°(N)~ ,—[6.U4(3).2]s.

(b) [fNZ U3(3) then GZOO73[:|:U3<3)]3 o 04.

(¢) If N is conjugate to 3.Altg with character Xsa+X5,+ X3+ X5, then G is conjugate

to \/_7115)[:':3A1t62]6, m[ﬂ:BAh’@ﬂG or \/?3[:*:3M10]6

(d) If N ~SLy(11) then G = N.

(e) If N is conjugate to - 2[SLa(5)]s, then G is conjugate to [ 2[SL2(5)]3:2]¢ or

0072[8L2<5)]3 ©) Cg.

Proof: Suppose first that we are in one of the cases mentioned above.

()

(b)

(d)
(e)

B°(N) fixes only one lattice and has Q(v/—3) as commuting algebra. So the
claim is easily verified.

The commuting algebra of IV is isomorphic to Q. 3 and Out(N)~Csy. Thus by
Remark 2.2.17, G contains N o Cy, N o C3 or =N.2 as a subgroup. The first
group is already s.i.m.f.. The other two groups fix 1 or 4 lattices respectively.
One checks that they are only contained in ,—[6.U4(3).2]g.

The commuting algebra C' of N is isomorphic to Q(v/—3,v/5) with Q(v/5) as
maximal totally real subfield. Further, N fixes only one lattice L and one finds
some F' € F.o(G) that is integral on L with det(L, F) = 3% Since II(|G]) =
{2,3,5} this leaves the following 4 candidates (see Table [2.5.4)).

om] OW3 [ QW T
F | 6.04(3) 2l | y51%3 Altg-2g
p5F \/j3[2|23M10]6 \/fg[:t?)Alt62]6

So the result follows.
Follows from Theorem m

The centralizing algebra of N is isomorphic to Qw2 and Out(NN)~Cs. Hence,
by Remark G contains a subgroup conjugate to: N oC3, N.2 and N o C}.
These fix 8,6 and 20 lattices respectively. The first two groups are maximal
finite. The remaining group is only contained in G' = ;[C4]8.
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If N is not conjugate to one of these groups, it follows from Table 2.5.1], that N must

be conjugate to 6.L3(4) or 3.Altg with character xs + -

The group 6.L3(4) fixes two lattices and has Q(v/—3) as commuting algebra. One

checks that it is only contained in  ,—[6.U4(3).2]s.

In the remaining case, N fixes 12 lattices and has Q(v/—3) as commuting algebra.

One checks that N has the maximal finite symplectic supergroups ,,—3([6.U4(3).2]s and
/=31C6]§ which both do not normalize N. 0

Lemma 4.7.7 If Os # 1 then G is conjugate to ¢, [Co]1 @ Alts.
V5

Proof: By Table 2.5.2, O5(G)~C5. Thus Cs(O5(G)) embeds into GL3(Q(C10)). In

particular, by loc. cit. F(G)=~Cyo. But then E(G) = 1 contradicts Corollary [2.2.3]

So Table [2.5.1|shows that F*(G) >~ ¢,,[C10]1 ® Alts. But then F*(G) fixes 2 lattices and
V5

has Q(C10) as commuting algebra. One checks that it is already s.i.m.f. by computing
their automorphism group (with respect to the full form space). 0

Lemma 4.7.8 If Os(G) = 312, then G is conjugate to one of

2(

valE3T?  SLa(3)]3 ® w0 2SLa(3) or i[y=3[£31"? : SLa(3)]s )i[04}1]6-

J=3

Proof: By Table[2.5.1| we have E(G) = 1. If F(G) = £03(G) then G/B°(F(G)) < C,

contradicts Lemma . So by Tablewe have F'(G) ~ 3" ® H with H = Cy, Dy

or Qs. If Oy(G )_Qg, then G = B°(F(G)) ~ =s[£37 : SLQ(B)]g\;@LmQ[SLQ(i’»)]l is
=3

already s.i.m.f..

So we may now assume that G contains a normal subgroup conjugate to N :=
B(03(G)) ® Cy~ s=5[3"% : SLs(3)]3 ® Cy of index at most 4. In particular II(|G|) =
{2,3}. The commuting algebra C of U is isomorphic to Q(i,v/3) and has K ~Q(+/3)
as maximal totally real subfield. Up to isomorphism, N fixes two lattices, which are
both N-normal critical. Further we find some L € Z(N) and a form F' € F5,(U) that
is integral on L such that det(L, F)) = 3°. Since Zj. ., = Nr¢/x(Z¢) we may restrict
ourselves to one class of totally positive units. By Table[2.5.4] this leaves the following
cases:

’ form \ Q(7) ‘ Q(v-3) ‘
F :[Cu]1 @ Eg /=3[E37:SLy(3)]?
papsF | i[53 SL2(3)]32)1‘[C4]1]6 a3 SL2(3)]3\;€%®72[SL2(3)]1

This proves the claim. O
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Lemma 4.7.9 O3(G) is not isomorphic to Cy.

Proof: Suppose O3(G) = Cy. Then Ci(O3(G)) embeds into GL2(Q(¢g)). Thus G is
soluble. If F(G) = £Cy then, by Lemma , G contains a subgroup N isomorphic to
(15.C3 of index at most 2. But then O3(N) = O3(G) has order 27. So we may assume
that FI(G) = Cy® H with H ~Cy, Dg or Qg. In any case G contains an irreducible
cyclic subgroup of order 36. Hence the result follows from Lemma [4.7.4] 0

Lemma 4.7.10 If O3(G) = Cs, then G is conjugate to one of ,—[6.Us(3).2]s,
v=31C6]1 ® M 2, \/?3[~i3~M10]67 151 E3-Alte21]s, 75[E3. Alte:21]6, 00,2[SL2(5)]30C 5,
ﬁ[iL2(7)]3%oo,3[53]1; vorlEL2(7)]s © A

Proof: By Table m E(G) is either trivial, irreducible or isomorphic to Alts, Lo (7),
Uy(2). Let N := O3(G)E(G). This leaves the following cases:

(a) If E(G) = 1 then G is soluble and Oy(G) < Cg(O3(G)) embeds into
GL¢(Q(/=3)). Thus Oy(G) is isomorphic to one of Cy, Cy, Dg or Qg. The
normal subgroup U := B°(05(G))03(G) < G is self centralizing and embeds
into GLy(Q(v/=3)). But since G/U < Out(U) is a 2-group, this contradicts

Corollary [2.2.3|

(b) If E(G)~ Alt; then C' := End(N) ~Q(v/5, v/—3) and denote by K ~Q(+/5) its
maximal totally real subfield. Then N fixes up to isomorphism 4 lattices whose
endomorphism ring equals Zs. But only one of them, call it L, has minimal
superlattices which have not this maximal order as endomorphism ring. So L is
N-normal critical since C' has class number 1 (see Remark [2.2.8)). We find some
F € Foo(N) such that det(L,F) = 2*- 3% Moreover G/N < Cy x Cy shows
that I1(|G|) = {2,3,5}. By G is conjugate to Autg,/= (L, p§F) for some
a €{0,1} and d € {3,15}.

form| Q-3 [ QW-15) |

r < v=3lGe)? < yoaslE3.Alts 216
p5F \/—73[06}1 ® M6,2 g —15[:|:3.A1t6 : 21]6

So G~ \/T3[CG]1 & M(;,z.

(c) If E(G) =~ Ly(7) then G contains an irreducible cyclic subgroup of order 21. Thus
G is conjugate to ,—[£La(7)]s ® o03[S3]1 or /—[£La(7)]3 ® Ay by Lemma(4.7.5,
V=T
(d) If E(G)~Alt; or E(G)~Uy(2) then N is irreducible with commuting alge-
bra Q(v/—3). One checks that they have only one s.i.m.f. supergroup which

is ,/—3[6.U4(3).2]¢. But this group does not contain N as a normal subgroup.

(e) Finally if E(G) is irreducible (and quasisimple), Lemma [1.7.6 shows that G is

conjugate to \/j3[6U4(3)2]6, \/jg[:i:3.M10]6, \/Tw[ﬂ:g.AltGQI](;, m[i3A1t6 : 21]6
OT 0,2 [SL2(5)]3 o Cg. O
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Lemma 4.7.11 If O,(G) =1 for all odd primes p, then Ox(G) is conjugate to one of
Cy,Cy or Dg and E(G) # 1.

Proof: If Os(G) is not isomorphic to Cs,Cy and Dg, then Corollary [2.1.16| and Ta-
ble [2.5.2 show that O5(G) € O := {Qs, Cs, Dis, @D1s, Ds @ Cy, 27}
Suppose first E(G) = 1. For any possible Oy(G) it follows from loc. cit. that
G/B°(02(G)) is a 2-group and B°(O2(G)) embeds into GLx(Q) for some k € {1,2,4}.
This contradicts Corollary 2.2.3] Hence E(G) # 1.

Finally, suppose O2(G) € O. Then End(O5(G)) ~ GL3(Q) where @ is isomorphic to
one of Q,Q(i), Q(v/%2) or Q9. But then Table implies E£(G) = 1 which is
impossible (note that Q(v/5) and Q(y/—7) do not split Qu.2). 0

Lemma 4.7.12 If F(G) is conjugate to Cy or Dg then G is conjugate to one of

2, 2_
00,3[U3(3)]3 0 Cy, /=5[i[Cas W Alts]s, ,—5[:[Ca]1 W Altsls, :[Cul1 ® AP,

i[ﬁ[iL2(7>]3 2§) i [C4]1]67 i[L2(7)2(§2L

[Calils; i[Cali ® A, i[Cals @ Eg

Proof: If E(G) is irreducible, then G =~ 3[Us3(3)]3 o Cy according to Lemma [4.7.6]
Suppose now that F(G) is not irreducible. Then E(G) embeds into GLg(Q(7)) since
F(G) contains a characteristic subgroup U isomorphic to Cy. Table shows that
there are five possibilities left.

(a) If E(G)~Alt; then N := Alt; ® Cy < G. The commuting algebra of N is
isomorphic to Q(i,v/5) with Q(v/5) as maximal totally real subfield. Since
G/N < Cy x Cy we have II(|G|) = {2,3,5}. Up to isomorphism, N fixes 3
lattices that have the maximal order as endomorphism ring. One of them is
N-normal critical, L say. One finds some F' € F5o(N) that is integral on L such
that det(L, F') = 1. By Table this leaves 4 candidates:

’ form \ Q(v/-5) ‘ Q) ‘
F \/js[l [04]1 % Alt5]6 < 1[04]?

2+
psF | =slilCai KAlts]s | < 5[Cul

2_ 24
So G ~ \/j5[l[04]1 X Alt5]6 or \/j5[1|:04]1 X Alt5]6.

(b) If E(G) is conjugate to ,—[Lo(7)]s then N := ,—[*+Ls(7)]s®Cy < G. The
commuting algebra C' of N is isomorphic to Q(i,v/—7). Let K ~Q(\/7) be
its maximal totally real subfield. Since G/N < Out(N)=~Cy x Cy, we have
II(|G]) = {2,3,7}. The group N fixes only one lattice L and there exists some
F € F.o(H) that is integral on L such that det(L, F') = 7°. Since Endzy(L) is
the maximal order in C' and since Zj ., = Nr¢/x(Z) we may restrict ourselves
to one class of totally positive units. Let (o) = Gal(C'/K)~C5. One finds that
o is conjugation by some = € Negr,,@)(N) N GL(L) with zFz" = F. So z
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interchanges the two prime ideals over 3 (and necessarily fixes the unique prime
ideals over 2 and 7). By Table this leaves the following 8 automorphism

groups:
[ fom | Q() | Q(/-7) |
F i([Cul1 ® Aﬁf) ﬁ[iLz(ﬂ]g
po z‘[ﬁ[iL2(7)]32)z‘[C4]1]6 < vzl ELe(T)]3
pspy F 003[Us(3)]a 0 Cy ﬁ[iLZW)]B%OO,S[S?s]l
papsp; F N N

2(2)
So G21[04]1 ®A(62) or Z[\/j[:bLQ(?)]g i[C4]1]6'

(c) If E(G) is conjugate to Lo(7) with character 2yg then N = Ly(7)®@Cy < G
fixes up to isomorphism 6 lattices and its commuting algebra is isomorphic to

Q(7). One checks that N is only contained in ;[Cy]; ® Ag or i[L2(7)2é32>1 [C4]1]- So
G~ [La(T)n Calule.

(d) If E(GQ)~ Alt; then B°(F*(G)) ~;[C4]1 @ Ag is already s.i.m.f..

(e) If E(G)~U,(2) then B(F*(G)) ~:[Cy]; ® Eg is already s.im.f. .

Lemma 4.7.13 If F'(G) ~Cs then G is conjugate to ,—[FLo(7)-2]6, ,—7[SLa(11)]s
or \/TQ[OO7Q[SL2(5)]3:2]6.

Proof: If E(G) is irreducible, then Lemma shows that G~ ,—7[SLy(11)]s. Oth-
erwise Table shows that F(G) is isomorphic to Alts, Alt;, Us(2) or Ly(7)
(with two representations). The 6-dimensional representation of Alt; extends to
+Alts : 2 in GLg(Q) by [CCNT85]. The element Y5 € Q(v/5) ~ Cgoxo(Alts) has
norm —1. Thus also £Alt5-2 < GLg(Q). So E(G) # Alts. If E(G)~Alt; or Uy(2)
then G/ + E(G) < Ouwt(E(G)) ~Cy~B°(E(G))/ £ E(G) shows that G = B°(E(G))
is reducible. Suppose E(G) is conjugate to Ly(7) with character 2ys.. Then
G/+E(G) < Out(E(G)) =~ C, contradicts Lemma[2.2.1] Finally suppose E(G) is con-
jugate to Ly(7) with character 2xg. The extension 4Ly (7):2 embeds into GLg(Q(v/2))
(see [CCNT8A]). The split extension ,—5[+Ly(7)2]s < GLg(Q(v/—2)) is maximal finite
as one easily verifies. O
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4.8 Dimension 14

Theorem 4.8.1 The s.i.m.f. subgroups G of Sp;,(Q) are

| # ] G \ |G| [|Z2(G)] ] Lonin | r.i.m.f. supergroups |
2,1,7] ACT 283257 3 [1,1,28] B
1 qCh®E; 273457 3 [1,2,252] E2
2 | i[Us(3)0Culy | 27-33.7 4 | [20.32,3,112] | [Us(3) 3 Culua
2,2,7] | =lCsl] [2'13%5.7] 1 37,2, 42] Al
3 | 5lCeh@Er 203557 2 [[22.37,4,378] Ay ® Er

Proof: By explicit calculations, one verifies that the above table is correct and yields
s.i.m.f. groups. Further the r.i.m.f. supergroups are easily constructed since all s.i.m.f.
groups are uniform. It remains to show the completeness of the classification. The
group ,—3[Cy]7 is s.im.f. by Lemma[2.1.21] The group ;[C4]] fixes 3 lattices and has
Q(i) as commuting algebra. One verifies that it is s.i.m.f.. So it remains to prove that
the completeness of the s.p.i.m.f. matrix groups.

Let G < Spy4(Q) be s.p.im.f.. Then Corollary shows that E(G) # 1. Thus
N := B°(E(Q)) is conjugate to A7, E; or Us(3) o Cy by Table [2.5.1}

The group ;[Us(3) o C4]; is already s.i.m.f.. In the other two cases, Out(N) is
trivial. Thus by Lemma G contains a subgroup conjugate to Cj ® N with
k € {4,6}. If N~ F;, this yields the maximal finite subgroups stated above. The
groups ,—3[Ce]1 ® A7 and ;[C4]; ® A7 are irreducible and fix 4 and 7 lattices respec-
tively. One checks that they are only contained in  ,—[Cs|1 ® E7 and ;[Cy]; ® E7 re-
spectively. O
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The eleven s.p.i.m.f. subgroups G < Sp;4(Q) with an irreducible normal cyclic sub-
group of order 60 have the following presentations:

o /=3(Ce0.(Cy x Co)la~(z, 0, f | 2%, 0, B2 2% = 27, 2 = 2" o = 2Pa)

c101Co0-(Co x Co) |4 = <x,a,6 | 290 a2 3% 2% = 21! 2P = 2% of = :L‘15a>

15 .«

® QGV3.VE) [Co0-Cola = (z,a | 29, 0% = 21 19).

