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ABSTRACT. In this paper an algorithm is presented that can be used to calculate
the automorphism group of a finite transformation semigroup. The general algo-
rithm employs a special method to compute the automorphism group of a finite
simple semigroup. As applications of the algorithm all the automorphism groups
of semigroups of order at most 7 and of the multiplicative semigroups of some
group rings are found. We also consider which groups occur as the automorphism
groups of semigroups of several distinguished types.

1. INTRODUCTION

There is a tremendous amount of literature relating to automorphism groups
of mathematical structures of every hue. An algorithm for computing the auto-
morphism group of a finite group was first given in the 1960s and development of
procedures with the same purpose continues to the present day; see [6], [8], and
[9]. There are numerous papers concerning the automorphism groups of particu-
lar classes of semigroups, for example, Schreier [36] and Mal’cev [27] described all
the automorphisms of the semigroup of all mappings from a set to itself. Similar
results have been obtained for various other structures such as orders, equivalence
relations, graphs, and hypergraphs; see the survey papers [31] and [32]. More
examples are provided, among others, by Gluskı̌n [13], Araújo and Konieczny
[1, 2, 3], Fitzpatrick and Symons [10], Levi [22, 23], Liber [24], Magill [25], Schein
[35], Sullivan [39], and Šutov [40]. However, there appears to have been no previ-
ous attempt to give an algorithm for computing the automorphisms of an arbitrary
finite semigroup. The purpose of this paper is to give such an algorithm.

The most naı̈ve approach to computing the automorphisms of a semigroup S
would be to verify, one by one, whether each bijection φ from S to S satisfies
(x)φ(y)φ = (xy)φ for all x, y ∈ S. To perform this calculation, except for extremely
small examples, exceeds human patience. As the examples grow in size, it soon
becomes impractical for computers to do the work for us. Our algorithm employs
the following general strategy: a search is conducted through a relatively small set
of bijections, which are tested to see if they are homomorphisms using the relations
of a presentation that defines S.

The main algorithm for computing the automorphism group of a semigroup is
given in Section 4. The main algorithm relies on another procedure for calculating
the automorphisms of a special type of semigroup: Rees matrix semigroups. This
procedure can be found in Section 2. In Section 3 we give an algorithm to compute
the inner automorphisms of a transformation semigroup S. In Section 5 we apply
the main algorithm to compute the automorphism groups of the semigroups of
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order at most 7. In Section 6 we compute the automorphism groups of the multi-
plicative semigroups of some group rings. Finally, in Section 7 we consider which
groups can occur as the automorphism groups of semigroups belonging to various
standard classes.

As part of the computation it is necessary to calculate the automorphisms of
certain finite groups, partially ordered sets, and graphs associated with the semi-
group. The efficiency of the well-developed algorithms used to perform these
calculations is thus incorporated in the presented algorithm. The routines pre-
sented here have been implemented as part of the MONOID package [30] in the
computational algebra system GAP [12].

In two of the three algorithms presented we make use of backtrack search. As
applied here, backtrack search provides an efficient means of computing a sub-
group of a group all of whose elements satisfy a certain property. Further details
regarding backtrack algorithms in computational group theory can be found in
[37, Chapter 9] or [19, Section 4.6].

Throughout we will write mappings on the right and compose them from left to
right, and all sets, groups, and semigroups are assumed to be finite. The identity
element of a semigroup with identity S will be denoted by 1S .

2. AUTOMORPHISMS OF REES MATRIX SEMIGROUPS

In this section we describe how to compute the automorphism group of a spe-
cial type of semigroup called Rees matrix semigroups, which are defined as fol-
lows. Let T be a semigroup, let I and J be disjoint index sets and letP = (pj,i)j∈J,i∈I
be a |J | × |I|matrix with entries in T ∪ {0}. Then the Rees matrix semigroup over T
is the set (I × T × J) ∪ {0} with multiplication (i, g, j)(k, h, l) = (i, gpj,kh, l) and
0(i, g, j) = (i, g, j)0 = 02 = 0; denoted byM0[T ; I, J ;P ].

An arbitrary finite semigroup can be partitioned into classes that correspond
to Rees matrix semigroups with finite index sets over groups; for further details
see Section 4. As such Rees matrix semigroups can be thought of as the building
blocks of a finite semigroup.

The automorphism group of a semigroup with a zero adjoined is equal to the
automorphism group of the original semigroup. Therefore we may assume with-
out loss of generality that all the semigroups considered in this section contain a
zero element.

The characterisation of all homomorphisms between two Rees matrix semi-
groups in the following theorem is taken from [33]; see also [20] and [21].

Theorem 2.1. Let M1 = M0[G1; I1, J1;P1] and M2 = M0[G2; I2, J2;P2] be Rees
matrix semigroups where P1 = (p(1)

j,i )j∈J1,i∈I1 and P2 = (p(2)
j,i )j∈J2,i∈I2 , let λI : I1 → I2

and λJ : J1 → J2 be arbitrary functions, let γ : G1 → G2 be a homomorphism, and
let f : I1 ∪ J1 → G2. Then the mapping (i, g, j) 7→ (iλI , (if)(gγ)(jf)−1, jλJ) is a
homomorphism if and only if

(i) p(1)
j,i = 0 if and only if p(2)

jλJ ,iλI
= 0;

(ii) p(1)
j,i γ = (jf)−1 · (p(2)

jλJ ,iλI
) · (if), whenever p(1)

j,i 6= 0.

Furthermore, every homomorphism from M1 to M2 can be described in this way.
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We require a reformulation of Theorem 2.1. Let M = M0[G; I, J ;P ] be a Rees
matrix semigroup over a group G, disjoint index sets I and J , and matrix P =
(pj,i)j∈J,i∈I . The automorphism group of M is denoted AutM .

Let Γ(M) be the bipartite graph with vertices I ∪ J and edges (i, j) ∈ I × J
whenever pj,i 6= 0. The automorphism group Aut Γ(M) of Γ(M) is defined as
the group of all bijections α : Γ(M) → Γ(M) such that (iα, jα) ∈ I × J is an
edge in Γ(M) if and only if (i, j) ∈ I × J is an edge in Γ(M). It is obvious that
pairs of bijections λI and λJ satisfying Theorem 2.1(i) are equivalent to elements
of Aut Γ(M). So, the problem of finding mappings λI and λJ satisfying Theorem
2.1(i) is exchanged for the problem of computing Aut Γ(M). The latter problem
has been well studied; the implementation in GAP [30] of the algorithm in this
section uses the GRAPE package [38] to compute Aut Γ(M).

Every automorphism of M can be represented as a triple of mappings λ ∈
Aut Γ(M), γ ∈ AutG, and f : I ∪ J → G; a more precise formulation of this is
given in the next theorem. Let GI∪J denote the set of all functions from I ∪ J to G
and let MM denote the monoid of all mappings from M to M under composition.
The following theorem is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let α ∈MM and let Ψ : Aut Γ(M)× AutG×GI∪J →MM be defined
by

(i, g, j)([λ, γ, f ]Ψ) = (iλ, (if)(gγ)(jf)−1, jλ).
Then α ∈ AutM if and only if α = [λ, γ, f ]Ψ for some [λ, γ, f ] ∈ Aut Γ(M)× AutG×
GI∪J satisfying

(1) pj,iγ = (jf)−1 · (pjλ,iλ) · (if)

for all pj,i 6= 0.

