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Abstract

We describe how certain permutation actions of large symmetric groups can be efficiently implemented
on a computer. Using a specially tailored adaptation of a general technique to enumerate huge orbits, and
substantial distributed computation on a cluster of workstations, we collect further evidence related to the
approach to Foulkes’ conjecture suggested in [Black and List, 1989].

1 Foulkes’ conjecture

To state Foulkes’ conjecture we first introduce some notation. Let N be the set of positive integers, let Q be
the set of rational numbers, and denote by Mn := {1, 2, 3, . . . , n} for n ∈ N the set of natural numbers less
than or equal to n. We denote the symmetric group on n points by Sn := {π : Mn → Mn | π bijective},
with concatenation of maps as product, which we denote as π ◦ ϕ meaning “apply first ϕ, then π”.
Form,n ∈ N let SmoSn be the wreath product of Sm and Sn, which is a semidirect product of the n-fold direct
product Sn

m := Sm×· · ·×Sm of copies of Sm and Sn, where the latter acts on the first by permuting the direct
factors. Note that Sn

m can be identified with the set of maps {f : Mn → Sm}. Hence, Sm o Sn = Sn
m o Sn

with product
(f, π) · (f ′, π′) := (f · (f ′ ◦ π−1), π ◦ π′),

where we multiply maps f : Mn → Sm pointwise using the product in Sm.
The wreath product Sm o Sn has order |Sm o Sn| = (m!)n · n!, and embeds into Smn by letting the i-th direct
factor of Sn

m, for i = 1, . . . , n, permute the points {(i− 1)m+ 1, . . . , im} and keep all other points in Mmn

fixed, while Sn acts on Mmn by permuting these n blocks; for more details see [James and Kerber, 1981,
Section 4.1]. We denote by Ωm,n the set {(Sm oSn) ◦ π | π ∈ Smn} of right cosets of Sm oSn in Smn, and by
QΩm,n the associated permutation right QSmn-module.
It is easily seen by an induction argument that for m ≥ n we have |Sn o Sm| ≤ |Sm o Sn|. Thus we have
|Ωm,n| ≤ |Ωn,m|. But in fact much more is conjectured to be true:

1.1 Conjecture ([Foulkes, 1950])
Let m,n ∈ N with m ≥ n. Then the permutation module QΩm,n is a QSmn-submodule of the permutation
module QΩn,m.

An outline of this note is as follows: In Section 2 we describe how the action of Smn on Ωm,n can be efficiently
implemented on a computer. This implementation will be used for calculations connected to the approach to
Foulkes’ conjecture suggested in [Black and List, 1989]. Our description uses the notion of Schur bases,
which are introduced in Section 3, while in Section 4 the approach of Black and List is discussed. In Sec-
tion 5 our particular computational techniques are explained, and in the final Section 6 actual computational
results are presented. There we also describe, for which values of m and n the conjecture has been verified
computationally so far.
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2 Implementation of the action of Smn on Ωm,n

For this section let m,n ∈ N be fixed. We consider the following set of maps:

Vm,n := {v : Mmn →Mn | v takes every value exactly m times} .

One can imagine these maps as tuples of length mn with entries in Mn, each one occuring exactly m times.
Hence we will denote such maps as tuples v = (v1, v2, . . . , vmn). On the computer they are stored exactly in
this way. By way of concatenation of maps, we have two transitive actions on Vm,n, one on the left and one
on the right: The group Sn acts regularly on the left by renaming the entries:

Sn × Vm,n → Vm,n, (π, v) 7→ π ◦ v.

The group Smn acts on the right by permuting the entries:

Vm,n × Smn → Vm,n, (v, ψ) 7→ v ◦ ψ.

These actions commute because of the associativity of concatenation: (π ◦ v) ◦ ψ = π ◦ (v ◦ ψ).
Therefore we obtain an induced action of Smn on the Sn-orbits in Vm,n. In the sequel we omit the “◦” symbol
in the notation of Sn orbits, denote the set {Snv | v ∈ Vm,n} of Sn-orbits in Vm,n by Sn\Vm,n, and the action
of Smn on it by (Snv) ◦ ψ := Sn(v ◦ ψ).
From now on let x ∈ Vm,n be the tuple

x := (1, . . . , 1︸ ︷︷ ︸
m times

, 2, . . . , 2︸ ︷︷ ︸
m times

, . . . , n, . . . , n︸ ︷︷ ︸
m times

),

i.e. the map, which maps k ∈Mmn to dk/me, the smallest integer greater or equal to k/m. Then the stabilizer
StabSmn(x) of x in Smn is equal to Sn

m, and the stabilizer StabSmn(Snx) of Snx ∈ Sn\Vm,n in Smn is equal
to Sm oSn. Thus the action of Smn on Sn\Vm,n is equivalent to the action of Smn on Ωm,n. Hence we identify
Ωm,n and Sn\Vm,n in the sequel.
Passing from Smn-sets to QSmn-modules, we can consider QVm,n as a QSn-QSmn-bimodule, and thus the
permutation QSmn-module QΩm,n is identified with the QSmn-submodule (QVm,n)Sn whose permutation
basis consists of the sums Snv :=

