Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The proble

Randomised algorithm
Constructive recognition

Reduction

Homomorphisms

Computing the kernel Recursion: compositio

trees

subspace

Finding reductio

Solution for leaves

Classifications

Varification

Matrix group recognition

Max Neunhöffer

University of St Andrews

Aberdeen, 11.10.2007

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition

The problem

Complexity theory Randomised algorithm Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant

Finding reducti

Solution for leave Classifications

Recognition of the grou Standard generators

Verification

Matrix groups . . .

Let \mathbb{F}_q be the field with q elements and

$$\operatorname{GL}_n(\mathbb{F}_q) := \{ M \in \mathbb{F}_q^{n \times n} \mid M \text{ invertible} \}$$

Given: $M_1, \ldots, M_k \in \operatorname{GL}_n(\mathbb{F}_q)$

Then the M_i generate a group $G \leq GL_n(\mathbb{F}_q)$.

It is finite, we have $|GL_n(\mathbb{F}_q)| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

What do we want to determine about G?

- The group order |G|
- Membership test: Is $M \in GL_n(\mathbb{F}_q)$ in G?
- Homomorphisms $\varphi : G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups
- (Maximal) subgroups?
- . . .

Introduction

Matrix groups
Constructive recognitio

The problem

Complexity theory
Randomised algorithm
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant

Solution for leave

Classifications
Recognition of the groups
Standard generators

Verification

Permutation groups and matrix groups

Let $n \in \mathbb{N}$ and S_n be the symmetric group:

$$S_n = \{\pi : \{1, \dots, n\} \rightarrow \{1, \dots, n\} \mid \pi \text{ bijective}\}.$$

Given: $\pi_1, \ldots, \pi_k \in S_n$

Then the π_i generate a group $G \leq S_n$.

It is finite, we have $|S_n| = n!$

Let \mathbb{F}_q be the field with q elements and

$$GL_n(\mathbb{F}_q) := \{ M \in \mathbb{F}_q^{n \times n} \mid M \text{ invertible} \}$$

Given: $M_1, \ldots, M_k \in \operatorname{GL}_n(\mathbb{F}_q)$

Then the M_i generate a group $G \leq GL_n(\mathbb{F}_q)$.

It is finite, we have $|GL_n(\mathbb{F}_q)| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory Randomised algorithm Constructive recogniti Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees

subspace Finding reduct

Finding reduction

Classifications
Recognition of the groups

Verification

Permutation groups

Let $n \in \mathbb{N}$ and S_n be the symmetric group:

$$S_n = \{\pi : \{1, ..., n\} \rightarrow \{1, ..., n\} \mid \pi \text{ bijective}\}.$$

Given: $\pi_1, \ldots, \pi_k \in S_n$

Then the π_i generate a group $G \leq S_n$.

It is finite, we have $|S_n| = n!$.

We can determine about G algorithmically (e.g.):

- The group order |G|
- Membership test: Is $M \in S_n$ in G?
- Homomorphisms $\varphi : G \rightarrow H$?
- Kernels of homomorphisms? Is *G* simple?
- Comparison with known groups
- (Maximal) subgroups?
- . . .

Constructive recognition

The problem

Reduction

Constructive recognition — first formulation

Problem

Let \mathbb{F}_q be the field with q elements and

$$M_1,\ldots,M_k\in \mathrm{GL}_n(\mathbb{F}_q).$$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order |G| and
- an algorithm that, given $M \in GL_n(\mathbb{F}_q)$,
 - decides, whether or not $M \in G$ and
 - if so, expresses M as word in the M_i .

If this problem is solved, we call

 $\langle M_1, \ldots, M_k \rangle$ recognised constructively.

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant
subspace

Solution for leave

Recognition of the group Standard generators

Verification

Complexity of algorithms

To measure the efficiency of an algorithm, we consider a class \mathcal{P} of problems, that the algorithm can solve.

We assign to each $P \in \mathcal{P}$ its size g(P),

and prove an upper bound for the runtime L(P) of the algorithm for P:

$$L(P) \leq f(g(P))$$

for some function *f*.