It is straightforward to verify that Aut Γ(M)×AutG×GI∪J with multiplication
� defined by

[λ1, γ1, f1] � [λ2, γ2, f2] = [λ1λ2, γ1γ2, λ1f2 ? f1γ2],

is a group, where f ?g : x 7→ (xf)(xg); the identity is [1Aut Γ(M), 1AutG, x 7→ 1G] and
[λ−1, γ−1, x 7→ (xλ−1fγ−1)−1] is the inverse of [λ, γ, f ]. We note that it is not prac-
tical to compute with Aut Γ(M) × AutG × GI∪J directly as GI∪J is prohibitively
large even for relatively small G, I , and J .

Lemma 2.3. The mapping Ψ : Aut Γ(M)× AutG×GI∪J → MM defined in Theorem
2.2 is a homomorphism of monoids.

Proof. From the definition of Ψ,

[λ1, γ1, f1][λ2, γ2, f2]Ψ = [λ1λ2, γ1γ2, λ1f2 ? f1γ2]Ψ

is the mapping in MM given by

(i, g, j) 7→ (iλ1λ2, iλ1f2 · if1γ2 · gγ1γ2 · (jf1γ2)−1 · (jλ1f2)−1, jλ1λ2).

On the other hand, if α = [λ1, γ1, f1]Ψ and β = [λ2, γ2, f2]Ψ, then

(i, g, j)αβ = (iλ1, if1 · gγ1 · (jf1)−1, jλ1)β
= (iλ1λ2, iλ1f2 · [if1 · gγ1 · (jf1)−1]γ2 · (jλ1f2)−1, jλ1λ2)
= (iλ1λ2, iλ1f2 · if1γ2 · gγ1γ2 · (jf1γ2)−1 · (jλ1f2)−1, jλ1λ2),

as required. �
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Since AutM is a subgroup of MM , it follows from Lemma 2.3 that (AutM)Ψ−1

is a subgroup of Aut Γ(M)×AutG×GI∪J .

Lemma 2.4. Let [λ, γ, f ] ∈ Aut Γ(M)× AutG×GI∪J . Then [λ, γ, f ] ∈ ker(Ψ) if and
only if λ = 1Aut Γ(M)

and there exists h ∈ G such that γ : g 7→ hgh−1 and f : x 7→ h−1.

Proof. (⇒) Since [λ, γ, f ]Ψ = 1MM , we have that (i, g, j) = (iλ, if · gγ · (jf)−1, jλ)
for all (i, g, j) ∈ M . It follows that λ = 1Aut Γ(M)

and if · gγ · (jf)−1 = g for all
g ∈ G. In particular, if g = 1G, then we deduce that if = jf for all i ∈ I and
j ∈ J . Thus f is constant with value h−1, for some h ∈ G. Finally, rearrange
if · gγ · (jf)−1 = g to obtain gγ = (if)−1 · g · jf = hgh−1.

(⇐) Let (i, g, j) ∈M be arbitrary. Then

(i, g, j)([λ, γ, f ]Ψ) = (iλ, if · gγ · (jf)−1, jλ) = (i, h−1 · hgh−1 · h, j) = (i, g, j),

and so [λ, γ, f ]Ψ ∈ ker(Ψ). �

It follows from the previous two lemmas that AutM is isomorphic to the quo-
tient of the subgroup (AutM)Ψ−1 (consisting of elements in Aut Γ(M)×AutG×
GI∪J satisfying (1)) by the normal subgroup of Aut Γ(M) × AutG × GI∪J with
elements of the form

[1Aut Γ(M)
, g 7→ hgh−1, x 7→ h−1],

for some h ∈ G.
Roughly speaking, a preliminary version of the algorithm to compute AutM is

now clear; search through a transversal of cosets of ker(Ψ) in Aut Γ(M)×AutG×
GI∪J and test if every element satisfies (1). The size of the search space in this case
is

|Aut Γ(M)| · |AutG| · |G||I|+|J|−1.

With a little more thought we can reduce the size of the search space considerably.
We start by considering how to find triples in Aut Γ(M) × AutG × GI∪J that

satisfy (1). We give a method of constructing all the functions f ∈ GI∪J such that
[λ, γ, f ] satisfies (1) for fixed λ ∈ Aut Γ(M) and γ ∈ AutG.

Let K1,K2, . . . ,Kt be the connected components of Γ(M), for every i let Ti be a
fixed spanning tree for Ki and let ri be a fixed vertex in Ki.

If λ ∈ Aut Γ(M), γ ∈ AutG, and gi ∈ G are arbitrary, then we will define a
binary relation ρi = ρKi

(λ, γ, gi) ⊆ Ki × G using a function ρ′ : Ki → G in the
three steps below. The idea is to define ρ′ to equal gi on the representative ri and
to propagate this value to the other vertices using the tree Ti. The edges of Ki \ Ti
are then used to obtain the full relation ρi.

Step 1: the definition of ρ′ is initiated by letting riρ′ = gi for 1 6 i 6 t.

Step 2: if (x, y) is an edge in Ti with yρ′ defined but xρ′ undefined, then assign

xρ′ =

{
p−1
yλ,xλ · yρ′ · py,xγ if x ∈ I
pxλ,yλ · yρ′ · (px,yγ)−1 if x ∈ J.

Step 2 is repeated until xρ′ is defined for all vertices x in Ki. Since Ti is a
tree, ρ′ is a function.
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FIGURE 1. The graph Γ(M) from Example 2.5.
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FIGURE 2. The spanning tree T of Γ(M) from Example 2.5.

Step 3: if x ∈ I , then define xρi to be the union of {xρ′} and

{ p−1
yλ,xλ · yρ

′ · py,xγ : (x, y) ∈ Ki \ Ti }.

Otherwise, x ∈ J and xρi is defined to be the union of {xρ′} and

{ pxλ,yλ · yρ′ · (px,yγ)−1 : (x, y) ∈ Ki \ Ti }.

The following is an example of the above procedure.

Example 2.5. Let M denote the Rees matrix semigroupM0[C3; {1, 2}, {3, 4, 5};P ]
where C3 = {1, x, x2} is the cyclic group of order 3 and

P =

1 1
1 0
1 x

 .

A diagram of the graph Γ(M) is shown in Figure 1 and by inspection Aut Γ(M) =
〈 (3 5) 〉. The automorphism group of C3 is AutC3 = 〈 x 7→ x2 〉. Let r = 1 be
the fixed vertex in the unique connected component K of Γ(M) and let T be the
spanning tree for Γ(M) with edges {(1, 3), (1, 4), (1, 5), (2, 3)} as shown in Figure
2.

Now, let λ = (3 5), γ : x 7→ x and g = 1 ∈ C3. Then from Steps 1 and 2 we
obtain

ρ′ =
(

1 2 3 4 5
1 x2 1 1 1

)
.

From Step 3, 1ρ = {1ρ′} = {1} = 3ρ = 4ρ,

2ρ = {2ρ′, p−1
5λ,2λ · 5ρ

′ · p5,2γ} = {x, x2}

and
5ρ = {5ρ′, p5λ,2λ · 2ρ′ · (p5,2γ)−1} = {1, x},

and the example is complete.
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Throughout the remainder of the paper we will denote the relation

t⋃
i=1

ρKi
(λ, γ, gi) ⊆ (I ∪ J)×G

by ρ(λ, γ,~g) where ~g = (g1, g2, . . . , gt) ∈ Gt (the direct product of t copies of G).

Lemma 2.6. Let [λ, γ, f ] ∈ Aut Γ(M) × AutG × GI∪J . Then [λ, γ, f ]Ψ ∈ AutM if
and only if the relation ρ(λ, γ,~g) where ~g = (r1f, r2f, . . . , rtf) ∈ Gt equals f .