∑
w∈Snv w over Sn-orbits Snv ⊆ Vm,n. Note that (QVm,n)Sn is the set of

elements in QVm,n invariant under the left action of Sn.
We introduce the following definition to distinguish one tuple in each Sn-orbit:

2.1 Definition (Sn-minimal tuples)
In the above situation we call the lexicographically smallest tuple in each Sn-orbit Sn-minimal. For each
v ∈ Vm,n we call the Sn-minimal tuple in the orbit Snv the Sn-minimalization of v. We denote by V min

m,n the
set of Sn-minimal tuples in Vm,n.

It follows readily from the above, that the action of Smn on Ωm,n can be implemented on a computer by
identifying Ωm,n with V min

m,n , and acting with a map ψ ∈ Smn on v ∈ V min
m,n by just Sn-minimalizing v ◦ ψ ∈

Vm,n. Note the runtime needed to compute an Sn-minimalization, and hence the ψ-image of v, is proportional
to the length mn of the tuples.
We note the following characterization of Sn-minimality for later reference:

2.2 Proposition (Equivalent characterization of Sn-minimality)
A tuple v ∈ Vm,n is Sn-minimal, if and only if it has the following property: For all i, j with 1 ≤ i < j ≤ n
the first occurence of i in v is before the first occurence of j.

Proof: Let v be Sn-minimal. If the above property would not hold, we could rename some i and j and get a
lexicographically smaller tuple in the same Sn-orbit, a contradiction.
Let v have the above property, and assume v is not Sn-minimal. Then there is a tuple v′ in the same Sn-orbit
that is lexicographically smaller than v: Let p be the first position where both tuples differ, and let vp = j and
v′p = i with i < j. Because v and v′ are in the same Sn-orbit, p is the first position in v with value j and the
first position in v′ with value i. By the assumed property, the first occurence of i in v is before p. However, v
and v′ are equal at positions before p, therefore we have a contradiction. �
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3 Schur bases

To describe the approach in [Black and List, 1989], we recall a few facts about permutation modules and
homomorphisms between them. For our purposes we give a slightly more general description as can be found
e.g. in [Landrock, 1983, Ch.II.12].

For this section let G be a finite group, acting transitively from the right on the sets Ω and Ω′. Let ω1 ∈ Ω and
ω′1 ∈ Ω′ as well asH := StabG(ω1) andH ′ := StabG(ω′1) be the corresponding stabilizers. As above, let QΩ
and QΩ′ denote the associated permutation modules. The space HomQG(QΩ,QΩ′) of QG-homomorphisms
from QΩ to QΩ′ has a distinguished basis, which can be described as follows:
We decompose Ω′ into H-orbits, by choosing s1 = 1G, s2, . . . , sl ∈ G such that

Ω′ = ω′1s1H ∪ ω′1s2H ∪ · · · ∪ ω′1slH

is a disjoint union. Note that hence {s1, s2, . . . , sl} is a set of H ′-H-double coset representatives in G.
Using the diagonal action of G on Ω′ × Ω, and considering the intersection of each G-orbit in Ω′ × Ω with
Ω′ × {ω1}, we get the decomposition of Ω′ × Ω into G-orbits by

Ω′ × Ω = (ω′1s1, ω1)G ∪ (ω′1s2, ω1)G ∪ · · · ∪ (ω′1sl, ω1)G.

We describe a homomorphism ϕ ∈ HomQG(QΩ,QΩ′) by a matrix with respect to the natural bases of QΩ
and QΩ′, respectively, where the rows are indexed by Ω′ and the columns are indexed by Ω. Denoting the
(ω′, ω)-entry of the matrix of ϕ by ϕω′,ω, we get ϕω′,ωg = ϕω′g−1,ω, or equivalently ϕω′g,ωg = ϕω′,ω, for all
ω ∈ Ω, ω′ ∈ Ω′ and g ∈ G, because ϕ is a QG-module homomorphism. Thus, the matrix of ϕ is a unique
Q-linear combination of the matrices A(1), A(2), . . . , A(l) defined by

A
(i)
ω′,ω =

{
1 if (ω′, ω) ∈ (ω′1si, ω1)G,
0 if (ω′, ω) /∈ (ω′1si, ω1)G.

