
A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

A new programmer’s interface for vectors
and matrices

Max Neunhöffer

University of St Andrews

11.9.2007

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

What is a vector? What is a matrix?
Up to now in GAP, they are just lists:

gap> v := [1,2,3];
[1, 2, 3]
gap> m := [[0,1],[1,0]];
[[0, 1], [1, 0]]

However, there are different representations:

gap> m := m*Z(2);;
gap> for r in m do ConvertToVectorRep(r,2);od;
gap> m;
[<a GF2 vector of length 2>,

<a GF2 vector of length 2>]
gap> ConvertToMatrixRep(m,2);;
gap> m;
<a 2x2 matrix over GF2>

We can use the method selection only for the last matrix!

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

Method selection problems
gap> h:=[1..100];;
gap> m:=List([1..100000],i->Z(2)*[1..1000]);;
gap> TypeObj(m);; time;
1908

gap> TypeObj(m);; time;
16

gap> for i in h do Reversed(m); od; time;
24
gap> for i in h do ReversedOp(m); od; time;
2888

gap> ConvertToMatrixRep(m,2);;
gap> TypeObj(m);; time;
0
gap> for i in h do TypeObj(m); od; time;
0

Type computation and method selection for
mutable plain lists

can take a significant amount of time!

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

New filters

Solution: Wrap ’em up. Define an interface to them.

DeclareCategory("IsRowVectorObj",
IsVector and IsCopyable);

DeclareCategory("IsMatrixObj",
IsVector and IsScalar and IsCopyable);

Vectors and matrices are no longer necessarily lists.

DeclareCategory("IsRowListMatrix",
IsMatrixObj);

DeclareCategory("IsFlatMatrix",IsMatrixObj);

These two types of matrices are not only different
representations, they also behave differently.

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

“Row list” vs. “flat” matrices

A row list matrix
behaves like a list of row objects and
has individual GAP objects as rows,
is like a list that insists on being dense and
containing only row objects of the right type and size.

A flat matrix
consists of a single GAP object,
the rows are part of this object, not individual objects,
has to copy rows to exchange or permute them.

All matrices
know their base domain,
know their dimensions, and
can have 0 rows or 0 columns.

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

Operations
Attributes for vectors:

BaseDomain, Length.

Attributes for matrices:
BaseDomain, Length, RowLength, DimensionsMat.

Lots of operations are defined (see below).

Important:

Objects and derived objects keep their representation!
Generic code does not have to worry about this!

gap> Display(m);
1 . 1
. 1 .

gap> ExtractSubMatrix(m,[2,1],[1,3]);
<a 2x2 matrix over GF2>
gap> Display(last);
. .
1 1

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

Constructing new vectors and matrices

gap> v := NewRowVector(IsPlistVectorRep,
Rationals,[1,2,3]);

<plist vector over Rationals of length 3>
gap> m := NewMatrix(IsPlistMatrixRep,

Rationals,3,[[4,5,6]]);
<1x3-matrix over Rationals>
gap> Add(m,v);

This uses GAP’s constructors.

A constructor is an operation, for which the method
selection works differently in the first argument:
The argument is a filter, and a method must be installed
for a subfilter to be taken.

Packages can have constructor methods for new types.

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

GAP’s constructors explained
DeclareCategory("IsA",IsComponentObjectRep);
DeclareConstructor("MakeA",[IsA,IsInt]);
tA := NewType(CyclotomicsFamily,IsA);;
InstallMethod(MakeA,[IsA,IsInt],

function(f,x)
return Objectify(tA,rec(x := x));

end);

DeclareCategory("IsAB",IsA);
tAB := NewType(CyclotomicsFamily,IsAB);;
InstallMethod(MakeA,[IsAB,IsInt],

function(f,x)
return Objectify(tAB,rec(x := x));

end);

gap> a := MakeA(IsA,17);;
gap> [IsA(a), IsAB(a)];
[true, false]
gap> b := MakeA(IsAB,17);;
gap> [IsA(b), IsAB(b)];
[true, true]

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

Preserving the representation
gap> ConstructingFilter(m);
<Operation "IsPlistMatrixRep">

Derived objects:
ZeroMutable, ShallowCopy, OneImmutable,
MutableCopyMat, . . .

New objects in same representation:
gap> v := NewRowVector(IsPlistVectorRep,

Rationals,[1,2,3]);;
gap> m := NewMatrix(IsPlistMatrixRep,

Rationals,3,[[4,5,6]]);;
gap> ZeroVector(10,v);
<plist vector over Rationals of length 10>
gap> Vector([6,7,8,9],m);
<plist vector over Rationals of length 4>
gap> IdentityMatrix(12,m);
<12x12-matrix over Rationals>
gap> n := Matrix([],3,m);
<0x3-matrix over Rationals>

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

Flat vs. row list matrices

Objects in the filter IsRowListMatrix
have most list operations: Add, Remove, IsBound,
Unbind, [] , []:= , {} , {}:= , Append,
ShallowCopy, List,
they simply insist on being dense and on containing
only vectors of the right length and type.

Objects in the filter IsFlatMatrix
have [], which creates a reference,
[]:= , {} , {}:= , which copy data, and
do not support Add, Remove, IsBound, Unbind,
Append.
ShallowCopy is a full copy.

A new
programmer’s
interface for
vectors and

matrices

Max Neunhöffer

The problem
Different representations

Method selection problems

The solution
New filters

Behaviour

Operations

The interface
Constructors

Preserving the
representation

Flat vs. row list matrices

An example

Creating a companion matrix
cm := function(p,mat)

local bd,one,l,n,ll,i;
bd := BaseDomain(mat); one := One(bd);
l := CoefficientsOfUnivariatePolynomial(p);
n := Length(l)-1;
l := Vector(-l{[1..n]},mat);
ll := ListWithIdenticalEntries(n,0);
ll[n] := l;
for i in [1..n-1] do

ll[i] := ZeroMutable(l);
ll[i][i+1] := one;

od;
return Matrix(ll,n,mat);

end;
gap> x:=X(Rationals);;
gap> Display(cm(x^3-2*x^2-5,m));
<3x3-matrix over Rationals:
[[0, 1, 0]
[0, 0, 1]
[5, 0, 2]]>

	The problem
	Different representations
	Method selection problems

	The solution
	New filters
	Behaviour
	Operations

	The interface
	Constructors
	Preserving the representation
	Flat vs. row list matrices
	An example

