
A Data Structure for a Uniform Approach to Computations
with Finite Groups

Max Neunhöffer
Lehrstuhl D für Mathematik

RWTH Aachen
Templergraben 64

D-52062 Aachen, Germany

max.neunhoeffer@math.rwth-aachen.de

Ákos Seress
The Ohio State University

Department of Mathematics
231 W. 18th Avenue

Columbus, Ohio 43210, USA
akos@math.ohio-state.edu

ABSTRACT
We describe a recursive data structure for the uniform han-
dling of permutation groups and matrix groups. This data
structure allows the switching between permutation and ma-
trix representations of segments of the input group, and
has wide-ranging applications. It provides a framework to
process theoretical algorithms which were considered too
complicated for implementation such as the asymptotically
fastest algorithms for the basic handling of large-base per-
mutation groups and for Sylow subgroup computations in
arbitrary permutation groups. It also facilitates the basic
handling of matrix groups. The data structure is general
enough for the easy incorporation of any matrix group or
permutation group algorithm code; in particular, the library
functions of the GAP computer algebra system dealing with
permutation groups and matrix groups work with a minimal
modification.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; E.1 [Data structures]: Records; I.1.2 [Com-

puting Methodologies]: Symbolic and Algebraic Manip-
ulation—Algorithms

General Terms
Algorithms

Keywords
Computational group theory, permutation group algorithm,
matrix group algorithm, black-box group, constructive mem-
bership, large-base group, GAP

1. INTRODUCTION
There are two basic methods to input a group into a com-

puter: (a) by a presentation, using abstract generators and

Copyright ACM, (2006). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redestribution.
The definitive version was published in:
ISSAC’06, July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0004 ...$5.00.

relations, and (b) by a “concrete” representation as a permu-
tation group or matrix group, defined by a set of generating
permutations or matrices. The major difference between
these two ways is that in a group given by a presentation,
by the celebrated result of Novikov and Boone [15, Ch. 12],
it is recursively undecidable whether a string represents the
identity element of the group; on the other hand, for any per-
mutation or matrix, we can decide whether it is the identity.
In this paper, we are concerned with groups given as in (b),
and with black-box groups, which are a common generaliza-
tion of permutation and matrix groups.

Definition 1. A black-box group is a group whose elements
are encoded as 0-1 strings of uniform length N , and an oracle
(the “black box”) performs the following three operations:
given g, h ∈ G, it can compute (a string representing) gh,
g−1, and can decide whether g = 1.

Given G = 〈X〉, a straight-line program (SLP) of length
m, reaching some element g ∈ G from X, is a sequence
of expressions (w1, . . . , wm) such that for each i one of the
following holds:

• wi is a symbol for some element of X,
• wi = (j,−1) for some j with 0 < j < i, or
• wi = (j, k) for some j, k with 0 < j, k < i,

such that if the expressions are evaluated then the value of
wm is g. Here, if wi is a symbol for some element of X then
it is evaluated as that element, (j,−1) is evaluated as the
inverse of the evaluated value of wj , and (j, k) is evaluated as
the product of the evaluated values of wj and wk. Straight-
line programs can be considered as shortcuts for long words
in the generators. We shall also use the expression that an
SLP reaches a set of group elements from X if the evaluated
values of some subsequence of the wi consist of these group
elements.

For the basic manipulation of black-box groups, there are
two main types of algorithms: constructive membership and
reduction.

Definition 2. We say that an algorithm solves the con-
structive membership problem in a black-box group G = 〈X〉
if it computes |G|, constructs a new generating set Y from
X by a sequence of steps multiplying and inverting group
elements, and sets up a procedure that, for any given g ∈ G,
computes a straight-line program from Y to g.

We say that an algorithm is a reduction algorithm for a
black-box group G if it defines a homomorphism ϕ : G →

H for some group H with nontrivial image, and sets up a
procedure that, for any given g ∈ G, computes ϕ(g).

For permutation groups G, the Schreier–Sims algorithm
and its variants [17],[16] solve the constructive membership
problem in G, by computing a strong generating set Y .
However, for large-base permutation groups (see Section 3),
there are asymptotically more efficient algorithms, which
use reduction first. Also, it does not seem possible to solve
the constructive membership problem in arbitrary matrix
groups directly; all algorithmic attempts go through a series
of reduction steps, until reaching a permutation group, or
an almost simple matrix group modulo scalars, or a solvable
matrix group. Another need arises for reduction algorithms
when we go beyond the basic task of computing the order of
the input permutation or matrix group G, and set up mem-
bership testing in G: for example, if we want to compute a
composition series or Sylow subgroups.

The purpose of this paper is to describe a data structure
which provides a framework for the search for applicable
reduction algorithms and then, if a suitable reduction al-
gorithm is found, for the division of the computations in
the image and kernel of this reduction. The data struc-
ture is a rooted tree, with the root corresponding to the
input G, and other nodes corresponding to certain subnor-
mal segments of G. (Recall that the segments of G are the
subgroups and quotients of subgroups of G, and a subgroup
H < G is subnormal in G if there is a series of subgroups
H = H0 < H1 < · · · < Hm = G such that Hi � Hi+1 for
all i < m. We call a segment subnormal if the subgroup in
its definition is subnormal.) The inner nodes K have a re-
duction algorithm associated with them, and they have two
children: the image and the kernel of a homomorphism from
K. The leaves have an algorithm for constructive member-
ship associated with them.