The growth rate of *f* measures the complexity.

Example (Constructive matrix group recognition)

- Problem given by $M_1, \ldots, M_k \in \mathrm{GL}_n(\mathbb{F}_q)$.
- Size determined by n, k and log q.
- Runtime should be \leq a polynomial in n, k and $\log q$.

Introduction

Matrix groups

Constructive recognition

The problem

Randomised algorithms
Constructive recognition
Troubles

Reduction

Computing the kernel
Recursion: composition
trees
Example: invariant

subspace Finding reduction

Solution for leaves
Classifications

Recognition of the grou Standard generators

Verification

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ .

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it fails is at most ϵ .

Example: Comp. of |G|=4089470473293004800 for permutation group $G=\langle \pi_1,\pi_2\rangle$ (n=137632): deterministic alg.: 112s Monte Carlo $\epsilon=1\%$: 6s

Saving: 95% of runtime

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Computing the kernel
Recursion: composition
trees
Example: invariant

Finding reduction

Solution for leaves
Classifications
Recognition of the groups

Varification

Constructive recognition

Problem

Let \mathbb{F}_q be the field with q elements und

$$M_1,\ldots,M_k\in\mathrm{GL}_n(\mathbb{F}_q).$$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order |G| and
- an algorithm that, given $M \in \mathrm{GL}_n(\mathbb{F}_q)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses M as word in the M_i.
- The runtime should be bounded from above by a polynomial in n, k and log q.
- A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call $\langle M_1, \ldots, M_k \rangle$ recognised constructively.

Introduction

Matrix groups

Constructive recognitio

The problem

Complexity theory
Randomised algorithm
Constructive recognitio
Troubles

Reduction

Computing the kernel
Recursion: composition
trees
Example: invariant

Finding reduction

Solution for leave

Classifications
Recognition of the groups
Standard generators

\/avifiaatia

Troubles

The discrete logarithm problem

If $M_1 = [z] \in \mathbb{F}_q^{1 \times 1}$ with z a primitive root of \mathbb{F}_q . Then:

Given
$$0 \neq [x] \in \mathbb{F}_q^{1 \times 1}$$
, find $i \in \mathbb{N}$ such that $[x] = [z]^i$.

There is no solution in polynomial time in log q known!

Integer factorisation

Some methods need a factorisation of $q^i - 1$ for an $i \le n$.

There is no solution in polynomial time in log *q* known!

In practice q is small \Rightarrow no problem. We ignore both!

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees
Example: invariant

Finding reduc

Solution for leave

Classifications
Recognition of the groups
Standard generators

Verification

What is a reduction?

Let
$$G := \langle M_1, \ldots, M_k \rangle \leq \operatorname{GL}_n(\mathbb{F}_q)$$
.

A reduction is a group homomorphism

$$\varphi: G \to H$$
 $M_i \mapsto P_i$ for all i

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$
- φ is surjective: $H = \langle P_1, \dots, P_k \rangle$
- H is in some sense "smaller"
- or at least "easier to recognise constructively"
- e.g. $H \leq S_m$ or $H \leq \operatorname{GL}_{n'}(\mathbb{F}_{q'})$ with $n' \log q' < n \log q$

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recogniti
Troubles

Reduction

Computing the kernel
Recursion: composition trees

Example: invariant subspace

Finding reduction

Classifications
Recognition of the groups

Jarification

Computing the kernel

Let $\varphi: G \to H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :

- **1** Generate a (pseudo-) random element $M \in G$,
- **2** map it with φ onto $\varphi(M) \in H = \langle P_1, \dots, P_k \rangle$,
- **3** express $\varphi(M)$ as word in the P_i ,
- \bullet evaluate the same word in the M_i ,
- **5** get element $M' \in G$ with $M \cdot M'^{-1} \in N$.
- If M is uniformly distributed in Gthen $M \cdot M'^{-1}$ is uniformly distributed in N
- Repeat.

