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Introduction and Motivation

Question
What can you tell me about the finitely presented group

G :=
〈

S,T | S3,T 2, (ST )7, (STS2T )13
〉

?

(You may use a computer for this exercise!)

It is a quotient of the modular group PSL2(Z) ∼=
〈
S,T | S3,T 2〉.

It has 37.PSL2(F13) as quotient.
Other finite quotients can be found (low index method).
Eventually it turns out to be infinite (abelian invariants method).
Todd-Coxeter is not of much use here.
It is not small cancellation.

Can we solve the word problem?
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Diagrams and their problems Let’s look at the toys

We draw connected finite graphs in the plane and label them:
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Faces are oriented clockwise.
We view each edge as a pair of opposite directed edges: half-edges.
Each half-edge is labelled at the start vertex and along the half-edge.
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Diagrams and their problems The fundamental problems for diagrams

Diagram problems

Let R be a finite set of cyclic words, called relators.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w,
whether or not there is a diagram such that

every internal region is labelled by a relator, and
the external boundary is labelled by w.

Problem (Isoperimetric inequality)
Algorithmically find and prove a function D : N→ N, such that for every
cyclic word w of length k that is the boundary label of a diagram, there
is one with at most D(k) internal regions.
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Formalisation of diagrams Diagrams and Constellations

1 2
3 4

5 6 7 8

9
X

is stored as
E := (1 3)(2 4)(5 6)(7 8)(9 X )
F := (1 5 X 8 4 2)(3 7 9 6)
V := (1 4 7)(2)(3 5)(6 X )(8 9).

Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to
equivalence)

are in bijection with
ordered triples (E ,F ,V ) ∈ S3

n such that EFV = 1, the group 〈E ,F 〉 is
transitive, #cycles of E, F and V sums to n + 2 and E is a fixed-point
free involution (up to Sn-conjugacy).
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Formalisation of diagrams The rules of the game: Pongos and Letters

Rules for the labels

We label every half-edge with two symbols,
one for the corner to the right of where it starts, and
one for the right hand side of it:

S X

Y R

We now need rules for the corner labels and the edge labels.
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Formalisation of diagrams The rules of the game: vertices

Definition (Pongos)

A pongo is a set P with a subset P+ ⊂ P, such that P0 := P∪̇{0} is a
semigroup with 0 and:

if xy ∈ P+ for x , y ∈ P, then yx ∈ P+.

The elements in P+ are called acceptors.

Lemma (Cyclicity)
Let P be a pongo, if p1p2 · · · pk ∈ P+, then all rotations
pipi+1 · · · pkp1p2 · · · pi−1 ∈ P+.

Vertex rules
The corner labels are from a pongo P,
a V -cycle is valid, if the product of its corner labels is an acceptor.

Using a finite pongo is equivalent to using a finite state automaton.
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Formalisation of diagrams The rules of the game: vertices

Examples of pongos

Let G be a group. Let P := G and P+ := {1}.
Let G1, . . . ,Gk be groups. Let Q :=

⋃̇
Gi and

Q+ := {1Gi | 1 ≤ i ≤ k}. Elements of a single Gi multiply as
before. Products across factors are all 0.
Take any groupoid, undefined products are 0.
K6 := {s,e, t ,b, r , l}, K6+ := {s,e},

s e t b r l
s 0 0 s 0 0 0
e 0 0 0 e 0 0
t s 0 t 0 0 l
b 0 e 0 b r 0
r 0 0 r 0 0 e
l 0 0 0 l s 0
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Formalisation of diagrams The rules of the game: edges

Definition (Edge alphabet)

An edge alphabet is a set A with an involution : A→ A.

(This is actually a special case of a pongo.)

Edge rules

The edge labels are from an edge alphabet,
an E-cycle (i , j), i.e. an edge, with labels X and Y is valid, if Y = X .

(For the experts:
This is a generalisation of the rules of van Kampen diagrams.)
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Formalisation of diagrams Definition of a valid diagram

Definition (Valid diagram)
Let P be a pongo and A be an edge alphabet. A valid diagram is:
an n ∈ N and three permutations E ,F ,V ∈ Sn and a labelling function
` : {1, . . . ,n} → P × A, x 7→ (`P(x), `A(x)), such that

EFV = 1,
E is a fixed point free involution,
〈E ,F 〉 is a transitive subgroup of Sn,
the total number of cycles in E , F and V is n + 2,
`P(x) · `P(xV ) · `P(xV 2) · · · · ∈ P+ for every V -cycle x 〈V 〉, and
`A(xE) = `A(x) for all E-cycles (x , xE).
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Formalisation of diagrams The fundamental diagram problems revisited

Let P be a pongo and A be an edge alphabet.

Definition (Set of relators)
A set of relators R is a finite set of cyclic words in P × A.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w
in P × A, whether or not there is a valid diagram such that

every internal F -cycle is labelled by a relator, and
the external F -cycle is labelled by w.

Problem (Isoperimetric inequality)
Algorithmically find and prove a function D : N→ N, such that for every
cyclic word w ∈ P × A of length k that is the boundary label of a valid
diagram, there is one with at most D(k) internal F -cycles.