We call A := (A(1), A(2), . . . , A(l)) and the associated QG-module homomorphisms (ϕ(1), ϕ(2), . . . , ϕ(l))
the Schur basis of HomQG(QΩ,QΩ′), which hence is in bijection with the G-orbits in Ω′ × Ω. In particular
for ω = ω1g ∈ Ω, where g ∈ G, and thus Hg = StabG(ω1g), we have:

ϕ(i) : ω = ω1g 7→
∑

ω′∈ω′1sigHg

ω′.

We now turn to the concatenation of homomorphisms. For a G-set Ω′′ let H ′′ := StabG(ω′′1) for some
ω′′1 ∈ Ω′′, and as above we choose a set {t1 = 1G, t2, . . .} of H ′′-H ′-double coset representatives in G,
and a set {u1 = 1G, u2, . . .} of H ′′-H-double coset representatives in G. Let B := (B(1), B(2), . . .) and
C := (C(1), C(2), . . .) denote the Schur bases of HomQG(QΩ′,QΩ′′) and HomQG(QΩ,QΩ′′), respectively.
We can now write the concatenation B(j) ◦ A(i), i.e. the matrix product, in terms of the Schur basis C of
HomQG(QΩ,QΩ′′):

(B(j) ◦A(i))ω′′1 uk,ω1
=

∑
ω′∈Ω′

B
(j)
ω′′1 uk,ω′ ·A

(i)
ω′,ω1

=
∣∣{ω′ ∈ Ω′ | (ω′′1uk, ω

′) ∈ (ω′′1 tj , ω
′
1)G and (ω′, ω1) ∈ (ω′1si, ω1)G

}∣∣
=

∣∣{ω′ ∈ ω′1siH | (ω′′1uk, ω
′) ∈ (ω′′1 tj , ω

′
1)G

}∣∣
=

∣∣∣{ω′ ∈ ω′1siH | (ω′′1 , ω′u−1
k ) ∈ (ω′′1 , ω

′
1t
−1
j )G

}∣∣∣
=

∣∣∣ω′1siHu
−1
k ∩ ω′1t−1

j H ′′
∣∣∣

=
∣∣∣ω′1siH ∩ ω′1t−1

j H ′′uk

∣∣∣ .
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4 The approach of Black and List

In [Black and List, 1989], an approach to prove Foulkes’ conjecture is described which is based on a certain
QSmn-module homomorphism ϕ(m,n) : QΩm,n → QΩn,m. Using the language of the previous section, we
first introduce a QSmn-module homomorphism ϕ̃(m,n) : QVm,n → QVn,m, with a view towards efficient
implementation.
For a tuple v ∈ Vm,n let ṽ := (ṽ1, ṽ2, . . . , ṽmn), where ṽk := |{l ∈Mk | vl = vk}|. The tuple ṽ has the
following property (?): In those positions where v has the number i, for i ∈ Mn, all the numbers from
Mm occur exactly once in ṽ; hence we have ṽ ∈ Vn,m. Obviously, the set of all such tuples coincides with
ṽ ◦ StabSmn(v) ⊆ Vn,m, and ṽ is the lexicographically smallest of them. In particular we have

x̃ = (1, 2, . . . ,m︸ ︷︷ ︸, 1, 2, . . . ,m︸ ︷︷ ︸, . . . , 1, 2, . . . ,m︸ ︷︷ ︸︸ ︷︷ ︸
n times

).

For v ∈ Vm,n and i = 1, . . . , n let 1 ≤ pi,1 < pi,2 < · · · < pi,m ≤ mn be the positions such that vpi,j = i,
and let ψv ∈ Smn defined as ψv : pi,j 7→ (i − 1)m + j, for i = 1, . . . , n and j = 1, . . . ,m. Hence we have
x ◦ ψv = v and x̃ ◦ ψv = ṽ. Thus we conclude that all pairs (ṽ, v), for v ∈ Vm,n, belong to one and the same
G-orbit in Vn,m ×Vm,n, and hence let ϕ̃(m,n) ∈ HomQSmn(QVm,n,QVn,m) be the corresponding Schur basis
element. As StabSmn(x) = Sn

m acts regularly on its orbit x̃ ◦ Sn
m ⊆ Vn,m, for v ∈ Vm,n we have

ϕ̃(m,n) : v 7→
∑

w∈ṽ◦StabSmn (v)

w =
∑

η∈StabSmn (v)

ṽ ◦ η.

