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Actions and representations

An action of G on X is a map

A : X ×G→ X , (x,g) 7→ x · g

A representation of G on X is a map

R : G→ X X
= {f : X → X }

The two concepts are the same:

given A, set

R(g) := (x 7→ A(x,g)) = (x 7→ x · g)

given R, set
A(x,g) := R(g)(x)
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Group algebras — definition
Let F be a field and G a finite group.
FG := vector space with basis G, multiplication

inherited from G and distributive law:∑
g∈G

λg · g

 ·
∑

g̃∈G

µg̃ · g̃

 = ∑
g,g̃∈G

λg · µg̃ · (gg̃)

for λg, µg̃ ∈ F.

FG := {f : G→ F} with pointwise addition and
convolution product:

(f · h)(g) :=
∑
g̃∈G

f (g · g̃−1) · h(g̃)

for f ,h : G→ F.

FG := associative F-algebra with generators G and
relations g · g̃ − (gg̃) = 0 for g, g̃ ∈ G.
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Group algebras — properties
F: field, G: group, FG: group algebra, V : F-vector space.

There is a bijection between{
ϕ : G→ GL(V ) | ϕ is a group homomorphism

}
and{
ψ : FG→ EndF(V ) | ψ is an algebra homomorphism

}
Given ϕ : G→ GL(V ), define

ψ

∑
g∈G

λg · g

 :=∑
g∈G

λg · ϕ(g)

(use finite presentation).
Given ψ : FG→ EndF(V ), simply restrict ϕ := ψ |G, since

1V = ψ(1G) = ψ(g ·g−1) = ψ(g) ·ψ(g−1) for all g ∈ G.
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Modules

Definition (G-module or FG-module)
An F-vector space V together with

a group homomorphism ϕ : G→ GL(V ),
or an algebra homomorphism ψ : FG→ EndF(V )

is called a G-module over F or an FG-module.

This is nothing but

an F-vector space with an F-linear action for G.

This is nothing but

an F-linear representation for G.
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Kernels and faithfulness

Let A : X ×G→ X be an action, or equivalently,
let R : G→ X X be a representation.

Depending on the types of G and X , it might make sense
to speak of the kernel of the representation R or not.

Definition (Faithful representation/action)
We call the representation R (or the action A) faithful, if its
kernel ker R is trivial.

Note: If a G-module V over F is faithful, it does not neces-
sarily follow that the corresponding FG-module V is
faithful!
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Homomorphisms and isomorphisms
Let A : X ×G→ X and Ã : X̃ ×G→ X̃ be two actions.

Definition (G-homomorphism)

A homomorphism ϕ : X → X̃ is called a
G-homomorphism or G-equivariant, if

ϕ(x · g) = ϕ(x) · g for all x ∈ X and all g ∈ G.
Equivalently, this means

ϕ(A(x,g)) = Ã(ϕ(x),g) for all x ∈ X and all g ∈ G.

Equivalently, this means that this diagram commutes:

X ×G A //

ϕ×idG
��

X

ϕ

��
X̃ ×G

Ã
// X̃

If ϕ has a G-equiv. inverse, it is called a G-isomorphism.
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Subacts

Let G act on X , i.e. A : X ×G→ X .

Definition (G-invariant subset, Subact)
A subset Y ⊆ X is called G-invariant, if

y · g ∈ Y for all y ∈ Y and all g ∈ G.

The restriction A|Y×G is then a map to Y and G acts on Y .
If Y ⊆ X is also a substructure of X , we call Y a subact
(or submodule resp.).

Recall: A permutation representation was called transitive
if it has no proper subacts.

Definition (Irreducible/simple module)
An FG-module M is called irreducible or simple, if it has
no submodules except 0 and M itself.
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Factor acts
Let G act on X , i.e. A : X ×G→ X .

Definition (G-invariant partition, factor act)

Let X =
·⋃

i∈I

Yi be partitioned such that

∀ i ∈ I and g ∈ G,we have Yi · g ⊆ Yj for some j ∈ I.

We say that the partition is G-invariant and get an action
on the set of parts Y := {Yi | i ∈ I}:

Yi ∗ g := Yj if Yi · g ⊆ Yj .

Recall: We call a permutation action primitive, if it has no
non-trivial factor acts.

Note: We usually want extra conditions to ensure that Y
has the same algebraic structure as X and the new action
is a homomorphism of such structures for all g.
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Extensions and direct sums
This is only about modules!

Let

0 // W
i // V

π // U ∼= V/W // 0

be a module V with a non-trivial submodule.

This sequence may or may not be split:

0 // W
i // V

π // U //
r

ii 0 ,

i.e. there is r : U →W with π ◦ r = idU .

If and only if it is split, the module V is isomorphic to the
direct sum

V ∼=W ⊕ U.
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Indecomposability and semisimplicity

Definition (Indecomposable module)
An FG-module V is called indecomposable if it is not
isomorphic to a direct sum of two proper submodules.
Otherwise it is called decomposable.