The data structure is implemented in the GAP computer
algebra system [11], taking full advantage of the object-
oriented features of GAP and using ideas of the method
selection mechanism of GAP for the choice of reduction
methods. The data structure is implemented on the black-
box group level, so it is equally suitable for matrix groups
and permutation groups. In most applications, the type of
change (if there is a change at all) is from matrix groups
to permutation groups but, for example, the asymptotically
fastest Sylow subgroup computations in permutation groups
require to switch to matrix representations of certain com-
position factors. There are also applications of constructive
membership in simple groups which switch from matrix or
permutation groups to black-box groups.

In the permutation group setting, the use of homomorphic
images to break a computation into manageable pieces was
introduced by Luks, in the context of parallel (NC) compu-
tations [14],[6]. As we mentioned earlier, in the matrix group
setting this seems to be the only feasible approach. Concern-
ing implementations, there exist data structures similar to
ours; the most notable one is described in [13] and is imple-
mented in Magma [9] by Eamonn O’Brien for computations
with matrix groups. Compared with previous GAP data
structures for similar purposes like HomCoset, our approach
has the advantage that it is compatible with the permuta-
tion group and matrix group algorithms of the GAP library.
Also, there are numerous features that go beyond all such
previous efforts.

One novelty of our approach is the generality of applica-
tion to all black-box groups. In fact, our first success story
is the uniform handling of all permutation groups (i.e., both
small-base and large-base groups, see Section 3.1 for details).
There are also many new ideas to improve efficiency; here
we highlight only two of them.

A mechanism is developed so that a node V in our recur-
sive tree structure can give hints to its descendants, suggest-
ing methods for a possible reduction algorithm. This way,
information gathered by the node V , which may be lost for
example if a child of V gets only generators for the kernel
of the reduction homomorphism of V , can be passed down.
These hints also enable each node to have an individualized
method selection process, which may find a suitable reduc-
tion algorithm faster than trying all applicable methods in
a uniformly prescribed order.

The second idea we would like to highlight here is that
we construct a new generating set such that group elements
can be reached by much shorter straight-line programs than
from the input generators. In the permutation group setting
the traditional strong generating sets achieved this goal, but
in the matrix group setting previous attempts used straight-
line programs from the input generators.

Our setup also makes possible a clean design of algo-
rithms with complicated case analysis. For example, Alice
Niemeyer used our method selection process to implement
an algorithm for the non-constructive recognition (i.e., find-
ing the name of the isomorphism type) of classical almost
simple matrix groups, in their natural representation. Our
data structure was carefully designed to accommodate sub-
routines written by other developers, who do not have to
be aware of the syntax or any detail of our implementation.
Already there are numerous examples of incorporating algo-
rithms written independently in our framework. Given the
decentralized nature of GAP development, such an approach
is essential for cooperation with other developers of permu-
tation or matrix group code. Part of our code is available as
a formal GAP package called recog, while other parts are
incorporated in the GAP library.

2. BUILDING THE DATA STRUCTURE
Our data structure to handle a group G = 〈X〉 is a rooted

tree, with the nodes corresponding to a recognition info
record for certain subgroups of G. The nodes of the tree
are created by a highly recursive procedure. The input at
the creation of a new node V is a group K, given by a
list XK of generators. The group K is a segment of G.
The goal is to set up a procedure which, given any k ∈ K,
writes a straight-line program reaching k from XK . This can
be achieved by either finding an algorithm for constructive
membership in K, and in this case the node V becomes a
leaf of the tree, or by finding a reduction algorithm, that is,
finding a homomorphism ϕ : K → H onto some group H. In
the latter case, we solve the problem of writing the elements
of Im(ϕ) and Ker(ϕ) in terms of generators of these groups
recursively, and put together a procedure for the elements
of K from these two subprocedures (see Subsections 2.1 and
2.4).

The entire algorithm starts with the creation of the root
by inputting the generators X for G, and the algorithm ter-
minates when the recognition info record of the root is com-
plete.

2.1 Tasks of a node
To make our recursive recognition procedure work, each

node in the tree — be it a leaf or not — has to fulfill the
following tasks for its input group K with generators XK :

(1) Recognize the group by finding possibly new “nice gen-
erators” YK and specifying an algorithm to solve the
constructive membership problem, that is, given any
group element k ∈ K, being able to return an SLP
reaching k from the nice generators YK .

(2) Record how the nice generators YK were derived from
the input generating set XK . That means, that the
node has to be able to calculate, given preimages of
the XK under some group homomorphism θ : L → K,
preimages of the YK under θ.

Note that for (1) it is of course possible that YK = XK .
Task (2) can be achieved by recording an SLP that reaches
YK from XK , because this SLP can be executed with the
given preimages of the XK as input thereby reaching preim-
ages of the YK .