→ Monte Carlo algorithm to compute N

Max Neunhöffer

Introduction

Matrix groups

Constructive recognitio

The problem

Complexity theory
Randomised algorithm
Constructive recogniti
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees

trees
Example: invariant

Finding reduction

Solution for leaves Classifications Recognition of the groups

Verification

Recognising image and kernel suffices

Let $\varphi: G \to H$ be a reduction and assume that both H and the kernel $N = \langle N_1, \dots, N_m \rangle$ of φ are already recognised constructively.

Then we have recognised *G* constructively:

$$|G| = |H| \cdot |N|$$
. And for $M \in GL_n(\mathbb{F}_q)$:

- **1** map M with φ onto $\varphi(M) \in H = \langle P_1, \dots, P_k \rangle$,
- \bigcirc express $\varphi(M)$ as word in the P_i ,
- \odot evaluate the same word in the M_i ,
- get element $M' \in G$ such that $M \cdot M'^{-1} \in N$,
- **o** express $M \cdot M'^{-1}$ as word in the N_j ,
- **3** get M as word in the M_i and N_j : $M' = \prod \text{ in the } M_i, \quad M \cdot M'^{-1} = \prod \text{ in the } N_j$ $⇒ M = (\prod \text{ in the } N_i) \cdot (\prod \text{ in the } M_i).$
- If $M \notin G$, then at least one step does not work.

Max Neunhöffer

Introduction

Matrix groups

Constructive recognitio

The problem

Complexity theory
Randomised algorithm
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees

trees
Example: invariant

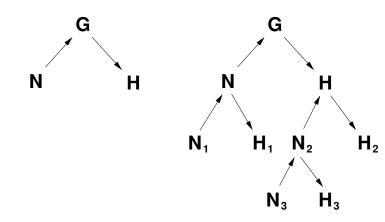
Finding reduct

Solution for leave

Recognition of the ground Standard generators

Recursion: composition trees

We get a tree:



Up arrows: inclusions

Down arrows: homomorphisms

Old idea, substantial improvements: Seress & N. 2006

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recognition
Troubles

Reduction

Computing the kernel
Recursion: composition
trees

Example: invariant subspace

Finding reduction

Solution for leaves

Recognition of the group Standard generators

Verification

Example: invariant subspace

Let $V = \mathbb{F}_q^n$, then G acts on V. Let W < V be an invariant subspace, i.e.:

$$MW = W$$
 for all $M \in G$

Choose basis (w_1, \ldots, w_d) of W and extend to a basis

$$(w_1,\ldots,w_d,w_{d+1},\ldots,w_n)$$

of V. After a base change the matrices in G look like this:

$$\begin{bmatrix} A & B \\ \hline \mathbf{0} & D \end{bmatrix} \quad \text{with } A \in \mathbb{F}_q^{d \times d}, B \in \mathbb{F}_q^{d \times (n-d)}, D \in \mathbb{F}_q^{(n-d) \times (n-d)}$$

and

$$G o \operatorname{GL}_{n-d}(\mathbb{F}_q), \left[egin{array}{cc} A & B \ \mathbf{0} & D \end{array}
ight] \mapsto D$$

is a homomorphism of groups.

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recogniti
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees

Example: invariant subspace

Finding reducti

Solution for leaves

Recognition of the groups Standard generators

Verification

Example: invariant subspace

$$G o \operatorname{GL}_{n-d}(\mathbb{F}_q), \left[egin{array}{cc} A & B \ \mathbf{0} & D \end{array}
ight] \mapsto D$$

is a homomorphism of groups, its kernel is

$$N := \left\{ \left[egin{array}{cc} A & B \ \mathbf{0} & D \end{array}
ight] \in G \mid D = \mathbf{1}
ight\}.$$

The mapping

$$N o \operatorname{GL}_d(\mathbb{F}_q), \left[egin{array}{cc} A & B \ \mathbf{0} & \mathbf{1} \end{array} \right] \mapsto A$$

also is a homomorphism of groups and has kernel

$$N_2 := \left\{ \left[egin{array}{cc} A & B \\ \mathbf{0} & D \end{array}
ight] \in G \mid A = D = \mathbf{1} \right\}.$$

This group is a *p*-group for $q = p^e$:

$$\left[\begin{array}{cc} \mathbf{1} & B \\ \mathbf{0} & \mathbf{1} \end{array}\right] \cdot \left[\begin{array}{cc} \mathbf{1} & B' \\ \mathbf{0} & \mathbf{1} \end{array}\right] = \left[\begin{array}{cc} \mathbf{1} & B + B' \\ \mathbf{0} & \mathbf{1} \end{array}\right]$$

Together with a reduction additional information is gained!