Lemma (Decomposable implies reducible)
A decomposable module is reducible.

Definition (Semisimple modules and algebras)
A module is called semisimple, if it is isomorphic to a
direct sum of simple modules.
An F-algebra A is called semisimple, if every A-module is
semisimple.
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Ordinary representation theory of groups
For a finite group, the group algebra CG is semisimple.

The ordinary representation theory of groups solves:

Problem (Classification of simple modules)
Classify the isomorphism types of simple CG-modules,
i.e. classify irreducible CG-modules up to isomorphism.

Lemma (Characters)
Two representations

R1 : G→ GL(V ) and R2 : G→ GL(W )

afforded by two CG-modules V and W are isomorphic, if
and only if their characters χ1 = Tr ◦ R1 and χ2 = Tr ◦ R2

are equal.
The two characters χi : G→ C are class functions.
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Research problems in ordinary rep. theory

Already done:

Character tables of symmetric groups.
Character tables of alternating groups.
The ATLAS (character tables of simple groups).
Some generic character tables.

Still to do:
Determine character tables for more groups.
Determine more generic tables for whole families of
groups.
Devise better algorithms to compute tables.
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Modular representation theory of groups
F: field with char(F) | |G|, then FG is not semisimple.

The modular rep. theory of groups strives to solve:

Problem (Classification of simple modules)
Classify the isomorphism types of simple FG-modules,
i.e. classify irreducible FG-modules up to isomorphism.

Problem (Classification of indecomposable modules)
Classify the isomorphism types of indecomposable
FG-modules.

Lemma (Brauer characters)
Two irreducible representations R1 : G→ GL(V ) and
R2 : G→ GL(W ) afforded by two FG-modules V and W
are isomorphic, if and only if their Brauer characters ψ1

and ψ2 are equal.
The two Brauer characters ψi take values in C!
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Research problems in modular rep. theory
Already done:

Brauer tables of some small symmetric groups
(n ≤ 18).
Brauer tables of some small alternating groups.
Modular ATLAS (Brauer tables of simple groups).
1992 by Hiß, Jansen, Lux and Parker: groups up to
page 100 in the ATLAS, now some more.

Still to do:
Determine Brauer tables for more groups.
Complete the Modular ATLAS.
Classify simple modules of FSn.
Compute the 2-modular Brauer table of the Monster.
Find an algorithm to compute a Brauer table???
Classify indecomposable FG-modules???
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Permutation groups
Problem (Permutation group algorithms)
Given G :=

〈
g1, . . . ,gk ∈ Sn

〉
≤ Sn on a computer.

Find efficient algorithms to compute with and in G:
Test membership of π ∈ Sn in G.
Find the group order |G|.
Decide whether G = An or G = Sn or none.
Find orbits and blocks of primitivity.
Find a presentation.
Find the centre of G.
. . .

All of this is done and works well in nearly linear time:

runtime is bounded by C · n · k · logD(|G|).
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Open questions for permutation groups

Still to do (in nearly linear time):
Compute the centraliser CG(H) for some H < Sn.
Compute the derived subgroup G′.
Compute intersections of G,H < Sn.
Compute conjugacy classes of permutation groups.
Test G,H < Sn for conjugacy.
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Matrix and projective groups

Problem (Matrix group algorithms)
Given G :=

〈
M1, . . . ,Mk ∈ GL(Fn

q)
〉
≤ GL(Fn

q) on a
computer.
Ultimate goal: Answer similar questions as for
permutation groups.

This is largely unsolved!

Problem (Projective group algorithms)

Given G :=
〈
M̄1, . . . , M̄k ∈ PGL(n,q)

〉
≤ PGL(n,q) on a

computer.
Ultimate goal: Answer similar questions as for
permutation groups.
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Constructive recognition

Problem (Constructive recognition)
Let Fq be the field with q elements und

M1, . . . ,Mk ∈ GL(Fn
q).

Find for G := 〈M1, . . . ,Mk 〉:
The group order |G | and
an algorithm that, given M ∈ GL(Fn

q),
decides, whether or not M ∈ G, and,
if so, expresses M as word in the Mi .

The runtime should be bounded from above by a
polynomial in n, k and log q.
A Monte Carlo Algorithmus is enough. (Verification!)
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Recursion: composition trees
We get a tree:

G

N H

2211

3 3N H

HNHN

G

N H

N HN H

N H

1 1 2 2

3 3

Up arrows: inclusions
Down arrows: homomorphisms

Old idea, improvements are still being made
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Enumerating large orbits

Orbit enumerations play an important role in

modular representation theory,
permutation group algorithms,
matrix and projective group algorithms,
combinatorics,
finite geometry.

To get a feeling:

To enumerate an orbit of 1140000 vectors in F760
2

needs around 90 seconds.
To enumerate 95% of the same orbit with better tricks
takes 1.1 seconds.

Finding better ways to enumerate orbits is a current
research topic.
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