For leaf nodes, these two tasks amount to exactly what
we have formulated in Definition 2 plus recording how YK

was obtained from XK .
For a non-leaf node, we can fulfill the two tasks by recur-

sively using the results of the recognition for the image and
the kernel of the homomorphism ϕ : K → H in the following
way:

The set of new nice generators YK of a non-leaf node is the
union of some preimages Y K

H of the nice generators YH of H
under ϕ and the set YN of nice generators of the kernel N of
ϕ. We recursively ask the node of H to calculate Y K

H ⊆ K.
We call task (2) of that node with input XK , which we can
do, because the input generators XH of that node are by
definition the images of XK under ϕ. The input generators
XN of the kernel were produced during the recognition of
the node for K and after the recognition of H, therefore we
can just store how we got them from XK and Y K

H by storing
an SLP.

If we are given any element k of K we can find an SLP
that reaches it from YK = Y K

H ∪YN in the following way: We
first map k via the homomorphism ϕ into H and recursively
find an SLP reaching ϕ(k) from the YH in H. Applying this
SLP with inputs Y K

H reaches an element k′ ∈ K which is
mapped to the same image under ϕ as k, such that kk′−1

lies in N . We then ask the node for N recursively for an
SLP reaching kk′−1 from YN . We can then combine those
two SLPs into one SLP reaching k from YK = Y K

H ∪ YN .
Thus we can fulfill task (1) in non-leaf nodes.

As to task (2), if some procedure further up in the tree
gives us preimages XL of the XK under some homomor-
phism θ : L → K, we first ask the node for H to calculate
preimages Y L

H of the Y K
H under θ by giving it the preim-

ages XL, which are preimages of XH under ϕ ◦ θ. Then
we execute the stored SLP with inputs XL and Y L

H to find
preimages XL

N of the input generators XN of N under θ and
finally call the node for N recursively to find preimages Y L

N

of the YK under θ. Then Y L
H and Y L

N are preimages of the
nice generators for K under θ. Thus we also can fulfill task
(2) for a non-leaf node.

This shows that both tasks can be fulfilled in a non-leaf
node.

2.2 Method selection for processing a node
After a new node V is created by specifying a group

K = 〈XK〉, we have to explore K to find out whether we
can solve the constructive membership problem, or what
kind of homomorphism can be applied to it. To this end,
the framework holds a collection of so-called “find homomor-
phism” methods in stock. A find homomorphism method’s
objective is either to find a homomorphism ϕ : K → H onto
some subgroup H, thereby creating a new non-leaf node,
or to solve the constructive membership problem directly,
which can but does not always have to find an isomorphism
to some known group.

For each type of groups (permutation groups, matrix
groups, and black-box groups), the system has a database
of find homomorphism methods. We call the procedure
that decides, which methods to try and in which order the
“method selection”. For this purpose we define a very sim-
ple and yet versatile algorithm, which we will describe now.
It is usable independently from group recognition, but we
will explain it here in the context of our generic recognition
procedure. Note that this new method selection procedure
is not to be confused with the GAP method selection.

The group recognition procedure for a node just calls the
generic method selection procedure with the database of find
homomorphism methods corresponding to the type of the
group.

The methods in each database are ranked, thereby defin-
ing a total order. The method selection procedure calls the
methods one after another, starting with high ranks. A find
homomorphism method reports back to the generic proce-
dure by returning one of the following four values:
true:

The method was successful and has either set up a leaf or a
non-leaf node. For details see below.
fail:

The method has failed to find a homomorphism or to solve
the constructive membership problem, at least temporarily.
false:

The method has failed and will do so always for the group K
in question, such that there is no point in trying this method
again for the group K.
NotApplicable:

The method is currently not applicable but it might become
applicable later, provided new knowledge is found out about
the group K.

The first case is the only one that terminates the recog-
nition procedure for the current node and we will discuss
this case below in detail. All other cases make it neces-
sary to try other methods. The difference between these
latter three cases lies in the fact, how the generic proce-
dure chooses the next method called. If a method returns
NotApplicable, then the method selection just calls the next
method in the database. In the other two cases false and
fail, the method selection again starts with the highest
ranked method, but skipping all methods that have already
been tried and have failed by returning either false or fail.

When all available methods either have declared them-
selves NotApplicable or have failed, then the method selec-
tion starts all over again, now calling methods again that
have returned fail once but of course skipping methods
that have returned false. This whole process is repeated
until each method has failed a configurable number of times,
when the method selection finally gives up.

We hope that this design is simple enough to keep an
overview of what is tried in which order to prove the whole
algorithm to work correctly, and versatile enough to imple-
ment a wide range of different algorithms, in which “trying
different methods” is involved. We now explain the rationale
behind some of the features of this procedure.

The idea behind the fact that after a method having re-
turned fail or false the method selection starts again with
the highest ranked method is that even a failed method
might have found out new information about the group,
thereby making higher ranked methods, that have refused to
work earlier by returning NotApplicable, newly applicable.

Information about K is collected in so-called attributes
(for example, a permutation group object may store an at-
tribute whether it is transitive or not), but we may also ac-
quire the information that K is simple, or that it is solvable,
or we may know |K|, etc. Note that at any given time, the
value of an attribute for a given group object can already
be computed or not, and the group object can learn new
information about itself during its lifetime. This feature is
already part of the GAP system library.

