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ABSTRACT. We prove that the minimal base size for the permutation action
of the sporadic simple Baby monster group B on the cosets of its 7th and 8th
maximal subgroup (in decreasing order of size) is 3 and 2 respectively. Motivated
by the large sizes of these permutation actions, we develop new computational
methods to prove that an orbit is regular and to show that two orbits are disjoint.

1. INTRODUCTION

Let G be a permutation group acting on a set X; we say that B ⊆ X is a base
forG if the pointwise stabiliser ofB inG is trivial. The elements ofG are uniquely
determined by their action on B. Bases are critical to the computational study of
finite permutation groups; see, for example, [HEO05, Chapter 4].

Base sizes for almost simple primitive permutation groups have been much stud-
ied in recent years. One motivation is a conjecture of Cameron and Kantor [CK93]
bounding the minimal base size in non-standard actions. IfG is a finite almost sim-
ple group with socle G0 then a primitive G-set X is standard if either G0 = An

and X is an orbit of subsets or partitions of {1, . . . , n}, or G is a classical group in
a subspace action (namely, X is an orbit of subspaces of the natural G-module, or
pairs of subspaces of complementary dimension). We write b(G) for the minimal
size of a base for a permutation group G. Cameron and Kantor conjectured that
there is an absolute constant c such that b(G) ≤ c for every almost simple group G
in a faithful primitive non-standard action. The conjecture was proved by Liebeck
and Shalev [LS99] using probabilistic methods based on fixed point ratio estimates.
Subsequent work (see [Bur07, BLS09] for example) provides explicit values of c,
in particular proving that b(G) ≤ 7 for every finite almost simple group.

In [BOW10] we used a combination of the probabilistic approach introduced
in [LS99] and various computational and character-theoretic techniques to obtain
precise base sizes for primitive actions of all almost simple sporadic groups with
just two exceptions: the action of the sporadic simple Baby monster groupB on its
7th and 8th maximal subgroups (in decreasing order of size). Throughout we use
ATLAS notation [CCN+85]. Recall that

|B| = 4154 781 481 226 426 191 177 580 544 000 000 ≈ 4 · 1033.

Date: May 24, 2011.
Key words and phrases. Babymonster, orbit invariants, non-standard action, base size.
We acknowledge the support of the Marsden Fund of New Zealand via grant UOA 1015 and thank

Tim Burness for helpful comments.
1
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The 7th maximal subgroup M7 has structure 22+10+20.(M22 : 2× S3) and

|M7| = 22 858 846 741 463 040 ≈ 22 · 1015.
Thus the action of B on the right cosets of M7 is on 181 758 140 654 146 875 ≈
181 · 1015 points. The 8th maximal subgroup M8 has structure [230].L5(2) and

|M8| = 10 736 731 045 232 640 ≈ 10 · 1015.
Thus the action of B on the right cosets of M8 is on 386 968 944 618 506 250 ≈
386 · 1015 points.

Our methods in [BOW10] established that in each case b(G) ≤ 3. We now
obtain precise results.

Theorem 1. Let G be the sporadic simple Baby monster group B acting on a
faithful primitive G-set with point stabiliser H . If H = 22+10+20.(M22 : 2× S3),
then b(G) = 3. If H = [230].L5(2), then b(G) = 2.

A critical component in the proof of this theorem is the orbit algorithm using a
chain of helper subgroups described by Müller, Neunhöffer and Wilson [MNW07].
We summarise the algorithm in Section 2. However, it alone is insufficient, and
some improvements are needed, as described below. One reason is the degree
of the permutation representation, now on approximately 1017 points rather than
the 1015 considered in [MNW07]. Another is the unavailability of useful helper
subgroups.

We expect that these methods will be useful in other cases where large permu-
tation representations are studied. For example, it is reasonable to expect that one
can soon study the permutation representation of the Monster on its approximately
1020 transpositions.

2. ENUMERATING LARGE ORBITS – A SUMMARY

Let G be a group acting from the right on a set X . We denote the action of
g ∈ G on x ∈ X by x·g, and x·G is the G-orbit in X containing x.