=X

V3-(Cro— %1)[060.(02 X C2)]4,(ap,e) 18 @ Q-irreducible matrix group isomorphic to
(v,0,8]2% 2% = 27" 2% =2, 0 = a,* =b,af = efa” ")

for e,b € {&1} and a € {1,i := z'5}.

2
To distinguish between the matrix groups ,—[;[(Ds ® Cy).Ss]s B? VEoolSL2(5)]1]s and

2_
v5lil(Ds ® Cy).Ss]2 B 5 [SLa(5)]1]s we make the following convention. These two
groups are generated by ;[(Dg ® Cy4).593]2® /5 o [SL2(5)]1 and some « that centralizes

the unique normal subgroup isomorphic to Qg in O3(G)~ Dg® Cy~ Qs o Cy. Up to

conjugacy one has the two choices a? = I 14 and o®> = —Ij. In the first case we write
2

2+
X and in the second case we use X.
(2 1

2+

Similarly, the two s.p.i.m.f. matrix groups 5[,/ —[GL2(3)]2 \;Ei V500l SL2(5)]1]s and
2 )

2.
voioly=2[GL2(3)]a B 5 [SL2(5)]1]s are generated by ,—[GLa(3)]2 @ 5..[SLa(5)]1
V=2 N

and some « that centralizes B°(O2(G)) = « 2[SLa(3)]1. Again there are up to conjugacy
2

24
two possibilities. We write X for a? = I;; and X means a? = —I.
V=2 V=2

Lemma 4.9.2 All groups listed in Theorem [4.9.1] are s.i.m.f..

Proof: The candidates for the maximal finite symplectic imprimitive matrix groups
come from the classification of the s.p.i.m.f. subgroups of Sp,,,(Q) with m € {1, 2, 4}.

All groups except ;[C4]§ and Clo—Ciat QD323 are s.im.f. by Lemma [2.1.21] These two

groups have Q(i) and Q((i6 — (¢') as commuting algebras and they fix up to iso-
morphism 3 and 4 lattices respectively. One checks that they are maximal finite by
computing the corresponding automorphism groups (wrt. the full form space).

So we may now assume that G < Spy4(Q) is s.p.im.f.. According to Theorem [3.1.1]
¢4]C54]1 1s the unique s.i.m.f. subgroup of Sp,4(Q) whose order is a multiple of 17.

If G is any other group from the above table whose order is not divisible by 17 and
which is not isomorphic to Cgp.Co, then E := End(G) is a minimal totally complex
field. Thus these groups are checked to be s.i.m.f. by computing Autg (L, F') where F' €
F-o(G) is fixed and L runs through a system of representatives for the isomorphism

classes of Z(G). Obviously, G is not a subgroup of [Di29.Cs]16; see ([NP95, (IV.1)
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Theorem]|). Thus loc. cit. shows that any r.i.m.f. supergroup of G fixes a primitive
lattice of determinant only divisible by 2,3,5 or 7. So the r.i.m.f. supergroups can be
constructed by the m-parameter argument.

Finally, suppose that G = ¢; 3./5[Ce0-Cala. Let C' = = End(G) ~Q(i,v3,v/5) and

denote by K :Q(\/g, \/5) its maximal totally real subfield. Since C' is not minimal
totally complex, the m-parameter argument would be quite tedious. We give an-
other proof of the maximality, using only the classification of the r.i.m.f. subgroups of
GL16(Q) (see [NP95, (IV.1) Theorem)).

The group G fixes up to isomorphism four lattices Ly, ..., L4 which can be chosen such
that the index [Ly : L;] is a power of 5. Further one finds some F' € F5o(G) that is
integral on L; with det(L,, F) = 11%.

Suppose H is a r.i.m.f. supergroup of G. Let (L', F') € Z(G) x Fso(G) be integral
and of minimal determinant among all such integral pairs. Let d = det(L’, F’). The
classification of the r.i.m.f. subgroups of GL15(Q) shows that II(d) C {2,3,5,7,11}.
There exist 1 <7 <4, c € C and x € K- such that L' = L;c and I’ = xF. Then
(L', F') is isometric to (L;, z Nro/ (e ) F). If we set a := 2 Nrg/k(c™) € Kso then
d = det(L;, F)-Nrgg(a)* = 5%-11*-Nry g(a)* for some k € Z. Since the prime ideals
of Zy over 2,3,5 and 7 are generated by Elements in K. and the ideals over 11 are
not, this implies that d is divisible by 11. The classification of the r.i.m.f. subgroups
of GLj1(Q) shows that H can only be conjugate to [Di20.C2)16.1 Or [D120.Ca]162. One

immediately constructs G' as a subgroup of these groups. In any case [H : G| = 2
and H is not symplectic. This implies that G is s.i.m.f. and we have found its r.i.m.f.
supergroups. 0

It remains to prove that Theorem [4.9.1] contains every conjugacy class of s.p.i.m.f.
matrix groups. This is accomplished in the remainder of this section. As always, we
first classify the s.i.m.f. groups that contain an irreduble cyclic subgroup. Afterwards,
we turn to a case by case discussion of the various Fitting subgroups.

But before we start, we find all s.p.i.m.f. groups that contain some irreducible normal
subgroup N where End(N) is a quaternion algebra.

Lemma 4.9.3 If G < Spys(Q) is s.p.i.m.f. and contains a normal subgroup N con-
Jugate to « 3[SLa(7)]a, then G is conjugate to o 3[SLa(7)]s 0 Cy.

Proof: The commuting algebra of N is isomorphic to Q.3 and Out(N)~C,. Hence
by Remark [2.2.17] G contains a subgroup conjugate to N o Cy, N o C3 or N.2. The
first group is maximal finite. The other two groups fix 4 and 16 lattices respectively.
One checks that they both have only one s.i.m.f. supergroup, which is ,—[Ce]f. o

Lemma 4.9.4 If G < Sp,s(Q) is s.p.i.m.f. and contains a normal subgroup N ~ 26,
then G is conjugate to \/_—2[0072[21,%.05(2)] :2g 07 50.2[2170.05 (2)]4 0 Cs.

Proof: The normal subgroup B := B°(N) = »,2[217%.05 (2)]4 of G has Q.. 5 as com-
muting algebra and Out(B)~C,. Hence by Remark [2.2.17] m, G contains a subgroup
conjugate to B o Cy, B o (3 or B.2. Their commuting algebras are isomorphic to

Q(7), Q(v/—3) and Q(1/—2) respectively. Since they only fix 1 or 2 lattices, it is easily
verified that B o Cy is only contained in ;[(2}7° ® C4).Sp4(2)]s whereas the other two

groups are s.i.m.f.. O
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4.9.1 Irreducible cyclic subgroups

In this section, we classify all s.i.m.f. groups G < Sp,4(Q) that contain an irreducible
cyclic subgroup U (under some assumptions on II(|G|)). There are essentially 5 such
groups U since | £ U| € {k € N | k =, 0 and (k) = 16} = {32, 34, 40, 48, 60}.

The group ¢,,[Cs4)1 is the unique symplectic irreducible group G whose order is divisible
by 17 as we have seen in Theorem |3.1.1]

Theorem 4.9.5 If [U| = 32 then G is conjugate to  _1[QDs]3, ¢, 1[@Dedls,
v2[GL2(3)]3, 4[Calt ori[(Ds ® C4). 93]

Proof: By Minkowski’s bound and Theorem [3.1.1 we have II(|G|) C {2,3,5,7,11, 13}.
The group U fixes only one lattice L since End(U) ~ Q((sz) has class number 1. Fur-
ther there exists some F' € F.o(U) that is integral on L with det(L, F') = 1. Let
o € Gal(Q(052)/Q) such that o interchanges the two prime ideals over 7. One finds
that o is conjugation by some x € Ngi, 5@ (U) N GL(L). Hence by Table [2.5.3
G must be conjugate to Autg(L,pspiF) for some 0 < b < 4, a € {0,1} and
K € {Q(1), Q(v=2),Q(Ci6 — ¢i6)> Qa2 — ¢ }-

If K = Q(Gs — Gg) or Q(Gp — (') then G is conjugate to cro—cit QD33
O ¢,-1[@Dga]> respectively. Finally, Autq =) (L, p5piF) < /=[GLa(3)]; and

Cy ifo<bh<?2
Autgg) (L, pipbF) < ilCali .
2o L PEPeF) < {[<D8®04> Ssls ifbe {3,4}

O
Theorem 4.9.6 Suppose |U| = 40 and II(|G|) = {2,3,5} or there exists some
(L, F) € Z(G) x Fso(G) such that F is integral on L and I1(det(L, F)) C {2,3,5}.
Then G is conjugate to one of

(2)

125 © C1) S, {254 ® ) Spg(2)]s, 1],=5[Spa(3) © Csla B £[Cul s

\/_72[2}:_6(A1t8 . 2)]8) \/_72[0072[21_—’—6.06_ (2)]4 . 2] [GLQ(S)]Q ® A4,
ACLB)z © oeslSLa(5) 2. yilysoe SN O il SOOI
v5lC20:Culf, =5lil(Ds ® Cy). S5 = Diols, =5li[(Ds ® C4).S3]a % VEoolSL2(5)]1]s,

v=5lil(Ds @ Cy).S3]a ‘? Ve SL2(B)]1]s, v=1oly=2[GLa(3)]2 \2% Voo SL2(5)]1]s,

v=1olv=2[GL2(3)]2 %ﬁ7m[SL2(5)]1]87 v=1oly=2/GL2(3)]2 ® Diols,

(V5.001SL2(5)]1 0 C5)%, ¢4 [Crolt @ oo 2[257 Alts]a, ¢, [Clo]t @ o0,3[SLa(9)]2,
V5 V5

1o [010]1%@,3[%2(3)503}27 co[Col1s o[Crol1 @ Fiy ¢10[Coo.(C2 X Ca)la,
5

2
\/5‘(410—(1_01)[D10 X <16[010]1]47
24 2

Varo—cih aeo[Sal1 \% colCro1)a va oty [va.oo S % ¢i0[Crol1la -
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Proof: The commuting algebra End(U)
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~ Q({y0) has class number 1. Thus U fixes

only one lattice L. Further there exists some F' € F-o(U) that is integral on L with
det(L, F') = 1. Let 0 € Gal(Q(040)/Q) such that o interchanges the two prime ideals

over 3. One finds that o is conjugation by some x € Ngr,4@)(/V) N GL(L).

Thus

by Table [2.5.3] G must be conjugate to Auty (L, p22pSpsF) for some a,b € {0,1},

0 S C S 2and K € {Q(Z)u Q(\/__2)7Q(\/__5)7 @( \% _10)7 Q(Clﬂ)?@(ﬁ'((w - C;Ol))}
’ form ‘ Q(>7) ‘ Q(\/—_Q) ‘
F (25 ® Cy).S6)? /=2(217°.(Alts:2)]s
p3F (25 @ Cy). SPG( )] /3l50,2122°.05 (2)]4: 2]
psF | < aly=s[Spa(3) o 03]4 S i[Cal]s < smal(2570 . (Alts:2)]s
papsl’ i[m[SP4< ) 0 Csla @ i[Cal1]s < ol 2[2570.05 (2)]4: 2]
ps k' < (27 ® C4).Seli S v=2(GLe(3)]: ® A4
p3ps K < z[(21+6 ® Cy).Spg(2)]s v=2(GLa(3)]2 ® Ay
paps <277 @ Cy). 56] < /=3lGLa(3)]s ® Ay
2
p3pspsF | < il 3[Spa(3) o 03]4 © ilCilils | < y=5li[(Ds ® C4).S3]2 B Dygls
ps <277 @ C).Sel3 H[GL2(3)]2%oo,5 [SL2(5):2]>
p3psF <25 @ Cy).Spg(2)]s < \/?2[GL2(3)]2%oo,5[SL2(5) :2]s
paps F < i[(21+4 ® Cy). 5'6] \/52[21_+6.(A1t8 :2)]s
2
papaps F | < i[y=3[Spa(3) o 03]4 © i[Calils | < y=slil(Ds ® Cy).S3]2 B Dyl
| form | Q(v-5) ‘ Q(¢1o) |
F \/?5[\/500[3142(25)]12504]3 (5.00[SL2(5)]1 © C5)?
p3F v=5lil(Ds @ Cy).S3]a %— VaoalSL2(®)]i]s | ¢ [010]1?3/00,2[21—+4-A1t5]2
5
psl’ < /=23 (Alts:2)]s Gio [010]1?;00,3[%2(9)]2
5
papsF | < =5lil(Ds @ Cy).Ss)o % Vool SL2(3)1ls | ¢io [010]1%@73[5142(3) 5Cs)s
5
ps I’ v=51C20:C4lj i ¢10Croli
paps F v5li[(Ds ® Cy).S3]2 X Dygls c10[C10l1 ® Fy
papsF < /=2lGLa(3)]a ® Ay co[Cioli
2
p3paps F v=5li[(Ds ® Cy).S3]2 B Dyl ¢10[Co0-(Ca X C2)]4
peF 55 SLe(5) D CUl3 (y5.0[SLe(5)]1 © Cs)?
2_
p3piF | slil(Ds© Cy).Ss)e M /5,00 SL2(®)h]s | ¢ [010]1?3/00,2[21_+4-A1t5]2
5
psp3F < vl (Alts:2)]s 1o [Clo]lff?,oo,?)[SLz(?))]z
5
papspz F < \/?5[2‘[(1)8 ® Cy).55]2 é Dios 10 [010]1\;82@,3[8112(3) é Cs)o
5
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[ form | Q(v=10) | QV2-(¢0 — Gi)) |
2 2
F v=1oly=3lGL2(3)]2 \% BoolSLe(O)hls | vz lvas 911 \% ¢0[C1ol1la
24 - 24
p3F | < y=ioly=2lGL2(3)]2 ?ﬂ foo[SLz(5)]1]8 Va(cro—ch vz [S1 % ¢0[Crol1la
psl’ < ily=slSpa(3) o 03] [04} Js S o [Clo]lﬁ,oo,:a[sb@)]z
5
PP | S dyaln) e LGk | Sa (Cuols @alSLa(3) S Cal
5
2 2
pst < voroly=2(GLa(3)]2 B Diols Va(co—cih P16 B ¢10[Crol1]a
2 2
p3ps F° v=Toly=3/GL2(3)]2 ® Dygls Va(cro—c P16 M 1o [Cholila
p3ps F <[ e Cy). 56] < ¢0lCholi
2
p3papsF | <l 5(Spa(3) 0 Csly @ i[Cal1]s < ¢0lCo0-(Ca x Cy)l4
3= oo
piF | =ioly=3(GLa(3)]2 % BoolSL2(O)ls | vz - lvas St ?ﬂ ¢0[C1ol1]a
2 2+
papsF | < yoioly=2lGLa(3)]2 %\/5,00[8L2(5>]1]8 Voo lyaoo[Salt B o ¢0[Crolila
paps F’ <[ ® 04)-56]?1 < o [010]1\%0073[8142( )2
5
p3papil | < i[/=s[Spa(3) 0 03] [04} Js S Guo [010]1%@,3[8142(3)503]2
5

Theorem 4.9.7 Suppose |U| = 48 and II(|G|) = {2,3} or there exists some (L, F') €
Z(G) x F=o(G) such that F is integral on L and II(det(L, F)) C {2,3}. Then G is
conjugate to one of

(257 @ Cu).Se)%, i[(Ds @ Cu).Ssl5, ([Cali @ Ag)*, (i[(Ds @ Ca).Ss]2 @ As)?,
\/?6[\/5,00[54]12503]37 \/?6[\/5,00[54}12503@ v=6lD16 X v3lC6)13,
v=3l8P4(3) 0 C3l1, (wo2[SLa(3)]1 0 Ca)t, =5[Celts (y=lCslh @ F)?,
alen 2 ALS) 22 mlF 2 ety oo [Qazh O Cila,

2
\/3((16—41_61))[1332 X \/53[06]1]4: C16—Crg [(DS ® QD32)-S3]47 C16—Crg [QD32]2 ® Ay .