Proof. Throughout the proof we will denote ρ(λ, γ,~g) by ρ.
(⇒) We start by proving that f equals the function ρ′, given in the above proce-

dure, by a finite induction on the least length d(x) of a path from any x ∈ Ti to the
fixed vertex ri ∈ Ki. Starting the induction with x ∈ I ∪ J where d(x) = 0, we get
x = ri and so xρ′ = riρ

′ = rif = xf .
Assume that yρ′ = yf for all y ∈ I ∪ J such that d(y) 6 m − 1. Then let x ∈ J

where d(x) = m. It follows, from the construction of ρ′, that xρ′ = pxλ,yλ · yρ′ ·
(px,yγ)−1 for some y ∈ I with d(y) = m− 1. Thus xρ′ = pxλ,yλ · yf · (px,yγ)−1 = xf
since f satisfies (1). The proof in the case that x ∈ I follows analogously.

Now, if x ∈ I , then

xρ = {xρ′} ∪ { p−1
yλ,xλ · yρ

′ · py,xγ : (x, y) ∈ Ki \ Ti }

But p−1
yλ,xλ ·yρ′ ·py,xγ = p−1

yλ,xλ ·yf ·py,xγ = xf , by (1), and xρ′ = xf . Thus xρ = xf ,
as required. The proof in the case that x ∈ J follows analogously.

(⇐) By the construction of ρ and the fact that ρ is a function, we have that
iρ = p−1

jλ,iλ · jρ · pj,iγ for all i ∈ I and j ∈ J with pj,i 6= 0. Hence ρ satisfies (1) and
so, by Theorem 2.2,

[λ, γ, ρ]Ψ = [λ, γ, f ]Ψ ∈ AutM,

as required. �

So, to find the functions in GI∪J that satisfy (1) it suffices, by Lemma 2.6, to
find which of the relations ρ(λ, γ,~g) are functions. More precisely, let Gi = { g ∈
G : ρKi

(λ, γ, g) is a function }. Then ρ(λ, γ,~g) is a function for some ~g ∈ Gt if
and only if ~g ∈ G1 × G2 × · · · × Gt. In other words, the relation ρ(λ, γ,~g) can be
defined on each connected component Ki independently of the other connected
components. Therefore the size of the search space is reduced from |Aut Γ(M)| ·
|AutG| · |G||I|+|J|−1 to

(2) |Aut Γ(M)| · |AutG| · t|G|,

where t is the number of connected components of the graph Γ(M). Note that if
Γ(M) is a tree, then ρ(λ, γ,~g) is a function for all ~g ∈ Gt.

The centre of G is denoted Z(G). The following lemma allows us to reduce the
size of the search space given in (2) further still.

Lemma 2.7. Let [λ, γ, f ] ∈ Aut Γ(M) × AutG × GI∪J such that [λ, γ, f ]Ψ ∈ AutM
and let δ ∈ γInnG. Then there exist ~g = (g1, . . . , gt) ∈ Gt such that [λ, γ, f ]Ψ =
[λ, δ, ρ(λ, δ,~g)]Ψ.

Moreover, if h1 ∈ g1Z(G), then there exists h2, . . . , ht ∈ G such that [λ, γ, f ]Ψ =
[λ, δ, ρ(λ, δ,~h)]Ψ where ~h = (h1, h2, . . . , ht).
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Proof. We start by proving a related claim. Let λ ∈ Aut Γ(M), γ ∈ AutG, let
~g = (g1, g2, . . . , gt) ∈ Gt, and let k ∈ G such that [λ, γ, ρ(λ, γ,~gk)]Ψ ∈ AutM . Then
we will prove that

(3) [λ, γ, ρ(λ, γ,~gk)]Ψ = [λ, γφk, ρ(λ, γφk, ~g)]Ψ,

where φk : g 7→ kgk−1 ∈ InnG.
Let ρ = ρ(λ, γ,~gk). Then it suffices to prove that [λ, γφk, ρ(λ, γφk, ~g)] and [λ, γ, ρ]

are in the same coset of ker(Ψ) in Aut Γ(M)×AutG×GI∪J . Consider the product

[λ, γ, ρ] � [1Aut Γ(M)
, φk, ck−1 : x 7→ k−1] = [λ, γφk, λck−1 ? ρφk].

By Lemma 2.4, [1Aut Γ(M)
, φk, ck−1 ] ∈ ker(Ψ) and so

[λ, γ, ρ]Ψ = [λ, γφk, λck−1 ? ρφk]Ψ ∈ AutM.

If y = λck−1 ? ρφk : I ∪ J → G, then (x)y = xρ · k−1. In particular, if x = ri for
some 1 6 i 6 t, then (x)y = xρ · k−1 = riρ · k−1 = gi. Hence, by Lemma 2.6,
y = ρ(λ, γφk, ~g), as required.

We will now use (3) to prove the lemma. Let [λ, γ, f ] ∈ Aut Γ(M)×AutG×GI∪J
such that [λ, γ, f ]Ψ ∈ AutM and let δ ∈ γInnG be arbitrary. Then there exists
k ∈ G such that γ = δφk where φk : g 7→ kgk−1 ∈ InnG. By Lemma 2.6, f =
ρ(λ, γ,~gk−1) for some ~g = (g1, . . . , gt) ∈ Gt. Hence by (3) we have that

[λ, γ, f ]Ψ = [λ, δφk, ρ(λ, δφk, ~gk−1)]Ψ = [λ, δ, ρ(λ, δ,~g)]Ψ,

and the proof of the first part of the lemma is complete.
Let h1 = g1z ∈ g1Z(G) be arbitrary, let hi = gig

−1
1 h1 for all 1 < i 6 t, and let

~h = (h1, . . . , ht). Then h−1
1 g1 ∈ Z(G) and so φh−1

1 g1
= 1AutG. Thus again using

(3) we obtain

[λ, δ, ρ(λ, δ,~h)]Ψ = [λ, δφh−1
1 g1

, ρ(λ, δφh−1
1 g1

,~h)]Ψ =

[λ, δ, ρ(λ, δ,~hh−1
1 g1)]Ψ = [λ, δ, ρ(λ, δ,~g)]Ψ = [λ, γ, f ]Ψ,

as required. �

From Lemma 2.7, the size of the search space becomes

(4) |Aut Γ(M)| · |AutG/InnG| · (|G/Z(G)|+ (t− 1)|G|),

where t is the number of connected components of Γ(M) and the number of auto-
morphism is at most

(5) |Aut Γ(M)| · |AutG/InnG| · |G/Z(G)| · |G|t−1.

Note that there are some small values where (5) is smaller than (4), as can be seen
in Example 2.11.

It is routine to verify that

U = { (λ, γ) ∈ Aut Γ(M)×AutG : (∃f ∈ GI∪J) ([λ, γ, f ]Ψ ∈ AutM) }

is a subgroup of Aut Γ(M)×AutG. As such, in our algorithm to compute AutM ,
we can use backtrack search in Aut Γ(M)×AutG to determine U . The worst case
complexity of such a search is |Aut Γ(M)| · |AutG| but in many examples we have
better complexity. We prune the search tree using the fact that (λ, γ) ∈ U if and
only if (λ, δ) ∈ U for all δ ∈ γInnG (by Lemma 2.7).
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If (λ, γ) ∈ U , then choose fλ,γ ∈ GI∪J such that [λ, γ, fλ,γ ]Ψ ∈ AutM . Let T be
a fixed transversal of InnG in AutG, let

A = { [λ, γ, fλ,γ ] : (λ, γ) ∈ U and γ ∈ T },

and let
B = { [1Aut Γ(M)

, 1AutG, f ] ∈ (AutM)Ψ−1 : f ∈ GI∪J }.