The key idea of [MNW07] is the following: instead of enumerating a G-orbit
x·G directly, choose a helper subgroup U < G and enumerate only the set of
U -suborbits {y·U | y ∈ x·G}.

To achieve a reduction in space, we must store y·U more efficiently than simply
recording all of its points. Instead, we use an explicitly computable homomorphism
of U -sets π : X → Y ; namely, U acts on Y and π(x·u) = π(x)·u for all x ∈ X
and all u ∈ U . We enumerate and store all U -orbits in Y completely, choose one
point in each U -orbit of Y (under a fixed ordering), and call it U -minimal. We
extend the concept of U -minimality to X: namely, z ∈ X is U -minimal if π(z) is.

We store a U -orbit z·U by storing only the set of U -minimal points contained
in it, usually a much smaller set than z·U . Given w ∈ z·U , we use our stored
information about π(w) and π(w)·U to find a U -minimal point in w·U .

Müller et al. [MNW07] develop these ideas to decide quickly whether or not a
given z ∈ X lies in a known U -orbit or is in a new orbit. They use a chain of helper
subgroupsU1 < U2 < · · · < Uk < G to storeUk-suborbits, while ensuring that the
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memory needed for precomputed data is determined by |U1|+[U2 : U1]+· · ·+[Uk :
Uk−1] rather than |Uk|.

If we can select effective helper subgroups and homomorphisms, then this me-
thod to enumerate x·G may save about a factor of |Uk| in both memory usage
and running time. Choosing such remains an art, since we often face conflicting
demands. As one example, if the index of StabU (x) in StabU (π(x)) is large, then
some U -orbits in X may contain many U -minimal points; now the space saving is
reduced, since we must store all U -minimal points.

3. ORBIT INVARIANTS

A crucial step in our proof is to determine, given two points in a G-set, whether
they are in the same G-orbit. Depending on the context, G may be either the group
or a helper subgroup. Since the enumeration of a G-orbit is hard, we want to avoid
enumerating the same orbit twice. Thus, in this section, we develop a criterion to
prove that two points in a G-set are not contained in the same G-orbit. The basic
problem is: given just one point in an orbit, find an orbit invariant which is not too
time-consuming to compute.

Definition 2. Let G be a group acting from the right on a set X . A function
f : X → Y for some set Y is a G-orbit invariant if f(x) = f(x·g) for all x ∈ X
and all g ∈ G.

Clearly, if f(x) 6= f(y) for x, y ∈ X , then x·G 6= y·G. We omit the routine proofs
of the next three propositions.

Proposition 3 (A generic G-orbit invariant). Let G act on a set X and let m :
X → Y be a homomorphism of G-sets. Let n be the number of G-orbits in Y and⋃n

i=1Oi be the decomposition of Y into its G-orbits. Then

f : X → {1, 2, . . . , n}, x 7→ i if m(x) ∈ Oi

is a G-orbit invariant.

Of course, if all G-orbits in Y have length one, then m is a G-orbit invariant.

We now describe more explicitly how to compute such invariants in the context
of matrix group actions, where a typical G-set homomorphism is given by a G-
linear map onto a quotient G-module. Let G ≤ GLd(Fq) where Fq is a finite field
of size q, and let V := F1×d

q be the natural (right) module. Let H < G and let W
be a submodule of the restricted module V |H .

Proposition 4 (A G-orbit invariant for matrix groups). With the above notation,
the natural projection m : V → V/W is an H-set homomorphism where H acts
on V/W by (v +W )·h := v·h+W . If V/W =

⋃n
i=1Oi is the decomposition of

V/W into its H-orbits, then

f : V → {1, 2, . . . , n}, x 7→ i if h(x) ∈ Oi

is an H-orbit invariant.
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If the action of H on V/W is trivial (all cosets fixed by all elements of H), then
m is an H-orbit invariant. Observe that the action of H on V/W is in fact linear:

(λ(v +W ) + (w +W ))·h = λ((v +W )·h) + (w +W )·h,

for every v, w ∈ V and λ ∈ Fq. This is important later when we act on subspaces.
Let V be a vector space. We denote by Pk(V ) the set of k-dimensional sub-

spaces of V and by P≤k(V ) the set of subspaces of V of dimension at most k.
Let G ≤ GLd(Fq) and let Z := G∩ (Fq · 1) be the subgroup of G consisting of

scalar multiples of the identity. Let G̃ := G/Z so G̃ ≤ PGLd(Fq). Let V := F1×d
q

be the natural (right) module for G, let H < G and let W be a submodule of the
restricted module V |H . Now set H̃ := (HZ)/Z ≤ G̃.