Proof: The commuting algebra End(U) ~ Q((ys) has class number 1. Thus U fixes only
one lattice L. There exists some F' € F~o(U) that is integral on L with det(L, ') = 1.
So by Table 2.5.3, G must be conjugate to Aut (L, p22p5F) for some 0 < a < 2,

be {0,1} and K € {Q(i), Q(v~2), Q(vV=3),Q(v~6), Q(v/3(Cis—C36')) QCi6 (i) }-
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form | Q(i) | Q(/=6) | Q(/=3) |
F | @M eC) Sl | valyalShOCH | /miSp3)o Gl
p3F < il(Ds ® Cy). S5 S /oolyasolSOCE | S (s02[SLa(3)]1 0 Cs)*
psF il(Ds ® Cy).Ss]3 \/?6[\/5,00[54]12503]?; (c0.2[SLa(3)]1 0 C3)*
psF (:[Ca]1 ® Az)* v=s[D1e K v=3lCe)ul3 v=31Celi
psF | SChoA) | s slDu® S| € =il
papsF | (i[(Ds ® Cy). S5l ® Aa)* | /=5[De X vlOshli | £ (y=5lC6li ® Fu)®

The remaining groups are

Valee 22 AL 2]F ifa=0

Aut L, p2*piF) <

with equality if and only if b =0 and a # 1

2 .
a,.b \/?:'(Cle—c_l))[ew,oo [Q32]1 O 03]4 ifb=0
AUtQ(x/ﬁ(cm—qﬁl))(L,Pg py ) =~ 1 9 .
Vi(co—ciy P2 B =3[Celi]ls i b=1
Cle—Cg [(D8 ® QD32)-53]4 ifb=0

Autg . o (L, paipS F) ~ . ~
Qi) (B P2 P et [QDgly @ A, ifh=1

So the result follows. 0

Theorem 4.9.8 Suppose |U| = 60 and II(|G|) = {2,3,5} or there exists some
(L, F) € Z(G) x Fso(G) such that F is integral on L and T1(det(L, F)) C {2,3,5}.
Then G is conjugate to one of

i[Cil1 ® Es, 3[(27° ® C4).Sps(2)]s, i[(247* © C4).S6)a @ As,
2

2(2)
ily=3[Sp4(3) 0 Csla ® 4[Culils, ,=3[SP4(3) 0 T3]3, w2[27°.04 (2)]4 0 Cs,

2
s=3[Cs1 ® Es, s=3[Sp4(3) 0 C5]4 @ 2[SL2(3)]1, 05[SLa(5) X Digls o Cs,
V=3 V5

(s,2[SL2(3)]1 0 C3) ® Ay, (y=3[Csh ® A4)?, /=3[Co0.(Cs x Ca)]s,

(00,5[SL2<5) : 2]2 o 03)27 oo,2[SL2(5> g) D8]4 o Cg, \/fg[CG]l ®[(SL2<5) I% SL2(5)) :2]87

2_

(00,2[SL2(3)]1 0 C3) ® oo5[SLa(5):2]a, ,/=5[((SL2(5) 0 SLa(5)):2) X ;[Culils,

V=3

V=5loo.5[SLa(5) \%Dlohﬁ]& v=5l((SLa(5) 0 SLy(5)):2) % i[Calis,

[\
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v5lil(Ds ® Cy).S3]5 % VaoolSL2(5)]1]s, y=5lil(Ds @ Cy).Ss3)a é Dgls,
oDy C).S4la B s ISLa() s, yorslysmlSLaGIL T CHEE

=15 (VB0 [SL2(5)]1 0 C3) \%Dlo]& \/Tw[\/g,oo[SL2(5)]1QD+C3]i
=151((SL2(5) 0 SLy(5)):2) = v=31Cshls, y=15[C30: Cul3,

=15[((SL2(5) 0 SLa(5)):2) % v31C6Ns: (5.00[SL2(5)]1 0 C5)?,

¢[Coly %C’O 2[25 7 Alts]2, (5,00[SL2(5)]1 0 Cs) @ A, ¢, [010]1?3,0073[5142(3) 5Csa,
5 5

410[010]1\%((3%(5) 0 SL2(5)):2), ¢,0[Cro)1 @ Fi, C10[C30:2]3, ¢10[Coo0-(C2 x Ca)]a

Q(i’\/gﬂ/g)[Cﬁo_CQ]Q OT /3. (¢ro—c! [060 (Cy x C9)laape) with a € {1,i} and b,e € {0,1}.

Proof: Let C := End(U) ~Q((s) and K ~Q(fg) be its maximal totally real subfield.
Both have class number 1. Hence U fixes up to isomorphism only one lattice L. There
exists some F' € F.o(U) that is integral on L such that (L, F)~E?. Clearly U is
not maximal finite. Hence, the maximal totally real subfield of End(G) is properly
contained in K. Thus by the proof of Corollary 2.2.12] we may assume that G fixes a
form F' € F.o(U) that is integral on L with II(det(L, F')) € {2,3,5} U Uy T1(k) =
{2,3,5,11}. (Note that this is a huge improvement over II(K,60) = {2,3,5,11 59}).

Denote by p\f (1 < i < 4) the four prime ideals over 11. By Table G is
conjugate to Auty (L, papips [T, (p\))% F) for some a,b € {0,1}, 0 < ¢ § 2, d; >0
and K’ S {Q(Z)7 @( V _3)7 Q( \% _5)7 Q( \% _15)7 Q(C10)7 @(\/§<<10 - Ci)1>>}

There exists some o; € Gal(K/Q) such that ai(pﬁ)) = p!” and one finds that o; is
conjugation by some x; € Nar,,4@)(V)NGL(L). Since o; necessarily fixes py, ps and ps,
we may assume that d; > d; for all 7. Furthermore, restricting to normalized lattices
(see Definition yields the inequalities d; < 1 and ). d; < 2.

First, we handle the cases d; = 0: Let a,b € {0,1} and 0 < ¢ < 2, then

(i[04]1®E8 fa=b=0

o il(27°® C4).Sps(2)]s if (a,) = (1,0)

Autge) (L, papsPsE) < 9 (24 2 ). Sl ® A2 if (a,b) = (0,1)
ily=3[Sp4(3) 0 C'3]4 ' i[Cilhls  ifa=0b=1

\

and equality holds if and only if ¢ = 0.



86 CHAPTER 4. THE CLASSIFICATION

The groups involving Q(1/—3) are

’ form ‘ Q(v-3)
F /3l5p4(3) 0 Csl3
ng 0072[21;’—6.06_ (2)]4 o 03
psF’ /31061 ® By
paps v=315P4(3) 0 Cs]s @ 02[SL2(3))1
\/TS

ps 00,5 [SL2(5) \% Digls 0 Cs
papsF (00.2[SLa(3)]1 0 C5) ® Ay
pspst’ (/=3(C6)1 ® Ay)°

papsps /=3lCo0-(Cy x Cs)ls
p%F (oo,5 [SL2(5) 22]2 ) 03)2
2(2)

pgng 00,2 [SL2(5) =e) D8]4 [¢) 03

psps F /=31C6)1 ®[(SL2(5)55L2(5)) 3)2]8

PapspiF | (c0,2[SL2(3)]1 0 C5) ® oo 5[SLa(5):2]5
V3

which are all s.i.m.f..

Similarly
5((SLa(3) 0 SLy(5)):2) B [Cills  ifa=c=0
=l SLa(5) % Diols: 2s if (0, ¢) = (0,1)

\/55[((SL2(5) 0 SLy(5)):2) % i[Cal1ls if (a,c) = (0,2)
v=5lil(Ds ® Cy).Ss]a ?? Vool SLa(B)]i]s if (a,c) = (1,0)
\/_75[1[(D8 & 04).33]2 é Dlo]g lf a=c=1

D@ C) 512 8 s [SLaG)]ils it (.6) = (1.2

Autg =5 (L, p3psps F) <

\

and equality holds if and only if b = 0.
The groups involving Q(v/—15) are Autg,/—5)(L, pspips F) <

(5l 5.0 [SLa(5)]1 G2 ifh=c=0
=15 (V5.0 [SL2(5)]1 0 C3) \%Dlo]s if (b,c) = (0,1)
) BNl if (b.c) = (0,2)
Jrsl((SLa(3) 0 SLa(5)):2) B 5 [Cills i (b,) = (1,0)
J5[Cs0: Ca)2 ith—c—1
| v=15l((SL2(5) 0 SLa(5 ))12)% v=3lCslils it (b, ¢) = (1,2)

and equality holds if and only if a = 0. The remaining two fields yield
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| form | Q(¢10) | Q(V3-(Cio — (1)) |
F (\/E,OO[SL2(5)]1 o C5)? V3-(Clo—CLg [CGO (Ca x Cy)la, (1,-1,1)
paF Cio [010]1\533,00,2 257 Alts] Vi (cro—cin [Co0-(C2 X Ca)lai1,1)
5

ps b (v8,00[SL2(5)]1 0 C5) ® A, Va(cro—c)[Coo-(C2 X Ca)]u 1,1,-1)

pops ¢i0 [010}1\%00,3 [SL2(3)503]2 V3-(Co—¢iot [060 (Cy x C9)layi,—1)
5
Pl | [010]1?2((%2(5) 0SL2(5)):2) | yg.crp-c[Coo-(C2 X Ca)laa,-1,-1)
5

pops I ¢10[Cro]1 ® Fy V- Coo-(C2 X C)la i, -1,-1)
psps £ ¢10lC30:2]3 V3(Cro—¢) 1 [C0.(Ca X Co)la1,1,1)
papaps ¢10[Co0-(C2 X ()] V3(Cro— 4—01)[060 (Co x C)lu i)

The fields Q((19) and Q(v/3 - (C1o — (;y')) have only one proper subfield, which is
isomorphic to @(\/5) Thus, these groups are easily be checked to be s.i.m.f. by
computing the automorphism groups of the G-invariant lattices wrt. the full form
space. Moreover, we don’t have to check the forms p2pSp2F since p2F = %F :

Suppose now d; = 1 and dy = d3 = dy = 0:
For each d € {1,3,5,15} the group Autg =g (Li, pgpgpgpgll)F) is conjugate to
0(iv3.v5) Co0-Cal2 which we have already proven to be s.i.m.f. in Lemma W
For a € {Ci0, V3 (C10 — (')} the groups Ath(a)(L,pgpgpgpgll)F) are conjugate to an
extension of U by Cy with commuting algebra Q(Cy9, v/3). The extension is split if and
only if ¢ is odd. The nonsplit extension is properly contained in ( /5 ., [SL2(5)]1 o Cs5)?
and the split extension is a subgroup of ¢, [010]1\6%((SL2(5) o SLy(5)):2).

5

Finally suppose d; = 1 and Z?Zl d; = 2. Then, for every minimal totally complex

subfield K’ of K, Aut g (L, ppbpe [T, (p1))% F) is conjugate to a proper subgroup of
Autgr (L, pspSpeF). O

4.9.2 The case O17(G) =1 and O5(G) # 1
Lemma 4.9.9 If E(G) is conjugate to 5 [SL2(5)]1, then G is conjugate to one of

2
/5 l00,5[SL2(5) \% Diola:2]s, 005[SLa(5) B Dygls o Cs,

2GR

2
v=151(v5.00[SL2(5)]1 0 C3) \% Diols, (5.00[SL2(5)]1 0 C5) ® A .

Proof: The group G contains a normal subgroup N conjugate to SLy(5) o C5. Suppose
N is self-centralizing. Then Out(N)~(«, ) ~Cy x Cy. Both, a and  cannot be
realized in GL16(Q) alone. Hence by Lemma G = (N,af) with (a3)* = +1.
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One of these groups is realizeable in dimension 8. The other gives an irreducible group
G with commuting algebra Q.. 5. But the torsion subgroup of the (up to isomorphism
unique) maximal order of Q. 5 is Cs. Thus N is not self-centralizing.

So we may assume that G contains an irreducible subgroup H := N ® (), with
m € {3,4}. In both cases G must therefore contain an irreducible cyclic subgroup of or-
der 60. The commuting algebra of H is isomorphic to C' := Q((19, (;n). The torsion sub-
group of Z%, is Csp if m = 3 and Cy otherwise. Hence G/Cq(N)N < Out(N) ~Cyx Cy
implies II(|G]) = {2,3,5}. So the result follows from Theorem [4.9.8 O

Lemma 4.9.10 If O3(G) # 1 then G is conjugate to one of

(VB.oo[SL2(5)]1 0 C5) @ Ag, o0 5[SLa(5) B Digls 0 Cs,

5K

2
=151 (V5.0 [SL2(5)]1 0 C3) %Dlo]& 0[Co0-(Ca x Co)la, /=5[Co0.(Ca x C2)]s,

2
C1o [010]1\%00,3[3]42(3) O 03]2, Q(i,v/3,v/5) [060-02]2
5

or \/5-(410%1’01)[060'(02 X CQ)][L(G/’I;’C) with a € {1,2} and b, cc {:f:l}

Proof: Table shows that O3(G) ~ C5 and Oy(G) embeds into GLa(Q((15)). Thus
O5(G) ~Cy, Cy, Dg or Qs. If O5(G) # Cy then G contains an irreducible cyclic sub-
group of order 60 and II(|G|) = {2,3,5}. Theorem [£.9.8] gives precisely the claimed
groups.

If F(G)~=+C5 then C := Cg(F(G)) embeds into GL2(Q((15)). Table shows
that E(G) is either trivial or conjugate to 5 [SL2(5)];. The latter case has been
handled in the lemma before. So we may now suppose that F*(G) = £Cj5. Let
C := Cg(05(@)). Then |G : C] < 2 and C/F(G) < Out(C5). Hence C is conjugate
to one of +C5, D1y ® Cg, Qg © C3, (C5 : Cy) @ Cg, (Crp-Cy) o Cs. In any case, C' is
rationally reducible and the commuting algebra of a direct summand contains a third
root of unity. This contradicts Lemma [2.2.1] 0

Lemma 4.9.11 If O3(G) =1 and O3(G) = Qs then G is conjugate to one of

2 2_
v=10ly=2lGL2(3)]2 ® Diols, \/5.(¢10-ct)lva,00[S4]1 \% ¢10[C10]1]4,

~ 2+

V2 (¢1o—¢ah) [\/5,00[54]1 \% ¢10 [010]1]4 .

Proof: Let N = B°(F(G)) = ¢,[C10] ® 002[SL2(3)]1. Then Cg(N) embeds into
\/5/

GL2(Q(C10)). It follows from Table that E(G) = 1. So G/N < Out(N) ~Cy x Cy
and [G : N] > 4 by Lemma 2.2.1] In particular, II(|G]) = {2,3,5}. Let U :=
Cq(Os5(G)) < G. There are three possibilities:
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o If U, [Cio)i ® ,/=5[GL2(3)]2, then U fixes up to isomorphism one lattice L.
Further C := End(U) ~Q(C10, vV—2) has K := Q(v/—=2- (Cio — (;)) as max-
imal real subfield. There exists some F € F.o(U) that is integral on L
with det(L,F) = 1. Since Endzy(L) is the maximal order of C' and since
Nro/x(Zg) = Zi -, We may restrict ourselves to one class of totally positive
units. It follows from Table that G is conjugate to one of Autg (L, pipiF)

for some (a,) € {(0,0), (1,1),(0,2)} and K’ € {Q(v~2),Q(v~10). Q(Cio)}.