Further attributes may be computed when the method se-
lection tries to apply different find homomorphism methods
while processing the node V . Therefore, a find homomor-
phism method can just look whether or not a certain at-
tribute is already known and then decide if it starts to work
or declares itself NotApplicable. With new attributes being
computed, this decision might be changed. By convention,
a method should never use much computation time to find
out that it is not applicable.

The idea behind a method returning fail is that often
randomized algorithms are used that have the potential to
fail, but still may succeed when tried again. The ranking and
the failure probabilities of course have to be tuned carefully
to assemble a sensible recognition system.

We give a few examples to explain the procedure: For per-
mutation groups there is a very high ranked method called
“Intransitive” for non-transitive groups that finds a homo-
morphism by restricting to an orbit. If called, it computes
whether the group is transitive. If so, it has succeeded to
find a homomorphism and returns true. If the group is tran-
sitive, it returns false, because this method will never find
a homomorphism.

Another method “Imprimitive” tries to find a homomor-
phism by finding a block system. This method first checks
whether the group is known to be transitive (without trig-
gering a computation). If not, it returns NotApplicable. If
the group is known to be transitive, it starts computing a
block system using standard GAP library methods. If one
is found, the method succeeded to find a homomorphism
and returns true, otherwise it returns false, because this
method will not work, even when tried again. Note that
the “Intransitive” and the “Imprimitive” methods correctly
work together regardless of their respective ranking in the
database. The system will first try to restrict to an or-
bit and only if this is not possible search for a block sys-
tem.

A third type of behaviour is shown by a randomized
method to recognize a “giant”, which means that the group
is either an alternating or symmetric group in its natural
action. This method tries for some time to find elements
whose existence proves that the input is a giant, and if not
successful returns fail. Due to the probabilistic nature of

the algorithm the method could finally succeed when called
again.

We now explain how a successful method reports back
to the generic recognition procedure what it has found. It
does so by setting certain attributes of the recognition info
record.

A method returning true has to either report back a ho-
momorphism in form of a GAP homomorphism object, by
which the system can map elements through the homomor-
phism. Or, for leaf nodes, the method has to declare the
node to be a leaf and also return information about its cho-
sen nice generators and the guaranteed procedure to solve
the constructive membership problem for this node. A vari-
ety of other reporting possibilities are provided in the frame-
work by attributes of recognition info records. See Subsec-
tion 2.6 for details about this.

2.3 Group elements with memory
In the case of leaves, when we solve the constructive mem-

bership problem in the group K = 〈XK〉 associated with the
leaf node V , we usually compute a new generating set YK

for K which is suitable to write straight-line programs from
YK reaching any element of K. However, for the recursive
recognition procedure outlined in Subsection 2.1, we have to
record how YK was derived from XK . The easiest approach
for this is that the construction of YK records an SLP from
XK to YK Another instance for the necessity of recording
an SLP at the construction of group elements arises at in-
ner nodes of the tree structure. When a homomorphism
ϕ : K → H is created from the group K = 〈XK〉 associated
with the node, we need SLP’s from XK ∪ Y K

H reaching the
generators XN of Ker(ϕ).

The need of recording the steps at the construction of
group elements gives rise to two conflicting requirements.
On one hand, every group operation has to be recorded in
an SLP; on the other hand, this recording should not be
part of the code of the applied methods, since we want to
use existing permutation and matrix group algorithms with-
out rewriting the library of GAP functions. The solution is
the definition of an SLP S which records every group oper-
ation we do starting with a certain set M of generators, and
the introduction of new objects “permutation with mem-
ory” and “matrix with memory”. The SLP S is initialized
to contain a list of symbols for the elements of M . The new
data types are records (wrapped up in the object mecha-
nism of GAP), consisting of a permutation or matrix g, a
pointer to S, and a number, indicating the position of g in
S. We install new methods for the multiplication, inver-
sion, powering, conjugation, and comparison of these new
objects: these methods perform the appropriate operations
on the permutation or matrix part of the objects, add the
operation performed to S, and store the new length of S in
the resulting object (since this length is the position of the
result in S). We note that SLP’s in GAP are slightly more
general than the ones described in Definition 1, allowing for
example the addition of an arbitrary power of a previous
element, or an arbitrarily long product of previously defined
elements in one step.

Any existing (and future) permutation or matrix group al-
gorithm, which creates new permutations and matrices only
by black-box operations (i.e., multiplication and inversion
of previously constructed elements), works with these new
data objects without any modification. There are only a

handful of instances in the current GAP library where this
condition is not satisfied, and it is possible to work around
those situations without too much effort.

The very same implementation can be used to describe
words in a finitely generated free group by storing those
words as a reference in the (universal) straight-line program
S that produces all elements that occurred in a certain cal-
culation. This approach is very similar to the concept of
“SLPElements” available in the Magma [9] system.

Note that our approach to let each node choose a “nicer
generating set” and to always write SLPs in terms of those
has two major advantages: firstly our SLPs will be much
shorter and secondly the memory for group elements only
has to be used “locally” within each node and not all across
the recognition tree.

