Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

### The current state of the recog package

#### Max Neunhöffer



University of St Andrews

Edinburgh, 28.7.2009

Max Neunhöffer

Finding normal subgroups

What is missing

An Ide

## Finding even order normal subgroups

#### Theorem

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

## Finding even order normal subgroups

#### Theorem

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Let 
$$1 \neq x \in G \setminus Z(G)$$
 with  $x^2 = 1$ .

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

## Finding even order normal subgroups

#### Theorem

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Let 
$$1 \neq x \in G \setminus Z(G)$$
 with  $x^2 = 1$ .

Then for  $C := C_G(x)$  we have:

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

## Finding even order normal subgroups

#### Theorem

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Let 
$$1 \neq x \in G \setminus Z(G)$$
 with  $x^2 = 1$ .

Then for  $C := C_G(x)$  we have:

- $1 < C \cap N \leq C$  and
- $2 | |C \cap N|$ .

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

## Finding even order normal subgroups

#### Theorem

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Let 
$$1 \neq x \in G \setminus Z(G)$$
 with  $x^2 = 1$ .

Then for  $C := C_G(x)$  we have:

- $1 < C \cap N \leq C$  and
- $2 | |C \cap N|$ .

In particular,  $C \cap N$  contains an involution.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## Finding even order normal subgroups

#### **Theorem**

Let  $1 < N \le G$  with 2 | |N|.

Let 
$$1 \neq x \in G \setminus Z(G)$$
 with  $x^2 = 1$ .

Then for  $C := C_G(x)$  we have:

- $1 < C \cap N \leq C$  and
- $2 \mid |C \cap N|$ .

In particular,  $C \cap N$  contains an involution.

**Proof:** We have xNx = N and |N| is even.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### Finding even order normal subgroups

#### **Theorem**

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Let  $1 \neq x \in G \setminus Z(G)$  with  $x^2 = 1$ .

Then for  $C := C_G(x)$  we have:

- $1 < C \cap N \leq C$  and
- $2 \mid |C \cap N|$ .

In particular,  $C \cap N$  contains an involution.

**Proof:** We have xNx = N and |N| is even. Thus the orbits of  $\langle x \rangle$  on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### Finding even order normal subgroups

#### **Theorem**

Let  $1 < N \le G$  with  $2 \mid |N|$ .

Let  $1 \neq x \in G \setminus Z(G)$  with  $x^2 = 1$ .

Then for  $C := C_G(x)$  we have:

- $1 < C \cap N \le C$  and
- $2 \mid |C \cap N|$ .

In particular,  $C \cap N$  contains an involution.

**Proof:** We have xNx = N and |N| is even. Thus the orbits of  $\langle x \rangle$  on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

That is, we can replace (N, G) with  $(C \cap N, C)$  and use the statement again, provided we find another non-central involution.

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

## Finding $N \triangleleft G$

Let  $1 < N \le G$  with  $2 \mid |N|$  and  $N \ne G$ .

We can proceed as follows: Initialise H := G. Then

• Find a non-central involution  $x \in H$ . If none found, goto 4.

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

## Finding $N \triangleleft G$

Let  $1 < N \le G$  with  $2 \mid |N|$  and  $N \ne G$ .

- Find a non-central involution  $x \in H$ . If none found, goto 4.
- **②** Compute its involution centraliser  $C := C_H(x)$ .

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## Finding $N \triangleleft G$

Let  $1 < N \le G$  with  $2 \mid |N|$  and  $N \ne G$ .

- Find a non-central involution  $x \in H$ . If none found, goto 4.
- **②** Compute its involution centraliser  $C := C_H(x)$ .
- Replace H with C and goto 1.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## Finding $N \triangleleft G$

Let  $1 < N \le G$  with  $2 \mid |N|$  and  $N \ne G$ .

- Find a non-central involution  $x \in H$ . If none found, goto 4.
- **②** Compute its involution centraliser  $C := C_H(x)$ .
- Replace H with C and goto 1.
- Let D be the group generated by all central involutions we found.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## Finding $N \triangleleft G$

Let  $1 < N \le G$  with  $2 \mid |N|$  and  $N \ne G$ .