These are
_form | Q(v-2) | Q(¢10) |
F V=327 (Alts:2)]s (V5.0 SL2(5)]1 © C5)?
paps F v2(GLa(3)]2 ® Ay ¢10lCro)1 ® Fy
piF M[GLz(?’)b%m,s[Sb@ :2]2 (V5.00[SL2(5)]1 0 Cs5)?
| form | Q(v/-10) ‘ ‘

F ol =Gl B s Sl

2
pops F /~10ly=3[GL2(3)]2 X Dygls

BF | ol Gl B s L)

2
All groups are s.i.m.f. but only [,/ —3[GL2(3)]2 X D1g]s has the correct Fitting
subgroup.

o If U~ 5. [Si]i ® ,4[Cioli, then again U fixes only one lattice L. The com-
I \/5/

muting algebra C' := End(U) ~Q((, v2) has K := Q(v/2,v/5) as maximal
real subfield. Again there exists some I € F.o(U) such that F' is inte-
gral on L with det(L, F') = 1. Further, there exists some o(Gal(K/Q)) that
interchanges the two prime ideals over 3Zyx and o is conjugation by some
2 € Nar,, (Q)(U)NGL(L). So by Table[2.5.4] G is conjugate to Autg: (L, pip4F)
for some a,b € {0,1} and K’ € {Q(C10), Q(v2 - (¢10 — (i)} Note that since
K’ has Q(+/5) as maximal totally real subfield, we do not have to check p5 since
psF = %‘?’F . These groups are:

’ form ‘ Q(¢10) ‘ @(\/5'((10 — (1)) ‘
— o2
F (V5.00[SLa(5)]1 © C5)? Vacro—ch vz Sl1 % ¢10[C1ol1la
~ 24
poF Cro [010]1%%,2 25 ALs] | 50— [vase Sl % ¢10[Crol1]4
psl’ a0[C10]1 ® 0,3[SL2(9)]2 U
\/5/
2
(L, pop3F) | cio [010]1\(333/00,3[5142(3) 0Cs)s U
5

.2 2
Only 5. (¢o—co) [\/5,00[54]1,410 [Croli]aand 5.0ty [ﬂ,oo[S‘l]l\‘/Zé,Clo [C10]1]4 have
the required Fitting subgroup.
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e If U = N, then G/N ~ Cy. More precisely G is one of the four groups G = (N, a)
where « induces an outer automorphism of order 4 on O5(G) and either

o a' =I5 and a € Cg(B°(04(G))). But then G can be extended by torsion

elements in End(G) ~ Q2.
o a' = —I4 and a € Cg(B°(03(G))). This group is for example properly

contained in (OO’Q[SLQ(?))]l o Cg) X 00,5 [SL2(5) 22]2.
/3

o a* =I5 and « induces the outer automorphism of B°(0y(G)). This group
embeds into GLg(Q).

o ot = —Ij5 and « induces the outer automorphism of B°(O,(G)). This group
2
is properly contained in o 5[SLa(5) ?ﬁ» Dipla.
2

Thus the result follows. O

Lemma 4.9.12 If O3(G) =1 then Oy(G) is not isomorphic to Cy or Dsg.

Proof: In both cases G would contain a normal subgroup N ~Cy. The central-
izer C := Cg(N) embeds into GLa(Q(C2)). Hence E(G) is either conjugate to
VB.oolSL2(5)]1 or trivial. The first case contradicts Lemma [4.9.9]

Thus F(G) is self-centralizing. Hence G/F(G) < Out(F(G))~Cy x Cy. It follows
from Lemma [2.2.1] that [G : F(G)] > 2. If g € C(05(G)) \ F(G) then g € O5(G). In
particular, this shows G/F(G) ~ Cy. This leaves the two cases:

e F'(G)~Cy. By group cohomology, MAGMA finds that G must be iso-
morphic to (a,b,a | @® b*, [a,b],a® = a® b* = b, a* = b*) for some (e,k) €
{(1,0),(—1,0),(—1,2),(1,2),(1,1)}. The first three groups embed into GLg(Q)
with Q(i) and Q(v/—5) as endomorphism rings. The fourth is properly contained

2

in 5[/ 3[GL2(3)]2 X D1g]s and the last one only has a rational irreducible rep-

resentation in dimension 32.
e F(G)~C5 x Dg. In this case G must be isomorphic to
<a,b, c,ala’ bt [a,b],[a,c, b =b"", 2 a* =a% b =b"t " =b¢c,a’ = bZS>
for some r,s € {0,1}. Thus U := (a,b, ) is the group discussed above (with
e = —1 and k € {0,2}). In particular, U is reducible and has a imaginary

quadratic field as commuting algebra. This contradicts Lemma

So the result follows. O
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Lemma 4.9.13
(a) Oz(G) is neither isomorphic to Cs, QD1 nor Q1.

2
(b) If O2(G) > Dig, then G is conjugate to 5., c=1)[D16 B ¢, [Crol1]a-

Proof: In any case, G contains an irreducible cyclic subgroup U < F(G) of order 40.
Thus F(G) is self-centralizing and hence II(|G|) = {2, 3,5}. So the result follows from
Theorem [4.9.6| O

Lemma 4.9.14
(a) If Oo(G) =2 then G is conjugate to ¢,[Chol1 ® Fy.

b) If O5(G) ~ 2 then G is conjugate to ¢, [Croli ® so2[2 7 Alts)s.
G0 B
5

Proof: We have to prove B°(F(G)) = G in both cases. The group B°(F(G)) is ir-
reducible, fixes 2 lattices and has Q((19) as endomorphism ring. Hence the claim is
verified by computing the automorphism groups of these lattices wrt. the full form
space. O

2
Lemma 4.9.15 ]f OQ(G) ~ Dg X 04 then G ~ \/T5[z[<D8 & 04).53]2 X Dlo]g.

Proof: The group G contains an irreducible normal subgroup N = B°(F(G)) =
i[(Ds ® Cy4).S5]2 ® ¢,,[Ci0]1. The commuting algebra of N is isomorphic to Q((y) and
N fixes only one lattice L. Thus N is self-centralizing and II(|G|) = {2,3,5}. Further
we find some F' € F.o(G) that is integral on L with det(L, F') = 28. Restricting to
normalized lattices (see Definition it follows from Table[2.5.3|that G is conjugate
to Autg (L, p2F) for some 0 < a < 2 and K € {Q(i), Q(v/—5),Q(C10)}. These groups
are

0[C10)1 ® wo2[2M . Alts)y  if a is even

4

Aut@(cm) ~
c101Cr0)1 ® Fy if a is odd

and

L Q) | Q(V=5) |
F | i[5 ©Cy).Spy(6)]s | y=slil(Ds ® Cy).Ss)s g SLa(5)]s

2
psF | <i[(257° @ Ca).Spy(6)ls | y=5Lil(Ds @ Cu).S3)2 W Dyglg

PEF | (2470 ® Ch).Spy(6)]s | y=s[i[(Ds © Cy). S5 % SLa(5)]s

2
Only /—[i[(Ds ® Cy).S3]2 B Dygls has the correct Fitting subgroup. 0
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Lemma 4.9.16 If F(G)~Cg, then G is conjugate to ¢,[Crol1 ® ((SL2(5) 0SLa(5)):2)
V5
or ¢15[Cro]1 ® o0,3[SLa2(9)]2-
V5

Proof: Since Cq(F(G)) embeds into Q((19)**?, it follows from Table that F(G)
is conjugate to Alts, SLa(5) 0 SLa(5), o 3[SL2(9)]2 or 5 ,,[SL2(5)]1- The latter case
contradicts Lemma [£.9.91

o If E(G) ~ Oo’g[SLg(g)]Q then F*(G) ~ C1o [010]1 X 00,3 [SL2(9)]2 is s.im.f..
\/5/

o 1f F(G) =SLa(5) o SLa(3) then BY(F*(G)) = ,[Cro &((STa(3) 0 SL2(5)) :2) is

already s.i.m.f..

o If E(G)~Alt; then B°(F*(G))~¢,[Cioli ® Ay has Q((i0) as commuting al-
gebra and fixes up to isomorphism 5 lattices. By computing their automor-
phism groups (wrt. the full form space), one finds that G is only contained in

¢10[C10]1 ® ((SLa(5) 0 SLa(5)) :2).
NG

This proves the claim. 0

4.9.3 The case O17(G) = O5(G) =1 and O3(G) # 1

Let G < Spy4(Q) be s.p.im.f. such that O3(G) # 1 and O,(G) = 1 for all primes p > 3.
Then Og(G) 203 and OQ(G) is iSOIﬂOIphiC to OQ, 04, Dg, Qg, 087 .D167 Qlﬁ, QD167
Ds ® Cy, 2474, 217 Clg, Dsa, Qs2, @D32, Ds ® Cs, Ds @ Dyg, Ds @ QD1g, D3 @ Q1
2 ® Cy, 2110 or 2!1% by Table 2.5.2]

Again, we discuss all possible cases.

Lemma 4.9.17 If Oy(G) =25 then G is conjugate to o 2[217°.05 (2)]4 0 Cs.

Proof: Follows from Lemma [4.9.4 0

Lemma 4.9.18 O(G) is not conjugate to 2.

Proof: Otherwise G would contain B°(F(G)) ~ 2% Alts ® ,—3[Cs]; as a normal sub-
group. This group fixes two lattices and has Q(v/—3) as commuting algebra. One
easily checks that it is only contained in the s.im.f. group ,—[Cs|; ® Es. O
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Lemma 4.9.19 If Oy(G) ~2 ® Cy, then G is conjugate to ;[(2* @ C4).S6)4 @ As.

Proof: Otherwise G would contain the irreducible normal subgroup N := B°(F(G))
which is conjugate to ;[(2}7* ® C4).S6]4® ,=5[Cs)i. Since G/N < Ch x Cy we may
assume I1(|G|) = {2,3,5}. Let C := End(U) ~Q((12) and K ~Q(+/3) be its totally
real subfield. The group N fixes up to isomorphism only one lattice L and there exists
some F' € Fso(N) that is integral on L with det(L, F) = 2°. Since Zj. ., = Nro/k (Z)
we can restrict ourselves to one class of totally positive units. By Table[2.5.4] G must
be conjugate to Autg =g (L, p;“p§F') for some a € {0,1} and d € {1, 3}.

’ form ‘ Q(>4) ‘ Q(\/—_3) ‘
F i[(257° ® C1) Spe(2)]s [ 00.2[25°.05 (2)]1 0 Cs
Py psF |21 ® Cy).S6ls @ Ay /31061 ® Eg

The result follows by checking the Fitting subgroups. 0

Lemma 4.9.20
O5(@G) is not conjugate to Dg @ Cg, Dg @ QD1g, Dg @ D1g or Dg ® Q6.

Proof: In any case G contains a normal irreducible subgroup H conjugate to
C3® Dg® Cg. Thus also N := B°(H) < G and N is conjugate to C5 ®(Dg ® Cy).Ss.
The commuting algebra C' of N is isomorphic to Q((24) with K ~Q(f24) as max-
imal totally real subfield. Further N fixes up to isomorphism only one lattice L
and one finds some F' € F-o(N) that is integral on L with det(L,F) = 1. From
G/F(G) < Out(F(Q)) it follows that II(|G|) = {2,3}. Since Endzy(N) is the max-
imal order in C' and since Zj ., = Nrg/x(Z), we may restrict ourselves to one
class of totally positive units. If follows from Table 2.5.3] that G is conjugate to
Autg =) (L, p3*p4 F) for some a,b € {0,1} and d € {1,2,3,6}. These are

’ form \ Q>) ‘ Q(v-2) ‘

F i[(2}-+4 ®C4)'Sﬁ]421 \/f2[2_1i_+6.(A1t8:2)]8
pol | (250 ® Cy).Spg(2)]s v=2l0.2[22°.05 (2)]a:2]s
e F | (20T Cy)-Sels © As < ST (Alts:2)]s

papsF [ ([(Ds ® Ca).Sslo @ A2)* | < /5[002[257°.05 (2)]a: 2]
| | Q(vV-3) | Q(vV-6) |

2(3)
F v=3l5p4(3) 0 G voloo2[25 Alts] B0 Aol
2(3) N
PIF | 2[2°.05 (2)]a0Cy | y=gloo2 21 Alts)s B0 o0 5[S5)1]s
2 N
psF /31061 ® Eg v61Fs X o 3[S3]1]8
papsF (y=5Cs], ® Fy)* l(Fa® Ag) 2]

No group has the correct Fitting subgroup. O
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Lemma 4.9.21

(a) If O3(G) ~ D3s, then G is conjugate to \/g.(cwicl—ﬁl)[Dgz ® —3[C6]1]a-

. . 2
(b) If O2(G) = Qs2, then G is conjugate to 5.\ —c=1)[016,00[@32]1 0 C5]a.
(c) If O3(G) ~QDss, then G is conjugate to Cro—c! [QD35]o ® As.
(d) O2(G) is not conjugate to Cig.

Proof: In all cases, F(G) contains an irreducible self-centralizing cyclic subgroup of
order 48. Furher, Out(F(G)) is a 2-group which shows II(|G|) = {2,3}. So the result
follows from Theorem [4.9.7] 0

2(3)
Lemma 4.9.22 If O,(G)~2""", then G is conjugate to —gleop[2T* Alts]o ® Aos

or /=gloo2[27 1 Alts]s (.)003[5] Js-

Proof: G contains the normal subgroup N := B°(03(G)) o C3~ o o[21*. Alts], o Cs.
By Lemma n we get G/N ~Cy x Cy. Thus Cg(O3(G)) is conjugate to Ny =
ﬁ[oo2[ A1t5] ]4 ®03 or Ng = (0072[21,+4.A1t5]2-2) o 03 and H(|G|) = {2,3,5}
In any case C(O5(@)) is irreducible and fixes only one lattice L. In both cases, there
exists some F' € F-o(N;) that is integral on L with det(L, F') = 1.

o Let C'~Q(v/—=2,v/—=3) be the commuting algebra of Ny and let K ~Q(+/6) be
its maximal totally real subfield. Since Endzy (V) is the maximal order in C'
and since Zj .o = Nreyx(Z), we may restrict ourselves to one class of totally
positive units. Let o € Gal(K/Q) such that ¢ interchanges the two prime ideals
over 5. One finds that o is conjugation by some x € Ngr 4@ (N1) N GL(L).
By Table , G must be conjugate to Ath(\/_—d)(L,pg(pgpg))“F) for some
a,b € {0,1} and d € {2,3}. The groups Autg/=)(L, F)~ =5[2170.(Alts :
2)]s and Autg/=3 (L, F) =~ /=[Cs|1 ® Eg are s.im.f., but have the wrong Fit-
ting subgroups. The groups Autg F)<L p3F’) are properly contained in
Autg— (L, F). Finally Autg— (L, p2pipsF) = Ni. So Ca(O3(G)) % Ny

e Let C~Q(v2,v/—3) be the commuting algebra of N, and let K ~Q(v/2)
be its maximal totally real subfield. By Table 2.5.4, G is conjugate to
Autg =g (L, psF) for some a € {0,1} and d € {3,6}. These groups are

| forms | Q(v/-3) ‘ Q(v—-6) |
Pl slSm@ oGl | g2 Al B Al

2(3) ~
ng 0072[21_+6.Og (2)]4 e} 03 \/_76[0072[21_+4.A].t5]2 00,3[33]1]8

This proves the claim. O
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2 .
Lemma 4.9.23 If O(G)~2" then G is conjugate to ,=g[Fy ® o3[Ssh]s or

\/?6[(F4 & A2)22]8.

Proof: G contains the normal subgroup N := B°(O(G))03(G) ~ ,—[Cs]1 ® Fy and

G/N < CyxCy. Thus [G: N] =4 by Lemmal2.2.1, So G contains a subgroup of index
two conjugate to Fjy ® o 3[S3]1 or Fy ® As. The result follows from Remark [2.2.17,

Lemma 4.9.24 Oy(G) is not conjugate to Dg ® Cy.

Proof: Otherwise N := B°(F(G)) ~;[(Ds ® C4).S3]2 ® C3 would be a normal subgroup
of G. The centralizer of N embeds into GLy(Q((12)). Thus again F(G) = 1 and
G/N < Cy x Cy. By Lemmawe get [G : N] = 4. But MAGMA shows that no
extension of N by C5 x (5 has the correct Os. 0

Lemma 4.9.25 Oy(G) is not conjugate to Cg, Dig, Q16 or QD1s.