Note that, if σm,n ∈ Smn is defined as σm,n : (i−1)m+j 7→ (j−1)n+i, for i = 1, . . . , n and j = 1, . . . ,m,
then ϕ̃(m,n) is the Schur basis element corresponding to the Sn

m-Sm
n -double coset Sn

m ◦ σm,n ◦ Sm
n in Smn.

Next we consider QΩm,n = (QVm,n)Sn and QVn,m = (QVn,m)Sm . By the description (?) of the elements of
ṽ ◦ StabSmn(v) ⊆ Vn,m, for v ∈ Vm,n, we conclude that ṽ ◦ StabSmn(v) is a union of Sm-orbits. Hence by
restriction we obtain a QSmn-homomorphism

ϕ(m,n) :=
1
n!

· ϕ̃(m,n)|QΩm,n : QΩm,n → QΩn,m.

Moreover, as for v′ := π ◦ v, for π ∈ Sn, we have ṽ′ = ṽ and StabSmn(v) = StabSmn(v′), we conclude
that ϕ̃(m,n)(v′) = ϕ̃(m,n)(v). In particular we have ϕ(m,n)(Snx) =

∑
η∈Sn

m
x̃ ◦ η, and hence ϕ(m,n) ∈

HomQSmn(QΩm,n,QΩn,m) is the Schur basis element corresponding to the (Sm oSn)-(Sn oSm)-double coset
(Sm o Sn) ◦ σm,n ◦ (Sn o Sm) in Smn.
In other words, if v ∈ Vm,n is an Sn-minimal tuple, then ϕ(m,n)(Snv) ∈ QΩn,m is the sum of all Smw,
for Sm-minimal tuples in w ∈ Vn,m which have the property (?). This is the original description given in
[Black and List, 1989], where as the main result the following is proved:

4.1 Proposition ([Black and List, 1989])
Let m ≥ n. If ϕ(m,n) is injective, then ϕ(m,n−1) is also injective. Thus it would be enough for proving
Foulkes’ conjecture to show that ϕ(m,m) ∈ EndQSm2 (QΩm,m) is injective for all m ∈ N. �

It has already been observed in [Black and List, 1989], that ϕ(2,2) and ϕ(3,3) indeed are injective. Moreover,
it has been shown in [Jacob, 2004, 4.2] that ϕ(4,4) is injective. In the rest of this note we will concentrate on
the question how to decide computationally whether ϕ(5,5) is injective or not. Due to the sheer size of this
problem, it can only be tackled using particular techniques, and the answer will be given at the very end.

5 The computational approach

Since dimQ(QΩm,m) = |Ωm,m| = (m2)!
(m!)m+1 , the representing matrices of the elements of EndQSm2 (QΩm,m)

for their natural action on QΩm,m are extremely big even for small m; e.g. for m = 5 we have |Ωm,m| =
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5 194 672 859 376 ∼ 5 · 1012. Hence to examine these endomorphisms, it is necessary to work in a much
smaller representation of EndQSm2 (QΩm,m). As long as the latter is a faithful representation, the minimum
polynomials of the elements of EndQSm2 (QΩm,m) are retained, and hence injectivity can be decided using
the smaller representation. Motivated by the ideas in [Müller, 2003], for our computations we use the left
regular representation of EndQSm2 (QΩm,m), which drastically reduces the size of the representing matrices:
Using the fact that dimQ(EndQSm2 (QΩm,m)) equals the character theoretic scalar product of the permutation
character associated to Ωm,m with itself, which can be evaluated with little effort using the computer algebra
system GAP [GAP, 2002], we e.g. form = 5 find the quite moderate size dimQ(EndQSm2 (QΩm,m)) = 1856.

According to the description of the concatenation of homomorphisms given in Section 3, we can determine the
representing matrix of ϕ(m,m) for its left regular action, with respect to the Schur basis of EndQSm2 (QΩm,m),
by counting. More precisely, we let Ω = Ω′ = Ω′′ = Ωm,m and ω1 = ω′1 = ω′′1 = Smx, as well as G = Sm2

and H = H ′ = H ′′ = Sm o Sm, and si = ti = ui and thus A(i) = B(i) = C(i), for 1 ≤ i ≤ l =
dimQ(EndQG(QΩ)). Letting s2 := σm,m ∈ Sm2 , we have ϕ(m,m) = ϕ(2) and thus

A(2) ◦A(i) =
l∑

k=1

∣∣ω1 ◦ si ◦H ∩ ω1 ◦ s−1
2 ◦H ◦ sk

∣∣ ·A(k).