Lemma 2.8. 〈AΨ, BΨ 〉 = AutM .

Proof. We start by proving that if [λ, γ, f ], [λ, γ, g] ∈ (AutM)Ψ−1 are arbitrary, then
there exists [1Aut Γ(M)

, 1AutG, h] ∈ (AutM)Ψ−1 such that

(6) [λ, γ, f ] � [1Aut Γ(M)
, 1AutG, h] = [λ, γ, g].

If h = λ−1g ? λ−1f−1, where xf−1 = (xf)−1, then

[λ, γ, f ] � [1Aut Γ(M)
, 1AutG, h] = [λ, γ, λ ◦ (λ−1g ? λ−1f−1) ? f ].

and (x)λ ◦ (λ−1g ? λ−1f−1) ? f = xg · (xf)−1 · xf = xg. Hence it suffices to prove
that [1Aut Γ(M)

, 1AutG, h]Ψ ∈ AutM .
Let i ∈ I and j ∈ J such that pj,i 6= 0. Then, since [λ, γ, f ] and [λ, γ, g] satisfy

(1), we have that

(jh)−1 · pj,i · ih = [(j)λ−1g ? λ−1f−1]−1 · pj,i · (i)λ−1g ? λ−1f−1

= (jλ−1f−1)−1 · (jλ−1g)−1 · pj,i · iλ−1g · (i)λ−1f−1

= (jλ−1f−1)−1 · pjλ−1,iλ−1γ · (i)λ−1f−1

= jλ−1f · pjλ−1,iλ−1γ · (iλ−1f)−1 = pj,i.

Hence [1Aut Γ(M)
, 1AutG, h] satisfies (1) and so is in (AutM)Ψ−1.

To conclude, let [λ, γ, f ] ∈ Aut Γ(M) × AutG × GI∪J such that [λ, γ, f ]Ψ ∈
AutM be arbitrary and let δ ∈ T such that γ ∈ δInnG. Then, by Lemma 2.7,
there exists g ∈ GI∪J such that [λ, γ, f ]Ψ = [λ, δ, g]Ψ. From (6), there exists
[1Aut Γ(M)

, 1AutG, h] ∈ (AutM)Ψ−1 such that

[λ, δ, fλ,δ] � [1Aut Γ(M)
, 1AutG, h] = [λ, δ, g].

Thus, since Ψ is a homomorphism, it follows that

[λ, δ, fλ,δ]Ψ · [1Aut Γ(M)
, 1AutG, h]Ψ = [λ, δ, g]Ψ = [λ, γ, f ]Ψ.

But [λ, δ, fλ,δ] ∈ A and [1Aut Γ(M)
, 1AutG, h] ∈ B and the proof is complete. �

To improve matters further, it is useful to have an a priori known subgroup of
the group U . The following lemma provides such a subgroup.

The group Aut Γ(M) acts on the set of |J | × |I|matrices with entries in G ∪ {0}
by permuting its rows and columns. More precisely, if λ ∈ Aut Γ(M), then define

(pj,i)λj∈J,i∈I = (pjλ,iλ)j∈J,i∈I .

Hence we can consider the pointwise stabilizer Aut Γ(M)(P ) of (the point) P un-
der the action of Aut Γ(M). Moreover, as AutG acts on G, we can consider the
pointwise stabilizer AutG(P ) of the entries in P in AutG.

Lemma 2.9. Aut Γ(M)(P ) × AutG(P ) is a subgroup of U .
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Proof. Let λ ∈ Aut Γ(M)(P ), let γ ∈ AutG(P ), and let f ∈ GI∪J be defined by
xf = 1G. Then

pj,iγ = pj,i = 1G · pj,i · 1G = (jf)−1 · pjλ,iλ · (if)

for all pj,i 6= 0. Hence [λ, γ, f ]Ψ ∈ AutM and so Aut Γ(M)(P ) × AutG(P ) is a
subgroup of U . �

The algorithm used to compute the automorphisms of an arbitrary finite Rees
matrix semigroup is given in Algorithm 1.

Algorithm 1 - The automorphism group of a Rees matrix semigroup.

1: S ← stabilizer chain for Aut Γ(M)×AutG
2: find Aut Γ(M)(P ) ×AutG(P )

3: backtrack in S to find U 6 Aut Γ(M)×AutG and simultaneously the set A
4: T ← a transversal of Z(G) in G
5: G1, G2, . . . , Gt ← ∅
6: for i in {1, 2, . . . , t} do
7: for g ∈ T if i = 1 or g ∈ G if i 6= 1 do
8: find ρ = ρKi(1Aut Γ(M)

, 1AutG, g)
9: if ρ is a function then

10: Gi ← Gi ∪ {ρ}
11: end if
12: end for
13: end for
14: B ← { [1Aut Γ(M)

, 1AutG, f ] : f |Ki
= ρ ∈ Gi for all i }

15: return 〈AΨ, BΨ 〉

2.1. Examples. To conclude the section we give several examples.

Example 2.10. Let M denote the Rees matrix semigroup given in Example 2.5,
where G = {1, x, x2}, Aut Γ(M) = 〈 (3 5) 〉, AutG = 〈 x 7→ x2 〉, G/Z(G) is trivial,
and the number of connected components in Γ(M) is 1.

The orbit of P under Aut Γ(M) in the set of 3×3 matrices with entries inG∪{0}
is P =

1 1
1 0
1 x

 ,

1 x
1 0
1 1


and so Aut Γ(M)(P ) is trivial. Likewise, the orbit of AutG on the set of entries
{1, x} in P is

{{1, x}, {1, x2}}
and so AutG(P ) is trivial.

The only non-identity element of the subgroup U is

((3 5), x 7→ x2) = (λ, γ)

and the corresponding function is

fλ,γ =
(

1 2 3 4 5
1 x2 1 1 1

)
.
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Since G/Z(G) is trivial, B consists of a single element represented by the triple
[1Aut Γ(M)

, 1AutG, (1)].
It follows that AutM = 〈 [1Aut Γ(M)

, 1AutG, (1)], [(3 5), x 7→ x2, (1)] 〉 ∼= C2.

Example 2.11. Let M denote the Rees matrix semigroup M0[C6; 5, 5;P ] where
C6 = {1, x, . . . , x5} is the cyclic group of order 6 and

P =


0 x4 x 0 0
0 0 0 1 0
0 0 0 x4 x5

x4 0 0 0 0
x4 0 0 0 x

 .

The graph Γ(M) is

1 r
@
@
@

S
S
S
S

2 r���
3 r���
4 r�����

�

5 r���
6r
7r
8r
9r
10r

and so Aut Γ(M) = 〈 (1 4)(7 9)(8 10), (2 3) 〉. The automorphism group of C6 is
AutC6 = 〈 x 7→ x5 〉 and InnC6 is trivial. Since C6 is abelian, Z(C6) = C6. Thus
there are at most

|Aut Γ(M)| · |AutG/InnG| · |G/Z(G)| · |G| = 4 · 2 · 6 = 48

automorphisms of M .
The stabilizer of P under Aut Γ(M) in the set of 5 × 5 matrices with entries in

G ∪ {0} is trivial. Likewise, the stabilizer under AutG of the entries {1, x, x4, x5}
in P is trivial. The generators of U found during the backtrack search are:

(1Aut Γ(M)
, x 7→ x5), ((2, 3), 1AutG), ((1 4)(7 9)(8 10), 1AutG)

with the corresponding functions(
1 2 3 4 5 6 7 8 9 10
1 1 1 x2 1 x2 x2 x4 x2 x2

)
,

(
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 x3 1 1 1 1

)
,(

1 2 3 4 5 6 7 8 9 10
1 1 1 x4 x2 1 x2 x4 x2 1

)
,

respectively. The set B consists of 6 elements represented by the triples

[1Aut Γ(M)
, 1AutG, (1, xi)]

with 1 6 i 6 6. The group generated by AΨ and BΨ has 48 elements and it can be
shown that AutM ∼= C2 × C2 × C2 × S3.