2.4 Recursion
When processing a node V with corresponding group K =

〈XK〉, any homomorphism ϕ : K → H created by a find
homomorphism method must satisfy the property that there
exists a function f which, for all g ∈ K, computes ϕ(g).
This function usually requires some auxiliary data structure,
which must be stored in the recognition info record V .

For example, if K ≤ Sym(n) is an intransitive permuta-
tion group and ϕ is the restriction to an orbit O of length l
then the auxiliary data is a permutation π ∈ Sym(n) map-
ping O to {1, 2, . . . , l}, and the number l. The function f is
conjugation by π, followed by the restriction to {1, 2, . . . , l}.
Of course, for other homomorphisms the auxiliary data and
the function f may be much more complicated. We defined
a new generic operation in GAP, GroupHomomorphismBy-

FunctionWithData, to accommodate such homomorphisms.
If a find homomorphism method succeeds to find ϕ then

it creates a new node R(V) (the right-hand-child of V) with
associated group H := Im(ϕ). The input generator set XH

for H is by definition equal to ϕ(XK), but of course as ex-
plained in Subsection 2.1, the child node may choose another
nice generating set YH . Then we recursively process R(V),
until a data structure is set up to write an SLP to any h ∈ H
from YH . The next step is to store preimages Y K

H of the nice
generators YH under ϕ within the node V . This can be done
by using task (2) described in Subsection 2.1 for the node
R(V). After that, we define L(V) (the left-hand-child of V),
which corresponds to Ker(ϕ).

There are two basic methods to construct a generating
set XN for N := Ker(ϕ). The generic one is to construct
random elements k ∈ K, compute ϕ(k), write an SLP S
from YH reaching ϕ(k) in H using the recognition info record
R(V), and evaluate S using the stored preimages Y K

H of YH

in K. The result of this evaluation is some k′ ∈ K, and
then kk′−1 is an element of N . Each element of N has
the same probability to occur as kk′−1, hence repeating this
procedure enough times we obtain a generating set for N
with arbitrarily high probability.

The second method for obtaining generators for N =
Ker(ϕ) is applicable if in H the constructive membership
problem is solved using the nice generating set YH and we
also have a presentation 〈YH | r1, . . . , rm〉 with some relators
r1, . . . , rm. (During the construction of our data structure,
this situation usually, but not exclusively, occurs if H is al-
most simple.) Then the following set gensN is a set of normal
generators for N , i.e., the normal closure 〈gensNK〉 = N .
The set gensN is constructed in the following way: For each

x ∈ XK , compute ϕ(x); write an SLP S from YH to ϕ(x);
compute the evaluation y of S using preimages Y K

H of YH in
K; add xy−1 to gensN. Also evaluate the relators r1, . . . , rm

using the preimages Y K
H of YH and add the evaluated values

to gensN. After gensN is constructed, its normal closure can
be obtained by the black-box methods of [10] or [3] (see also
[16, Ch. 2]).

The attribute findgensNmethod records the method used
to construct generators of the kernel N = Ker(ϕ) and can
be set by the successful find homomorphism method. Note
that during the construction of generators for N we have to
“remember” how the generators are obtained from XK and
Y K

H (again see Subsection 2.1). After generators for N are
constructed, we recursively process L(V).

The generic function for writing SLP’s reaching given el-
ements of K from YK is SLPforElementGeneric. It does
what is described near the end of Subsection 2.1 to fulfill
task (1) for homomorphism nodes.

2.5 Verification
The construction of our data structure is randomized. It

is a Monte Carlo procedure, which means that the output
may be incorrect; however, the user can prescribe an upper
bound for the probability of erroneous output. Hence, af-
ter the construction of the data structure, we may have a
verification phase which proves the correctness of the out-
put. The verification is done by constructing and evaluating
a presentation for the input group G. The presentation is
constructed by a recursive procedure in a bottom-up man-
ner, starting at the leaves.

Presentations for the groups K associated with leaves may
be constructed by diverse methods, depending on the type
of K. At inner nodes of the tree, we employ a generic pro-
cedure from [5], see also [16, Sect. 8.4], which, given presen-
tations for N and K/N for some group K and N � K, and
procedures to write SLP’s in N and K/N from the genera-
tors to any element of N and K/N , respectively, constructs
a presentation for K.

The verification procedure is not yet implemented in GAP.

2.6 Components of the recognition info record
In this subsection we summarize the components of the

recognition info record (or “component object”, as it is called
officially in GAP). The components are filters and attributes.
A filter is a class of objects the recognition info may or may
not belong to, indicated by a flag stored in the type of the
object. An attribute is some information about the recogni-
tion info record together with the information whether this
attribute has already been determined or not. All attributes
start with being not yet determined, then most are initial-
ized with sensible default values by the generic recursive
recognition procedure. Find homomorphism methods (es-
pecially successful ones) later can change or set the values
to report information back to the generic procedure.
Filters:
IsLeaf: Indicates whether we are on a leaf in the tree. This
has to be set by a successful find homomorphism method.
IsReady: Indicates whether the node is already set up com-
pletely, which means that the recognition was successful.
DoNotRecurse: Tells the generic procedure that the node
might or might not be a leaf. However, the find homo-
morphism takes complete responsibility to set it and all its
children up.