Proposition 5 (G-orbit invariants for projective groups and actions). The natural
projection m : V → V/W induces maps mk : Pk(V ) → P≤k(V/W ) defined by
mk(M) := (M +W )/W for M ∈ Pk(V ) and 1 ≤ k ≤ d. The maps mk are
both H-set homomorphisms and H̃-set homomorphisms. Thus, if P≤k(V/W ) =⋃n

i=1Oi is the decomposition of P≤k(V/W ) into its H-orbits, then

fk : Pk(V )→ {1, 2, . . . , n},M 7→ i if mk(M) ∈ Oi

is both an H-orbit invariant and an H̃-orbit invariant.

Thus far, our invariants are already implicit in [MNW07]. We now introduce a
new invariant. In particular, the following proposition yields a method to derive
G-orbit invariants from an H-orbit invariant for H < G using a left transversal.

Proposition 6 (Upgrading orbit invariants). Let G act on a set X , let H < G
and let f : X → Y be an H-orbit invariant. Let k := [G : H] be finite and let
t1, t2, . . . , tk be a left transversal of H in G; namely, G =

⋃k
i=1 tiH is a disjoint

union. Then f̃ : X → P(Y ) (where P(Y ) denotes the set of subsets of Y ) with

f̃(x) := {f(x·ti) | 1 ≤ i ≤ k}

is a G-orbit invariant.

Proof. If g ∈ G, then x·G = (x·g)·G. Since f is anH-orbit invariant, it is constant
on H-orbits and thus

f̃(x) = {f(x·ti) | 1 ≤ i ≤ k} = f(x·G) = f((x·g)·G)
= {f(x·(gti)) | 1 ≤ i ≤ k} = f̃(x·g). �

Remark 7. In Proposition 6 we can replace the set

{f(x·ti) | 1 ≤ i ≤ k}

by the multiset of the values f(x·ti) for 1 ≤ i ≤ k to get a (slightly) finer invariant
(namely, we count the multiplicities of the values). We cannot use the k-tuple
(f(x·ti))1≤i≤k of values since this in general differs for two points x and x·g.
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We now apply these orbit invariants to obtain a method to deduce that a G-orbit
is regular. The fundamental idea is to choose a suitable helper subgroup H , and
show that H has (at least) [G : H] orbits, at least one of which is regular. The orbit
invariant is used to show that the H-orbits are distinct.

Proposition 8 (Using an orbit invariant to prove regularity). Let a group G act on
a set X and let x ∈ X . Let H < G be such that |x·H| = |H|. Let k := [G : H]
be finite and let s1, s2, . . . , sk be a left transversal of H in G with s1 = 1 and let
f : X → Y be an H-orbit invariant. If f(x) 6= f(x·si) for all 2 ≤ i ≤ k, then x·G
is regular.

Proof. Let S := StabG(x). By assumption S ∩ H = {1}. If 1 6= g ∈ S then
g = sih for some i > 1 and some h ∈ H . Thus x = x·g = x·(sih) and so
x·H = (x·si)·H . Since f is an H-orbit invariant, f(x) = f(x·si). �

Hence to prove x·G regular, we verify that x·H is regular and then compare all
values f(x·si) to f(x). In practice, we use two particular orbit invariants. One is
the trivial H-orbit invariant consisting of the H-orbit itself: this is used when the
orbit has been explicitly enumerated. The other is the helper subgroup invariant
described in Proposition 6.

4. B ACTING ON THE COSETS OF ITS 7TH MAXIMAL SUBGROUP

This was the more difficult of the two cases, requiring the full power of our new
techniques. We want to find the smallest base size for the action of B on the right
cosets of M7. We prove that this B-orbit does not contain a regular M7-suborbit
but one with point stabiliser of order 2. Thus the smallest base size is 3.

