Actions and Representations

An **action** of G on X is a map

$$A: X \times G \to X, \quad (x, g) \mapsto x \cdot g$$

A **representation** of *G* on *X* is a map

 $H: G \to X^X = \{f: X \to X\}$

The two concepts are **the same**:

given A, set $R(g) := (x \mapsto A(x, g)) = (x \mapsto x \cdot g)$ and given R, set A(x, g) := R(g)(x)

#	X	G	rules	homomorphism	name
(1)	set	semigroup	$(x \cdot g) \cdot \tilde{g} = x \cdot (g \cdot \tilde{g})$	$G \rightarrow T_X$ (hom. of semigroups)	transformation rep.
(2)	set	monoid	$(x \cdot g) \cdot \tilde{g} = x \cdot (g \cdot \tilde{g}) \text{ and } x \cdot 1 = x$	$G \to T_X$ (hom. of monoids)	transformation rep.
(3)	set	group	$(x \cdot g) \cdot \tilde{g} = x \cdot (g \cdot \tilde{g}) \text{ and } x \cdot 1 = x$	$G \to S_X$ (hom. of groups)	permutation rep.
(4)	F-vector space	semigroup	as (1) and $(x \mapsto xg)$ is linear	$G \to \operatorname{End}_{\mathbb{F}}(X)$ (hom. of semigroups)	linear rep.
(5)	F-vector space	monoid	as (2) and $(x \mapsto xg)$ is linear	$G \to \operatorname{End}_{\mathbb{F}}(X)$ (hom. of monoids)	linear rep.
(6)	F-vector space	group	as (3) and $(x \mapsto xg)$ is linear	$G \rightarrow GL(X)$ (hom. of groups)	linear rep.
(7)	F-vector space	F-algebra	as (6) and $x \cdot (g - \tilde{g}) = x \cdot g - x \cdot \tilde{g}$	$G \to \operatorname{End}_{\mathbb{F}}(X)$ (hom. of algebras)	linear/matrix rep.
			and $x \cdot (\lambda \cdot g) = (\lambda \cdot x) \cdot g$ for $\lambda \in \mathbb{F}$		
(8)	C-vector space	group	as (6) and $(x y) = (xg yg)$	$G \rightarrow U(X)$ (hom. of groups)	unitary rep.
(9)	<i>L</i> -free <i>L</i> -module	group	as (3) and $(x \mapsto xg)$ is <i>L</i> -linear	$G \to \operatorname{End}_L(X)^{\times}$ (hom. of groups)	integral linear rep.
(10)	graph	group	as (3) and $(x, y) \in E$ iff $(xg, yg) \in E(X)$	$G \rightarrow \operatorname{Aut}(X)$ (hom. of groups)	"graph rep."
(11)	F-projective space	group	as (3) and $(x \mapsto xg)$ is \mathbb{F} -projective	$G \rightarrow PGL(X)$ (hom. of groups)	projective rep.
(12)	F-vector space	Lie-algebra	$(x \mapsto xg)$ is \mathbb{F} -linear and $x \cdot (\lambda \cdot g) = (\lambda \cdot x) \cdot g$	$G \to \operatorname{Lie}(\operatorname{End}_{\mathbb{F}}(X))$	Lie algebra rep.
			for $\lambda \in \mathbb{F}$ and $x \cdot (g - \tilde{g}) = x \cdot g - x \cdot \tilde{g}$	(hom. of Lie algebras)	
			and $x \cdot [g, \tilde{g}] = (x \cdot g) \cdot \tilde{g} - (x \cdot \tilde{g}) \cdot g$		

where \mathbb{F} is a field and *L* is a commutative ring and X = (V, E) if it is a graph.