Proof: In any case Cq(F(G)) embeds into GLy(Q(C24)). So E(G) =1 by Table [2.5.1]
Let C' = Cg(0O3(G)). Since Out(F(GQ)) is a 2-group and C/F(G) < Out(F(G)), we
get C' = F(G). But then [G : F(G)] < 2 contradicts Lemma [2.2.1] 0

2(2)
Lemma 4.9.26 If Oy(G) ~ Qs then G is conjugate to ;[ —5[Spy(3) o Cs]y ® Cyls or

(c0,2[SLa(3)]1 0 C3) ® Ay.

Proof: Let B := B°(F(G)) ~ ».2[SL2(3)]10C3. Then the centralizer C(B) embeds into
GL4(Q(v/=3)). If E(G) = 1 then G/B < (3 x Cy shows that G would be reducible. So
it follows from Table , that £(G) is conjugate to Alts, 5 [SL2(5)]1, o03[SL2(9)]2
or Sp,(3). In any case, G/F*(G) < Out(F*(G)) implies I1(|G|) = {2,3,5}.

o If £(G)~Alts, then N := B°(F*(G)) ~(02[SL2(3)]1 0 C5) ® Ay is a normal sub-
group of G. But then G = N, since N is already s.i.m.f., as we have seen
before.

o If B(G)~ 5,[SLa(5)]1, then BE(G) contains an irreducible cyclic subgroup of
order 60. Theorem {4.9.8implies G =~ o 5[SL2(5):2]2 ® (002[SL2(3)]1 0 C3).
V=3

o If F(G)~3[SL2(9)]2 or Sp,(3), then G contains a subgroup H conjugate
to SLy(5) ® Cho where the restriction of the natural character to H is 4xy.
V=3

In particular G contains an irreducible cyclic subgroup of order 60. Thus
G~ /—=[Spy(3) 0 03]4\59700,2 [SLs(3)]; by Theorem [4.9.8] 0
=3
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Lemma 4.9.27

2(2)
(a) If O3(G) ~Cy then G is conjugate to ;[ /—5[Sp4(3) o Cs]s B Cyls.

2(2

(2)
(b) If O2(G) ~ Dg then G is conjugate to « 2[SLa(5) ® Dgly 0 Cs.

Proof: In both cases, F(G) contains a characteristic subgroup U isomorphic to C. If
E(G) =1 then G/F( ) < Cy x Cy shows that G would be reducible. So E(G) # 1
embeds into GL4(Q((12)). By Table [2.5.1] this implies that E(G) is conjugate to
Alts, /5.00[SL2(5)]1, 003[SLa(9)]2 or Sp4(3). In any case G/F*(G) < Out(F*(Q))
shows that II(|G]) = {2,3,5}.

o If £(G)~Alts, then N := B°(E(G)U) ~C12 ® Ay is irreducible with C' ~Q((2)
as commuting algebra. It fixes 4 lattices but there exists a N-normal critical
set {L1, Ly}. Since N is not normal in Autgc,,) (L1, F) ~;[(257* @ C4).S6]s @ Cy
for some F' € F.o(N), it follows that G must fix Ly. Clearly II(|G]) = {2, 3,5}
and one finds some F' € F-o(N) that is integral on Ly with det(Lsy, F') = 28-5%.
Since Endzy(Ly) is the maximal order of C' and Z[v/3]%, = Nregwm (Ze) we
may restrict ourselves to one class of totally positive units. By Table [2.5.4] this
leaves the following four groups:

\ lattice and form \ Q(>4) \ Q(v-3) \
(Lo, F) i[(257°© Cu) Spg(2)]s | (s02[SL2(3)]1 0 Cs) © Ay
(La, p3 'psF) (257 ® Cy).Sla @ Ay (y=3[Cs)1 ® Ay)?

None has the correct generalized Fitting subgroup.

S
S

o If B(G) =~ /5,[8L2(5)]1, then UE(G) contains an irreducible cyclic subgroup of

2(2)
order 60. Theorem {4.9.8/shows that G ~ o, 2[SLa(5) & Dg|s 0 Cs.

o If E(G) >~ 3[SL2(9)]2 or Sp,(3), then G contains a subgroup H conjugate to
SLs(5) ® Ch2 where the restriction of the natural character to SLa(5) is 4xa.
V=3

In particular G contains an irreducible cyclic subgroup of order 60. Thus G is

2(2)
conjugate to ;[,,/—3[Sp,(3) o Cs]s & C4]s by Theorem |4.9.8 0

Lemma 4.9.28 If Oy(G) = Oy, then G is conjugate to one of ,—[Cs|1 ® Eg,
. 2
ﬁ[2.Alt7]4%m’3[53]1, \/j[ZAlt7]4 ® Az, \/jg[C(g]l ®[(SL2(5) O SL2(5)) :2]87

v=15l((SLa(5) 0 SLy(5)): )ﬁr[Cﬁ] Js, v=15[((SL2(5) 0 SLa(5)): )ﬁr[Cﬁ] Js -

Proof: Let N := B°(F*(G)) < G. By Table there are the following possibilities
for E(G):
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E(G)~Alts. Then N~ ,—[Cs]; ® Ay has Q(v/—3) as commuting algebra and
[G': N] < 2. This contradicts Lemma [2.2.1]

&

(G) >~ 5.00[SL2(5)]1. Let C' := C(03(G)). It follows from Lemma that
[G: C]=[C: N]=2. Thus C is reducible and conjugate to  5[SLa(5):2], 0 C3
O o 5[SL2(5)-2]2 o C3. This contradicts loc. cit..

E(G)~SLy(5)oSLa(5). Then N = ((SLy(5) 0 SLy(5)):2) ® Cj is irreducible, has
Q(v/5,+/—3) as commuting algebra and fixes only one lattice L. One finds some
F € F.o(N) that is integral on L with det(L, F) = 3% Further G/F*(G) <
Out(F*(G)) ~ Dg x Cy shows II(|G|) = {2,3,5}. By Table 2.5.4 we have to
check the following groups:

L] Q(V=3) | Q(v/—15) |
F \/fg[C@']l ® Eg \/_715[((8142(5) ©] SL2(5)) 2) \/j3[06]1]8

ps 7| =3[Cs]1 ®[(SLa(5) & SL2(5)):2]s | ,=15[((SLa(5) 0 SLa(5)):2) % v=31C6l1]s

All groups except ,—5[Cs]1 ® Es have the correct generalized Fitting subgroups.

E(G)~Ly(7). Then N = Mg3® (5 is irreducible with commuting algebra
Q(v/—3) and fixes 12 lattices. By computing the corresponding automorphism
groups, one checks that N is only contained in ,—[Ce]}.

E(G) ~ «3[SLa(7)]4 contradicts Lemma [4.9.3]
E(G) ~8Ly(9). Then E(G) #4 B°(N)~ ,5[Sp4(3) o Cs]s (see Lemma [4.5.6)).

E(G)~ /=[2.Alt7]s. Then N = ,—[2.Alt7]4 ® ,—[Cg]1 is irreducible with com-
muting algebra C' ~ Q(y/—3,/—7) and fixes one lattice L. Again one concludes
II(|G|) = {2,3,5,7}. Further there exists some F' € F.o(N) that is integral on
L with det(L, F) = 3%. Let K ~Q(+/21) be the maximal totally real subfield of
C'. Since Endzy(L) is the maximal order of C' and since Zj; ., = Nr¢)x(Zg), we
may restrict ourselves to one class of totally positive units. Let o € Gal(K/Q)
such that o interchanges the two prime ideals over 5. One finds that o is con-
jugation by some z € Ngr,5@)(N) N GL(L) such that xFz" = F. Thus by

Table 2.5.4L G is conjugate to Autg,/— (L, p3 “pepb F) for some a,b € {0,1} and
7

d € {3,7}. If a =1 then these groups equal N. The other four groups are:
’ form ‘ Q(v/-3) ‘ Q(/-17) ‘
Fo /=lC6)i ® Es v712-Alt7]y @ Ay

prF | < =5lCsi ® B | y==[2.Altr]s @ oo 3[S5)
N

So G is conjugate to ,—[2.Alt7]; ® Ay or /—[2.Alt7], ® 0073[5”3}1.
=t

E(G) ~SLy(7) with character 2x445. The commuting algebra C' of N is isomor-
phic to Q(v/=3,+v/—7) with K ~Q(+/21) as maximal totally real subfield. Then
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N fixes 4 lattices that have Zq as endomorphism ring but only one class has min-
imal N-invariant superlattices whose endomorphism ring is a proper suborder of
Z¢. So by Remark this yields a N-normal critical lattice L. Further there
exists some F' € F.o(N) that is integral on L with det(L, F) = 2*-3%. Again we
have II(|G|) = {2,3,7}. Just as before we may restrict ourselves to one class of
totally positive units. By Table E, G must be conjugate to Aute /=g (L, p7F)
for some a € {0,1} and d € {3,7}. One checks that these automorphism groups
are conjugate to N if a = 1. And they yield proper subgroups of \/53[06]§ and
/—712.Alt7]4 ® Ay if @ = 0. So this case never happens.

E(G)~Sp,(3). Then N ~ ,—[Sp,(3) o Cs]4 is reducible. Again by Lemma

we conclude [GG : N] = 4. Thus G contains a subgroup of index two conjugate

to Spy(3) ® 203931 or Spy(3) ® Ay. Both groups have Q(1/—3) as commuting
V=3

algebras and fix one or three lattices respectively. One checks that they are only
contained in ,—5[Sp,(3) o Cs]3.

o E(G)~Aut(Es) =2.0{(2).2. Then N = ,—5[C¢]; ® Fs is already s.imf..

4.9.4 The case O,(G) =1 for all odd primes p

Let G < Spi(Q) be s.p.im.f. such that F(G) = O(G). It follows from Table 2.5.2]
that O(G) is isomorphic to Co, Cy, Ds, Qs, Cs, Dg®Cy4, Dig, Q16, QD1s, Cis,
Ds ® Cs, Dg @ Dig, Dg @ Q16, Dg @ Q D, 2}r+4, 2f4 ® Cy, 27 C3a, D3z, Qs9, QDss,
QDg4, Dg ® Clg, Dy @ QD3g, Dg ® Dy, 247 @ Cg, 217 @ Dyg, 217 @ Q Dy, 2176, 2146
or 20 Cy.

We discuss each possibility, which finishes the classification of the s.p.i.m.f. subgroups

of Sp1(Q).

Lemma 4.9.29

(a) If F(G)~2\*° then G is conjugate to ,—[2}7°.(Alts:2)]s.

(b) If F(G)~21%® Cy then G is conjugate to ;[(211° @ Cy).Spg(2)]s-

(c) If F(G) =2 then G is conjugate to /=5[002[227°.05 (2)]4:2]s.

Proof:

(a) Follows from Lemma |3.4.3|
(b) In this case B°(F(G)) ~;[(247° ® C4).Sps(2)]s fixes only one lattice and has Q()

as commuting algebra. One checks that it is s.i.m.f..

(¢) Follows from Lemma [4.9.4] 0
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Lemma 4.9.30 F(G) is not conjugate to 217 ® Cg, 247 ® D1 or 247 @ QDss.

Proof: In any case GG would contain an irreducible normal subgroup N conjugate to
2?4 ® Cs. Thus G contains a normal subgroup B := B°(N)~ N.Sg. This group fixes
up to isomorphism only one lattice L and its commuting algebra is isomorphic to Q((g)
with maximal totally real subfield Q(v/2). Thus B is self-centralizing and from the
structure of Out(N) we get G/B < Cy x Cy. Hence II(|G|) = {2,3,5}. There exist
some F € F.o(B) that is integral on L with det(L,F) = 1. By Table 2.5.4 G is
conjugate to Autg =g (L, psF) for some a € {0,1} and d € {1,2}. These groups are:

’ form ‘ Q(7) ‘ @(\/—_2) ‘
F | 2% eC).S /212570 (Alts: 2)]s
poF | i[(257° ©C).Sps(2)]s | y3lse2[25°.06 (2)]4:2)s

None of these groups has the correct Fitting subgroup. O

Lemma 4.9.31

(a) If F(G) >~ Ds ® QD3 then G is conjugate to . _—1[(Ds ® QD32).Ssla.

1
6

(b) F(G) is not conjugate to Dg® Chg or Dg ® Dig.

Proof: In any case, G contains an irreducible normal subgroup N conjugate to
Ds ® C16. Thus G contains a normal subgroup B := B°(N)~N.S;. This group
fixes only one lattice L and its commuting algebra is isomorphic to Q(¢i6). Thus
B is self-centralizing and from the structure of Out(N) we get G/B < Cy x Cy.
Hence II(|G]) = {2,3}. Let FF € F.o(B) such that F is integral on L with
det(L, F') = 1. By Table[2.5.3] G is conjugate to Autga) (L, psF) for some 0 < a < 2
and o € {i, /=2, (16 — (6 }. These groups are

[ form | Q(i) | QW-2) | QG5 — Gig) |
F | 2T 000 S8 | yaleal(Ds © Qs) Altsly 2 | e [(Ds & QDyz) S3ls
poF" | < 4[(Ds ® Cy).Ssl5 < yoslFai 2l cro—ct [(Ds ® QDs33).53]4
paF | i[(Ds®Cy) S50 v=a[F1:2]] cro—ct [(Ds @ QDs3).S3]4

So the result follows. O

Lemma 4.9.32 F(G) is not conjugate to Cig, D3y or QDss.

Proof: Otherwise Ce(F(G)) embeds into GL2(Q((16)), so E(G) = 1. Thus G/F(G) <
Out(F(@)) is a 2-group, which implies G = F(G). But then G is reducible. 0
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Lemma 4.9.33
(a) If F(G) >~ ,,_—1[QDglz then G = F(G) is s.i.m.f..
(b) F(G) is not conjugate to Qs or Css.

Proof: Clearly E(G) =1 and thus F(G) is self-centralizing in G. Since Out(F(G)) is
a 2-group, we have G' = F(G). The group ., 1[@De4] is s.imf. by Lemma W
whereas C32 g QD64 and Qgg g Q32 o Cg. O

Lemma 4.9.34 F(G) is not conjugate to 2",

Proof: If E(G) = 1, then B := B°(F(G)) ~ o 2[2""*. Alt;5]; and G/B < C, contradicts

Lemma 2.2.1, So E(G) # 1 embeds into GL2(Qw2) and thus must be conjugate to

5.0[SL2(5)]1 by Table 2.5.1] The group 5 . [SLa2(5)]1 ® o2[27* Alts)s is irreducible
’ ’ 0, 2

and has Q(\/g) as commuting algebra. In this case G would not be symplectic. 0

Lemma 4.9.35 F(G) is not conjugate to 217 @ Cy.

Proof: The centralizer Ce(F(G)) embeds into GL2(Q(7)). So it follows from Ta-
ble 2.5.1} that E(G) = 1. Thus G contains B := B°(F(G))~ F(G).Ss of index at
most 2 and B has Q(i)**? as commuting algebra. This contradicts Lemma [2.2.1, g

Lemma 4.9.36 F(G) is not conjugate to 2.

Proof: Otherwise G contains the normal subgroup N := B°(F(G)) ~ Aut(F,). Then
Ce(N) embeds into GL4(Q). Table implies that F(G) = 1 (note that Fy ® Ay is
not symplectic). But then G/N < Out(N) =~ Cs5 implies that G is reducible. 0

Lemma 4.9.37 F(G) is not conjugate to Dy ® Cs, Dg ® D15, Dg ® Q16 0 Dg @ Q D16.

Proof: In any cases E(G) = 1 and G would contain a normal subgroup N conjugate
to Dy ® Cs = Qs®Cs. Let B := B°(N) =~ o 2[SL2(3)]1®Cs. It follows from G/F(G) <

Out(F(G)) that G is soluble and |G| = 2%-3 for some k > 0. Moreover B contains
a characteristic subgroup U conjugate to o 2[SL2(3)]1. But Cg(U) is necessarily a
2-group, so C(U) C F(G). Hence G contains UF(G) as a normal subgroup of index
at most 2. Now Lemma implies F'(G)~ Dg® Q15 or Dg® D1g. In both cases,
B°(F(G))~ F(G).Ss implies that B°(F(G)) = G since |B°(F(G))| = 2-|[UF(G)|.