If there is a linear D, we call (P,A,R) hyperbolic.
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Back to our example

G :=
〈
S,R,T | SR,T 2,S3, (ST )7, (STS2T )13〉 can be studied by:

P = {S,R,1} with P+ = {1} and SR = RS = 1,SS = R,RR = S
A = {T} with T = T
R = {((S,T ), (S,T ), (S,T ), (S,T ), (S,T ), (S,T ), (S,T )),

((R,T ), (R,T ), (R,T ), (R,T ), (R,T ), (R,T ), (R,T )),

((S,T ), (R,T ), repeated 13 times)}
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(ST )7(TRTS)13 = (ST )5(STST )(TRTS)(TRTS)12 = (ST )5R(TRTS)12
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The Applications

Applications

These diagrams and their two fundamental problems encode

the word problem in quotients of the free group,
the word problem in quotients of the modular group,
the word problem for relative presentations (relative to one
subgroup gives a Howie diagram)
the rewrite decision problem for arbitrary rewrite systems,
the word problem in monoids,
jigsaw-puzzles in which you can use arbitrarily many copies of
each piece,
etc. ???

You just have to chose the right pongo and edge alphabet!
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An algorithmic approach Curvature

Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:

compute the finite list of all possible edges,
this produces a new edge alphabet, as edges now have different
lengths, refer to original edges as mini-edges,
denote set of half-edges in a diagram by X , so that the diagram is
now given by E ,F ,V ∈ SX .

Combinatorical curvature: We endow
each V -cycle with +1 unit of combinatorial curvature,
each E-cycle with −1 unit of combinatorial curvature and
each F -cycle with +1 unit of combinatorial curvature.

Euler’s formula/genus condition

The total sum of our combinatorial curvature is always +1.
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An algorithmic approach Curvature redistribution — Phase 1

Idea (Curvature redistribution)
We redistribute the curvature locally in a conservative way.

In Phase 1 we move the positive curvature to the half-edges:

+1

+1

according to length

evenly

Edges have different length (number of mini-edges).
Both half-edges in an edge get an equal amount.
Vertices have different valency. Only outgoing half-edge receives.
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An algorithmic approach Curvature redistribution — Phase 2: Pubcrawl

All curvature is now on the half-edges,

the sum is still +1.

Idea (Pubcrawl)
A pubcrawler crawls around (locally) from half-edge to half-edge and
collects curvature. He deposits it on his orbit.

The path of the crawl is described in terms of E , F and F−1 steps.
We want “orbits”, that is, some cyclic behaviour.

Let D := {1,2, . . . ,d} and πD : Z→ D, with z ≡ πD(z) (mod d), and

(C1,C2, . . . ,Cd ) ∈ {E ,F ,F−1}d (e.g. “EFEFE”, d = 5).

Definition of the pubcrawl (C1,C2, . . . ,Cd )

Let Y := X × D and define ∆ : Y → Y , (x , i) 7→ (xCi , πD(i + 1)).
=⇒ ∆ is a permutation on Y , since E and F are permutations on X .
∆ describes a step of the crawler, we sum curvature over 〈∆〉-orbits.
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An algorithmic approach Diversion: An important lemma

Let L := {1,2, . . . , `} and a1,a2, . . . ,a` ∈ R and S :=
∑

m∈L am.

Define πL : Z→ L such that z ≡ πL(z) (mod `).

Lemma (Goes up and stays up)
If S ≥ 0 then there is a j ∈ L such that for all i ∈ N the partial sum

sj,i :=
i−1∑
m=0

aπL(j+m) ≥ 0.

i 1 2 3 4 5 6 7
ai 2 -3 4 1 -5 3 2
s1,i 2 -1 3 4 -1 2 4
s6,i 3 5 7 4 8 9 4

Corollary
Assume that there are k ∈ N and ε ≤ 0 such that for all j ∈ L there is
an i ≤ k with sj,i < ε, then S < ε · `/k.
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An algorithmic approach Search for bad orbits

Search for bad orbits of pubcrawl “EFEFE”

Data structure in computer

Id E F F−1 Rel
1 2

6

*
2 1

3

*

3 4 2

*

4 3 5

*

5 6 4

*

6 5 1

*

Illustration

2

1

We trace the pubcrawl and disjoin cases if stuck, until:

we find a bad cycle (if we return to 1 with starting letter), or
a partial sum is negative (keep value!), or
we lose patience.

Note that we use lower bounds for the vertex valencies!
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An algorithmic approach An isoperimetric inequality

What have we proved?

If this terminates, we have
either found a bad cycle with non-negative curvature sum, or
proved, that for every starting position in a crawl orbit

the partial sum after at most k steps is < ε

for some global k ∈ N and some ε < 0.

In the second case, the “Goes up and stays up” corollary tells us that

the sum over every interior crawl orbit of length ` is < ` · ε/k < 0.

Since the amount of positive curvature close to the boundary can be
bounded from above by an expression in the boundary length, we get a

linear isoperimetric inequality
and thus have proved hyperbolicity. �

e.g.:
〈
S,T | S3,T 2, (ST )7, (STS2T )13〉 is hyperbolic.
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An algorithmic approach Outlook

Outlook and plans

We want to

investigate more ways of redistributing curvature.

determine whether for every presentation of a hyperbolic group
there is a successful curvature-redistribution scheme

easy for random presentations with low Gromov density.

sort out details for a version for relative hyperbolicity.

investigate applications to monoids and rewrite systems.

find more interesting pongos — what do they do?

generalise to “flat” jigsaw puzzles.

develop further algorithms to solve the word problem, after proving
the isoperimetric inequality.

investigate lots of examples: send us your groups!
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