
mixer — maintaining web sites easily

Max Neunḧoffer
max.neunhoeffer@math.rwth-aachen.de

15. Juli 2004

Inhaltsverzeichnis

1 Introduction and Basic Idea 1

2 Learning by example 2

3 If you are in a hurry 3

4 Notation 3

5 Installation of the mixer 3

6 First steps for a new web site 4

7 Finding the MIXERROOT 4

8 How does themixer put together web pages? 4

9 Template documents 5

10 What replacements does themixer perform? 5
10.1 Variable substitution . 5
10.2 Part substitution. 6
10.3 Parsed variable substitution. 6
10.4 The title of a page. 6
10.5 Style sheets. 7
10.6 Links .7
10.7 User defined functions. 7
10.8 Short form of call to user defined functions. 8

11 The address database and its applications 8

12 Automatic generation of site navigation 8

1 Introduction and Basic Idea

If you have a rough idea what themixer is and just want to see quickly how it all works, have a look at the
examples in section2 and then read section3. The gory details are then covered in sections4 to 12.
Themixer is little Max’s version of a

”
Content Management System“. The goal is to help the user to maintain

a web site consisting of a hierarchy of web pages in a consistent way. Repeating parts of these pages should
each be stored and maintained in a single place and an easily understandable procedure should make the final
pages from the input the user enters.

1

For each page this procedure basically pastes together various files from different places in a well-defined
way and replaces certain elements by other stuff. Things like navigation tools for the visitors of the site are
generated automatically from available data.
The main design principles are:

• SIMPLICITY,

• well-definedness,

• good documentation,

• the use of standard web technology (XML, XHTML, style sheets).

2 Learning by example

Assume you have a directoryDIR and the following list of files and directories:

DIR/MIXERROOT
DIR/lib/addresses
DIR/lib/config
DIR/lib/default.html
DIR/index.mixer

TheMIXERROOTfile is empty,addresses is a address database in a certain format andconfig contains
some variable settings. Assumedefault.html looks like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<link href="/lib/default.css" type="text/css" rel="StyleSheet" />
<style type="text/css" media="screen">@import url(/lib/default.css);</style>
<title><mixer var="title">Here will be the title</mixer></title>

</head>
<body>
<mixer part="main">Here will be the main part of the page</mixer>
</body>
</html>

andindex.mixer looks like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<mixer template="default.tmpl">
<mixertitle>My title</mixertitle>

<h1><mixer part="title"/></h1>

<p>Current semester: <mixer var="semester"/></p>
<p>Author: <mixer person="Max Neunhoeffer" data="name_link"/></p>
<p>Some weird display, possibly navigation:<mixer func="myfunc"/></p>

</mixer>

Then themixer does the following for you:
It takes the fileindex.mixer , reads off the namedefault.tmpl from the template attribute and
starts withdefault.tmpl in the lib directory and produces a fileindex.html by replacing things.

2

The content from the fileindex.mixer (beginning with the<h1> is inserted instead of
<mixer part="main"/>

and the title
”
My title“ is inserted instead of<mixer part="title"/> in the head of the document and

in the<h1> element.
The value of the variablesemester is substituted for<mixer var="semester"/> and from the ad-
dress database a link to the personal page of Max Neunhöffer together with his name is inserted instead of

<mixer person="Max Neunhoeffer" data="name_link"/>
It is even possible to put the output of a user defined functionmyfunc in the final page instead of

<mixer func="myfunc"/>
This makes it for example possible to automatically generate navigation tools for a whole web site.
This document is the manual to themixer , a program that achieves.

3 If you are in a hurry

Here is a table of replacements, that are performed:

<mixer part="main"/> → the content of the current.mixer file.
<mixer part="title"/> → the title of the current page from themixertitle ele-

ment.
<mixer var="uvw"/> → the value of the variableuvw in the configuration databa-

se.
<mixer part="abc"/> → the content of the partabc of the current page which is

found in the filexyz.abc in the same directory, if we
are working on the filexyz.mixer currently. If the fi-
le xyz.abc does not exist, a warning is given out. This
warning can be switched off by specifying an additional
attributeneeded="no" in themixer tag.