Generic attributes: (always known in the end)
group: The group object K = 〈XK〉 at this position of the
tree.
nicegens: The list YK of nice generators.
parent: A possible parent node in the tree, only the top
node has none set.
fhmethsel: A GAP record that keeps record of the method
selection process at this node. For example one can see
which methods have been tried how often and which one
succeeded.
slpforelement: A GAP function fulfilling task (1) of the
node, which returns, given two arguments ri and x, an SLP
reaching the group element x of K from YK (ri must be the
recognition info record of this node).
presentation: This attribute is reserved for the future im-
plementation of the verification phase.
calcnicegens: A GAP function fulfilling task (2) of the
node, which returns, given preimages of the input genera-
tors XK under some homomorphism θ : L → K, preimages
of the nice generators YK under θ. The default function is
to take the value of the attribute slptonice, which has to
contain (if set) an SLP reaching YK from XK .
slptonice: See the previous attribute.
Generic attributes for the non-leaf case (and maybe in some
leaf-cases):
homom: A GAP homomorphism object describing ϕ : K → H
for some group H.
pregensfac: The set Y K

H of preimages of the nice generators
in the image.
factor: The right-hand-side child corresponding to the im-
age group H in the recognition tree. Its value is again a
recognition info record.
kernel: The left-hand-side child corresponding to the kernel
group N in the recognition tree or fail if the kernel is known
to be trivial.
gensN: A list collecting generators of N .
gensNslp: An SLP to write generators of N in terms of XK

and Y K
H .

findgensNmethod: A record with components method and
arg. The function method is called with argument list arg

(with the recognition info record prepended) to create the
generators of the kernel.
methodsforfactor: The database used for recognizing the
factor group H. This for example has to be changed by a
find homomorphism method mapping from a matrix group
onto a permutation group.
immediateverification: A flag (default value false) that
indicates if an additional (randomized) verification stage is
done after completing the recognition of the kernel (namely
constructing a few more kernel elements and trying to find
an SLP reaching them). This is important if a find homo-
morphism method learns that the kernel N will need lots of
generators.
forfactor: A record where find homomorphism methods
can store information that will be available during the recog-
nition of the factor group H. In particular, the component
hints can be used to store additional find homomorphism
methods that will be tried first when recognizing the factor.
forkernel: A record where find homomorphism methods
can store information that will be available during the recog-
nition of the kernel N . In particular, the component hints

can be used to store additional find homomorphism methods
that will be tried first when recognizing the kernel N .

Additional data: depending on the type of homomorphism
found.

2.7 Two examples
We give a small example of the installation of find ho-

momorphism methods that actually finds a homomorphism.
The following code tries to restrict the action of an intran-
sitive permutation group to one of its orbits:

FindHomMethodsPerm.NonTransitive :=

function(ri, G)

local hom,la,o;

Test whether we can do something:

if IsTransitive(G) then

return false; # do not call us again

fi;

la := LargestMovedPoint(G);

o := Orbit(G,la);

hom := ActionHomomorphism(G,o);

Sethomom(ri,hom);

return true;

end;

AddMethod(FindHomDbPerm,

FindHomMethodsPerm.NonTransitive,

90, "NonTransitive");

Our second small example shows the installation of a find
homomorphism method that creates a leaf. The following
code recognizes the trivial permutation group and sets up a
corresponding leaf:

SLPforElementFuncsPerm.TrivialPermGroup :=

function(ri,g)

return StraightLineProgram([[1,0]], 1);

end;

FindHomMethodsPerm.TrivialPermGroup :=

function(ri, G)

local g,gens;

gens := GeneratorsOfGroup(G);

for g in gens do

if not(IsOne(g)) then

return false;

fi;

od;

Setslpforelement(ri,

SLPforElementFuncsPerm.TrivialPermGroup);

Setslptonice(ri,

StraightLineProgram([[[1,0]]],

Length(GeneratorsOfGroup(G))));

SetFilterObj(ri,IsLeaf);

return true;

end;

AddMethod(FindHomDbPerm,

FindHomMethodsPerm.TrivialPermGroup,

110, "TrivialPermGroup");

This code refers to the also shown SLPforElement function
which constructs an SLP for the elements of K. Although
this example is rather trivial, it shows the mechanisms of
the recognition framework.

3. APPLICATIONS

3.1 Permutation groups
A base for a permutation group G ≤ Sym(Ω), with |Ω| =

n, is a sequence B = (β1, . . . , βm) of points from Ω such that
the pointwise stabilizer of B in G is the identity subgroup.
The minimal base size of G and log |G| are within a factor
log n of each other. A base defines a series of subgroups
G = G[1] ≥ G[2] ≥ · · · ≥ G[m+1] = 1, where G[i] is the
pointwise stabilizer of the first i − 1 base points. A strong
generating set (SGS) relative to B is a generating set S for

G such that S ∩ G[i] generates G[i] for all i ≤ m. The
Schreier–Sims algorithm [17] constructs a base and SGS for
permutation groups G. This data structure allows us to
compute |G| and test membership in G.