Hence we have reduced the problem to study ϕ(m,m) to the following tasks:
• Classify the H-orbits of the G-orbit Ωm,m, and thereby find corresponding representatives {s1, s2, . . . , sl}
of the H-H-double cosets in G, where s1 = 1G and s2 = σm,m; note that σm,m is an involution.
•Determine p2,i,k :=

∣∣Smx ◦ si ◦H ∩ Smx ◦ s−1
2 ◦H ◦ sk

∣∣, by running through theH-orbit Smx◦s−1
2 ◦H =

Smx ◦σm,m ◦H =
⋃

η∈Sm
m
Smx̃ ◦ η, applying all representatives sk respectively, and classifying the resulting

elements into the H-orbits. Note that in the computer implementation, this is done with Sm-minimal tuples
representing Sm-orbits.
• Decide whether the resulting matrix M := [p2,i,j ]i,j=1,2,...,l ∈ Zl×l has full Q-rank.

As the numerical data for the case m = 5 given below indicate, the subtask of classifying points into H-orbits
is still considerable. Its solution deserves a particular technique, which is a specially tailored adaptation of
ideas in [Lübeck and Neunhöffer, 2001] and [Müller, 2003].
Let U = Sm

m < Sm o Sm = H be as in Section 1. Thus, every H-orbit of Ωm,m or Vm,m is comprised of
U -orbits. The basic idea now is to define U -minimal points in each U -orbit and store only those. To recognize
the H-orbit of a point, we first find its U -minimalization and look that one up. To define the concept of
U -minimality we first go back to tuples in Vm,m again:

5.1 Definition (U -minimal tuple)
In Vm,m we call the lexicographically smallest tuple in each U -orbit U -minimal. For any v ∈ Vm,m we call
the U -minimal tuple in v ◦ U the U -minimalization of v.

The following Lemma links the concepts of Sm-minimality and U -minimality in Vm,m:

5.2 Lemma
If v ∈ Vm,m is an Sm-minimal tuple, then its U -minimalization is again Sm-minimal.

Proof: By Proposition 2.2 the tuple v is Sm-minimal, if and only if for all i, j with 1 ≤ i < j ≤ m the first
occurence of i in v is before the first occurence of j in v. As the subgroup U just permutes the entries within
the m-blocks, the process of U -minimalization just sorts the entries in each m-block into ascending order.
Let v′ be the U -minimalization of v and 1 ≤ i < j ≤ m. If the first occurence of i and that of j in v are in
the same m-block, then the same will be true after the sorting within the m-blocks and Sm-minimality is not
violated. If they are in different m-blocks, the same holds, because their relative order is not changed at all. �

5.3 Definition (U -minimal Sm-orbits)
An Sm-orbit Smv ⊆ Vm,m is called U -minimal, if its representing Sm-minimal tuple is a U -minimal tuple.
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As the Sm-orbits in Vm,m are identified with Ωm,m, this also defines U -minimal elements of Ωm,m. But note
that this does not mean that every U -orbit Smv ◦U in Vm,m contains exactly one U -minimal Sm-orbit; e.g. for
m = 5, there are 2 298 891 tuples in V5,5 which are S5-minimal andU -minimal at the same time, and therefore
represent U -minimal S5-orbits in Ω5,5, while there are only 190 131 U -orbits in Ω5,5 altogether. But still, the
strategy sketched above works:

6 Actual computations

From here on, we concentrate on the case m = 5, and let G = S25 and U = S5
5 < S5 o S5 = H . It turns

out that there are 623 360 743 125 120 ∼ 6 · 1014 tuples in V5,5 and 5 194 672 859 376 ∼ 5 · 1012 points in
Ω5,5. The H-orbit S5x ◦ s−1

2 ◦ H has (5!)4 = 207 360 000 ∼ 2 · 108 points. The number of H-orbits in
Ω5,5 is equal to dimQ(EndQG(QΩ5,5)) = 1856. Thus it is feasible, at least by distributed computing, to run
through the H-orbit S5x◦ s−1