<mixer person="ID"
data="KEY"/>

→ the entry under the keyKEYof the person with idID in
the address database

<mixer func="hij"/> → the result of the user defined functionhij
<mixer klm="xyz"/> → the result of the user defined functionklm . Hereklm must

not be equal to one of the other predefined attributes.
href -attributes → links not containing a colon and starting with a slash are

interpreted as links relative to the root of the site and are
replaced by links relative to the current file, variable na-
mes in links, which are enclosed in double curly brackets,
are replaced

<link href="opq.css"/> → the value of thehref is replaced by the value of the (op-
tional) oldstyle attribute of themixer element in the
.mixer file.

<style>@import
url(opq.css);</style>

→ the link is replaced by the value of the (optional)style
attribute of themixer element in the.mixer file.

4 Notation

The mixer feels responsible for a full subtree of the file system. This tree is called
”
the web site“ and the

absolute path name to its top is calledMIXERROOT. Individual HTML-files within this subtree are called

”
web pages“.

5 Installation of the mixer

First note that themixer needs Python version 2.2 or newer and that this must be the version of Python
coming up if one callspython .

3

Untar the archivemixer.tar.gz (possibly your version contains some version number). This will create
a directorymixer where the code resides. Themixer is written in Python, however it uses an extension of
the Python interpreter which is written in C and uses the C programmrxp as an XML parser. Therefore some
compilation is needed. This is done by doingmake in themixer directory.
The only further step for installation is to create a symbolic link from any position which is in yourPATH(for
example/usr/local/bin) to the filemixer.py in themixer directory.

6 First steps for a new web site

To get things going, you need at least:
A directory with an empty file with the nameMIXERROOTand a subdirectorylib .
You need a file with the nameaddresses in thelib directory. It is a valid XML file with only one element
of typeaddresses that contains elements of typeperson with arbitrary attributes.
You further need a file with the nameconfig in the lib directory. It must be a valid Python module. You
can define variables in there in Python notation. All variable values must be strings.
The filefuncs.py in the lib directory is optional and only used if you want to use user defined functions.
To see themixer doing something you need at least one template file and a file with.mixer at the end.

7 Finding the MIXERROOT

The mixer can be invoked from anywhere within the file system tree of the web site. It determines the
MIXERROOTby looking upwards for an empty file with the nameMIXERROOT. Here are the details:
After invocationmixer first determines an absolute path to the current working directory. This is done by
looking at the environment variablePWD, which is set by most shells to an absolute path to the current working
directory. However, this can contain symbolic links embedded in the path. Somixer checks whether this
directory is the same as the directory that the C-library functiongetcwd() returns. If both paths refer to the
same physical directory, then the value ofPWDis taken, otherwise the result ofgetcwd() .
Themixer then goes up in the file tree by removing parts at the end of the path, until it finds an empty file
with the nameMIXERROOT. The path pointing to the corresponding directory is theMIXERROOT.
The reason for taking the value ofPWDis that symbolic links within this path should be preserved. The
comparison with the result ofgetcwd() is done just to be save. Note that the file system subtree below
MIXERROOTmust not contain symbolic links to subdirectories.

8 How does themixer put together web pages?

Themixer first reads the configuration database inMIXERROOT/lib/config and then the address data-
base, which is in the fileMIXERROOT/lib/addresses .
After that it interprets the fileMIXERROOT/lib/funcs.py (if it exists) as a Python script to get hold of
the user specified functions. Then it walks recursively through the whole subtree belowMIXERROOTand does
the following job on all files ending in.mixer :
Assume it works on a filexyz.mixer , which has to be a valid XML-file with top level element of type
mixer , having an attributetemplate . The value of this attribute has to be one of the template documents
(without any path). The referenced template document also has to be a valid XML-file and has therefore a
natural tree structure. Themixer starts with this tree and recursively walks through it, replacing the subtree
corresponding to the element<mixer part="main"/> by the tree defined byxyz.mixer . Directly
after the replacement this tree is walked through and only after that is done the walk through the first tree
continues.
During these walks various replacements of subtrees are done, which are explained in the following sections.
As described in section10.2for

”
part substitution“ other files with names likexyz.ABC are used, whereABC

is replaced by the name of the requested part.
There are possibilities to insert the value of a variable defined in the configuration database, to insert values
from the address database, to insert other parts or to insert the result of a user defined function.