Given G = 〈X〉 ≤ Sym(n), randomized versions of the
Schreier–Sims algorithm [4], [16, Ch. 4] compute a base and
SGS in O(n|X| logc |G|) time, for some small constant c. In
the family of small-base groups, where log |G| (and so the
minimal base size) is bounded from above by a polyloga-
rithmic function of the permutation degree, such algorithms

run in nearly linear, O(n|X| logc′ (n|X|)), time of the in-
put length n|X|. The current implementation for the basic
handling of permutation groups in GAP is such a nearly
linear-time algorithm.

By definition, a family of permutation groups is called
large-base if it is not in the family of small-base groups. For
large-base groups, the running times of the algorithms in [4],
[16, Ch. 4] are not nearly linear, and there is a deterministic
algorithm [7] which computes |G| and tests membership in
G asymptotically faster than any version of the Schreier–
Sims approach. The basic idea behind the algorithm in [7]
is to detect the large alternating composition factors of the
input, apply special algorithms for those, and handle the
rest of the group by the traditional Schreier–Sims technique.
The algorithm of [7] has not been implemented earlier.

Our new data structure enables the development of a uni-
fied algorithm for all permutation groups, which handles
both small-base and large-base groups. We installed find ho-
momorphism methods for orbit and imprimitivity block cal-
culation, and for handling symmetric and alternating groups
in their natural representation (by speeding up a black-box
recognition algorithm for alternating groups [8], along the
lines described in [16, Sect. 10.2.4]; this last program was
written by Maska Law). We also incorporated a randomized
version [12] of the algorithms in [7, Sect. 4], to obtain a find
homomorphism method for the handling of primitive per-
mutation groups with large alternating groups “hidden” in
their socle. The rest of the algorithm of [7] is done automat-
ically, by the generic functions of the new framework, with
one noteworthy addition. In the case when a find homomor-
phism method finds a block system B and the homomor-
phism ϕ : K → Sym(B) in the group K associated with a
node V , then this information is passed down to L(V). The
node L(V) tests whether the action of Ker(ϕ) on one block
is solvable. If the answer is yes then Ker(ϕ) is solvable, L(V)
becomes a leaf node, and it is handled by Sims’s algorithm
for solvable permutation groups [18]. If the answer is no
then the intransitive methods take over, eventually creating
|B| homomorphisms onto the blocks. We instruct L(V) and
all of its descendants to divide the blocks they handle into
two equal groups, and create a homomorphism as a restric-
tion to one of these halves. This way, we can achieve that

the subtree below L(V) is balanced, which speeds up the
recursive calls significantly.

Experiments show that for permutation degree n > 100,
the unified algorithm is about as fast as the nearly linear-
time Schreier–Sims algorithm in the case when the input is
a small-base group, and it performs considerably faster than
the Schreier–Sims algorithm in the case of large-base inputs.

The following table contains some runtimes. We compare
our recursive recognition approach with the method data-
base for permutation groups with the randomized calcula-
tion of a stabilizer chain (error probability 10%), both for
the case that the group order is known beforehand (indicated
by “o.k.”) and not. Note that our approach cannot benefit
from knowledge of the group order, whereas the stabilizer
chain verification phase can. All times are in seconds and
were performed on a machine with a Pentium 4 processor
running at 2.5 GHz with 1.5 GB of main memory.

G Rec. StabChain (o.k.) StabChain
S2 o S100 2.0s 10.5s 78.8s
A5 o S100 7.2s 124.0s 1153.9s
S5 o S100 8.8s 515.5s 2837.0s
Fi23 o S2 52.1s 4.1s 70.2s

Fi23 13.4s 0.4s 10.9s
diag A5 o P 2.1s 0.054s 0.2s

In the column marked G we mean by Sn the symmetric
group on n points, with A5 the alternating group on 5 points,
with Fi23 the sporadic simple Fischer 23 group on 31671
points and with diag A5oP a group which acts on 5000 points
with a primitive group (PrimitiveGroup(1000,7) in the
GAP library of primitive groups) acting on a block system
with 1000 blocks with 5 points each and with a block stabi-
lizer isomorphic to A5 acting simultaneously on all blocks.

The first three groups are large-base groups and clearly
the recursive approach shows its merits. The last three
groups admit a short base. Our recognition approach is
somewhat slower than the traditional stabilizer chain ap-
proach because we first have to exclude the possibility of a
large-base input before reverting to the small-base methods.
In the case when the group order is given a priori (this is
the case when we are setting up a data structure for the
study of a “known” group), it is known that the verification
phase of the stabilizer chain computation can be sped up.
We may not realize similar savings with our approach be-
cause usually we have no a priori knowledge of the order of
each homomorphic image we work with.

3.2 Matrix groups
Computations with matrix groups are more difficult than

with permutation groups. One of the main reasons is that
there is no analogue of the Schreier–Sims algorithm which
runs in polynomial time in the input length. There are two
basic methods dealing with matrix groups: the geometric
approach, summarized in [13], and the black-box approach
[2]. The primary motivation for the development of our data
structure was to provide a framework for computations in
the geometric approach.