2 ◦H , and to apply the H-H-double coset representatives s1, s2, . . . , s1856, once
we have found them. However, as already mentioned above, we have to recognize in which H-orbit a point
S5x ◦ s−1

2 ◦ h ◦ sk lies. Apart from the fact that we can not enumerate Ω5,5 completely, we could not even
store an H-orbit number for each such point, as this would need at least 2 · 5 194 672 859 376 ∼ 1013 Bytes.
If we had to store every single tuple of Ω5,5, the situation would be even worse. To circumvent this the notion
of U -minimality comes into play:

In a precomputation, we classify all 2 298 891 tuples in V5,5 which are S5-minimal and U -minimal at the same
time, into the 1856 H-orbits in Ω5,5, build up a database containing these tuples and the associated H-orbit
number, and determine suitable group elements s1, s2, . . . , s1856 ∈ G.
A note on the classification of the S5-minimal and U -minimal tuples into the H-orbits in Ω5,5 might be of
interest: We first enumerate all these tuples by a standard backtrack method. Then we start with putting each
of these into a class of its own and begin applying generators of H to tuples, followed by S5-minimalization
and U -minimalization. Whenever we observe that two tuples represent S5-orbits in the same H-orbit in Ω5,5,
we merge their classes. We repeat this, until there are only 1856 classes left. This hence is the distribution of
S5-minimal and U -minimal tuples into the H-orbits in Ω5,5, This approach turns out to work quite efficiently,
and from this classification we can read off suitable elements s1, . . . , s1856 ∈ S25.
The precomputation is implemented in the computer algebra system GAP, and takes a few minutes on a
modern PC. The resulting database, and the elements s1, . . . , s1856 are written out.

In the main computation, every time an S5-orbit S5v, represented by an S5-minimal tuple v, occurs we com-
pute the S5-minimal tuple v′ ∈ S5v by S5-minimalization, then we determine the U -minimalization v′′ of
v′, which also is a S5-minimal tuple by Lemma 5.2. The tuple v′′ is in our database, so we can look up the
H-orbit number of S5v

′′, and because S5v
′′ is in the same U -orbit as S5v, we have determined the H-orbit

number of S5v by this method.
The main computation is done in a specially tailored C program. In this part we use distributed computing,
because different instances of the program on different machines can apply different elements sk, each having
the precomputed database available. After some 14 hours of computation on about 11 modern PCs, i.e. about
150 hours of CPU time, we get the resulting matrix M ∈ Z1856×1856, representing ϕ(5,5) in the left regular
represention of EndQG(QΩ5,5).

The source code of the GAP and C programs used can be downloaded from the following web page:

http://www.math.rwth-aachen.de/˜Max.Neunhoeffer/Mathematics/foulkes.html

Finally, it remains to decide whether M has full Q-rank. Actually, determining the Q-rank or even the kernel
of an integer matrix of size 1856 × 1856 is not a completely trivial task. An approach to find a vector
0 6= v ∈ Q1×1856 with v ·M = 0 is by reducing M modulo p, where p is a suitable prime, and finding p-adic
approximations of v inductively, until a rational lift is equal to v. This has been described in [Dixon, 1982]; an
implementation e.g. is available through the function RationalSolutionIntMat in the GAP package
EDIM [Lübeck, 2004].
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It turns out that the matrix M does not have full Q-rank. Actually, using the GAP package IntegralMeatAxe
[Müller, 2004], which also employs p-adic techniques, it is possible to compute the kernel of M , which turns
out to have Q-dimension 15.

Therefore ϕ(5,5) is not invertible, and hence the approach in [Black and List, 1989] in general does not work.
Note that this does not imply a counterexample to Foulkes’ conjecture. Actually Foulkes’ conjecture has al-
ready been verified in [Foulkes, 1950] for all cases n < m = 5. In addition, we have used the SYMMETRICA
program (see [Kerber and Kohnert, 1992]) to verify the conjecture for all cases with m ≤ 14 and n ≤ 4 and
for all cases with m ≤ 12 and n +m ≤ 17 as well. For bigger cases, some multiplicities of simple modules
in the permutation modules are greater than 231, such that integer overflows occur on our 32 bit machines.

Addendum: In the meantime we have learned that this by [Briand, 2004, Prop.3.9] is a counterexample to
Howe’s conjecture [Howe, 1987], which is a strengthening of Foulkes’ conjecture, and moreover also is a
counterexample to Stanley’s conjecture [Stanley, 2000, p.304], which is a generalisation of Foulkes’ conjec-
ture. We would like to thank Malek Abdesselam for pointing us in that direction.
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