4

After all these replacements, the resulting tree is written out as a valid XHTML document (provided the input
was correct) to the filexyz.html .
The mixer usually only works on those filesxyz.mixer which have a newer modification date than the
corresponding filexyz.html , unless the command line option-f for

”
force“ is used. In the latter case or if

any of the template documents is modified more recently, the complete site is rebuilt.

9 Template documents

Template documents play the role of a common frame for many web pages. They are typically ending in
.tmpl and can reside anywhere in the file tree below theMIXERROOT. Their format is easily described: A
template document must be a valid XHTML document, apart from certain additional elements of typemixer ,
which are replaced during the work of themixer as described below. However, to make sense, a template
document should adhere to the following conventions or rules:
A template document shouldnot contain aDOCTYPEdeclaration. This is inserted by themixer before
writing out the HTML-files. The reason for this is that with themixer elements itis not a valid XHTML
document and with theDOCTYPEdeclaration the XML parser within themixer would complain.
A template document must have an element of typetitle , however its content does not matter. This is a rule
from the XHTML standard.
A template document should contain an old style and a new style declaration of a style sheet, as follows (in
this order!):

<link href="/lib/default.css" type="text/css" rel="StyleSheet" />
<style type="text/css" media="screen">@import url(/lib/default.css);</style>

Note that the seemingly absolute links will be replaced by themixer as described in section10.6. Modern
browsers will read both declarations and the values in the second will take precedence over those in the first.
Netscape version 4.xx (and probably earlier) will not read the second. This is a way to deal with the inherently
broken implementation of cascading style sheets in netscape version 4.xx. If need be, one can easily specify a
different stylesheet for netscape 4.xx.
A template document should somewhere in the body contain an element<mixer part="main"/> . Other-
wise all pages referring to this template document will be equal and the main part is not included at all.
The template document used for a certain.mixer file is determined by thetemplate attribute of the top
level mixer element in the.mixer file. The attribute value should not contain a path but only a filename.
This file is searched from the position of the.mixer file upwards until theMIXERROOTand the first file
found with this name is taken. If no file is found themixer also searches inMIXERROOT/lib .

10 What replacements does themixer perform?

During its walk
”
through the tree“ (see section8), themixer replaces all elements of typemixer . Actually it

replaces the whole subtree below such an element. Therefore with respect to the final result it does not matter,
whether you write

<mixer part="main"/>
or

<mixer part="main">Here will be the main part.</mixer>
However since most browsers will ignore themixer tags that they do not know and display only the text

”
Here will be the main part.“, the second variant has an advantage: You can look at the template document

with a web browser and will see the place, where later the actual content will be placed. This hint of course
holds for all replacements described in the following sections.

10.1 Variable substitution

Any element of typemixer having an attributevar with valuex is replaced by the value of the variablex
in the configuration database.
Example:

5

<mixer var="a"/>

The configuration database is just the fileMIXERROOT/lib/config , which must be a Python script that
only sets some variables to string values. Note that variable assignment is done with= in Python and that
string values have to be enclosed in either single or double quotes. If you want to define string constants that
contain more than one line, you have to use either triple quotes. Some examples:

a = ’Max’
b = "Till"
c = ’’’Hi
there!’’’
d = """This even contains single quotes ’ and
multiple lines!"""

There is a special variable with nametoday which is replaced by the result of the C-library functionctime .
Note that of course this will give you the date of the time when themixer ran last!
Another special variable with nametimestamp is replaced with the output ofctime , called with the
modification time of the.mixer file of the main part.