The smallest non-trivial simple module V of B has dimension 4370 over F2.
Representing matrices for standard generators [Wil96] of B can be downloaded
from [Wil99], as can words in these standard generators to construct generators
for M7. The action of B on the cosets of M7 can be constructed as follows. The
restriction of V to M7 is reducible and the socle 〈v〉 is 1-dimensional. Since M7

is maximal in B, the B-orbit v·B (acting on vectors of V ) has point stabiliser M7,
and thus implements the action of B on the cosets of M7.

To prove that the B-orbit with approximately 181 · 1015 points does not contain
a regular M7-suborbit, we compute the lengths of enough shorter M7-suborbits
in v·B to exclude a regular M7-suborbit. Since M7 has approximately 22 · 1015
elements, we must show that approximately 159 · 1015 points of v·B lie in shorter
orbits.

We first deduce that v·B contains 432M7-suborbits by considering the ordinary
character tables ofB andM7, both available in the Character Table Library of GAP
[GAP08]. The number of M7-suborbits is the scalar product of the permutation
character 1BM7

with itself. Of course, these orbits may (and do) vary significantly
in size.

We use random sampling to find different M7-suborbits in v·B. We first create
2000 random points in v·B, by using the product replacement algorithm [CLGM+95]
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to generate random g ∈ B and then computing v·g. (We use 300 product replace-
ment steps for each random element to obtain sufficiently uniformly distributed
random points; experiments with just 100 steps displayed too much statistical bias
to be useful.) If these 2000 seed vectors are distributed in the M7-suborbits of v·B
according to their orbit lengths, then we expect to find, with high probability, large
suborbits among them.

In the interests of efficiency, we do most of the computations not in the 4370-
dimensional M7-module, but in a smaller quotient module Q. This results in some
loss of information, and we must chooseQ to minimise this loss. We observe, using
the MEATAXE (see [HEO05, Chapter 7] for example) that V |M7 is a reducible
module which has a 356-dimensional quotient Q := V/W and the linear action
of M7 on the quotient is faithful. As in Proposition 4, the canonical map m is
an M7-set homomorphism. Under this map, the image of an orbit is an orbit and
it follows that the size of the original orbit is a multiple of the size of the image
orbit, since the point stabiliser of v ∈ V is a subgroup of the point stabiliser of
m(v) ∈ Q. That is, we can enumerate M7-suborbits on vectors of length 356
and first determine their lengths and point stabilisers. Expressing generators of the
point stabilisers as straight-line programs [HEO05, p. 64] in the generators allows
us to compute the point stabilisers in their 4370-dimensional representation. Since
the point stabilisers are small, we can then easily determine the exact stabiliser
on the vectors of length 4370. In most cases the stabilisers in M7 of v and m(v)
coincide.

We first use a helper subgroup orbit-invariant to try to distinguish the M7-
suborbits of our 2000 seed vectors. We choose a subgroup A < M7 of index
6144 such that Q|A has a 24-dimensional quotient R. Enumerating all A-orbits
in R provides us with an A-orbit invariant f using Proposition 4. Using a left
transversal of A in M7 upgrades this to an M7-suborbit invariant f̃ , which takes
39 different values on the 2000 seed vectors in v·B. Two vectors taking different
values are guaranteed to lie in different M7-suborbits.

For the rest of the computation we employ the methods of [MNW07]. As a
requisite, we must carefully choose and construct a suitable chain of helper sub-
groups. Here, we use 3 helper subgroups U < H < K < M7 with structures
U = M22, H = 210.M22 and K = 21+20.M22 of orders 443 520 and 454 164 480
and 930 128 855 040 respectively. If two or more M7-suborbits have the same in-
variant, then we enumerate them by using K-suborbits.

In practice, we enumerate only 51% of each orbit and also compute the point
stabiliser of the seed vector. This saves about half the memory for each orbit and
much time: near the end of an orbit enumeration much time is spent producing
known points. Since we know |M7|, it suffices to enumerate just over half of an
M7-suborbit O to determine its length.