If F(G)~Ds® Qg, then F(G) has Q 5 ., as commuting algebra which contains
nontrivial torsion units. So G cannot be s.i.m.f..

If F(G) ~ D ® Dig = Q160Qs then B°(F(G)) ~ 5 ,[Q16]1000,2[SL2(3)]1 is reducible.q
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Lemma 4.9.38 If F(G)~ Dg® Cy then G is conjugate to

(D5 C).53la B s SLa()ls or =lil(Ds ® C1).8012 B g [SLa(3)] s

Proof: Let B := B°(F(G)) ~;[(Ds ® C4).S5]a. Then Cg(B) embeds into GL4(Q(7)).
By[2.5.1| E(G) is conjugate to 1, Alts, 5, [SLa(5)]1 or o 3[SL2(9)]2- Let N := BE(G)J
G.

e If F(G) =1, then [G : B] < 2. This contradicts Lemma [2.2.1]

o If E(G)~Alts or «3[SLa(9)]2, then N is already irreducible, fixes 4 or 2 lattices
respectively and has Q(i) as commuting algebra. It is easily checked that N is
only contained in ;[(2}7° ® C4).Spg(2)]s-

o If £(G)~ /5,.[SLa(5)]1 then N contains an irreducible cyclic subgroup of order
40. Since Out(N) is a 2-group, we have II(|G]|) = {2,3,5}. Hence G is conjugate

2, 2.
to y=s[i[(Ds ® C4).S3]2 %\/E,OO[SLQ(E))]l]s or /=5[i[(Ds ® Cy).S3]2 I%Jg,oo[SLQ(5>]1]8
by Theorem [£.9.6]

Thus the claim follows. O

Lemma 4.9.39 F(G) is not conjugate to Cs, Dig or QDsg.

Proof: If E(G) = 1, then G/F(G) < Out(F(G)) is a 2-group. Which implies that
G = F(G) is reducible. In any case, F'(G) contains a characteristic subgroup H ~ Cs.
Thus E(G) embeds into GL4(Q((g)). So E(G) # 1 is conjugate to Alts, 5 [SL2(5))1
Or .3[SL2(9)]2. In any case, G/F*(G) < Out(F(G)) shows that II(|G|) = {2,3,5}.
Moreover HB°(E(G)) < G contains an irreducible cyclic subgroup of order 40. Thus
the result follows from Theorem [4.9.6] 0

Lemma 4.9.40 If F(G)~ Qs then G is conjugate to one of

ol [GLa(3)]s yz; e [SLa®)ss 1ol s[CLa(3)]: % e o [SLa(3)]1)s

\/TQ[GL2(3)]2%oo,5[SL2(5)32]27 v=3lGL2(3)]2 ® A4, 0 2[SLa(3))1 % 003[SL2(9)]2 -

Proof: The layer E(G) embeds into GL4(Qx2). Since Out(B°(Qs)) ~Cs, E(G) can-
not be trivial. Table [2.5.1] shows that E(G) is conjugate to Alts, 5 [SL2(5)]1 or
00,3[9L2(9)]2 (note that O3(B°(Sp,(3))) =~ Cs).

o If £(G)~ Alt; then B°(F*(G)) ~ o2[SL2(3)]1 ® Ay is an irreducible normal sub-
group of G and it has Q. » as commuting algebra. By Remark [2.2.17 G is
conjugate to ,—5[GL2(3)]; ® A4. This group is s.im.f..
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o If £(G)~ 5.,,[SLa(5)]1, then G contains a normal subgroup N := B°(F*(G))
conjugate to 5 . [SL2(5)]1 0 SLa(3) and G/N < Out(N) = Cy x Ca.

First we handle the case that [G : N|] = 2. The groups \/57OO[SL2(5)]12D+SL2(3)
and 5 . [SLa(5)]1 2DfSLz( 3) are reducible.

The groups 005[SL2< ) ]2 X OOQ[SLQ( )]1 and 005[SL2( ) ]2 X OOQ[SLQ( )]1 are

V=2 V=2
proper subgroups of ,=5[GL2(3)]2 ® o 5[SLa(5) : 2] and ,=5[2}70.(Alts : 2)]s
N

respectively. The group 5 . [SL2(5)] ®2\/§’oo[§4}1 is not symplectic. Finally
H = \/gyoo[SLg(vS)]l\;%\/fQ[GLz(g)]l is irreducible, has Q(v/—2,v/5) as com-

muting algebra and fixes only one lattice L. There exists some F' € F.o(H)
that is integral on L with det(L, F) = 1. By Table [2.5.4 G is conjugate to
Autg =g (L, psF) for some a € {0,1} and d € {2,10}. These groups are:

[ form | QV-2) | Q(v-10) |
F /5259 Altg) 1 2], ol [CLa(3)], F; V5molSLa(5) 18

psk’ \/TQ[GL2(3)]2%00,5[SL2(5)32] \/—To[\/fz[GLz(?))b;%ﬁ,oo[SLz(5)]1]8

Note that this also handles the case where [G : N] = 4.

o If F(G)~3[SL2(9)]2, then G contains a normal subgroup N conjugate to
00.2[SL2(3)]2®00.3[SL2(9)]2. Then End(N) ~ Qs 3 and Out(SLy(9)) ~ Cy x Cs but

one outer automorphism interchanges x4, and 4. Therefore G/N < Cy x Cs.
Remark [2.2.17] shows that G contains a normal subgroup conjugate to G; :=

OO’Q[SLQ(?))]l é oo’g[SLQ(g)]g or G2 = 0,2 [SL2(3)]1 & (Oojg[SLQ(9>:|22) (Note that
¢ V=3

VasolSd1 ® o0 [SL2(9)] is not symplectic and  ,/—5[GL2(3)]2 ® o,3[SL2(9)]2 is an

irreducible subgroup of GLs32(Q) since Q(v/—2) does not split Qu.3). The group
Gy is sim.f. and G is only contained in ,—5[Sp,(3) 0 Cs] ® o 2[SL2(3)]:. 0
e

Lemma 4.9.41
(a) If F(G)~Cy then G is conjugate to ;[Cy]1 @ Es, i[Ci]1 ® Mg3, 0 3[SLa(7)]40 Cy,

5[((SLa(5) 0 SLy(5)):2) B,[Cali]s or ,—[((SLa(5) o SLa(5)):2) B, [Cil s

(b) F(G) is not conjugate to Ds.

Proof: Suppose F(G)~Cy or Ds. So E(G) embeds into GLg(Q(i)). By Ta-
ble 2.5.1] E(G) is isomorphic to Alts, SLy(5) (with character 4yau), SLa(5) o
SLy(5), La(7), SLo(7) (2 representations), SLy(9), 2.Alt; or 2.04(2). (Note that
O3(B°(Sp4(3))) ~ Cs).

Since F(G) and Out(F(G)) ~ Cy are 2-groups, so is C':= Cg(E(G)). Thus F(G) =C
and therefore G/F*(G) < Out(E(G)).



4.9. DIMENSION 16 103

o If F(G)~Alts, then G = B°(N)~ £S5 ® F(G) is reducible.

o If B(G)~ 5 [SLa(5)]s then [G : F*(G)] < 2. Thus F*(G) = 5 ,,[SLa(5)]1 ® Dy
by Lemma . The commuting algebra of F*(G) is isomorphic to Q 5 .. The
two groups o,5[SL2(5)2]s ® Ds and o 5[SL2(5) :2]; ® Dg have Q. 5 as commuting

2 2
algebras. The two groups \/E’OO[SL2(5)]1IZ?D8 and 5 [SLa(5)]1 X Dg have Q2 as

commuting algebras. These four groups cannot be s.i.m.f. since their commuting
algebras contain nontrivial torsion units.

o If B(G) =~ 3[SLa(9)]2 then [G : F*(G)] < 2 since one outer automorphism of
SL4(9) interchanges x4, and xa5. So F*(G) ~ o 3[SL2(9)]2 ® Ds by Lemma[2.2.1]
This group has Q. 3 as commuting algebra and is self-centralizing in . By
Remark one finds that G is a proper subgroup of ,—5[Sp,(3) o C3]3.

o If F(G)~ 00 3[SLa(7)]4, then G =~ o 5[SLa(7)]s © Cy by Lemma [4.9.3]

In all other cases, let H < F(G) be the characteristic subgroup of order 4 and set
N := HE(G).

o If F(G)~SLy(5) o SLy(5) then B := B°(N)~((SLy(5) o SLa(5)) : 2) ®@;[C4ls.
Then B has an irreducible cyclic subgroup of order 60 and G/B < Out(B)
shows II(|G|) = {2, 3,5}. It follows from Theorem that G is conjugate to

2 2

v=51((SLa(5) 0 SLy(5)):2) X J[Cilils or y=5[((SLa(5) 0 SL(5)):2) B,[Cil]s.
o If E(G) >~ Ly(7) then B°(N) =~ ,;[Cy]1 ®(La(7).2) = ;[C4]1 ® Mg 3 is already s.i.m.f..

o If E(G)~SLy(7) with character 2y4u, then N ~SLy(7)®;[Cy4]; has C :=
Q(i,/7) as commuting algebra with totally real subfield K ~Q(+/7). Using
part (a) of Remark one finds a N-normal critical lattice L such that
Endzn (L) = Z¢ and some F' € Fo(NV) that is integral on L with det(L, F') = 1.
Since Zj .o = Nr¢yx(Z), we may restrict ourselves to one class of totally posi-
tive units. Further one finds some z € N, 4(0) (V) N GL16(L) such that p5 = p}
(and z necessarily fixes po and pr7). Since II(|G|) = {2,3,7}, it follows from
Table that G is conjugate to Autg=g (L, pspspSF) for some a,b € {0, 1}
and d € {1,7}. If b = 1 these groups equal N. The other four groups are:

~ —

’ form ‘ Q(1) ‘ Q(\/—_7) ‘
F < 1[04]513 < ﬁ[Q-AIW]%
po F ,;[(2}r+6 ® Cy).Sps(2)]s | < ﬁ[Z.Al‘w]g

o If F(G)~2.Alt; then N~ ,—[2.Alt7]; ®;[C4]; has C := Q(i,/7) as commuting
algebra. The group N fixes only one lattice L and there exists some F' € F-o(N)
that is integral on L with det(L, F') = 1. As before, there are eight candidates

to check:
’ form ‘ Q(1) ‘ Q(v-7) ‘
F i[Ca1 ® Eg ﬁ[Q-Ahﬁ]g
poF (250 ®Cy).Spg(2)]s < /orl2AltrJ
p3p7F N \/j[2.Alt7]8%0073[83]1
papapr N N




104 CHAPTER 4. THE CLASSIFICATION

o If E(G)~2.05 (2) then B°(N) ~,[C,]; ® Eg is already s.i.m.f.. O

Lemma 4.9.42 F(G) is not conjugate to Cs.

Proof: Otherwise G/£E(G) < Out(E(G)). Table[2.5.1shows that F(G) is isomorphic
to Alts, SLo(5) (with character 4yaq), SLa(5) o SLa(5), SLa(7), La(7) (2 representa-
tions), SLy(9), 2.Alt; or 2.04 (2).

The case that E(G) is conjugate to SLy(7) with character 2ys has been handled in
Lemma [1.9.3] If F(G) 2 Ly(7) then B°(E(G)) ~ £Ly(7).2. Since Out(E(G)) ~C,, we
get G = +L,(7).2 is reducible. Similarly, if F(G)=~2.05(2) then B°(E(G))~ Es.
Since Out(E(G)) ~ Cy, we get G = Fy is reducible.

Suppose FE(G)~SLy(5) o SLy(5). Then G contains a normal subgroup B :=
B°(E(G)) ~((SLg(5) o SLy(5)) : 2) and G/B < Out(B)~Cy x Cy. Only one class
of outer automorphisms can be realized in GL14(Q) and both extensions (split and
non-split) are reducible. Thus this case cannot happen.

In all other cases E(G) is reducible, has a commuting algebra which is not isomorphic
to K%*? for some totally real number field K and G/ + E(G) < C,. (Note that
Out(SL(9)) =~ Cy x Cy but one outer automorphism interchanges x4, and x4p.) This
contradicts Lemma [2.2.1 0
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4.10 Dimension 18

Theorem 4.10.1 The s.i.m.f. subgroups G of Sp;5(Q) are

r.5.m.f.

#* G Gl 12(G)] Limin Supergroups
[2,1,9] i[Cald 22.3%.5.7| 3 [1,1,36] Big

1 JCL ® Ay 21031527 12 [1,2,180] A2
2,2,9] v=3C6]} 216,38 5.7 1 39,2, 54] AD
6,1,3]] =5[£317:SL(3)]3 218.313 2 [33,2,216] E?

2 /=3[E£37":Spy(3)]g 28.39.5 2 [3°, 4, 6480] H,

3 = [Oﬁ] ® Ag 29.3°.52.7 | 4 ][22:39.52,4,270]| Ay ® Ag

4 /=313 Mol 25.3%.5 2| [39-5%,6,180] |[£3.Altg.27;s
(6,2, 3] [ ELa(7)]3 218.34.73 | 1 [79,4,126] (A3

5 ﬁ[:‘i(LQ(?) X L2(7))2]9 28‘32'72 1 [79,6,336] H2

V=T

6 | mEL(9)]y 2332519 1 | [19°,10,342) | AR |

2
where Hy = [£31" : Sp,(3).2l1s and Hy := [£(La(7) X Ly(7)) : 2]1s are r.i.m.f.
V=7
subgroups of GL1g(Q).

Again, before we prove the theorem, we discuss the case that G contains an irreducible
cyclic subgroup U. If | £ U| = 38, then Theorem shows that G~ ,—5[FL2(19)]o.
The remaining case | £ U| = 54 is handled below.

Lemma 4.10.2 If G contains an irreducible cyclic subgroup U of order 54 and
II(|G]) € {2,3,5,7,11,13}, then G is conjugate to ,=3[Cs]] or ,=5[+3}*:SLy(3)]3.

Proof: The centralizing algebra C' of U is isomorphic to Q((54) and has class number
1. Thus G fixes only one lattice L. There exists some F' € F~o(U) that is integral on
L with det(L, F') = 3. By Table , G must be conjugate to Autg,/—3) (L, p5F) for
some 0 < k < 4. So the result is easily verified. O

Proof (Theorem[{.10.1]): Explicit calculations show that the table is correct and it
yields s.i.m.f. matrix groups. The symplectic imprimitive matrix groups come from
the s.p.im.f. subgroups of Sp,(Q) and Spg(Q). It follows from Lemma [2.1.21] that

/=3[C6lY, y=[£La(7)]3 and =5[+3}+?:SLy(3)]3 are maximal finite. The group ;[Cy]}
ﬁxes 3 lattlces and has Q(i) as commuting algebra. One verifies that this group is also
maximal finite.

It remains to classify the s.p.im.f. subgroups G < Sp;s(Q). This is done in the
following three lemmas by discussing the various Fitting subgroups. In any case we

have FI(G) = [],c(237) Op(G) according to Corollary [2.1.16/ and Theorem 0

For the remainder of the section suppose G < Sp,5(Q) is s.p.i.m.f..
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Lemma 4.10.3 O;(G) = 1.

Proof: By Table the Fitting subgroup F(G) must be conjugate to =C;. Suppose

first £(G) = 1. By Lemma[2.2.1] G must contain a normal subgroup N ~£C7:Cj. But

there exists only one such extension and this embeds into GLg(Q). Since [G : N] < 2

this contradicts loc. cit.. So E(G) # 1 embeds into GL3(Q({7)). Thus E(G) ~ Ly(7)

by Table 2.5.1L Then F*(G)~=+Cr \;8)7 Ly(7) is irreducible and fixes only one lattice
—7

L. Let C~Q((14) denote the commuting algebra of F*(G) and let K ~@Q(614) be
its maximal real subfield. Since G/F*(G) < Cg x Cy, we only have to consider the
prime ideals over 2,3 and 7. One finds some F' € Fo(F*(G)) that is integral on L
such that det(L, F) = 73. Further C has only one totally complex subfield which is
Q(v/—T7). Hence it follows from Table that G is conjugate to Autg,/= (L, p3F)
with @ € {0,1} (for a > 2 the lattice is not normalized). Both automorphism groups
are contained in ﬁ[i(Lz(ﬂ\;@iLz(?)) :2]o. 0
—7

Lemma 4.10.4 If O3(G) # 1 then either
(a) O3(G) =3\ and G is conjugate to ,=5[+3"*:Sp,(3)]o.
(b) O3(G)~Cs and G is conjugate to ,—[Csly ® Ag or ,—[£3.Mio)s.