10.2 Part substitution

Assume the mixer currently works on a filex.mixer in some directorydir .
Any element of typemixer having an attributepart is replaced by a full tree from another file. If the value
of thepart attribute ismain , the tree fromx.mixer is used. If the value istitle , a special case occurs,
which is described in the following section. For all other valuesy , the content of the filex.y in the directory
dir is taken.
If the file x.y does not exist, a warning is given out. This warning can be switched off by specifying an
additional attributeneeded="no" in themixer tag.
Example:

<mixer part="main"/>

Note that in all cases the inserted subtree is traversed recursively before the rest of the first tree.

10.3 Parsed variable substitution

Any element of typemixer having an attributeparsevar is replaced by a full tree from the variable that has
the name of the value of the attribute. That means that the (string) content of the variable is parsed (an XML
file header is prepended indicating ISO-8859-1 encoding and one pair of tags<mixer> and</mixer> is
put around the content of the variable). The resulting tree is then written out recursively, following the standard
rules.
Note that this of course can lead to infinite recursion, as variable substitution, part substitution, parsed variable
substitution, and all other substitutions are done recursively.

10.4 The title of a page

There is a special case of part substitution, which was already mentioned in the last section, namely if the
part attribute has the valuetitle . Very often the title of a page will occur not only in thetitle element
of the head of the page, but also in some heading in the main page. Therefore the following mechanism was
invented.
When the main part is read from a.mixer file, the top level of the corresponding tree is scanned for an
element of typetitle . If it is found, it is removed in this tree and stored separately. Its content is then placed
not only into thetitle element in the head of the page but also inserted at all places, where an element like
<mixer part="title"/> appears. Note that recursive replacement takes place within this title subtree,
such that for example variables can be used inside.

6

10.5 Style sheets

To configure the usage of different stylesheets conveniently some extra magic has been implemented in the
mixer . If the top level element of a.mixer file has an attributestyle , its value is placed into the new
style stylesheet declaration of typestyle in the head of the document. Likewise, the value of an attribute
oldstyle is placed into the old style stylesheet declaration of typelink (see section9).

10.6 Links

For all links in the trees a convenience procedure is performed. All values ofhref attributes are considered
to be links. In addition the value in the@import url(...); statement in thestyle element in the head
is also considered a link.
First a special form of variable substitution is performed: If the link contains constructs in double braces,
the text between the braces is taken as the name of a variable from the configuration database and the brace
expression is substituted by the value of the variable.
Afterwards the link is changed into a relative link in the following way:
If a link contains a colon, it remains untouched, because it is considered to be an external link, probably
containinghttp:// or a similar thing.
If a link does not start with a slash, it remains untouched, because it is considered to be an internal, relative
link

”
as is“.

If a link does not contain a colon and starts with a slash, it is considered to be an internal link, which should be
relative to the current position in the end. It is interpreted as a path relative to theMIXERROOTand is changed
to a relative link from the current position, usually by prepending a certain number of repetitions of

”
../ “ for

”
go one up“.

This last feature is convenient, because one can always refer to other documents via their
”
absolute“ path with

respect to theMIXERROOTand gets automatically relative links in the end.

10.7 User defined functions

If the mixer finds a construct like<mixer func="xyz"/> , it calls the functionxyz which must be
defined in the fileMIXERROOT/lib/funcs.py which is interpreted at startup time. This function gets five
arguments. The first is an absolute path name to theMIXERROOT, which ends in a slash. The second is a
path name leading from theMIXERROOTto the directory in which the current.mixer file resides. The third
argument is the name of the current.mixer document without the extension.mixer . The fourth argument
is the complete tree of the main part in the memory representation described below. The fifth argument is the
current subtree in the same form.
The function must return something which can be worked on by the

”
walking“ routines in themixer .