Once we learn the length of an orbit O, we can determine which other seed
vectors lie in O by acting on a seed vector with 40 random elements of M7. If a
seed vector lies in O, then with very high probability at least one of the 40 images
will lie in the half of the orbit we have enumerated. To prove disjointness of two
M7-suborbits O1 and O2 of the same size and the same invariant, we look up all
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stored K-suborbit representatives of O2 in the list of stored K-minimal points for
O1. Since we have enumerated more than half of each orbit, if O1 is equal to O2,
then at least one K-suborbit must be contained in both enumerated halves.

We make one additional modification to the methods of [MNW07]: we use a
randomised approach to compute elements of the stabiliser, since using Schreier
generators is too costly. During the orbit enumeration, we produce random ele-
ments of M7 and act with them on the seed vector. When we hit a known K-
suborbit, we can construct a random element of the stabiliser, and usually generate
it with a few such elements. As we enumerate more of the orbit, the probability of
a hit increases and so the stabiliser is computed rapidly.

The entire computation was lengthy. For some M7-suborbits the methods from
[MNW07] do not work with our set of helper subgroups. The most difficult was
orbit invariant number 25, where we eventually found 14 M7-suborbits using a
GAP session with 207 GB of main memory and 6 071 minutes of CPU time. We
abandoned at least one other M7-suborbit with the same invariant to avoid running
out of memory. The calculations were run on a machine with an 8 core Intel Xeon
CPU E7520 running at 1.87 GHz and 256 GB of main memory.

Table 1 contains information about the M7-suborbits we found. Each row de-
scribes one suborbit: the first entry is the value of the orbit invariant (simply num-
bered 1 to 39), the second is the length of the orbit, the third is the order of the point
stabiliser in the 4370-dimensional representation, the fourth is the order of the point
stabiliser in the 356-dimensional representation, and the fifth is the number of seed
vectors which lie in the suborbit. We could only enumerate M7-suborbits for 35 of
the 39 orbit invariant values.

In total these 113 suborbits account for 174 882 083 221 536 768 points, so the
rest of v·B cannot contain a regular M7-suborbit. Since two of the M7-suborbits
have stabiliser order 2, the minimal base size is 3.

Inv Length Stab(4370) Stab(356) Samples
1 1 904 903 895 121 920 12 12 22
1 5 714 711 685 365 760 4 4 69
1 5 714 711 685 365 760 4 4 64
1 1 142 942 337 073 152 20 20 11
1 5 714 711 685 365 760 4 4 73
1 2 857 355 842 682 880 8 8 34
1 1 904 903 895 121 920 12 12 21
1 79 370 995 630 080 288 288 1
2 5 714 711 685 365 760 4 4 54
2 714 338 960 670 720 32 32 10
2 1 428 677 921 341 440 16 16 17
2 952 451 947 560 960 24 24 7
2 1 428 677 921 341 440 16 16 16
2 1 428 677 921 341 440 16 16 16
2 1 428 677 921 341 440 16 16 18
2 1 428 677 921 341 440 16 16 17
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2 1 428 677 921 341 440 16 16 14
2 178 584 740 167 680 128 128 2
2 158 741 991 260 160 144 144 1
3 11 429 423 370 731 520 2 2 131
3 5 714 711 685 365 760 4 4 51
3 1 904 903 895 121 920 12 12 25
3 5 714 711 685 365 760 4 4 56
3 5 714 711 685 365 760 4 4 64
3 1 904 903 895 121 920 12 12 27
4 1 428 677 921 341 440 16 16 12
4 5 714 711 685 365 760 4 4 70
4 1 428 677 921 341 440 16 16 18
4 714 338 960 670 720 32 32 10
4 714 338 960 670 720 32 32 5
5 1 428 677 921 341 440 16 32 20
5 357 169 480 335 360 64 128 3
6 5 714 711 685 365 760 4 4 64
6 11 429 423 370 731 520 2 2 135
7 1 428 677 921 341 440 16 32 11
7 357 169 480 335 360 64 256 7
7 714 338 960 670 720 32 64 6
8 952 451 947 560 960 24 48 6
9 952 451 947 560 960 24 24 8
9 952 451 947 560 960 24 24 12
9 3 809 807 790 243 840 6 6 33
9 1 428 677 921 341 440 16 16 13
9 714 338 960 670 720 32 32 14
9 714 338 960 670 720 32 32 7
9 476 225 973 780 480 48 48 9
9 952 451 947 560 960 24 24 8
9 476 225 973 780 480 48 48 3
9 714 338 960 670 720 32 32 2
9 190 490 389 512 192 120 120 1