Proof: If O3(G) is irreducible, it is conjugate to 31* or 317 ® Cy since O3(G) % Cor
V3

by Lemma [4.10.2l If O3(G) embeds irreducibly into GLg(Q), it is conjugate to Cy or

3172, Otherwise O3(G) ~ C3 embeds irreducibly into GLy(Q).

o If O3(G) ~ 3" then B°(05(G)) =~ =[£317*:Sp,(3)]o is already s.i.m.f..
o If Og(G):?)_l:“z ® C9 then G contains a normal subgroup N conjugate to
Ve
+(317? ® Cy) : SLy(3). The commuting algebra of N is isomorphic to Q((o).
V=3

Thus G/N < Cg and therefore II(|G|) = {2,3}. There exists a normal crit-
ical set of two lattices {Li, Ly} and F' € F.o(N) that is integral on the L;
with det(L;, F) € {3,27}. By Table we only have to consider the groups
Autgy=3)(Li, p§F') with a € {0,1}. These groups are subgroups of the s.i.m.f,

groups =5[£35"*:Sp,(3)]s or =5[+3}7?:SLy(3)]3.

e If O3(G) = Cy or 312 then C(03(G)) embeds into GL3(Q(¢y)) with k € {3,9}.
In particular F*(G) = £03(G). Let N := B°(O3(G)) < G. Then N is conjugate
to £Cy or £3172:SLy(3). In the first case, let P € Syl3(G). Then [G : £P] < 2
shows P = N and therefore [G : N] < 2. In the second case, it follows from
Out(O3(@)) =2 GLy(3) that [G : N] < 2. So both cases contradict Lemma [2.2.1]

o If O3(G) ~Cs, then Cq(O3(G)) embeds into GLg(Q(v/=3)). So 0(G) = +1g
and it follows from Table that E(G) is conjugate to Altjg or 3.Altg. In
any case B°(F*(@G)) is already s.i.m.f. and conjugate to one of the groups stated
above. 0



4.10. DIMENSION 18 107

Lemma 4.10.5 If F(G) = Oy(G), then G is conjugate to ;[Cy)1 ® Ag, /—1g[FL2(19)]g
or \/j[i(LQ(?) X L2(7>>2]9
V=T

Proof: Suppose first F(G) # +115. Then F(G) is isomorphic to Cy or Ds. Thus G
contains a normal subgroup N ~ Cy and E(G) embeds into GLg(Q(7)). By Table[2.5.1
E(G) is conjugate to Altjg. So G contains an irreducible normal subgroup B :=
NB°(E(G)) ~;[C4]1 ® Ag. The group B fixes 12 lattices and has Q(i) as commuting
algebra. One easily checks that it is s.i.m.f..

If F(G) = £1s, then E(G) # 1 embeds irreducibly into GL;(Q) for k£ € {6,9, 18} by
Table 2511

(a) If £ = 6 then E(G)~ Alts, Alt7, Lo(7) or Uy(2). In any case [G : B°(E(G))] < 2
contradicts Lemma [2.2.]

(b) If k =9 then E(G)~ Altyy and B°(G) =~ Ag implies G = B°(G) is reducible.
(c) If k = 18 then F(G)~L4(19) or Lo(7) ® Lo(7) since O3(B°(3.Altg)) = C3 and
V=7
Alt; ® Alts fixes no skewsymmetric form. The group ,—5(£L2(19)]y is s.im.f.

V5
by Theorem [3.2.1, In the second case B°(E(G)) ~ ,—[£(La(7) @ La(T7)): 2] is
V=7

irreducible and fixes only one lattice. One checks that it is s.i.m.f.. O
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4.11.
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4.11.1 Irreducible cyclic subgroups

If a s.i.m.f. matrix group G' < Spy,(Q) contains an irreducible cyclic subgroup U, then
| £ U| € {50,44,66}. These cases are handled below.

Lemma 4.11.2 Suppose G contains an irreducible cyclic subgroup U of order 50 and
II(|G|) €{2,3,5} or there exists some (L, F) € Z(G) x F=o(G) such that F is integral
on L with det(L, F) C {2,3,5}. Then G is conjugate to ¢,,[Chol5.

Proof: The commuting algebra of U is isomorphic to Q((50) and has class number 1.
Thus G fixes only one lattice L. Further there exists some F' € F~o(U) that is integral
on L with det(L, F') = 5. By Table2.5.3) G must be conjugate to Autg,q)(L, pLF)
for some 0 < a < 4. All these groups are subgroups of ¢,,[Cio]5. 0

Lemma 4.11.3 Suppose G contains an irreducible cyclic subgroup U of order 44 and
II(|G|) € {2,3,5,11} or there exists some (L, F) € Z(G) x Fso(G) such that F is
integral on L with det(L, F') C {2,3,5,11}. Then G is conjugate to one of

2(2)
JolEL (11)]2, \/—*u[iL2(11)]5\/<&Hoo,2[SL2(3)]17 00,2[EUs(2)]5 0 Cy,

22) : 2) 4@
OO,Q[:':SLQ(]_].)]5 D) 04 or i[04]1 ®H with H € {Alo, AlO 71410 } .

Proof: The commuting algebra C := End(U) ~Q((y) and has class number 1. Thus
G fixes only one lattice L. Further there exists some F' € F.o(U) that is integral
on L such that det(L, F') = 11%. Let K ~Q(f44) be the maximal totally real subfield
of C. There exists some o € Gal(C/K) that interchanges p; and p.. Further o is
conjugation by some = € Ngr,,@)(U) N GL(L) with Fz" = F. So Table [2.5.3|shows
that G is conjugate to Autg =5 (L, paplp2s~@F) for some a,b € {0,1}, 0 < ¢ < 2 and
de{1,11}.

ab2c—a
V=11

Further Ath(m)(L,pgp5p%§_aF) Autge) (L, pipspis ®F). The remaining 6 auto-
morphism groups are given below.

| form | Q(7) | form | Q(7) ‘

F oG @A | bl F | oo2[EU5(2)]5 (O
2(2)

PLF [C @AY | popiiF | salSLa(11)]s D Cy

2(2)
pLF [ @AS) | papd i F | < 02SLa(11)]5 D Cy o
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Lemma 4.11.4 Suppose G contains an irreducible cyclic subgroup U of order 66 and
II(|G]) € {2,3,5,7,11} or there exists some (L, F) € Z(G) X F<o(G) such that F is
integral on L with det(L, F) C {2,3,5,7,11}. Then G is conjugate to one of

il EL2(11)]5 ® As, m[iLg(ll)]n%oo,g[SL2(3)]1, w0.2[£U5(2)]5 0 Cs,

2(3) 2(3)
00.2[SL2(11)]5 0 O3, /=5[£La(11)® /=5[Cs]1]10, y=3[,=r[EL2(11)]5 ® ,=5[C6]1]10

or y=[Csh @ H with H € {Ag, ATy, AR} .

Proof: The commuting algebra C' of U is isomorphic to Q((ss) and has class number 1.
Thus G fixes only one lattice L. Further there exists some F' € F~o(U) that is integral
on L such that det(L, F) = 11%. Let K ~Q(0gs) be the maximal totally real subfield
of C. There exists some o € Gal(C'/K) that interchanges po and p). Further o is
conjugation by some & € Ngr,, @) (U) N GL(L) with Fz" = F. So Table shows
that G is conjugate to Aut@(\/_—d)(L,pgpgpff_“F) for some a,b € {0,1}, 0 < ¢ <2 and
d e {3,11}.

debe20—a m[iLQ(ll)k ®A2 ifa=0

V—T1

Further Autg 1) (L, p2pspii ' F) = Autg—3)(L, popspis 'F) for all ¢. The remain-
ing 9 automorphism groups are given below.

| form | Q(v-3) | form | Q(v-3) ‘
F m[iLz(H)zg)\/?s[CG]l]lo Pl v=31C6]1 ® Ao

2(3)
PhF | < ymalymnlELe(1D)]s © y=s(Colilio | psphF | y=s[Col © AT

2(3)
pLE | slemELe(1D)]s  y=5(Clilio | pephF | y=5[Ceh © AL

popy F 0,2|EU5(2)]5 0 Cs Pop11F' | oo 2[SLa(11)]5 0 Cs
popt F | < alELe(11)]s ® w02[SLa(3))
V=11 0O

4.11.2 Proof of Theorem
Suppose that G < Sp,(Q) is s.p.i.m.f.. Before we discuss all possible Fitting subgroups
of G, we describe all groups GG that contain an irreducible quasisimple normal subgroup.
Lemma 4.11.5
(a) If G contains a normal subgroup N =~ 2[SLy(11)]5 then G is conjugate to
a[SLo(11)]s 0 Cy or w[SLa(11)]s & C.

(b) If G contains a normal subgroup N =~ o[xUs(2)]5 then G is conjugate to
2(2)
00,2 [:f:U5(2>}5 e} Cg, w72[iU5(2)]5 o 04 or \/_*Q[OO’Q[:EUE,(Q)]L;ZQ]N.
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Proof: In both cases, N is rationally irreducible and has Q.2 as commuting algebra.
By Remark 2.2.177] G contains a subgroup U conjugate to =N : 2 or =N o C; with
i € {3,4}. The commuting algebra of U is Q(v/—d) with d = 2,3,1 respectively.
One easily checks that . 2[SLa(11)]5 0 C3, 002[£Us(2)]5 0 Cs and /—5[o02[£Us(2)]5:2]10
are s.i.m.f.. Further o 2[+U;5(2)]5 o Cy fixes only one lattice and is only contained in

2(2
.2[E£Us(2)]5 %)04. The group 2[SLa(11)]5 : 2 fixes 4 lattices and is only contained
in /—[2.My:2]1. Finally o 2[SLa(11)]5 o Cy fixes 2 lattices and is only contained in

2(2)
%.2[SL2(11)]5 D C4. 0

Lemma 4.11.6 Oq,(G) is trivial.

Proof: Suppose O11(G) # 1. Then O11(G)~C4; and it centralizer embeds into
GL2(Q(¢11)). In particular E(G) = 1 and therefore F(G) is self centralizing. If
F(G) # £011(G) then G contains an irreducible cyclic subgroup of order 33 or 44
and II(|G|) € {2,3,5,11}. This contradicts Lemmas 4.11.3[and [4.11.4] So F'(G) ~ Cy
and [G : F(G)] € {5,10} by Lemma [2.2.1 The group Cs : Cs has only one faithful
rational irreducible representation. It is of degree 10 and has Q(v/—11) as commuting
algebra. This again contradicts Lemma [2.2.1}] O

Lemma 4.11.7 If O5(G) is nontrivial then G is conjugate to ¢,[552.Spy(5)]5 or
¢10[Crol1 ® A5

Proof: By Table , Os(G) is conjugate to Cys, Cs or 572, The first case contradicts
Lemmafd.11.2] The irreducible group B°(5572) = ¢, [£5472.Sp,(5)]5 fixes 2 lattices and
has Q((10) as commuting algebra. One easily checks that it is s.i.m.f.. So we may now
assume that O5(G) = C5. Then F(G) = £C5 and E(G) # 1 by Corollary 2.2.3] Thus
E(G) embeds into GL5(Q((10)). It follows from Table that E(G) is conjugate
to Altg. Therefore G contains a normal subgroup N := B°(F*(G)) 2 ¢,,[Cio)1 @ As.
Since N fixes 4 lattices and has Q((i0) as commuting algebra, one easily checks that
N is s.im.f.. 0

Lemma 4.11.8 If O3(G) # 1 then G is conjugate to one of

/3[ES4(3) 0 03]5\;200,2[8@(3)]1, i[Cul1 ®[Cs x S4(3).2]10, 002[SL2(11)]5 0 Cs,

2(3)
00,2[EUs(2)]5 0 C3, /—5[£U4(2) o Cs10, /—3[EL2(11)®,/=5[C6]1]10, ,—11[E£L2(11)]5 ® A,

2(3) )
m[m[i[@(ll)k \/?3[06]1]10 or \/_73[06]1 ® H with H € {Alo,A%),A%)} .

P’FOOf.' If Og(G) 7& 1 then Og(G) = 03. Thus OQ(G) c {02, 04, Dg, Qg} and Op(G) =1
for all p > 3. Let N = B°(F*(Q)).
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o If O5(G)~ Qs then E(G) embeds into GL5(Q(v/—3)). By Table 2.5.1| E(G) is

conjugate to Altg or S4(3).
In the latter case N~ ,5[+S54(3) 0 C3]s ® 4 2[SLa(3)]1 fixes 6 lattices and has
V=3

Q(v/—3) as commuting algebra. One checks that it is s.i.m.f.. In the other case
N~ A5 ® ,—5[SLs(3)0C}s); has the same endomorphism ring and fixes 18 lattices.
One checks that it is only contained in  ,—[S4(3) 0 Cs]5 ® 02[SL2(3)]1.

V=3

If O2(G)~Cy or Dg then E(G) embeds into GL5(Q((12)). Thus again F(G) is
conjugate to As or Sy(3). The group N; := A5 ® C fixes 9 lattices, but using
part (a) of Remark one finds a normal critical lattice L. Let F € F~o(Ny),
then Autgc,,) (L, F) = /=[£54(3)0Cs]5 ® Cy. So E(G) ~ S4(3) and G must con-
tain a normal subgroup conjugate to Ny := ,—[£54(3)oCs]5 ® Cy. The group No
fixes 3 lattices but there exists a normal critical one, say L. Further there exists
some F € F.o(N) that is integral on L such that det(L, F) = 2! and I1(|G|) =
{2,3,5}. The maximal totally real subfield K of C' := End(Ny)~Q((12) is
isomorphic to Q(v/3). Since Endzy, (L) is the maximal order in C' and since
Nro/k(Zg) = Zi ~o we may restrict ourselves to one class of totally positive
units. Thus Table 2.5.4] shows that there are 4 candidates to check:

’ form ‘ Q(7) ‘ Q(v-3) ‘

2(2
F w2 EU (2] C, | 5lESa(3) Csls © calSLa(3)]
-3
p3 'psF | i[Ca]1 ®[Cs x S4(3).2]10 < y3l£S54(3) 0 G52

Only ;[C4]1 ®[Cs x S4(3).2]10 has the correct Fitting subgroup.

If O3(G) = £1, then E(G) is isomorphic to Altg, S4(3) = Us(2) (2 representations
each), Altyy, Lo(11) (3 representations), SLy(11) or Us(2).

If E(G)~SLy(11) or Us(2) then G = E(G) o C3 by Lemma [4.11.5]

If E(G)~Alty; then N ~ ,—[Cs]; ® Ay fixes 2 lattices and is already s.i.m.f..

If E(G)~U,(2) with character xipa then N~ 5[3Us(2) o Cs]yo is already
irreducible and fixes 2 lattices. One checks that it is s.i.m.f..

If B(G)~Us4(2) with character 2xs,, then N is conjugate to ,—[£54(3) o Csls

and [G : N] = 4 by Lemma In particular, G must contain a normal

subgroup conjugate to S4(3) ® Ay or £54(3) ® «3[S3]1. These two groups fix
V=3

15 and 5 lattices respectively. They are only contained in ,—5[£54(3) o C5)]2.