Example 2.12. Let M denote the Rees matrix semigroupM0[S4; 6, 2;P ] where S4

is the symmetric group of degree 4, let 1 denote the identity of S4, let x = (1 2 3),
and let

P =
(

1 0 x−1 0 x 0
0 1 0 x−1 0 x

)
.

The graph Γ(M) is
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1 r
2 r
3 r
4 r
5 r
6 r

7rHHH ((( ,
,

, 8rlll hhh
���

and it can be shown that Aut Γ(M) = 〈(3 5), (4 6), (2 4), (1 2)(3 4)(5 6)(7 8)〉(∼= (S3×
S3) oC2). The group AutS4 equals InnS4 and is isomorphic to S4. The centre Z(S4)
of S4 is trivial. Thus there are at most

|Aut Γ(M)| · |AutS4/InnS4| · |S4/Z(S4)| · |S4| = 72 · 1 · 242 = 41472

automorphisms of M .
The stabilizer of P under Aut Γ(M) in the set of 2 × 6 matrices with entries in

S4 ∪ {0} is 〈 (1 2)(3 4)(5 6)(7 8) 〉(∼= C2). The stabilizer under AutS4 of the entries
{1, x, x−1} in P is 〈 y 7→ yx 〉(∼= C3) where yx denotes conjugation by x = (1 2 3).
The generators of U found during the backtrack search are:

(1Aut Γ(M)
, x 7→ x(1 2)), ((4 6), x 7→ x(1 4 2)), ((3 5), x 7→ x(1 4 2)),

((2 6 4), x 7→ x(1 3 4)), ((1 2)(3 4)(5 6)(7 8), 1Aut S4)

with the corresponding functions arising in every case from the pair (1S4 , 1S4).
The set B consists of 576 = (4!)2 elements represented by the triples

[1Aut Γ(M)
, 1AutS4 , (f, g)]

with f, g ∈ S4.

3. INNER AUTOMORPHISMS

Let S be a semigroup of transformations of the n-element set {1, 2, . . . , n} and
let g be an element of Sn, the symmetric group on {1, 2, . . . , n}. If the mapping
φg : s 7→ gsg−1 is an automorphism of S, then it is called an inner automorphism.
Note that the notion of an inner automorphism of a semigroup differs from the
notion of the same name for groups. The group of all inner automorphisms of S is
denoted by InnS. The purpose of this section is to give an algorithm to compute
the inner automorphisms of S.

In what follows Ims(S) denotes the set of images that elements of S admit. If
f ∈ S, then the kernel of f is the equivalence relation ker(f) = { (x, y) ∈ S :
xf = yf }. We let Kers(S) denote the set of kernels that the elements of S admit.
Both Ims(S) and Kers(S) can be found by using a simple orbit algorithm without
computing the elements of S. As usual, if G is a subgroup of Sn and N is a subset
of {1, 2, . . . , n}, set of subsets of {1, 2, . . . , n}, or subset of S, thenG{N} denotes the
setwise stabilizer of N in G.

Algorithm 2 makes use of the following straightforward lemma to compute the
inner automorphism group of S.

Lemma 3.1. Let S be a semigroup of transformations on {1, 2, . . . , n}, let X be a gen-
erating set for S, and let I = Sn. Then InnS = { φf : s 7→ f−1sf | f ∈ I{Ims(S)} ∩
I{Kers(S)} and Xφf ⊆ S }.
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Proof. Let φf ∈ InnS where f ∈ Sn. Then φf is bijection from S to S and so
Ims(Sφf ) = Ims(S)f = Ims(S), Kers(Sφf ) = Kers(S)f = Kers(S), and Xφf ⊆ S.
In particular, f ∈ I{Ims(S)} ∩ I{Kers(S)}.

For the converse, let f ∈ I{Ims(S)} ∩ I{Kers(S)} such that Xφf ⊆ S. The latter
condition implies that φf is a homomorphism from S into S. Since f ∈ Sn, it
follows that φf is injective. Hence φf ∈ InnS. �

The sets Ims(S) and Kers(S) are a fundamental part of almost every computa-
tion involving transformation semigroups, so much so, that if we cannot compute
these sets, then we are unlikely to be able to compute anything else of interest.
There are sophisticated methods for determining stabilizers of sets efficiently in
permutation groups using partition backtrack search. In particular, such methods
apply to the computation of I{Ims(S)} ∩ I{Kers(S)} when I = Sn. Such methods are
implemented in GAP and are utilized in our implementation in [30].

To find the inner automorphisms of a semigroup S on {1, 2, . . . , n} generated
by a set X , we perform a backtrack search in G = I{Ims(S)} ∩ I{Kers(S)} for elements
f such that Xφf ⊆ S. We can improve the backtrack search in the following
three ways. Firstly, we take the elements x1, . . . , xm of X as the base points for
our stabilizer chain for G. In this way, we can prune the search tree by never
considering elements f ∈ G such that f−1xif 6∈ S. Secondly, if f, g ∈ G such that
xfi = xgi for all 1 6 i 6 m, then we do not distinguish between f and g. This
improves the search as we can ignore any remaining base points after xm. Thirdly,
the setwise stabilizer G{X} of the generators of S in G is a subgroup of InnS that
can be easily computed.

Algorithm 2 - Inner automorphisms of a transformation semigroup S = 〈X 〉.
1: compute Ims(S) and Kers(S)
2: I ← Sn
3: I ← I{Ims(S)}
4: if I is not trivial then
5: I ← I{Kers(S)}
6: if I is not trivial then
7: compute I{X} 6 InnS
8: backtrack in I to find A = { f ∈ I : Xφf ⊆ S }
9: end if

10: end if
11: return { φf : f ∈ A }

Example 3.2. Let R denote the group ring of the cyclic group C4 of order 4 over
the field with 2 elements. Then using the semigroup theoretic analogue of Cayley’s
theorem we can find a transformation semigroup S with generating set

X =
{
x =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 7 9 1 15 5 11 13 11 13 3 5 15 7 9

)
,

y =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 16 9 6 5 8 13 12 15 2 3 4 7 10 11 14

)
,
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z =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 8 11 2 5 16 13 14 3 6 15 10 7 4 9 12

)}
that is isomorphic to the multiplicative semigroup of R.

The setwise stabilizer J of Ims(S) in S16 has 3870720 elements, and the setwise
stabilizer I of Kers(S) in J has 4096 elements. There are 16 elements in the stabi-
lizer I{X} of the generators X in I .

As it turns out, InnS = AutS ∼= C2 ×D8; see Section 6 for more details.

The overall aim is to compute AutS for an arbitrary S. In conjunction with
Algorithm 2, the following theorem gives us a method to do this in one special
case.

Theorem 3.3. Let S be a semigroup of mappings on {1, 2, . . . , n} such that for all s, t ∈ S
there exists a constant mapping k ∈ S such that ks 6= kt. Then AutS = InnS.