10 5 714 711 685 365 760 4 4 73
10 2 857 355 842 682 880 8 8 29
10 476 225 973 780 480 48 48 4
11 5 714 711 685 365 760 4 4 67
12 357 169 480 335 360 64 128 5
12 119 056 493 445 120 192 384 2
12 357 169 480 335 360 64 128 3
12 952 451 947 560 960 24 48 11
12 1 428 677 921 341 440 16 32 13
12 1 428 677 921 341 440 16 32 15
12 1 428 677 921 341 440 16 32 17
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12 357 169 480 335 360 64 128 2
12 119 056 493 445 120 192 1536 2
12 714 338 960 670 720 32 64 5
12 714 338 960 670 720 32 64 8
12 357 169 480 335 360 64 128 3
12 1 428 677 921 341 440 16 32 16
12 357 169 480 335 360 64 512 7
13 1 904 903 895 121 920 12 12 31
14 1 428 677 921 341 440 16 32 21
15 952 451 947 560 960 24 48 11
15 1 428 677 921 341 440 16 32 14
15 1 428 677 921 341 440 16 32 14
15 95 245 194 756 096 240 480 2
16 1 428 677 921 341 440 16 16 15
16 1 428 677 921 341 440 16 16 16
16 476 225 973 780 480 48 48 5
17 1 428 677 921 341 440 16 16 16
17 714 338 960 670 720 32 32 9
18 2 857 355 842 682 880 8 8 27
19 1 428 677 921 341 440 16 16 16
19 714 338 960 670 720 32 32 9
19 476 225 973 780 480 48 48 3
20 1 428 677 921 341 440 16 16 15
21 357 169 480 335 360 64 64 2
21 178 584 740 167 680 128 128 1
22 714 338 960 670 720 32 32 8
22 29 764 123 361 280 768 1536 2
22 89 292 370 083 840 256 512 2
22 357 169 480 335 360 64 128 5
22 357 169 480 335 360 64 64 2
22 714 338 960 670 720 32 32 7
22 178 584 740 167 680 128 256 3
22 178 584 740 167 680 128 256 1
23 476 225 973 780 480 48 48 5
23 357 169 480 335 360 64 64 5
23 476 225 973 780 480 48 48 9
24 476 225 973 780 480 48 48 6
25 357 169 480 335 360 64 64 2
25 1 904 903 895 121 920 12 12 21
26 357 169 480 335 360 64 128 8
27 357 169 480 335 360 64 128 6
27 238 112 986 890 240 96 384 2
27 119 056 493 445 120 192 384 2
27 357 169 480 335 360 64 128 1
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27 178 584 740 167 680 128 256 1
28 357 169 480 335 360 64 128 3
29 714 338 960 670 720 32 32 6
30 357 169 480 335 360 64 128 5
31 1 428 677 921 341 440 16 16 16
32 357 169 480 335 360 64 64 1
33 119 056 493 445 120 192 192 1
34 476 225 973 780 480 48 48 7
35 285 735 584 268 288 80 160 2

Table 1: Known orbit information for the action of B on M7

5. B ACTING ON THE COSETS OF ITS 8TH MAXIMAL SUBGROUP

We want to find the smallest base size for the action of B on the right cosets
of M8. We prove that this B-orbit contains a regular M8-suborbit and thus the
smallest base size is 2. This is easier than the M7 case, since we only need to
enumerate one M8-suborbit. We prove this orbit is regular using our new orbit
invariant and Proposition 8.

As before, representing matrices for standard generators of B can be down-
loaded from [Wil99], as can words in these standard generators to construct gener-
ators for M8. The action of B on the cosets of M8 can be constructed as follows.
The restriction of V to M8 is reducible and the socle S is 10-dimensional. Since
M8 is maximal in B, the B-orbit S·B (acting on 10-dimensional subspaces of V )
has point stabiliser M8, and thus implements the action of B on the cosets of M8.