- Find a non-central involution  $x \in H$ . If none found, goto 4.
- **2** Compute its involution centraliser  $C := C_H(x)$ .
- Replace H with C and goto 1.
- 4 Let *D* be the group generated by all central involutions we found.
- **5** For all  $1 \neq x \in D$ : Test if  $\langle x^G \rangle \neq G$ .

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## Finding $N \triangleleft G$

Let  $1 < N \le G$  with  $2 \mid |N|$  and  $N \ne G$ .

- Find a non-central involution  $x \in H$ . If none found, goto 4.
- **②** Compute its involution centraliser  $C := C_H(x)$ .
- Replace H with C and goto 1.
- Let D be the group generated by all central involutions we found.
- **5** For all  $1 \neq x \in D$ : Test if  $\langle x^G \rangle \neq G$ .
- $\bullet$  If no normal closure is properly contained, conclude that G does not contain such an |N| as assumed.

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### What is missing?

Things we never got around to implement:

Leedham-Green/O'Brien for classical natural rep

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

## What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups
- Verification using presentations

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups
- Verification using presentations
- Non-random kernel computation using presentations

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups
- Verification using presentations
- Non-random kernel computation using presentations
- Aschbacher recognition methods for Imprimitive and Tensor

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups
- Verification using presentations
- Non-random kernel computation using presentations
- Aschbacher recognition methods for Imprimitive and Tensor
- Composition series for matrix stabiliser chain leaf

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### What is missing?

- Leedham-Green/O'Brien for classical natural rep
- Lot's of leaf cases
- Any change of representation for leafs
- O'Brien/Wilson base point hints for sporadic groups
- Verification using presentations
- Non-random kernel computation using presentations
- Aschbacher recognition methods for Imprimitive and Tensor
- Composition series for matrix stabiliser chain leaf
- Probably some more I forgot here!

Max Neunhöffer

Finding normal subgroups

What is missing?

An Idea

### An Idea

We seem not to be able to find polynomial-time algorithms to decide membership in some Aschbacher classes like "Imprimitive"  $(\mathcal{C}_2)$ .

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

### An Idea

We seem not to be able to find polynomial-time algorithms to decide membership in some Aschbacher classes like "Imprimitive"  $(\mathcal{C}_2)$ .

Then lets not do it!

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

### An Idea

We seem not to be able to find polynomial-time algorithms to decide membership in some Aschbacher classes like "Imprimitive"  $(\mathcal{C}_2)$ .

Then lets not do it!

Define for example:

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

### An Idea

We seem not to be able to find polynomial-time algorithms to decide membership in some Aschbacher classes like "Imprimitive"  $(\mathcal{C}_2)$ .

Then lets not do it!

Define for example:

### Definition of class $\mathcal{D}_2$

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$  lies in  $\mathcal{D}_2$  if

- the natural module *V* is absolutely irreducible and
- there is  $Z(G) < N \triangleleft G$  such that  $V|_N = \bigoplus_{i=1}^k W_i$  and the  $W_i$  are absolutely irreducible  $\mathbb{F}_q N$ -modules and not all isomorphic.

Max Neunhöffer

Finding normal subgroups

What is missing

An Idea

### An Idea

We seem not to be able to find polynomial-time algorithms to decide membership in some Aschbacher classes like "Imprimitive"  $(\mathcal{C}_2)$ .

Then lets not do it!

Define for example:

### Definition of class $\mathcal{D}_2$

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$  lies in  $\mathcal{D}_2$  if

- the natural module *V* is absolutely irreducible and
- there is  $Z(G) < N \triangleleft G$  such that  $V|_N = \bigoplus_{i=1}^k W_i$  and the  $W_i$  are absolutely irreducible  $\mathbb{F}_q N$ -modules and not all isomorphic.

Can we find a polynomial-time algorithm to decide membership in  $\mathcal{D}_2$ ?