Proof. For a proof see [39, Theorem 1] . �

Corollary 3.4. If S contains all the constant mappings, then AutS = InnS.

The converse of Theorem 3.3 is not true. For example, if S is the semigroup
from Example 3.2, then the mapping with constant value 1 is the only constant
in S. However, the generators do not satisfy the condition of Theorem 3.3 and
AutS = InnS.

4. THE MAIN ALGORITHM

In this section we give the main algorithm for computing the automorphism
group AutS of a finite transformation semigroup S. Throughout the remainder
of this section we assume that S is a finite transformation semigroup. Of course,
since every finite semigroup is isomorphic to a finite transformation semigroup
the algorithm described in this section can be used to compute the automorphism
group of an arbitrary finite semigroup.

As mentioned in Section 1 the algorithm consists of searching through a space
of candidates and testing if the elements are automorphisms. Our principal fo-
cus in this section is to reduce the size of the search space by considering cer-
tain structural aspects of S that are preserved by automorphisms. The main as-
pect we consider is Green’s D-relation. Let S1 denote the semigroup S with a
new identity adjoined, that is, an element 1 that acts as an identity on the ele-
ments of S. Then Green’s L-relation is the set of pairs (x, y) ∈ S × S such that
S1x = { sx : s ∈ S1 } = S1y; denoted by xLy. Green’sR-relation is defined dually
and denoted by xRy. Although both Green’s L- and R-relations are preserved
by automorphisms of S (see Lemma 4.1(i)), we are interested in their composition
D = L ◦ R. Like L andR, Green’s D-relation is an equivalence relation and as such
partitions the set of elements of S into D- classes.

Using the fact that S is finite, it can be shown (see [21, Proposition 2.1.4]) that
xDy if and only if S1xS1 = S1yS1. This alternative formulation leads to a natural
partial order on the D-classes of S: D1 6D D2 if S1xS1 ⊆ S1yS1 for some x ∈ D1

and y ∈ D2.
So far, S has been partitioned intoD-classes and arranged in a partial order6D.

Let us now inspect the individual D-classes more closely. Let D be a D-class of S.
Then define D∗ such that D∗ = D if st ∈ D for all s, t ∈ D and D∗ = D ∪ {0}
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otherwise and define multiplication on D∗ by

s ∗ t =

{
st if s, t, and st ∈ D
0 if s, t, or st 6∈ D.

ThenD∗ is a semigroup, called the principal factor ofD. What is more,D∗ is either a
zero semigroup or a simple semigroup with or without a zero [21, Theorem 3.1.6].
It follows by the Rees-Suschkewitz Theorem [21, Theorem 3.2.3] that a D-class
of S can be thought of as a Rees matrix semigroup as described in Section 2. If
st ∈ D for all s, t ∈ D, then the construction in the proof of the Rees-Suschkewitz
Theorem yields an isomorphism from D toM0[G; I, J ;P ] \ {0}. However, in this
case AutM0[G; I, J ;P ] ∼= AutM0[G; I, J ;P ]\{0} and so without loss of generality
we can ignore the distinction.

Let D1 and D2 be D-classes of S. Then φ : D1 → D2 is an isomorphism if it is the
restriction to D1 of an isomorphism between D∗1 and D∗2 ; we will denote this by
D1
∼= D2.

The following simple lemma is our main tool for reducing the size of the search
space in Algorithm 3.

Lemma 4.1. Let S be a semigroup, letD1 andD2 beD-classes of S, and φ ∈ AutS. Then
the following hold

(i) φ preserves Green’s D-relation (xφDyφ if and only if xDy);
(ii) φ preserves the partial order6D ofD-classes (D1φ 6D D2φ if and only ifD1 6D

D2);
(iii) if D1φ ⊆ D2, then D1 and D2 are isomorphic.

Let S be an arbitrary finite semigroup generated by a set X with D-classes
D1, D2, . . . , Dt. Using Lemma 4.1, we can now define the group inside which
AutS lives. Let Aut P denote the group of automorphisms of the partial order
P of D- classes of S such that Dψ ∼= D for all ψ ∈ Aut P and all D-classes D,
and let φi,j : Di → Dj be a fixed isomorphism for every pair of isomorphic D-
classes Di and Dj such that φi,j ◦ φj,k = φi,k for all i, j, k. Let Ψ : Aut P →
Aut (AutD1 × · · · ×AutDt) be defined by

(ψ)Ψ : (δ1, . . . , δt) 7→ (φ1,1ψ−1δ1ψ−1φ−1
1,1ψ−1 , . . . , φt,tψ−1δtψ−1φ−1

t,tψ−1),

where we follow the convention that Diψ = Diψ . Then form the semidirect prod-
uct of AutD1×· · ·×AutDt by Aut P via Ψ; denoted (AutD1×· · ·×AutDt)oAut P.
An element f = (δ1, δ2, . . . , δt, ψ) of (AutD1 × · · · ×AutDt) o Aut P acts on S as
follows

sf = sδiφi,iψ if s ∈ Di.

Theorem 4.2. AutS is isomorphic to a subgroup of (AutD1 × · · · × AutDt) o Aut P.

Proof. This is a straightforward corollary of Lemma 4.1. �

Of course, in order to compute AutS we only have to consider the images of the
generators of S under elements of (AutD1×· · ·×AutDt)oAut P. Moreover, there
may be elements of AutDi, besides the identity, that fix the generators X ∩Di in
Di pointwise. LetD1, D2, . . . , Dr be theD-classes containing generators, and let Ti
be a transversal of the cosets of the pointwise stabilizer (AutDi)(X∩Di) of X ∩Di
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in AutDi. Then, we will search through the elements of the set

[T1 × · · · × Tr]×Aut P.

The elements in the search space will be tested to see if they induce automor-
phisms of S. Since every element in the search space induces a bijection from S
to S it suffices to find a presentation defining S and to test if the images of the
generators satisfy the relations of this presentation. The Froidure-Pin Algorithm
[11] conveniently allows theD-classes of S, the partial order ofD- classes of S, and
a presentation that defines S to be calculated more or less simultaneously. Thus
nothing is lost by requiring that we know a presentation for S.

The automorphism group of the partial order of D-classes can be computed
using the method given in [28] implemented in nauty [29] and available through
the GAP package GRAPE [38]. Finally, since S is a transformation semigroup it is
possible to verify if it is simple using [15, Proposition 2.3]. Algorithm 3 describes
how to compute the automorphism group of S.

We remark that the semidirect product in Theorem 4.2 is relatively difficult to
represent in the computer and so does not lend itself to backtrack search. In par-
ticular, there is no obvious way to prune the search tree in this case. Moreover,
it is unlikely that we would reach the point in the algorithm in such cases that
backtrack search would help, as in these cases we might be unable to compute the
D-classes or a presentation for S. We hope to address these problems in future
work.

Examples 4.3, 4.4, 4.5, and 4.6 are examples of the algorithm at work; the unex-
plained steps can be verified using GAP.

Example 4.3. Let us return to the multiplicative semigroup S of the group ring
R defined in Example 3.2. The semigroup S is not simple and S does not satisfy
the hypothesis of Theorem 3.3. Using the Froidure-Pin Algorithm we compute the
following presentation that defines S

〈 x, y, z | yx = xy, zx = xz, zy = yz, z2 = y2, x2z = x2y, xyz = x, x3y = x3,
x2y2 = x2, xy3 = xz, xy2z = xy, x5 = x4, y5 = y, y4z = z 〉.