Recall that M ∈ Fk×d is in full echelon form if there are indices 1 ≤ i1 < i2 <
· · · < ik ≤ d such that Ml,ij = δl,j for 1 ≤ j ≤ k and 1 ≤ l ≤ k and Mj,l = 0 for
1 ≤ j ≤ k and l < ij . We store a 10-dimensional subspace U as a (10 × 4370)-
matrix M in full echelon form, so the 10 rows form a uniquely determined basis
for U . The action of g ∈ B on U is determined by first calculating the matrix
product Mg and then computing its full echelon form.

To find a point in a regular M8-suborbit, we use random methods. If the B-
orbit contains a regular M8-suborbit, then of course the latter contains |M8| of the
[B :M8] points. Hence, if we choose a (nearly) uniformly distributed random point
in S·B, the probability is about 10/387 to hit any particular regular M8-suborbit.
Our methods described below prove that we found it, or fail if the point lies in a
shorter M8-suborbit. In fact, it is likely that there are several regular orbits, so that
the probability of success will be much greater than this. We produce a random
point in S·B by constructing the image of a point under a random element of B.
Again, we use the product replacement algorithm to construct random elements.

We need one more improvement since (10×4370)-matrices still need too much
memory and too much time to act on. We observe, using the MEATAXE, that
V |M8 is a reducible module which has a 215-dimensional quotient Q := V/W .
As in Proposition 5, M8 acts on Q and the canonical map m induces a map m10 :
P10(V ) → P≤10(Q) which is an M8-set homomorphism. Under this map, the
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image of an orbit is an orbit; if the image orbit is M8-regular, then the original
orbit is also M8-regular.

It remains to prove for some 10-dimensional subspace x of Q that x·M8 is regu-
lar. To achieve this, we use the techniques from Section 3, especially Proposition 8.
Our choice of helper subgroups is somewhat restricted by the structure of M8. The
largest helper subgroup in the chain needs to map to a large proper subgroup of the
quotient L5(2). We choose 24.A8 as the proper subgroup of this quotient, and a
suitable subgroupH of index 26 ·31 = 1984 inM8. We then choose a normal sub-
group U of H as the next helper subgroup, in order to compute U -orbit invariants
easily. In more detail, we choose our chain of helper subgroups 1 < U / H < M8

such that:

• U has order 16 777 216 and structure 25+19. Since |U | is small, we can
compute x·U using a standard orbit algorithm [HEO05, Chapter 4] and so
establish that x·U is regular.
• Q|U has a 19-dimensional quotient on which U acts trivially. Thus we

can explicitly compute all the H-orbits on the 219 vectors of this quotient
space.
• The structure of H is [228].A8, so [H : U ] = 322 560 and we can compute

a left transversal (si)1≤i≤322560 of U in H . Thus we obtain a U -orbit
invariant f using Proposition 5.
• [M8 : H] = 1 984 and we can compute a left transversal (ti)1≤i≤1984 of
H in M8. This allows us to use Proposition 6 to upgrade f to an H-orbit
invariant f̃ . Indeed, we apply Remark 7, using multisets to get a finer
invariant.

Now we apply Proposition 8 (with the trivial U -orbit invariant) to prove that x·H is
regular. Finally, the left transversal (ti)1≤i≤1984 together with theH-orbit invariant
f̃ allows us to use Proposition 8 again to prove that x·G is regular. We compute
orbit invariants using multisets. As soon as we find a value f(x·(tisj)) which does
not occur in the multiset f̃(x), we deduce that f̃(x·ti) 6= f̃(x).

Both computation time and memory usage is dominated by the enumeration of
the regular U -orbit of length 224. Since the points are 10-dimensional subspaces
of a 215-dimensional space, each point needs about 760 bytes; the total memory
requirement for the orbit x·U is about 15.2 GB. This enumeration took about 1122
minutes using GAP on a machine with a 16 core Intel Xeon CPU E7330 running
at 2.40 GHz and 128 GB of main memory. The rest of the computation took only
71 seconds.
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