The return value can be a string. In this case it is just put at the place of themixer element. If it is a list,
all entries in the list are inserted instead of themixer element (and therefore are again subject to the same
requirements).
The return value also can be a full subtree in the memory representation of XML-trees within themixer .
This representation works as follows: An element is represented by an object in the classxmltree which is
defined in the modulemaxml. This class has four data entries:type is a string containing the name of the
element.attr is eitherNone or a Python dictionary containing the attributes of the object.subs is either
None for an empty element or a list of children. Those children can either be strings or subelements in the
form of objects in the classxmltree recursively.
Note the difference between the valueNone and an empty list: The first indicates that the element had only
one opening and closing tag like<element/> , the second indicates, that it has opening and closing tags, but
no children.
The last entry is calledmeta and contains meta data like source positions and is not used for further proces-
sing.
Note thatmixer elements with function calls need not be empty. User defined functions have access to the
subtree via the fifth argument.

7

10.8 Short form of call to user defined functions

As convenience for web site authors there is a short form to call user defined functions:

<mixer myfunc="Argg!"/>

If in an mixer element has exactly one attribute key and this is not among the predefined names described
in this section, themixer assumes that this attribute key (in the example above

”
myfunc “) is the name of a

user defined function, which is called as in the long form described in the last subsection.

11 The address database and its applications

The address database in the fileMIXERROOT/lib/addresses is of course again an XML-document.
It must consist of a single element of typeaddresses , which contains a sequence of elements of type
person . Those latter elements all have to have anid attribute for identification and may have any other
attributes. Standard attributes in use are:
name, formalname, title, department, university, building, street, city,
count, zipcode, country, www, email, fax, phone
If one uses the attributesameaddressas with the id of another person as value, the address information
of the other person is copied unless specified otherwise.
The information in the address database can be inserted into web pages by using elements like

<mixer person="xyz" data="abc"/>
wherexyz must be theid of a person in the database andabc must be an attribute specified for that person.
Note that some additional attributes are generated automatically, if the necessary data is available:

name_link for a link to the person’s web page which has his name as text of the
link.

name_link_email for the above link together with a clickable email address.
email_link for a

”
mailto:“ link with the email as visible text.

title_name for the full name with title.
address for the full address consisting of the following entries, if given:

department , university , building , street , county ,
city , zipcode , country .

contact the address as inaddress plus an email address, if given.
name_city the name and the city, if both are given, otherwise only the name.
name_link_city the name linked to the person’s web page, and the city, if both are given,

otherwise only the name.

12 Automatic generation of site navigation

The current distribution of themixer contains a sample implementation of navigation generating functions
in MIXERROOT/lib/funcs.py . In this approach one assumes that the whole site has a

”
spanning tree“,

which is mirrored in the file system tree. Every node in this tree corresponds to web page. Every internal node
(i.e. not a leaf) corresponds to a directory in the file system and every leaf corresponds to a page within the
directory of the parent node.
This tree is configured by putting a file with the nametree in each directory within the web site. Such a
tree file must be a valid XML-file with one top element of typenode , that has an attributefile which
contains the name of the web page corresponding to the node of the tree belonging to this directory. The top
element contains a sequence of elements of typeentry which declare the children in the tree. Note that the
order of the entries matters for navigation purposes. Eachentry node has an attributefile , the value of
which refers to either a subdirectory (if the child is not a leaf) or to a file in the current directory (if the child
is a leaf). The content of theentry element is the text that should appear in the navigation tools.
These are the two functions which generate such navigation tools:

8

<mixer func="maketop"/> for a function producing a top line with links to the child-
ren of the root node

<mixer func="makeleft"/> for a function producing a vertical bar visualizing the cur-
rent position in the tree by displaying the current path and
the nodes in the vicinity. The idea is that of a bar appearing
to the left of the main content by using a table.

9

	Introduction and Basic Idea
	Learning by example
	If you are in a hurry
	Notation
	Installation of the mixer
	First steps for a new web site
	Finding the MIXERROOT
	How does the mixer put together web pages?
	Template documents
	What replacements does the mixer perform?
	Variable substitution
	Part substitution
	Parsed variable substitution
	The title of a page
	Style sheets
	Links
	User defined functions
	Short form of call to user defined functions

	The address database and its applications
	Automatic generation of site navigation