The D-classes in S are: D1 containing the generators y and z, D2 containing the
generator x, D3 and D4 respectively containing the mappings(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 7 5 13 1 7 1 13 5 13 5 7 1 7 5 13

)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

)
and D5 containing the constant mapping with value 1.

The partial order P of the D-classes is just a chain with D1 >D D2 >D D3 >D
D4 >D D5. Hence Aut P is trivial. Now, D∗1 is isomorphic to the group C4 × C2

and D∗2 is isomorphic to a zero semigroup with 5 elements. Using Algorithm 1 it
can be shown that AutD1 is isomorphic to the dihedral group with 8 elements and
AutD2 is isomorphic to S4. The pointwise stabilizer of the generators in D1 and
D2 with respect to AutD1 and AutD2 contain 1 and 6 elements, respectively. Thus
the transversals T1 and T2 of cosets of these stabilizers in AutD1 and AutD2 are
of length 8 and 4, respectively. Thus the search space contains |T1| · |T2| · |Aut P| =
8 · 4 · 1 = 32 elements.
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Algorithm 3 - The automorphism group of a finite transformation semigroup S =
〈X 〉.

1: if S is simple then
2: apply Algorithm 1 to S
3: else
4: A← InnS from Algorithm 2 (automorphisms)
5: if S satisfies Theorem 3.3 then
6: return A
7: else
8: R← relations of presentation defining S
9: compute D-classes D1, D2, . . . , Dr containing generators and Aut P

10: find transversals T1, T2, . . . , Tr of pointwise stabilizers of X ∩Di

11: Ω← [T1 × · · · × Tr]×Aut P
12: i← 0 and B ← {} (non-automorphisms)
13: while 2|A|+ |B| 6 |Ω| and i 6 |Ω| do
14: i← i+ 1 and Ωi ← the ith element of Ω
15: if not Ωi in A or B then
16: if XΩi satisfies the relations R then
17: A← 〈A,Ωi 〉
18: else
19: B ← B ∪AΩiA
20: end if
21: end if
22: end while
23: end if
24: end if
25: return A

Recall from Example 3.2 that InnS ∼= C2 ×D8. Therefore AutS = InnS if and
only if there is a single element in (T1 × T2 × Aut P) \ InnS that does not induce
an automorphism of S.

As it turns out, such an element exists and so AutS = InnS ∼= C2 ×D8.

Example 4.4. Let S be the semigroup generated by the following transformations

X =
{
x =

(
1 2 3 4 5 6 7 8
4 4 8 8 8 8 4 8

)
, y =

(
1 2 3 4 5 6 7 8
8 2 8 2 5 5 8 8

)
,

z =
(

1 2 3 4 5 6 7 8
8 8 3 7 8 3 7 8

)
, t =

(
1 2 3 4 5 6 7 8
8 6 6 8 6 8 8 8

)}
.

Incidently, the semigroup S is Knast’s example of a semigroup that lies in the
variety LJ (locally J -trivial semigroups) but not in the variety B1 (the variety of
semigroups corresponding to the dot-depth one languages) as given in the manual
for [34]. The semigroup S has 30 elements.

The set Ims(S) of images that elements of S admit is

{{2, 5, 8}, {2, 8}, {3, 7, 8}, {3, 8}, {4, 8}, {5, 8}, {6, 8}, {7, 8}, {8}}

and the setwise stabilizer I{Ims(S)} of Ims(S) in I = S8 is the permutation group
generated by {(4 6), (2 3)(5 7), (2 3 5 7)} (I{Ims(S)} ∼= C2 × D8). The set Kers(S) of
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kernels that elements of S admit is

{{{1, 2, 3, 4, 5, 6, 7, 8}}, {{1, 2, 3, 5, 6, 8}, {4, 7}}, {{1, 2, 4, 5, 7, 8}, {3, 6}},
{{1, 2, 5, 8}, {3, 6}, {4, 7}}, {{1, 2, 7}, {3, 4, 5, 6, 8}}, {{1, 3, 5, 6, 7, 8}, {2, 4}},
{{1, 3, 7, 8}, {2, 4}, {5, 6}}, {{1, 3, 7, 8}, {2, 4, 5, 6}}, {{1, 4, 6, 7, 8}, {2, 3, 5}}}

and the setwise stabilizer of Kers(S) in I{Ims(S)} is trivial. Thus InnS is trivial.
The presentation

〈 x, y, z, t | xt = x2, y2 = y, yz = x2, tx = x2, t2 = x2, zy = x2, z2 = z, x3 = x2,
x2y = x2, x2z = x2, xyx = x, xzx = x, xzt = x2, yx2 = x2, tyx = x2,
tyt = t, tzx = x2, tzt = t, zx2 = x2 〉

defines S. The generators x, y, z, t of S lie in the distinct D-classes D1, . . . D4, re-
spectively, and there are two further D-classes D5 and D6 with representatives(

1 2 3 4 5 6 7 8
6 6 8 8 8 8 6 8

)
and the constant function with value 8, respectively. The Hasse diagram of the
partial order of D-classes is

rr��@
@
r���rHHHr rD2 D3

D4D1

D5

D6

and Aut P = 〈(2 3), (1 4)〉(∼= C2×C2). It can be shown thatD1
∼= D4

∼=M0[G; 3, 3;P ]
where G = {1} is the trivial group and P is the matrix1 1 0

1 0 1
0 1 1

 .

Furthermore, D2 and D3 are both isomorphic to the trivial group. Using Algo-
rithm 1 it can be shown that AutD1

∼= AutD4
∼= S3 and clearly AutD2 and AutD3

are trivial. It turns out that the stabilizers of X ∩D1 and X ∩D4 under the action
of the respective automorphism groups have size 2. Thus the search space has size

(3!/2)2 · |Aut P| = 32 · 4 = 36.

As it turns out none of the non-identity elements in the search space are automor-
phisms and so AutS is trivial.

Example 4.5. Let S be the semigroup generated by the following set of transfor-
mations

X =
{
x =

(
1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1

)
, y =

(
1 2 3 4 5 6 7 8 9
4 2 3 4 5 6 7 8 9

)}
Then S has 40266 elements.

If I = S9, then I{Ims(S)} has 1296 elements and so does the stabilizer of Kers(S)
in I{Ims(S)}. It can be shown using Algorithm 2 that InnS ∼= (C9 o C3) o C2

(the group with identification number [54, 6] used in the Small Group library [4]
available in GAP and MAGMA [26]).

The number of D-classes in S is 11 with the generators x and y is different D-
classesDx andDy . Now, AutDx

∼= C6 and AutDy is a group with 93312 elements.
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The stabilizer of x in AutDx is trivial but the stabilizer of the generator y in AutDy

has 5184 elements. Thus

6 · (93312/5184) · |Aut P| = 6 · 18 · 1 = 108.

As it turns out, exactly half of the elements in this space are automorphisms and
AutS = InnS ∼= (C9 o C3) o C2.

Example 4.6. Let S be the semigroup generated by the following set of transfor-
mations

X =
{
x =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 9 10 11 12 8

)
,

y =
(

1 2 3 4 5 6 7 8 9 10 11 12
1 1 4 5 6 7 3 8 9 10 11 12

)
,

z =
(

1 2 3 4 5 6 7 8 9 10 11 12
1 1 4 3 5 6 7 8 9 10 11 12

)}
.

Then S is a Clifford semigroup, that is, a strong semilattice Y of groups Gy , y ∈ Y ,
with respect to the homomorphisms φx,y : Gx → Gy (multiplication is defined by
st = (s)φs,st(t)φt,st). In particular, the semilattice in this case has 2 elements a > b,
the groups Ga ∼= C5 and Gb ∼= C5 × S5 correspond to the D-classes Dx of x and
Dy,z of y and z, respectively, and the homomorphism φa,b : Ga → Gb is defined by
x 7→ xz2.