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Randomised algorithms
Constructive recognitio
Troubles

Reduction

Computing the kernel
Recursion: compositior
trees
Example: invariant

Finding reductions

Solution for leave

Recognition of the groups Standard generators

Verification

How to find reductions?

Aschbacher has defined classes C1 to C8 of subgroups of $GL_n(\mathbb{F}_q)$.

Theorem (Aschbacher, 1984)

Let $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ and $Z := G \cap Z(\operatorname{GL}_n(\mathbb{F}_q))$ the subgroup of scalar matrices. Then G lies in at least one of the classes C1 to C8 or we have:

- $T \subseteq G/Z \subseteq Aut(T)$ for a non-abelian simple group T, and
- G acts absolutely irreducibly on $V = \mathbb{F}_q^n$.

(This last case is called C9.)

Thus we can call in heavy artillery:

- the classification of finite simple groups
- the modular representation theory of simple groups

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recognition
Troubles

Reduction

Computing the kernel
Recursion: composition
trees
Example: invariant
subspace
Finding reductions

Solution for leave

Recognition of the groups Standard generators

Varification

Approach for leaves of the tree

If none of the algorithms for C1 to C8 has succeeded:

- For "small" groups compute direct isomorphism onto a permutation group.
- Determine, for which (simple) group $T \le G/Z \le \operatorname{Aut}(T)$ holds.
- Find an explicit isomorphism onto a "standard copy" of an intermediate group S.
- Finally use information about S to recognise G constructively.

This uses:

- the classification of finite simple groups
- information about their automorphism groups
- information about element orders
- information about conjugacy classes
- classifications of the irreducible representations
- information about the subgroup structure

Max Neunhöffer

Introduction

Matrix groups

Constructive recognitio

The problem

Randomised algorithm
Constructive recognition
Troubles

Reduction

Computing the kernel
Recursion: composition
trees
Example: invariant
subspace

Solution for leave

Classifications
Recognition of the groups
Standard generators

Verification

Non-constructive recognition

Methods for non-constructive recognition:

- Knowledge about representations narrows down the possibilities
- Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory
Randomised algorithm
Constructive recogniti
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant
subspace

Solution for leaves
Classifications
Recognition of the groups
Standard generators

Verification

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.

Find a tuple $(s_1, ..., s_r) \in S^r$ together with certain words $p_1, ..., p_m$ in the s_i , such that:

- $\bullet \ S = \langle s_1, \ldots, s_r \rangle,$
- if $(s'_1, \ldots, s'_r) \in S^r$ with
 - $|s_i| = |s_i'|$ for $1 \le i \le r$,
 - $|p_j| = |p'_j|$ for $1 \le j \le m$ (the p'_i are the same words in the s'_i),

then $s_i \mapsto s_i'$ for $1 \le i \le r$ defines an automorphism of S.

Such elements are called "standard generators" of S.

We find $G \cong S$ explicitly by finding a tuple (M_1, \ldots, M_r) of standard generators in G.

Often this leads to efficient Las Vegas algorithms to find explicit isomorphisms.

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Randomised algorithm
Constructive recognition
Troubles

Reduction

Computing the kernel
Recursion: composition
trees
Example: invariant
subspace

Solution for lea

Classifications
Recognition of the groups
Standard generators

Verification

Verification

Everywhere we used randomised methods: Las Vegas and Monte Carlo.

⇒ We have to check whether our result is correct!

Idea:

- Find (short) presentations for the leaf-groups,
- put these together to one for the whole group.
- Check the relations and thus prove the result.