Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

The current state of the recog package

Max Neunhöffer

University of St Andrews

Edinburgh, 28.7.2009

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

Finding even order normal subgroups

Theorem

```
Let 1 < N \leq G with 2 | |N|.
Let 1 \neq x \in G \setminus Z(G) with x^2 = 1.
Then for C := C_G(x) we have:
1 < C \cap N \leq C and
2 | |C \cap N|.
```

In particular, $C \cap N$ contains an involution.

Proof: We have xNx = N and |N| is even. Thus the orbits of $\langle x \rangle$ on *N* have lengths 1 and 2, so there must be an even number of orbits of length 1.

That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

Finding $N \triangleleft G$

Let $1 < N \leq G$ with $2 \mid |N|$ and $N \neq G$.

We can proceed as follows: Initialise H := G. Then

- Find a non-central involution $x \in H$. If none found, goto 4.
- **2** Compute its involution centraliser $C := C_H(x)$.
- Replace H with C and goto 1.
- Let D be the group generated by all central involutions we found.
- For all $1 \neq x \in D$: Test if $\langle x^G \rangle \neq G$.
- If no normal closure is properly contained, conclude that G does not contain such an |N| as assumed.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

What is missing?

Things we never got around to implement:

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups
- Verification using presentations
- Non-random kernel computation using presentations
- Aschbacher recognition methods for Imprimitive and Tensor
- Composition series for matrix stabiliser chain leaf
- Probably some more I forgot here!

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

An Idea

We seem not to be able to find polynomial-time algorithms to decide membership in some Aschbacher classes like "Imprimitive" (C_2).

Then lets not do it!

Define for example:

Definition of class \mathcal{D}_2

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{D}_2 if

- the natural module V is absolutely irreducible and
- there is Z(G) < N ⊲ G such that V|_N = ⊕^k_{i=1} W_i and the W_i are absolutely irreducible F_qN-modules and not all isomorphic.

Can we find a polynomial-time algorithm to decide membership in \mathcal{D}_2 ?