If I = S12, then I{Ims(S)} has 39916800 elements and the stabilizer of Kers(S)
in I{Ims(S)} has 3628800 elements. It can be shown using Algorithm 2 that InnS
has 480 elements. Note that without the use of backtrack search in Algorithm 2
computing the inner automorphisms of S was very time consuming.

The automorphism group of the partial order P ofD-classes of S is trivial. Now,
AutC5

∼= C4 and AutC5×S5
∼= C4×S5, the stabilizer of x in AutDx is trivial and

the stabilizer of y and z in AutDy,z contains 4 elements. Thus the size of the search
space is

4 · (480/4) · |Aut P| = 4 · 120 · 1 = 480.

Hence AutS = InnS is a group with 480 elements.

5. SMALL SEMIGROUPS

In this section we list the isomorphism types of the groups that occur as au-
tomorphism groups of a semigroup, up to isomorphism and anti-isomorphism,
with 1 to 7 elements. We also provide the number of semigroups with a given
automorphism group.

Note that the numbers of semigroups with 8 and 9 elements are 1843120128 and
52989400714478, respectively, and the number of semigroups with 10 elements is
unknown. Consequently it was not possible to compute the automorphism groups
of all of the semigroups of any fixed order greater than 7. The semigroups with 1
to 8 elements are available in the smallsemi package [7] for GAP.

The fourth column in the table contains the group identification number used
in the Small Group library [4] available in GAP and MAGMA [26].
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n Automorphism groups Number of semigroups Group Id.

2 trivial 3 (1,1)
C2 1 (2,1)

3 trivial 12 (1,1)
C2 5 (2,1)
S3 1 (6,1)

4 trivial 78 (1,1)
C2 39 (2,1)

C2 × C2 3 (4,2)
S3 5 (6,1)
S4 1 (24,12)

5 trivial 746 (1,1)
C2 342 (2,1)
C3 2 (3,1)
C4 1 (4,1)
S3 33 (6,1)
D8 1 (8,3)
D12 4 (12,4)
S4 4 (24,12)
S5 1 (120, 34)

6 trivial 10965 (1,1)
C2 4121 (2,1)

C2 × C2 441 (4,2)
C2 × C2 × C2 6 (8,5)
C2 × S4 4 (48, 48)
C3 26 (3,1)
C4 7 (4,1)
D12 49 (12,4)
D8 17 (8,3)
S3 300 (6,1)

S3 × S3 2 (36, 10)
S4 30 (24,12)
S5 4 (120, 34)
S6 1 (720, 763)

7 trivial 746277 (1,1)
(S3 × S3) o C2 1 (72,40)

C2 76704 (2,1)
C2 × C2 7314 (4,2)
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n Automorphism groups Number of semigroups Group Id.

C2 × C2 × C2 172 (8,5)
C2 × C2 × S3 14 (24,14)
C2 ×D8 10 (16, 11)
C2 × S4 45 (48, 48)
C2 × S5 4 (240, 189)
C3 412 (3,1)
C4 82 (4,1)

C4 × C2 4 (8,2)
C5 6 (5,1)
C6 37 (6,2)
D10 2 (10,1)
D12 790 (12,4)
D8 169 (8,3)
S3 3638 (6,1)

S3 × S3 24 (36, 10)
S3 × S4 4 (144, 183)
S4 277 (24,12)
S5 30 (120, 34)
S6 4 (720, 763)
S7 1 -

From the values in the above table, it seems reasonable to conjecture that asymp-
totically almost all semigroups (up to isomorphism and anti-isomorphism) have
trivial automorphism group. However, we do not know a proof of this statement.

6. GROUP RINGS

Note that Algorithm 3 can be easily modified to compute the automorphism
group of a near-ring, or indeed any algebra with associative binary operations. To
illustrate we compute the automorphism groups of the multiplicative semigroup
of some group rings.

In the following table, G denotes the group, R the ring and S the multiplicative
semigroup of the group ring overG andR. The fourth column in the table contains
the group identification number used in the Small Group library [4] available in
GAP and MAGMA [26].

G R AutS Group Id.

C2 GF (2) trivial (1,1)
C3 GF (2) C2 (2,1)
C4 GF (2) C2 ×D8 (16,11)

C2 × C2 GF (2) C2 × (((C2 × C2 × C2 × C2) o C3) o C2) (192,1538)
C5 GF (2) C4 × C2 (8,2)
C6 GF (2) S3 × S3 (36, 10)
S3 GF (2) S3 (6,1)
C7 GF (2) C3 × ((C6 × C2) o C2) (72,30)
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7. WHAT GROUPS?

In this section we consider the class of groups that occur as automorphism
groups of semigroups. It might be imagined that if this class is restricted, then
we could use this fact to our advantage in the procedures described above. Such
speculation is irrelevant as the following well-known theorem shows that the class
of automorphism groups of semigroups is not in general restricted. Furthermore,
our conjecture remains irrelevant even if we restrict our attention to some of the
most important special classes of semigroup. It is worth noting that, in contrast
to Theorem 7.1, it is known that certain groups do not occur as the automorphism
groups of any groups; for example see [16].

Theorem 7.1. Every finite group is isomorphic to the automorphism group of a finite
semigroup of any of the following types: nilpotent, commutative, Clifford, and Rees matrix
semigroups.

Proof. We begin by proving that every finite group is isomorphic to the automor-
phism group of a finite semigroup with no further conditions. Frucht’s Theorem
[5, Section 14.7] states that every group G is the automorphism group of some
simple graph Γ with vertices V . Let b and r be elements that are not in V . Form a
semigroup from the set S = V ∪{b, r} by defining the product of adjacent elements
of V to equal b and all other products to equal r. The mapping φ : S → S is an
automorphism of S if and only if φ|V is an automorphism of Γ, bφ = b, and rφ = r.
Thus AutS ∼= Aut Γ. Note that the semigroup S constructed above is nilpotent,
and commutative.

In [14] it was shown that every finite group is isomorphic to the automorphism
group of a finite bounded lattice. (Here automorphism means order automor-
phism.) A lattice can be thought of as a Clifford semigroup over trivial groups.
The automorphisms of this semigroup are precisely the order automorphisms of
the lattice. It follows that every finite group occurs as the automorphism group of
a Clifford semigroup.

To conclude the proof we consider the case of Rees matrix semigroups. We will
use the same notation used in Section 2. Let λ ∈ Aut Γ(M) and let 1AutG be
the unique automorphism of the trivial group G = {1}. Then there is only one
possible function c : I ∪ J → G, the constant mapping with value 1. The equality
pj,i = (jc)(pjλ−1,iλ−1)1AutG(ic)−1 holds for all pj,i 6= 0, since both sides equal
1. Thus if M = M0[G; I, J ;P ] is a Rees matrix semigroup over the trivial group,
then, by Theorem 2.2, AutM ∼= Aut Γ(M).

Now, any bipartite graph can occur as the graph Γ(M) of some Rees matrix
semigroup M . Thus the class of automorphism groups of Rees matrix semigroups
contains the class of automorphism groups of bipartite graphs. In [17] it is shown
that every group is the automorphism group of a bipartite graph; also see [18,
Section 4.8]. �

Corollary 7.2. Every finite group is isomorphic to the automorphism group of a finite
semigroup of any of the following types: orthodox, regular, completely regular, and inverse.
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