The geometric approach is based on Aschbacher’s classi-
fication [1] of subgroups of GL(d, q). There are nine cate-
gories, and the groups G belonging to seven of them preserve
some geometric structure and there is a normal subgroup
N � G naturally associated with the geometric structure.
For example, there may be an invariant subspace W of the

underlying vector space GF(q)d, and N is the kernel of the
action on W ; or GF(q)d can be decomposed as a direct sum
of subspaces such that these subspaces are permuted by G,
etc. The goal is to develop procedures which recognize that
a group G belongs to these seven Aschbacher categories, and
implement corresponding find homomorphism methods us-
ing ϕ : G → G/N . Such groups lead to inner nodes in our
tree data structure. Some of these homomorphisms map G
onto a permutation group, or into such a small matrix group
that we can write a permutation representation for the im-
age, in time polynomial in the input length. The other two
Aschbacher categories contain almost simple groups mod-
ulo scalars: the classical groups (linear, unitary, orthogo-
nal, and symplectic) in their natural representation, and
the other representations of almost simple groups, respec-
tively. Groups in these categories are handled by solving
the constructive membership problem, and lead to leaves in
our data structure.

Currently, we have find homomorphism methods for four
of the seven reductive Aschbacher categories and for some of
the almost simple groups in arbitrary representations. Work
on reduction algorithms for the remaining three reductive
Aschbacher categories is under way, and will be finished
soon. The major task is to have more algorithms in the
almost simple case. Besides our code and subroutines from
the GAP library, we incorporated programs written by P.
Brooksbank, F. Lübeck, S. Howe, M. Law, and A. Niemeyer.

4. ACKNOWLEDGMENTS
This research started when the authors were visiting the

School of Mathematics and Statistics at the University of
Western Australia. We would like to thank the hospitality
of UWA and the support by an ARC Large Grant. The
second author is partially supported by the NSA and NSF.

5. REFERENCES
[1] M. Aschbacher. On the maximal subgroups of the

finite classical groups. Invent. Math., 76:469–514,
1984.

[2] L. Babai and R. Beals. A polynomial-time theory of
black box groups I. In Groups St. Andrews 1997 in
Bath, I, volume 260 of London Math. Soc. Lecture
Note Ser., pages 30–64, 1999.

[3] L. Babai, G. Cooperman, L. Finkelstein, E. M. Luks,

and Á. Seress. Fast Monte Carlo algorithms for
permutation groups. J. Comp. Syst. Sci., 50:296–308,
1995.

[4] L. Babai, G. Cooperman, L. Finkelstein, and

Á. Seress. Nearly linear time algorithms for
permutation groups with a small base. In Proc. of
Intern. Symp. on Symbolic and Algebraic Computation
ISSAC ’91, pages 200–209. ACM Press, 1991.

[5] L. Babai, A. J. Goodman, W. M. Kantor, E. M. Luks,
and P. P. Pálfy. Short presentations for finite groups.
J. Algebra, 194:97–112, 1997.

[6] L. Babai, E. M. Luks, and Á. Seress. Permutation
groups in NC. In Proc. 19th ACM STOC, pages
409–420. ACM Press, 1987.

[7] L. Babai, E. M. Luks, and Á. Seress. Fast
management of permutation groups I. SIAM J.
Computing, 26:1310–1342, 1997.

[8] R. Beals, C. Leedham-Green, A. Niemeyer,

C. Praeger, and Á. Seress. A black-box group
algorithm for recognizing finite symmetric and
alternating groups, I. Trans. AMS, 355:2097–2113,
2003.

[9] W. Bosma, J. Cannon, and C. Playoust. The Magma

algebra system I: The user language. J. Symbolic
Comput. 24:235–265, 1997.

[10] G. Cooperman and L. Finkelstein. Combinatorial
tools for computational group theory. In Groups and
Computation, volume 11 of Amer. Math. Soc.
DIMACS Series, pages 53–86. AMS, 1993.

[11] The GAP Group. GAP – Groups, Algorithms, and
Programming, Version 4.4. Aachen–St Andrews, 2004.

[12] M. Law, A. Niemeyer, C. Praeger, and Á. Seress. A
reduction algorithm for large-base primitive
permutation groups. London Math. Soc. J.
Computational Math., to appear.

[13] C. R. Leedham-Green. The computational matrix
group project. In Groups and Computation III,
volume 8 of OSU Mathematical Research Institute
Publications, pages 229–247. Walter de Gruyter, 2001.

[14] E. M. Luks. Parallel algorithms for permutation
groups and graph isomorphism. In Proc. 27th IEEE
FOCS, pages 292–302. IEEE Comp. Soc. Press, 1986.

[15] J. J. Rotman. An Introduction to the Theory of
Groups. Springer, 4th edition, 1995.

[16] Á. Seress. Permutation Group Algorithms. Cambridge
University Press, Cambridge, 2003.

[17] C. C. Sims. Computational methods in the study of
permutation groups. In Computational Problems in
Abstract Algebra, pages 169–183. Pergamon Press,
1970.

[18] C. C. Sims. Computing the order of a solvable
permutation group. J. Symbolic Comput. 9:699–705,
1990.