If B(G)~Altg with character 4xs,, then N~ —[Cq]; ® A5~ ,—5[Cs]1 ® Si.
Since the exceptional outer automorphism of Altg interchanges its 5 dimensional
irreducible characters, we have [G : N] < 2. This contradicts Lemma [2.2.1]

If B(G)~Altg with character 2x19, then N~ —5[Cs]; ®[£Sg]10 is already ir-
reducible and fixes 12 lattices. One checks that it is only contained in
\/53[:|:U4(2) (o] 03]10-

If E(G)~Ly(11) with character 2x104, then N ~ ,—[Cs]; ® Ag%) has Q(v/—3) as
commuting algebra and fixes 2 lattices. One checks that it is s.i.m.f..
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If E(G)=~Ly(11) with character 2xipp, then N = F*(G) has Q(v/—3) as com-

muting algebra and fixes 6 lattices. Omne checks that it is only contained in
2(3

(3)
\/:3[06]1 ®A10 and \/j3[j:L2<11)®\/j3[06]1]10
If E(G)~Ly(11) with character 2ysq, then F*(G) contains an irreducible cyclic
subgroup of order 33 and |G| = {2,3,5,11}. It follows from Lemma {4.11.4

. . 2(3)
that G is conjugate to =3[ —7[£L2(11)]5 /=31C6]1]10, \/53[06]1®A§%) or
vorrlELe(11)]s ® Ay, O

Lemma 4.11.9 If F(G)~ Ds® Cy then G is conjugate to ;[(Ds ® Cy).S3]2 ® As.

Proof: Since F(G) embeds into GL5(Q(7)), it is conjugate to Altg. In particular G
contains the normal subgroup N := B°(F*(G)) ~;[(Ds ® Cy4).S3]a ® As. The group N
fixes 6 lattices and is easily checked to be s.i.m.f.. O

Lemma 4.11.10 F(G) % Dg® Ds.

Proof: By Table [2.5.1] E(G)~ Altg. But then F*(G) is already irreducible and fixes

no skewsymmetric form. 0

Lemma 4.11.11 If F(G) ~Qs, then G is conjugate to ,—7[L2(11)]s ® o 2[SL2(3)
V=TT
or H[GLQ(B)]2®A5

Proof: Since E(G) embeds into GL5(Qwo2), it is conjugate to Altg or Ly(11) by Ta-

ble (note that O3(B°(S54(3))) = Cs).
In the latter case B°(F™*(G)) ~ /—q[L2(11)]5 ® o02[SLa(3)]1 is already s.i.m.f.. In the
NaST

first case N := B°(F*(G)) = 00 2[SL2(3)]1 ® As is irreducible and has Q.. » as commut-
ing algebra. So by Remark [2.2.17] G’ must contain a subgroup conjugate to N.2 or
N o C; with i € {3,4}. These groups fix 12,18 and 6 lattices respectively. One checks
that N:2~ ,—5[GLy(3)]2 ® A5 is already s.im.f.. The other two groups are properly
contained in  ,—5[+S5,4(3) o 03]5\;69730012[SL2(3)]1 or ;[(Dg ® Cy).S3)2 ® As respectively. o

Lemma 4.11.12 F(G) is not conjugate to Cs, D1 or QDsg.

Proof: In any case F(G) would contain a cyclic characteristic subgroup of order 8.
Thus E(G) embeds into GL5(Q({s)) and must be conjugate to Altg. So G con-
tains a normal subgroup N ~Cg® As. Since the exceptional outer automorphism
of Altg interchanges its absolutely irreducible 5-dimensional characters, we have
G/N < Out(Cg)~Cy x Cy. In particular II(|G|) = {2,3,5}. The group N fixes

20 lattices. By looking at the indices of these lattices in the standard lattice, one sees
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that L = Z*% is normal critical and there exists some integral F' € F.o(N) such that
det(L, F) = 2*.3*. The maximal totally real subfield of Q((g) is isomorphic to Q(v/2).
So Table shows that there are 4 groups to check:

| form | Q(7) | Q(vV-2) |
F (i[Ca)1 @ A5)? < /=3lGL2(3)]2 ® A;
ng i[(D8®C4)-53]2®A5 \/TQ[GLQ(3)]2®A5

None of these has the correct Fitting subgroup. O

Lemma 4.11.13

2(2)
(a) If F(G)~Cy, then G is conjugate to Oo,g[j:U5(2)]52(02)C4, 02[SLa(11)]5 O Cy,
2(2) _
i[[:l:S6]10 i[CAL]l]lO or i[04]1 ®Q H with H € {Alg,AgQO),A%)}

(b) F(G) is not conjugate to Ds.

Proof: In both cases, F/(G) contains a characteristic normal cyclic subgroup U of
order 4. Thus F(G) embeds into GL1o(Q(7)). By Table E(G) is conjugate
to Altg (2 representations), Ly(11) (3 representations), Altyy, SLa(11) or Us(2) (note
again that O3(B°(S4(3))) = C5). The groups Us(2) and SLy(11) have been handled in

Lemma [4.11.5] Let N = B°(E(G)U).

o If £(G)~ Altyy, then N ~;[Cy]; ® Ay fixes 2 lattices and has Q(i) as commuting
algebra. It is already s.i.m.f..

o If F(G)~ Altg with character 2x19, then N has Q(i) as commuting algebra and

2(2)
fixes 22 lattices. It is only contained in ;[[£Sg]10 ® ;[C4l1]10-

e Suppose E(G) ~ Altg with character 4ys,. Since the exceptional outer automor-
phism of Altg interchanges its absolutely irreducible 5-dimensional characters
and B°(E(G)) ~ As, we get that G/N < Out(F(G)). In particular F(G) = Dg
by Lemma [2.2.1] Let A(N) be a summand of the natural representation of N.
Then A(N) < GL1o(Q) is absolutely irreducible and has Q as commuting alge-
bra. So G embeds into GLjo(K) for some imaginary quadratic number field and
A(N) is an irreducible subgroup of G < GLjo(K). One easily checks that only
the outer automorphism acting on Dg and fixing A; can be realized in GL1o(C).
Only the non-split extension is symplectic, since it can be realized over Q(v/—2).
It fixes 40 lattices and is only contained in ,—[GLy(3)]2 ® As.

o If F(G)~Ly(11) with character 2x19q, then N ~;[Cy]; ®A%) has Q(7) as com-
muting algebra and fixes 2 lattices. One checks that it is s.i.m.f..

o If F(G)~Ly(11) with character 2x1ps, then N = F*(G) has Q(7) as commuting
algebra and fixes 4 lattices. It is only contained in ;[Cy]; ® A1o.
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o If F(G)~Ly(11) with character 2x5., then N = F*(G) contains an irreducible
cyclic subgroup of order 44 and II(|G|) = {2,3,5,11}. Thus G is conjugate to

J(Cii ® Aﬁ’)) by Lemma 4.11.3 -

Lemma 4.11.14 If F(G) = *1s, then G is conjugate to one of
159L2(19)]10, y=5loe2[E£Us(2)]:2]10, =5[2-Mi12:2]10, /=5[2.Ma2:2]10 -

Proof: By Table [2.5.1] E(G) is isomorphic to Altg (2 representations), Ly(11) (3 rep-
resentations), Altyy, SLa(11), Alty, 2.Mio, 2. Mas, Us(2), 2.L3(4) or SLy(19). Note that
03(BO(U4(2))) = (3 for Xsq and X10ab-

The group  ,—5[SL2(19)]10 is s.im.f. by Theorem . The cases E(G)~Us(2) or
SLy(11) are handled in Lemma[t.11.5] Let N = B°(E(G)).

o If F(G)~2.My or 2.Ms then N = +FE(G) : 2 fixes only one lattice and has
Q(v—2) or Q(+/—T7) as commuting algebra. One checks that N is s.i.m.f..

o If F(G)~Alty, then N~ £Alt; fixes 5 lattices and has Q(v/—7) as commuting
algebra. One checks that it is only contained in ,—[2.Ms:2]10.

o If F(G)~2.L3(4), then N~2.L3(4).25 fixes 5 lattices and has Q(+/—7) as com-
muting algebra. One checks that it is only contained in ,—[2.May:2]10.

o If F(G)~Altyy, then G/ + Alty; < Out(Alty;) ~Cy and N ~ A9~ +S57;. Thus
G = N is reducible.

o If F(G)~Ly(11) with character 2x5, then N = F(G). Hence G/N <
Out(N) ~C, contradicts Lemma [2.2.1]

o If F(G) ~Ly(11) with character 2x1¢q, then N~ £L5(11):2. Hence G/+E(G) <
Out(Lz(11)) ~ Cy implies that G = N is reducible.

o If F(G)~Ly(11) with character 2xi¢p, then N = F*(G) and again [G : N] = 2.
Since x10p as absolutely irreducible, G embeds into GL1o(K) for some imaginary
quadratic number field K such that N < G is irreducible. One easily constructs
N-2 < GL1p(Q(v/=3)). But N-2 cannot be s.i.m.f. since Q(y/—3) contains a
third root of unity.

o If F(G)~Altg with character 4ys, then N~ A;~4Ss. Since the exceptional
outer automorphism of Altg interchanges ys, and xs,, we see that G = N is
reducible.

o If E(G)~Alts with character 2x;9 then N~=+Sg and [G : N] < 2. Again
G < GLjp(K) for some imaginary quadratic number field K such that N < G
is irreducible. One easily constructs N :2 < GLjo(Q(v/—2)). But N:2 is only
contained in  ,—5[2.Mi5:2]1,. O
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4.12 Dimension 22

Theorem 4.12.1 The s.i.m.f. subgroups G of Sp,,(Q) are

r.a.m.f.

* G Gl [2(G) Lamin supergroups
2,1, 11] C 20352711 | 3 [1,1,44] Bas

1 JCu ® Ay 21Z.35.52.7.11 | 10 32,2, 264] A2,
2,2, 11] =lCel 219.315.52.7-11 | 1 37, 2, 66] Al

2 \/T3[CG]1®A11 211'36’52'7'11 9 [311,4,396] A11®A2

3 \/jg[:tU5(2) o 03]11 21136511 4 [223,4,49896] S

23112, 1012] ©
4 \/—723[j:L2(23)]11 2431123 3 [2311’ 12’ 506] A22

where S = [:EPSU6(2)53]22 < GL22(Q)

Proof: By explicit calculations, one verifies that the above table is correct and yields
s.i.m.f. groups. Further the r.i.m.f. supergroups are easily constructed since all s.i.m.f.
groups are uniform. It remains to show the completeness of the classification.

The group ,=3[Csl}" is s.i.m.f. by Lemma [2.1.21| and ;[C4]{' fixes only three lattices.
One checks that it is s.i.m.f.. So we may now suppose that G is s.p.i.m.f..

It follows from Corollary that E(G) is not trivial. Thus by Table 2.5.1) E(G) is
conjugate to Altya, My, Us(2) or Lo(23). In the latter two cases, E(G) is irreducible
and B°(E(G)) is already s.i.m.f..

If E(G)~Alt;; then G contains a normal subgroup B = B°(E(G))~ Ay ~+51s.
Clearly B is not self-centralizing. Thus G contains an irreducible subgroup ;[Cy]; ® A1y
or ,—3[Csli ® Ay1. Both groups are s.i.m.f..

If E(G) =~ Mj, then Out(E(G)) is trivial. Thus G contains an irreducible subgroup
conjugate to ,—3[Ce]s ® M1y or ;[Cy]y ® Miy. The first group fixes 18 lattices and is
only contained in ,—5[Cs]; ® Ay; and ,—[C]i'. The second group fixes 15 lattices and
is only contained in ;[Cy]; ® A1y and ;[Cy]}L. 0
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Appendix A

Invariant Forms

For each conjugacy class of s.p.i.m.f. matrix groups in GLs,(Q) where 1 <n < 11 we
give a symmetric positive definite form F' and a skewsymmetric form S such that

Aut(Z*" {F,S}) = {g € GLg,u(Z) | gF¢" = F and gSg" = S}
is a representative of that class.

Further the pairs (F,.S) satisfy the following properties:

(a) det(F) = min{det(L, F") | (L, F') € Z(G) x Fso(G) is integral} where
G = Aut(ZY>* {F, S}).

(b) S F~! generates the commuting algebra of Aut(Z'**" {F,S}) and its minimal
polynomial p(S - F~1, X) is one of

e X? + d for some squarefree d € N.

o (G — ¢, X) for some even k € Zsg.

o 11(Gas + (36 + G5, X).

o u(Vk-(C— ¢ Y), X) where (k, ) € {(2,10), (3,10), (3,16)}.
. (Z+\/_+\/_X)

By Algorithm these pairs (F,S) give an easy way to recover the conjugacy class
of any given s.p.i.m.f. subgroup of GLs,(Q) for 1 <n < 11.

In some cases, tensoring such a pair (F,S) with a gram matrix g of some root lattice
yields another s.p.i.m.f. automorphism group H. If the pair (F®g,S®g) satisfies
property (a) from above, then H is omitted in the list below, since these forms can
easily be reconstructed from the name of H.

For example, tensoring the forms of ;[Cy4]; with any gram matrix of A, yields a pair of
forms that satisfies the above properties. Thus the s.p.i.m.f. matrix group ;[C4]; ® Ay
is omitted in the list below.

Similarly, tensoring the forms of ;[C4]; with any gram matrix of As yields a pair of
forms whose automorphism group is conjugate to ;[Cy]; ® As5. But these forms do
not satisfy the above properties. Thus the list below contains some other forms for

[Ca)1 ® As.
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Nomenclature

Let G < GL,,(Q) be a matrix group and let N and H be any groups.

r.im.f.
sim.f.
s.p.im.f.
(k)

(K, k)

rational irreducible maximal finite

symplectic irreducible maximal finite

symplectic primitive irreducible maximal finite

set of all primes dividing the integer k

set of primes needed for the m-parameter argument cf. Definition
finite field with ¢ elements

quaternion algebra with center QQ ramified only at the places P, ..., P,
quaternion algebra with center Q(«) ramified only at the places P, ..., P,
maximal order of an algebraic number field K

ideal class group of a Dedekind ring R

primitive n-th root of unity

Gt Gt

m X m identity matrix

set of G-invariant forms cf. Definition m

subset of symmetric G-invariant forms in F(G)

subset of skewsymmetric G-invariant forms in F(G)

subset of positive definite forms in Fy,, (G)

enveloping algebra of GG cf. Definition m

endomorphism ring or commuting algebra Cgmxm(G) of G cf. Defini-

tion 2.1.1]

set of A-invariant lattices in Q'™ for some Z-order A C Q™*™ cf. Defi-

nition 2.1.4]
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Z(@)
det(L, F)
AUtK(L, F)

B°(G)

+G

Op(H)
F(H)
E(H)
F*(H)
A, Fy, By,

S,, Alt,
Doy,
QDan
Qan

14+2n
2+
21+2n

1+2n
by

1+2n

G1 ® Gy

2(p)
G1® Gy

N:H
N-H
N.H
H Sy,

APPENDIX A. INVARIANT FORMS

set of G-invariant lattices in Q'™ cf. Definition
determinant of the lattice L in the Euclidean space (L ® R, F')

group of K-linear automorphisms of the lattice L wrt. the forms in F cf.

Definition 2.1.4]

generalized Bravais group of G cf. Definition

the group (G, —1,,)

largest normal p-subgroup of H

Fitting subgroup of H, i.e. the largest normal nilpotent subgroup of H
layer of H, i.e. the central product of all components of H

generalized Fitting subgroup of H (central product of F/(H) and E(H))
(automorphism groups of) root lattices

cyclic group of order n

symmetric and alternating groups on n letters

dihedral group of order 2n

quasidihedral group of order 2"

(generalized) quaternion group of order 2"

central product of n copies of Dy

central product of (Jgs and n — 1 copies of Dy

1+2n

extraspecial p-group of order p and exponent p (p odd prime)

14+2n

extraspecial p-group of order p and exponent p? (p odd prime)

tensor product of the two matrix groups G; and Gs. See Section for
an explanation of the symbols G; ® Gy, G1®Gy and Gy o Gy
Q

extension of G; ® Gy by (5. See Section for an explanation of the

2(p) 2(p) 2(p) 2(p) 2(p) 2(p) 2(p)
Symbols G1® GQ, Gi® GQ, GlgGg, Gl%GQ, G GQ, G, GQ, G OGQ,
Q Q

Gi8G, and G, B G,

semidirect product, i.e. a split extension of N by H
nonsplit extension of N by H

any extension of N by H

wreath product of H and Sy
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